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CONTENTS

Abstract

In this report, we discuss an alternative method to characterize ‘de-

composability’ as defined in [1]. While the authors in that paper relied

on a numerical technique, we shall demonstrate an algebraic approach.

We also extend our result to general D × D bipartite systems, and

further consider multipartite systems and ‘finer’ decompositions.
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1. INTRODUCTION

1 Introduction

Let us consider a thought experiment. Suppose Alice and Bob have the maxi-

mally entangled two-ququart state, |ψ〉 = 1
2
(|00〉+ |11〉+ |22〉+ |33〉), where for

brevity, we have denoted |i〉A ⊗ |i〉B by |ii〉. Feeling particularly inspired one

afternoon, they decide to prepare two pairs of maximally entangled qubits,

|ϕ〉 = 1√
2
(|00〉+ |11〉)A1B1 and |ϕ′〉 = 1√

2
(|00〉+ |11〉)A2B2 .

Consider the following sequence of operations:

|ϕ〉 ⊗ |ϕ′〉 =
1√
2

(|00〉+ |11〉)A1B1 ⊗
1√
2

(|00〉+ |11〉)A2B2

=
1

2
(|00〉A1B1

|00〉A2B2
+ |00〉A1B1

|11〉A2B2
+

|11〉A1B1
|00〉A2B2

+ |11〉A1B1
|11〉A2B2

)

=
1

2
(|00〉A1A2

|00〉B1B2
+ |01〉A1A2

|01〉B1B2
+

|10〉A1A2
|10〉B1B2

+ |11〉A1A2
|11〉B1B2

).

Now if we regard the qubits A1 and A2 collectively as a system in itself, we

have a ququart system spanned by the orthonormal set

{|00〉A1A2
, |01〉A1A2

, |10〉A1A2
, |11〉A1A2

}.

Making the identification |00〉A1A2
7→ |0〉A , |01〉A1A2

7→ |1〉A , |10〉A1A2
7→ |2〉A

and |11〉A1A2
7→ |3〉A for Alice, and likewise for Bob, we observe that |ψ〉 =

|ϕ〉 ⊗ |ϕ′〉, i.e. the maximally entangled state appears to be put into a separa-

ble form, namely a tensor product of |ϕ〉 and |ϕ′〉.

What have we done here? It is perhaps best to first provide an illustration.

From Figure 1, which we hope is somewhat self-explanatory, Alice and Bob

had prepared two systems, the maximally entangled qubits A1B1 and A2B2.
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1. INTRODUCTION

Figure 1: Simulating a pair of entangled ququarts, where |ψ〉 = 1
2
(|00〉+ |11〉+

|22〉+ |33〉).

Taking the tensor product of these two systems, we have a 4-qubit composite

system. At this point, Alice and Bob rename their composite system (this is

represented by the ‘swapping’ mentioned above), such that the order becomes

A1A2B1B2 (before renaming, it was A1B1A2B2). Noting that A1A2 and B1B2

are 4-dimensional systems, they could be used in place of the ququarts A and

B, thus the ‘identification’. In other words, the system A1A2 simulates A, and

the system B1B2 simulates B.

This opens a wide range of questions. Under what conditions can a com-

posite system AB be simulated with lower-dimensional systems? How do we

detect these conditions? Can we do the same for n-partite systems, as opposed

to just bipartite systems (of which AB is an example)? Can we create ‘finer’

simulations, i.e. for suitably large dimensions of A and B, can we simulate A

with not just A1A2, but A1A2...An with n > 2?

These questions are important, because high-dimensional entanglement are

hard to create experimentally, and simulating them with lower-dimensional
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1. INTRODUCTION

systems which are comparatively easier to prepare may come in very handy

for the experimentalists. In this paper, we shall explore these questions, though

not always ending on a high note.

Before we further proceed, let us briefly digress and review the mathemat-

ical tools needed.
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2. MATHEMATICAL TOOLS

2 Mathematical Tools

For ease of reference and completeness, we shall in this chapter discuss in detail

the mathematics we need. We start with the matrix representation of tensor

products, which while conceptually simple provides much needed notational

convenience. Next, we move on to the Schmidt decomposition, which has

become a ubiquitous tool in quantum information theory. We shall prove it

‘from scratch’. Finally, we discuss the concept of permutation matrices, which

turned out to be the perfect tool to elucidate a combinatorial result.

2.1 Matrix Representation of Tensor Products

Let V1, V2,W1 and W2 be complex vector spaces of dimensions n,m, n′ and

m′ respectively, with bases BV1 = {e1, . . . , en}, BV2 = {f1, . . . , fm}, BW1 =

{ẽ1, . . . , ẽn′} and BW2 = {f̃1, . . . , f̃m′}.

2.1.1 Vectors

Let us have the arbitrary vectors

|v1〉 ∈ V1
BV17−→


a1
...

an

, |v2〉 ∈ V2 BV27−→


b1
...

bm

 ,

|w1〉 ∈ W1

BW17−→


ã1
...

ãn′

, |w2〉 ∈ W2

BW27−→


b̃1
...

b̃m′

 .
where the symbol

B7−→ refers to the vector being represented in column form

with respect to the basis B.

Proposition 2.1.1. Choose the ordered bases for V1 ⊗ V2 and W1 ⊗W2 as

6



2. MATHEMATICAL TOOLS

follows:

BV1⊗V2 = {e1 ⊗ f1, . . . , e1 ⊗ fm,

e2 ⊗ f1, . . . , e2 ⊗ fm,

. . .

en ⊗ f1, . . . , en ⊗ fm}

and

BW1⊗W2 = {ẽ1 ⊗ f̃1, . . . , ẽ1 ⊗ f̃m′ ,

ẽ2 ⊗ f̃1, . . . , ẽ2 ⊗ f̃m′ ,

. . .

