PC4240 : Solid State Physics 2

April 06/07 (Semester 2)
Suggested Solutions

)]

From the drift equation for charged particles in a magnetic and electric field, we can
obtain the j = o E type of relations.

For electrons, the equation is provided in question 6.9 of Kittel.
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For holes, we work from the drift equation in steady state i.e. ? =0.
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With some manipulation, we obtain
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From this we form the j=oF relation.
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The behavior of the semiconductor crystal is now a sum of these two contributions of
electrons and holes.

Now we are more ready to tackle the question.



1a)

The Hall field is the value of E at the steady state situation, where j =0.

We first find j, from (1) and (4):
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Then we set j, =0 .
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Again we apply the limit @,z k,T .
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And we are able to prove the given relation,
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1b)

The o, that we are trying to find occurs in j, =0, E,

We can substitute (12) into (5), then factorise E_, which would give us the required form.



We have E, = AE, where A is the coefficient shown in (12). Thus we have:
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To find o, we compare the coefficients of £ inthe j_ expressions of (1) and (4).
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Where we have used (11) provided in the question.

Lastly, we substitute all our expressions into (14).
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Which completes the proof.

lc)
The plot should be simple, with the two variables displaying an inverse-proportionality
relationship. The only difference between the two plots would just be the coefficient.

2a)

We wish Q=H( ; dB"]
Hy ar

Consider Gibb’s Free Energy, F=U -TS, G = U-TS-M-H
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For a superconductor, G, (B,T)—-G, (0,T)=V

For a normal metal, G,(0,7)=G,(B-B,.T)



Therefore we have,
GX(B:BC,T):Gn(B:BC,T)
=G,(0,T)

Noting that at this point that there is a coexistence of states.

As a result,
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And combining this with the previous relation,
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Since B, =0 at the critical temperature, it becomes immediately clear that there is no
latent heat involved at the aforementioned transition.
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2¢)

Don’t know how to answer.

3a)

Also don’t know how to answer. Really.
3b)

Domains form to minimize the demagnetization or self-energy (also called magnetostatic
energy, but in the absence of a magnetic fields).

If the angle of variation between neighboring spins is small, we can make approximations
in the exchange energy
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In which case we can see that W, = JS’¢” is the cost of exchange energy for twisting the
neighboring spins by a small angle ¢.

If there are N spins in the domain wall, and if the angle between the first and the last
spins on the domain wall changes by 180°, then the angle between the neighboring spins
isg=n/N.

The exchange energy cost for reversing a single spin will then be w,, = JS*(z/N )2



The total exchange energy cost for a line of N spin is Nw, =JS’z° /N

In the Bloch wall, we have planes of spins and so we are interested in the energy density
per unit area (o, ) of the Bloch wall. In a square meter of a wall, there are 1/a* lines of

spins, where a is the distance between two neighboring spins.
o, =x°JS?/ Na* (there are 1/a° lines per unit area)

The anisotropy energy contribution from N spins can be written as:
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The anisotropy energy density per unit area of the wall is: o, = NK %

Hence the total wall energy (per unit area) :
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The equilibrium configuration corresponds to a;;j\;v =0

Which leads to N = zSV2J/ Ka®
And so the width of the domain wall is 6 = Na =zSvV2J/ Ka

The energy per unit area of the domain wall is energy needed to create the domain wall:
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4a)
Let v, and y, be the wavefunctions (probability amplitudes) of cooper pairs belonging
to the superconductors 1 and 2 on each side of the insulator respectively.
Writing out the time dependent Schrodinger equations:
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CZ; where T is the transfer interaction (1)
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We are told in the lecture notes that the wavefunctions are:
i6, i6.
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Using (2)in (1):
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Equating the real and imaginary parts in (5) and (6):
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As compared to 4(a), the Schrodinger equations differ by an extra term:

L d
lhzl/ll =hTy, —eVy,
L d
lhzl/lz =hTy, +eVy,

Performing the same calculations:
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Under the same case where n, = n, :
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4c)

The direct current SQUID (Superconducting Quantum Interference Device) consists of
two Josephson junctions arranged on a superconducting ring. A current applied to the
SQUID, called a bias current, divides between the junctions and, if greater than the
critical current, produces a voltage across the SQUID. Plotting this current against the
voltage yields characteristic curves. Steadily increasing the magnetic flux threading
through the ring (e.g. bringing in a small magnet) causes the critical current to decrease
and then increase successively. The critical current is a maximum for zero flux (for an
integer number of flux quanta) and a minimum for a half-integer number of flux quanta.
The period of these oscillations is the flux quantum.



