
PC4240 : Solid State Physics 2 
April 06/07 (Semester 2) 

Suggested Solutions 
 

1) 

 

From the drift equation for charged particles in a magnetic and electric field, we can 

obtain the j Eσ=  type of relations.  

 

For electrons, the equation is provided in question 6.9 of Kittel. 

 
2

2 2

2 2

1 0

1 0
1

0 0 1

ex c e

e

y c e

c e

z c e

nej
m

j

j

τ ω τ
ω τ

ω τ
ω τ

−   
   =   +   +   

              (1)                                            

 

For holes, we work from the drift equation in steady state i.e. 0
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With some manipulation, we obtain 
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From this we form the j Eσ=  relation. 
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The behavior of the semiconductor crystal is now a sum of these two contributions of 

electrons and holes.  

 

Now we are more ready to tackle the question. 

 

 



1a) 

 

The Hall field is the value of yE at the steady state situation, where 0yj = . 

 

We first find yj  from (1) and (4): 
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Then we set 0yj = . 
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Again we apply the limit c Bk Tω τ � . 

 

( ) ( ) ( ) ( )
2 2

, ,2 2 2 2

, ,

2 2 2 2

2 2

, , , ,

1 1

e h
c e e x y y c h h x

e c e e h c h h

x y

e c e h c h h c h h e c e e

ne pe
E E E E

m m

ne pe pe ne
E E

m m m m

τ τ
ω τ ω τ

ω τ ω τ

ω ω ω τ ω τ

+ = − +
+ +

   
− = − −      

   

 

 

, ,We then apply the relation ,c e c h
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and also , ,,e c e e h c h hQ Qω τ ω τ= =                                                                           (6) 

 

And we are able to prove the given relation, 
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1b) 

 

The effσ that we are trying to find occurs in x eff xj Eσ=  

 

We can substitute (12) into (5), then factorise xE , which would give us the required form. 

 



We have 
y xE AE=  where A is the coefficient shown in (12). Thus we have: 

 

( )x xx xy xj A Eσ σ= +               (8) 

eff xx xyAσ σ σ= +                                     (9) 

 

To find xxσ , we compare the coefficients of xE  in the xj  expressions of (1) and (4). 
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Where we have used (11) provided in the question. 

 

Lastly, we substitute all our expressions into (14). 
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Which completes the proof. 

 

1c) 

The plot should be simple, with the two variables displaying an inverse-proportionality 

relationship. The only difference between the two plots would just be the coefficient. 

 

2a) 
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Noting that at this point that there is a coexistence of states. 

 

As a result, 
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And combining this with the previous relation, 
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Since 0cB =  at the critical temperature, it becomes immediately clear that there is no 

latent heat involved at the aforementioned transition. 

 

2b) 
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2c) 

 

Don’t know how to answer. 

 

3a) 

 

Also don’t know how to answer. Really. 

 

3b) 

 

Domains form to minimize the demagnetization or self-energy (also called magnetostatic 

energy, but in the absence of a magnetic fields). 

 

If the angle of variation between neighboring spins is small, we can make approximations 

in the exchange energy 
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In which case we can see that 2 2

exW JS φ=  is the cost of exchange energy for twisting the 

neighboring spins by a small angle φ . 
 

If there are N spins in the domain wall, and if the angle between the first and the last 

spins on the domain wall changes by 180o, then the angle between the neighboring spins 

is / Nφ π= . 

 

The exchange energy cost for reversing a single spin will then be ( )22 /exw JS Nπ=  

 



The total exchange energy cost for a line of N spin is 2 2
/exNw JS Nπ=  

In the Bloch wall, we have planes of spins and so we are interested in the energy density 

per unit area ( exσ ) of the Bloch wall. In a square meter of a wall, there are 1/a
2
 lines of 

spins, where a is the distance between two neighboring spins. 

 
2 2 2/ex JS Naσ π=  (there are 1/a

2
 lines per unit area) 

 

The anisotropy energy contribution from N spins can be written as: 
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The equilibrium configuration corresponds to 0wd
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4a) 

Let 1ψ  and 2ψ  be the wavefunctions (probability amplitudes) of cooper pairs belonging 

to the superconductors 1 and 2 on each side of the insulator respectively. 

Writing out the time dependent Schrödinger equations: 
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We are told in the lecture notes that the wavefunctions are: 
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Using  (2) in (1): 
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Equating the real and imaginary parts in (5) and (6): 
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The current density 
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4b) 

 

As compared to 4(a), the Schrödinger equations differ by an extra term: 
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Performing the same calculations: 
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Under the same case where 1 2n n≈ : 
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4c) 

The direct current SQUID (Superconducting Quantum Interference Device) consists of 

two Josephson junctions arranged on a superconducting ring. A current applied to the 

SQUID, called a bias current, divides between the junctions and, if greater than the 

critical current, produces a voltage across the SQUID. Plotting this current against the 

voltage yields characteristic curves. Steadily increasing the magnetic flux threading 

through the ring (e.g. bringing in a small magnet) causes the critical current to decrease 

and then increase successively. The critical current is a maximum for zero flux (for an 

integer number of flux quanta) and a minimum for a half-integer number of flux quanta. 

The period of these oscillations is the flux quantum.  