ẽn′ ⊗ f̃1, . . . , ẽn′ ⊗ f̃m′}.

Then we have

|v1〉 ⊗ |v2〉 ∈ V1 ⊗ V2
BV1⊗V27−→



a1


b1
...

bm


...

an


b1
...

bm




=



a1b1
...

a1bm
...

anb1
...

anbm


and

|w1〉 ⊗ |w2〉 ∈ W1 ⊗W2

BW1⊗W27−→



ã1


b̃1
...

b̃m′


...

ãn′


b̃1
...

b̃m′




=



ã1b̃1
...

ã1b̃m′
...

ãn′ b̃1
...

ãn′bm′


.
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2. MATHEMATICAL TOOLS

Proof. The proof is straightforward. Expanding |v1〉 ⊗ |v2〉 in our chosen or-

dered basis, we have

|v1〉 ⊗ |v2〉 = (
n∑
i=1

aiei)⊗ (
m∑
j=1

bjfj)

=
n∑
i=1

m∑
j=1

aibjei ⊗ fj
BV1⊗V27−→



ã1b̃1
...

ã1b̃m′
...

ãn′ b̃1
...

ãn′bm′


.

and likewise for |w1〉 ⊗ |w2〉.

Remark 2.1.2. Note that the choice of ordered basis is important. Our choice

is standard in the literature, and almost always implicitly assumed. But this

choice is not canonical - suppose we had chosen the equally ‘natural’ bases

B′V1⊗V2 = {e1 ⊗ f1, . . . , en ⊗ f1,

e1 ⊗ f2, . . . , en ⊗ f2,

. . .

e1 ⊗ fm, . . . , en ⊗ fm}

and

B′W1⊗W2
= {ẽ1 ⊗ f̃1, . . . , ẽn′ ⊗ f̃1,

ẽ1 ⊗ f̃2, . . . , ẽn′ ⊗ f̃2,

. . .

ẽ1 ⊗ f̃m′ , . . . , ẽn′ ⊗ f̃m′}
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2. MATHEMATICAL TOOLS

instead. Then we would have

|v1〉 ⊗ |v2〉
B′V1⊗V27−→




a1
...

an

 b1
...

a1
...

an

 bm


, |w1〉 ⊗ |w2〉

B′W1⊗W27−→




ã1
...

ãn′

 b̃1
...

ã1
...

ãn′

 b̃m′


.

Later on, we shall find the need to compare the elements in this represen-

tation. We will introduce a way of rearranging this representation so as to

make the comparison more convenient. It turns out that this rearrangement

allows for a precise and succinct mathematical formulation of our problem.

2.1.2 Linear Maps

Let us have the linear maps T1 : V1 −→ W1 and T2 : V2 −→ W2. Denote the

matrix representations of T1 and T2 with respect to the given bases as follows:

[T1]
BW1
BV1

= [αij] =


α11 . . . α1n

...
. . .

...

αn′1 . . . αn′n

 , [T2]
BW2
BV2

= [βij] =


β11 . . . β1m
...

. . .
...

βm′1 . . . βm′m

 .
The tensor product of the linear maps T1 and T2 is defined as the following

linear map:

T1 ⊗ T2 : V1 ⊗ V2 −→ W1 ⊗W2∑
i

civ1i ⊗ v2i 7−→
∑
i

ciT1(v1i)⊗ T2(v2i).

Choose the ordered bases for V1 ⊗ V2 and W1 ⊗W2 as defined in Proposition

2.1.1. Since

(T1 ⊗ T2)(ek ⊗ fl) =
n′∑
i=1

m′∑
j=1

αikβjl(ẽi ⊗ f̃j),

9



2. MATHEMATICAL TOOLS

we have

[T1 ⊗ T2]
BW1⊗W2
BV1⊗V2

= [αij[βkl]] =


α11[βkl] . . . α1n[βkl]

...
. . .

...

αn′1[βkl] . . . αn′n[βkl]



=



α11


β11 . . . β1m
...

. . .
...

βm′1 . . . βm′m

 . . . α1n


β11 . . . β1m
...

. . .
...

βm′1 . . . βm′m


...

. . .
...

αn′1


β11 . . . β1m
...

. . .
...

βm′1 . . . βm′m

 . . . αn′n


β11 . . . β1m
...

. . .
...

βm′1 . . . βm′m




.

Remark 2.1.3. Again, this choice of ordered basis is arbitrary, but standard.

2.1.3 Separability of Column Vectors/Matrices

A (suitably-sized) column vector v is said to be separable if there exist column

vectors a and b such that

v = a⊗ b =


a1
...

an

⊗

b1
...

bm

 .
Similarly, a (suitably-sized) matrix M is said to be separable if there exist

matrices A and B such that

M = A⊗B =


α11 . . . α1n

...
. . .

...

αn′1 . . . αn′n

⊗

β11 . . . β1m
...

. . .
...

βm′1 . . . βm′m

 .

10



2. MATHEMATICAL TOOLS

2.2 The Schmidt Decomposition

2.2.1 Singular Value Decomposition

Definition 2.2.1. Let T : V −→ W be a linear transformation, where V and

W are finite-dimensional inner product spaces with inner products 〈·, ·〉V and

〈·, ·〉W respectively. A function T † : W −→ V is called an adjoint of T if

〈T (x), y〉W = 〈x, T †(y)〉V for all x ∈ V and y ∈ W .

Lemma 2.2.2.

1. T †T and TT † are positive semidefinite.

2. rank(T †T ) = rank(TT †) = rank(T ).

Proof. Refer to pages 367 and 378 of [2].

Theorem 2.2.3 (Singular Value Theorem for Linear Transformations). Let

V and W be finite-dimensional inner product spaces of dimensions n and m

respectively, and let T : V −→ W be a linear transformation of rank r, i.e.

dim(T (V )) = r. (Note that r ≤ min(n,m)). Then

1. There exist orthonormal bases {v1, v2, . . . , vn} for V and {w1, w2, . . . , wm}
for W , and positive scalars σ1 ≥ σ2 ≥ · · · ≥ σr such that

T (vi) =

σiwi if i ≤ r

0 if i > r.
(1)

2. Furthermore, for 1 ≤ i ≤ n, vi is an eigenvector of T †T with correspond-

ing eigenvalues σ2
i if i ≤ r and 0 if i > r. Thus the scalars {σi}, called

the singular values of T , are uniquely determined by T .

11
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Proof.

1. From Lemma 2.2.2, T †T is a positive semidefinite linear operator of

rank r on V , hence there is an orthonormal basis {v1, v2, . . . , vn} for V

comprising eigenvectors of T †T with corresponding eigenvalues λi, where

λ1 ≥ λ2 ≥ · · · ≥ λr > 0, and λi = 0 for i > r. For i ≤ r, define σi =
√
λi

and wi = 1
σi
T (vi). We show that {w1, w2, . . . , wr} forms an orthonormal

subset of W . Suppose 1 ≤ i, j ≤ r. Then

〈wi, wj〉 = 〈 1

σi
T (vi),

1

σj
T (vj)〉

=
1

σiσj
〈T †T (vi), vj〉

=
1

σiσj
〈λivi, vj〉

=
σ2
i

σiσj
〈vi, vj〉 = δij.

This set can be extended to an orthonormal basis {w1, . . . , wr, . . . , wm}
for W . Now we prove Equation 1. By definition, T (vi) = σiwi for i ≤ r.

If i > r, T †T (vi) = 0, so T (vi) = 0 (c.f. pg 367, [2]).

2. For 1 ≤ i ≤ m and 1 ≤ j ≤ n,

〈T †(wi), vj〉 = 〈wi, T (vj)〉 =

σi if i = j ≤ r

0 otherwise
,

so

T †(wi) =
n∑
j=1

〈T †(wi), vj〉vj =

σivi if i = j ≤ r

0 otherwise.

Thus for i ≤ r,

T †T (vi) = T †(σiwi) = σ2
iwi

and for i > r, T †T (vi) = T †(0) = 0. Therefore each vi is an eigenvector

of T †T with corresponding eigenvalue σ2
i if i ≤ r and 0 if i > r.

12
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Remark 2.2.4. Although the singular values {σi} are unique, the orthonormal

bases {vi} and {wi} are not, because the orthonormal basis formed by the

eigenvectors of T †T is not unique.

Theorem 2.2.5 (Singular Value Decomposition for Matrices). Let A

be an m×n complex-valued matrix of rank r. There exists an m×m unitary

matrix U , an n× n unitary matrix V , and an m× n matrix Σ defined by

Σij =

σi if i = j ≤ r

0 otherwise

where σi > 0, such that

A = UΣV †.

Proof. Define LA : Cn −→ Cm such that LA(x) = Ax, where x ∈ Cn. By

Theorem 2.2.3, there exist orthonormal bases β = {v1, v2, . . . , vn} for Cn and

γ = {w1, w2, . . . , wm} for Cm and scalars {σ1, . . . σr} such that LA(vi) = σiwi

for i ≤ r and 0 for i > r.

Let U be the m × m matrix whose jth column is wj for all j, and V

be the n × n matrix whose jth column is vj for all j. Note that because

of orthonormality, U and V are both unitary. Now consider the jth column

of the matrices AV and UΣ, where Σ is formed from the scalars {σ1, . . . σr}
and defined as in the statement of the theorem. It is straightforward to show

that both jth columns are σjwj. Thus AV and UΣ are equal, implying A =

UΣV †.

Remark 2.2.6. The singular values of a matrix A are defined to be the sin-

gular values of LA as defined above.

2.2.2 Schmidt from SVD

The Schmidt Decomposition follows from the Singular Value Decomposition.

13



2. MATHEMATICAL TOOLS

Theorem 2.2.7 (Schmidt Decomposition). Suppose we have a bipartite

pure state

|ψ〉AB ∈ HA ⊗HB.

Then it is possible to express this state as follows:

|ψ〉AB =
d−1∑
i=0

λi |i〉A |i〉B ,

where the coefficients λi are real, strictly positive and satisfy
∑

i λ
2
i = 1, the

states {|i〉A} form an orthonormal basis for system A and the states {|i〉B}
form an orthonormal basis for system B. The Schmidt rank d satisfies

d ≤ min{dim(HA), dim(HB)}.

Proof. Denoting dA = dim(HA) and dB = dim(HB), we can express |ψ〉AB as

|ψ〉AB =

dA−1∑
j=0

dB−1∑
k=0

ajk |j〉A |k〉B (2)

for complex coefficients ajk and orthonormal bases |j〉A and |k〉B. Consider

the matrix A defined by

[A]jk = ajk.

Making use of Theorem 2.2.5, we write A as

A = UΣV

where U is a dA × dA unitary matrix, V is a dB × dB unitary matrix and Σ is

a dA × dB matrix with d real, strictly positive numbers λi along its diagonal

and zeroes elsewhere. Thus for 1 ≤ j ≤ dA, 1 ≤ k ≤ dB, we have

ajk =
d−1∑
i=0

ujiλivik.

14
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Substituting this into Equation 2, we have

|ψ〉AB =

dA−1∑
j=0

dB−1∑
k=0

(
d−1∑
i=0

ujiλivik

)
|j〉A |k〉B

=
d−1∑
i=0

λi

(
dA−1∑
j=0

uji |j〉A

)
⊗

(
dB−1∑
k=0

vik |k〉B

)

=
d−1∑
i=0

λi |i〉A |i〉B ,

where

|i〉A =
∑
j

uji |j〉A (3)

|i〉B =
∑
k

vik |k〉B . (4)

Now we verify that {|i〉A}
dA−1
0 and {|i〉B}

dB−1
0 form orthonormal bases for

their respective systems, and that
∑

i λ
2
i = 1.

A 〈i′ | i〉A =

(∑
j

u∗ji′ 〈j|A

)(∑
k

uki |k〉A

)
=
∑
j

∑
k

u∗ji′uki A 〈j | k〉A

=
∑
j

∑
k

u∗ji′ukiδjk

=
∑
j

u∗ji′uji

=
∑
j

U †i′jUji = δi′i.

15
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Likewise for B 〈j′ | j〉B. Finally, since
∑

j

∑
k |ajk|2 = 1, we have

1 =
∑
j

∑
k

(∑
p

ujpλpvpk

)(∑
q

u∗jqλqv
∗
qk

)
=
∑
j

∑
k

∑
p

∑
q

UjpU
−1
qj λpλqVpkV

−1
kq

=
∑
p

∑
q

λpλq

(∑
j

U−1qj Ujp

)(∑
k

V −1kq Vpk

)
=
∑
p

∑
q

δ2pqλpλq

=
∑
p

λ2p,

finishing the proof.

2.2.3 The Schmidt CoB Matrix is Separable!

This result is important later on when we prove that ‘decomposability’ is still

preserved after we make a change-of-basis from an initial basis to a Schmidt

Basis. First, we recall the notion of a change-of-basis (CoB) matrix.

Given a linear operator T : V −→ V . Let us adopt two bases for V , say

B = {e1, e2, . . . , en} for the domain and B′ = {e′1, e′2, . . . , e′n} for the codomain.

Recall that the matrix representation of T is given by [T ]B
′

B , where [T ]B
′

B is

defined such that

[T ]B
′

B [v]B = [T (v)]B′ .

We can show that

[T ]B
′

B =
[
[T (e1)]B′ [T (e2)]B′ . . . [T (en)]B′

]
.

Definition 2.2.8. Given two bases B and B′ for V . The change-of-basis

matrix from B to B′ is simply [I]B
′

B .

16
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Theorem 2.2.9. Given a tensor product space HA ⊗ HB, with basis BA⊗B.

As shown above, given any pure state |ψAB〉, we can find a Schmidt Basis for

it, say BSch. Now denote the CoB matrix from BA⊗B to BSch by [SchAB], i.e.

[SchAB] = [I]BSch
BA⊗B

.

Then [SchAB] is separable.

Proof. Refer to Equations 3 in Theorem 2.2.7. The new (Schmidt) basis for

HA⊗HB is given by BSch = {|p〉S |q〉S}, with 0 ≤ p ≤ dA− 1, 0 ≤ q ≤ dB − 1.

Writing the old basis vectors in terms of the new basis, we have

|j〉A =
∑
p

u†pj |p〉S

|k〉B =
∑
q

v∗qk |q〉S .

So

|j〉A |k〉B =
∑
p

∑
q

u†pjv
∗
qk |p〉S |q〉S .

From this, we see that [SchAB] is separable. For concreteness, we write down

the details for the simple case where dA, dB = 2. In this case, we have

|0〉A |0〉B =
∑
p

∑
q

u†p0v
∗
q0 |p〉S |q〉S

|0〉A |1〉B =
∑
p

∑
q

u†p0v
∗
q1 |p〉S |q〉S

|1〉A |0〉B =
∑
p

∑
q

u†p1v
∗
q0 |p〉S |q〉S

|1〉A |1〉B =
∑
p

∑
q

u†p1v
∗
q1 |p〉S |q〉S ,

17
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so

[SchAB] =
[
[|00〉AB]BSch

[|01〉AB]BSch
[|10〉AB]BSch

[|11〉AB]BSch

]

=


u†00v

∗
00 u†00v

∗
01 u†01v

∗
00 u†01v

∗
01

u†00v
∗
10 u†00v

∗
11 u†01v

∗
10 u†01v

∗
11

u†10v
∗
00 u†10v

∗
01 u†11v

∗
00 u†11v

∗
01

u†10v
∗
10 u†10v

∗
11 u†11v

∗
10 u†11v

∗
11


= (UT )∗ ⊗ V ∗.

2.3 Permutation Matrices

Definition 2.3.1. A permutation matrix P is a square matrix that has

exactly one entry of 1 in each row and each column, and 0’s elsewhere. Multi-

plication of P with another suitably sized matrix, say A, results in permuting

the rows (when pre-multiplying, i.e. PA) or columns (when post-multiplying,

i.e. AP ) of A. Every permutation matrix can be obtained by permuting the

rows/columns of the identity matrix I.

2.3.1 Notation

For the purposes of this section, we denote the standard row/column vectors

by {ei}. Whether ei assumes row/column form will be clear from the context.

It is perhaps best to develop the content here with a concrete example.

Denote an n× n matrix by (1, 2, . . . , n), where the integer i represents the

ith row of the matrix. Suppose we would like to permute a matrix’s rows such

that the permuted matrix’s rows, arranged in order, are (π(1), π(2), . . . , π(n)),

where π : {1, 2, . . . , n} −→ {1, 2, . . . , n} is a permutation on the set of n

elements:

π =

(
1 2 . . . n

π(1) π(2) . . . π(n)

)
.

18
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The appropriate permutation matrix to use is:

P =


eπ(1) →
eπ(2) →

...

eπ(n) →

 ,

where the ei’s assume row form. Pre-multiplying the matrix by P gives our

desired result.

If is it the columns that we wish to permute instead, then let the ei’s

assume column form. The appropriate permutation matrix is:

P =

[
eπ(1) eπ(2) . . . eπ(n)

↓ ↓ . . . ↓

]
.

Post-multiplying the matrix by P gives our desired result.

Example 2.3.2. Let n = 5, π = ( 1 2 3 4 5
1 4 2 5 3 ), and

A =



a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55


.

1. (Row Swap)

Set

Pπ =



e1 →
e4 →
e2 →
e5 →
e3 →


, such that PπA =





a11 a12 a13 a14 a15 1

a41 a42 a43 a44 a45 4

a21 a22 a23 a24 a25 2

a51 a52 a53 a54 a55 5

a31 a32 a33 a34 a35 3

.
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2. (Column Swap)

Set

Pπ =

[
e1 e4 e2 e5 e3

↓ ↓ ↓ ↓ ↓

]
, such that APπ =

1 4 2 5 3



a11 a14 a12 a15 a13

a21 a24 a22 a25 a23

a31 a34 a32 a35 a33

a41 a44 a42 a45 a43

a51 a54 a52 a55 a53

.

2.3.2 Properties

1. The set of all n×n-sized permutation matrices Pπ forms a group, where

the group operation is matrix multiplication and the identity element is

the identity matrix. In our description of Pπ above, Pπ ‘behaves’ like the

permutation π, with the permuted elements being row vectors. Indeed,

in group theory jargon, the set of permutation matrices is isomorphic to

the symmetric group:

{Pπ} ∼= Sn

Pπ ←→ π.

2. {Pπ} is generated by the set of elementary row-swapping matrices (whose

counterparts in Sn are the transpositions).

3. There are n! elements in {Pπ}.

Remark 2.3.3. Note that the size of Pπ need not be the same as that of A.

Suppose A is of size m × n. To permute its rows, Pπ is to be of size m ×m,

and to permute its columns, Pπ is to be of size n× n.
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3 Main Results

3.1 The Problem in Detail

As briefly discussed in the introduction, we have seen how a particular pair of

entangled ququarts, |ψ〉 = 1
2
(|00〉 + |11〉 + |22〉 + |33〉) could be replicated by

two pairs of entangled qubits. 1
2
(|00〉 + |11〉 + |22〉 + |33〉) is thus said to be

‘decomposable’. We begin this section by asking: when is a given general |ψ〉
in a bipartite ququart system decomposable? In a diagram,

Figure 2: Simulating a pair of entangled ququarts, where |ψ〉 ∈ HA ⊗HB.

Of course, let us first precisely define what it means for a state to be

decomposable.

Definition 3.1.1. A pure state |ψ〉 ∈ (C4)⊗ (C4) is decomposable if there

exist bipartite states |ϕ〉A1B1
, |ϕ′〉A2B2

of dimensions 4 = 22, and an encoding

such that

|ψ〉 = |ϕ〉A1B1
⊗ |ϕ′〉A2B2

.

If |ψ〉 is not decomposable, then we say it is genuinely multilevel entan-

gled.
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In fact, let us not restrict ourselves to bipartite ququart systems. An

analogous definition could be made for general bipartite qudit1 systems as

well.

Figure 3: Simulating a pair of entangled qudits, where |ψ〉 ∈ HA ⊗HB.

Definition 3.1.2. A pure state |ψ〉 ∈ (CD)⊗ (CD) is decomposable if there

exist bipartite states |ϕ〉A1B1
, |ϕ′〉A2B2

of dimensions d21, d
2
2, where d1× d2 = D

and an encoding such that

|ψ〉 = |ϕ〉A1B1
⊗ |ϕ′〉A2B2

.

If |ψ〉 is not decomposable, then we say it is genuinely multilevel entan-

gled.

In the next subsection, we reproduce the main ideas of the approach of the

authors of [1].

1A qudit is a generalization of a qubit to d dimensions. In particular, a qubit is a qudit

of dimension 2.
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3.1.1 An Existing Approach

First, a general two-ququart state can be written in the Schmidt decomposition

as

|ψ〉 = s0 |00〉AB + s1 |11〉AB + s2 |22〉AB + s3 |33〉AB ,

where the Schmidt Coefficients are ordered, i.e. s0 ≥ s1 ≥ s2 ≥ s3 ≥ 0 (also

recall that
∑

i s
2
i = 1). To determine whether |ψ〉 is decomposable or not,

the maximal overlap between |ψ〉 and all other decomposable states |ϕ〉 was

computed, and was given to be

max|ϕ〉| 〈ϕ|ψ〉 | = max singval (S)

if we choose the encoding between Schmidt Bases, where

S =

[
s0 s1

s2 s3

]
.

It was then claimed (without a direct proof) that |ψ〉 is decomposable if and

only if max singval (S) = 1. In the special case of bipartite ququarts, this

is also equivalent to saying that det(S) = 0. For higher dimensional states,

it would then be necessary to run through all possible encodings, and it was

shown that for a decomposition into D = d× d′, there are

N =
(d× d′)!∏d

i=1

∏d′

j=1(i+ j − 1)

permutations (i.e. different ways of encoding) that one has to check.

3.2 An Alternative Method

We propose an ‘algebraic’ method of detecting decomposability, though we

must warn that this is not necessarily much easier to execute than the existing

approach. Indeed, as we shall see later, as D increases, the complexity blows

up really quickly as well.
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For notational simplicity, we shall henceforth use the column representation

of a vector, with respect to some specified basis. Let us start with the bipartite

ququart system. In its most general form, an arbitrary state |ψ〉 is written as

|ψ〉 = c00 |00〉AB + · · ·+ c03 |03〉AB + c10 |10〉AB + · · ·+ c33 |33〉AB

B7−→


c00
...

c33

 = [|ψ〉]BAB
,

with BAB = {|00〉AB , |01〉AB , . . . , |33〉AB}. From Definition 3.1.2 of decom-

posability, we want to check if this is equal to |ϕ〉A1B1
⊗ |ϕ′〉A2B2

or not, i.e. in

column form,

[|ψ〉]BAB
=


c00
...

c33

 ?
=


a1

b1

c1

d1

⊗

a2

b2

c2

d2

 = [|ϕ〉 ⊗ |ϕ′〉]BA1B1A2B2
(5)

= [|ϕ〉]BA1B1
⊗ [|ϕ′〉]BA2B2

(6)

with

BA1B1 = {|00〉A1B1
, |01〉A1B1

, |10〉A1B1
, |11〉A1B1

}

BA2B2 = {|00〉A2B2
, |01〉A2B2

, |10〉A2B2
, |11〉A2B2

}.

A priori, this does not quite make sense, for BAB and BA1B1A2B2 are entirely

different things. This is where the ‘encoding’ part comes in - by assigning

to each element in BAB an element in BA1B1A2B2 . After this encoding, it

would make sense to talk about [|ψ〉]BA1B1A2B2
. Concretely, the only difference

between [|ψ〉]BAB
and [|ψ〉]BA1B1A2B2

is that the latter is a permutation of the

former (or equivalently, the former is a permutation of the latter).

Example 3.2.1. Consider a toy example. Let B = {|0〉 , |1〉 , |2〉 , |3〉} and

B′ = {|00〉 , |01〉 , |10〉 , |11〉}. Consider the state |ψ〉 = c0 |0〉+ c1 |1〉+ c2 |2〉+
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c3 |3〉. We have

[|ψ〉]B =


c0

c1

c2

c3

 .
What about [|ψ〉]B′? That would depend on how we encode B.

1. Encoding: |0〉 7→ |00〉 , |1〉 7→ |01〉 , |2〉 7→ |10〉 , |3〉 7→ |11〉

[|ψ〉]B′ =


c0

c1

c2

c3


2. Encoding: |0〉 7→ |00〉 , |1〉 7→ |10〉 , |2〉 7→ |11〉 , |3〉 7→ |01〉

[|ψ〉]B′ =


c0

c3

c1

c2


3. Encoding: |0〉 7→ |11〉 , |1〉 7→ |01〉 , |2〉 7→ |00〉 , |3〉 7→ |10〉

[|ψ〉]B′ =


c2

c1

c3

c0


4. ... and so on, for a total of 24 different encodings.

Remark 3.2.2. Making an encoding with BA1B1A2B2 is equivalent to making

an encoding with BA1A2B1B2 . More precisely, there is a one-to-one correspon-

dence between the two encodings, since there clearly is an obvious encoding

between BA1B1A2B2 and BA1A2B1B2 themselves. To give an example, let us con-

sider our state |ψ〉 = 1
2
(|00〉+ |11〉+ |22〉+ |33〉) in the Introduction. There, we
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made the encoding |0〉A 7→ |00〉A1A2
, |1〉A 7→ |01〉A1A2

, |2〉A 7→ |10〉A1A2
, |3〉A 7→

|11〉A1A2
and similarly for B. This gives us an encoding between BAB and

BA1A2B1B2 as follows:

|00〉AB 7→ |0000〉A1A2B1B2
|01〉AB 7→ |0001〉A1A2B1B2

|02〉AB 7→ |0010〉A1A2B1B2

|03〉AB 7→ |0011〉A1A2B1B2

|10〉AB 7→ |0100〉A1A2B1B2
|11〉AB 7→ |0101〉A1A2B1B2

|12〉AB 7→ |0110〉A1A2B1B2

|13〉AB 7→ |0111〉A1A2B1B2

|20〉AB 7→ |1000〉A1A2B1B2
|21〉AB 7→ |1001〉A1A2B1B2

|22〉AB 7→ |1010〉A1A2B1B2

|23〉AB 7→ |1011〉A1A2B1B2

|30〉AB 7→ |1100〉A1A2B1B2
|31〉AB 7→ |1101〉A1A2B1B2

|32〉AB 7→ |1110〉A1A2B1B2

|33〉AB 7→ |1111〉A1A2B1B2

,

or equivalently, an encoding between BAB and BA1B1A2B2 as follows:

|00〉AB 7→ |0000〉A1B1A2B2
|01〉AB 7→ |0001〉A1B1A2B2

|02〉AB 7→ |0100〉A1B1A2B2

|03〉AB 7→ |0101〉A1B1A2B2

|10〉AB 7→ |0010〉A1B1A2B2
|11〉AB 7→ |0011〉A1B1A2B2

|12〉AB 7→ |0110〉A1B1A2B2

|13〉AB 7→ |0111〉A1B1A2B2

|20〉AB 7→ |1000〉A1B1A2B2
|21〉AB 7→ |1001〉A1B1A2B2

|22〉AB 7→ |1100〉A1B1A2B2

|23〉AB 7→ |1101〉A1B1A2B2

|30〉AB 7→ |1010〉A1B1A2B2
|31〉AB 7→ |1011〉A1B1A2B2

|32〉AB 7→ |1110〉A1B1A2B2

|33〉AB 7→ |1111〉A1B1A2B2

.

As is becoming painfully apparent now, the complexity of all these encod-

ings can get really tiring. However, this is where the Schmidt Decomposition

comes in. Suppose [|ψ〉]BAB
= [|ϕ〉]BA1B1

⊗ [|ϕ′〉]BA2B2
(after an encoding). Ap-

plying the Schmidt Change-of-Basis matrix, which is separable (c.f. subsection

2.2.3), we have

[SchAB][|ψ〉]BAB
= [(UT )∗ ⊗ V ∗][|ϕ〉]BA1B1

⊗ [|ϕ′〉]BA2B2

= (UT )∗[|ϕ〉]BA1B1
⊗ V ∗[|ϕ′〉]BA2B2

,

where (UT )∗ and V ∗ are also change-of-basis matrices putting [|ϕ〉]BA1B1
and

[|ϕ′〉]BA2B2
respectively into Schmidt form. Thus from now on, we shall deal
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exclusively with Schmidt Bases.

Since decomposability and separability are closely related, let us make

a brief digression. In the next subsection, we develop a method to detect

separability, which shall be modified and used in detecting decomposability.

3.2.1 A Short Detour: Separability

Many techniques have been developed to detect separability for a given state,

see [6], [7]. We shall add one more to the repertoire.

First, recall from subsection 2.1.3 the notion of separability for column

vectors: the column vector v is said separable if there exist column vectors a

and b such that

v = a⊗ b =


a1
...

am

⊗

b1
...

bn

 .
This definition is compatible with the one made for arbitrary vectors (i.e. |ψ〉
is separable if there exist |a〉 , |b〉 such that |ψ〉 = |ϕ〉 ⊗ |ϕ′〉).

Now a general vector |ψ〉 ∈ V ⊗W can be expressed as

|ψ〉 =
m∑
i=1

n∑
j=1

cij |i〉V |j〉W ,

where {|i〉V } and {|j〉W} are bases for V and W respectively. As mentioned

(2.1.2), it is customary to assume the ordered basis {|11〉 , . . . , |1n〉 , . . . , |m1〉 ,
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. . . , |mn〉} for V ⊗W . Thus we have

[|ψ〉]BV⊗W
=



c11
...

c1n
...

cm1

...

cmn


,

which is a matrix of size mn × 1. We now introduce another representative

notation: let us define the matrix MB
|ψ〉 such that [MB

|ψ〉]ij = cij, i.e.

MB
|ψ〉 =


c11 . . . c1n
...

. . .
...

cm1 . . . cmn

 .
We claim that |ψ〉 is separable if and only if MB

|ψ〉 is of rank 1.

Theorem 3.2.3. Let BV , BW be bases for the vector spaces V,W (of dimen-

sions m and n respectively), and denote BV⊗W by B. A vector |ψ〉 ∈ V ⊗W
is separable if and only if rank(MB

|ψ〉) = 1.

Proof.

1. (=⇒) Suppose |ψ〉 is separable, i.e. |ψ〉 = |v〉⊗ |w〉 for some |v〉 ∈ V and

|w〉 ∈ W . Equivalently in their column representations, we have

[|ψ〉]B =



c11
...

c1n
...

cm1

...

cmn


=


v1
...

vm

⊗

w1

...

wn

 = [|v〉]BV
⊗ [|w〉]BW

.
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Then observe that

MB
|ψ〉 =


c11 . . . c1n
...

. . .
...

cm1 . . . cmn

 =


v1w1 . . . v1wn

...
. . .

...

vmw1 . . . vmwn



=



v1
...

vm

w1 . . .


v1
...

vm

wn
 ,

thereby showing that MB
|ψ〉 is of rank 1.

2. (⇐=) Conversely, suppose rank(MB
|ψ〉) = 1. By definition, the dimension

of its column space is 1. So picking the first nonzero column, which

without loss of generality we let to be the first one, we have

MB
|ψ〉 =



α1

...

αm

 1 . . .


α1

...

αm

 βn
 .

We can then write

[|ψ〉]B =



α11

α1β2
...

α1βn
...

αm1

αmβ2
...

αmβn



=


α1

α2

...

αm

⊗


1

β2
...

βn

 = [|v〉]BV
⊗ [|w〉]BW

.

Up to a normalization factor, we have

[|v〉]BV
=


α1

α2

...

αm

 and [|w〉]Bw =


1

β2
...

βn

 .
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In other words,

|ψ〉 =

(
m∑
i=1

αi |i〉

)
⊗

(
n∑
j=1

βj |j〉

)
.

Of course, in the theorem above we made use of some particular basis

(namely, BV , BW and B = BV⊗W ). We have to show this technique is inde-

pendent of the bases BV , BW we choose. To do so, consider the new bases

B′V , B
′
W and B′ = B′V⊗W .

Proposition 3.2.4. rank(MB
|ψ〉) = 1⇐⇒ rank(MB′

|ψ〉) = 1.

Proof. Let U and V denote the change-of-basis matrices from BV to B′V , and

from BW to B′W . We have

rank(MB
|ψ〉) = 1⇐⇒MB

|ψ〉 =


α1

...

αm

[β1 . . . βn

]

⇐⇒ [|ψ〉]B =


α1

...

αm

⊗

β1
...

βn



⇐⇒ [|ψ〉]B′ = U ⊗ V [|ψ〉]B = U


α1

...

αm

⊗ V

β1
...

βn



⇐⇒MB′

|ψ〉 = U


α1

...

αm

[β1 . . . βn

]
V T

⇐⇒ rank(MB′

|ψ〉) = 1,

where the last equivalence comes from the fact that multiplying a matrix by

invertible matrices does not change the matrix’s rank.
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Remark 3.2.5. In [6], [7], it was shown that a state is separable if and only

if its Schmidt Rank is 1. We can consider that statement to be a special case

of our theorem here, with B being the Schmidt Basis of the state, since

Schmidt Rank = 1⇐⇒MB
|ψ〉 =


1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⇐⇒ rank(MB
|ψ〉) = 1.

3.2.2 Decomposability of Bipartite Ququarts

Now, decomposability proper. Again, let us start with the simplest system -

a bipartite ququart. For ease of reference, we reproduce the equation we are

supposed to tackle (c.f. Eqn 5):

[|ψ〉]BAB
=


s00

s11

s22

s33

 ?
=

[
a

b

]
⊗

[
c

d

]
= [|ϕ〉 ⊗ |ϕ′〉]BA1B1A2B2

= [|ϕ〉]BA1B1
⊗ [|ϕ′〉]BA2B2

,

where we have assumed all the bases to be Schmidt Bases, i.e.

|ψ〉 = s00 |00〉AB + s11 |11〉AB + s22 |22〉AB + s33 |33〉AB
|ϕ〉 = a |00〉A1B1

+ b |11〉A1B1

|ϕ′〉 = c |00〉A2B2
+ d |11〉A2B2

,

and that the Schmidt Coefficients are ordered, i.e. s00 ≥ s11 ≥ s22 ≥ s33 ≥ 0,

a ≥ b ≥ 0, c ≥ d ≥ 0.

In accordance with our new ‘matrix notation’ MB
|ψ〉 developed above, we

put this equation into matrix form:

MBAB

|ψ〉 =

[
s00 s11

s22 s33

]
?
=

[
a

b

] [
c d

]
= [|ϕ〉]BA1B1

[|ϕ′〉]TBA2B2
.
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Don’t forget the encoding! Here, the encoding takes place between the (Schmidt)

Bases

BAB = {|00〉AB , |11〉AB , |22〉AB , |33〉AB}

BA1B1A2B2 = {|0000〉A1B1A2B2
, |0011〉A1B1A2B2

, |1100〉A1B1A2B2
, |1111〉A1B1A2B2

},

so the term M
BA1B1A2B2

|ψ〉 is well-defined.

Example 3.2.6.

1. Encoding:

|00〉AB 7→ |0000〉A1B1A2B2
, |11〉AB 7→ |0011〉A1B1A2B2

|22〉AB 7→ |1100〉A1B1A2B2
, |33〉AB 7→ |1111〉A1B1A2B2

M
BA1B1A2B2

|ψ〉 =

[
s00 s11

s22 s33

]

2. Encoding:

|00〉AB 7→ |0000〉A1B1A2B2
, |11〉AB 7→ |1100〉A1B1A2B2

|22〉AB 7→ |0011〉A1B1A2B2
, |33〉AB 7→ |1111〉A1B1A2B2

M
BA1B1A2B2

|ψ〉 =

[
s00 s22

s11 s33

]

3. Encoding:

|00〉AB 7→ |1111〉A1B1A2B2
, |11〉AB 7→ |0011〉A1B1A2B2

|22〉AB 7→ |0000〉A1B1A2B2
, |33〉AB 7→ |1100〉A1B1A2B2

M
BA1B1A2B2

|ψ〉 =

[
s22 s11

s33 s00

]
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Remark 3.2.7 (Caution!). Note that the last example is not always valid!

This is due to our assumption that the Schmidt Coefficients are ordered. Thus

if the largest and/or smallest coefficients s00, s33 are unique, i.e. there are no

duplicates among the other Schmidt Coefficients, and if there were an encoding

that leads to decomposability, then s00 = ab and s33 = cd with no other

possible choices. In the next subsection, after dealing with general bipartite

systems, we shall provide a lower bound for different encodings leading to

decomposability (provided a least one exists). The result makes use of the

permutation matrices introduced among the mathematical tools above.

Let us now apply this technique to affirm what we already know to be true:

that the maximally entangled state 1
2
(|00〉AB + |11〉AB + |22〉AB + |33〉AB) is

decomposable.

Example 3.2.8. The maximally entangled state |ψ〉 = 1
2
(|00〉AB + |11〉AB +

|22〉AB+|33〉AB) is decomposable. In fact, there are 4! = 24 different encodings,

all of which lead to decomposability. This should be clear, since for every single

encoding we have

M
BA1B1A2B2

|ψ〉 =

[
1
2

1
2

1
2

1
2

]
,

which is of rank 1. While in the introduction we chose a specific encoding,

this would work for any other as well, due to the Schmidt Coefficients being

identical. The encoding used in the introduction corresponds to:

|00〉AB 7−→ |0000〉A1A2B1B2
|11〉AB 7−→ |0101〉A1A2B1B2

|22〉AB 7−→ |1010〉A1A2B1B2
|33〉AB 7−→ |1111〉A1A2B1B2

,

or equivalently

|00〉AB 7−→ |0000〉A1B1A2B2
|11〉AB 7−→ |0011〉A1B1A2B2

|22〉AB 7−→ |1100〉A1B1A2B2
|33〉AB 7−→ |1111〉A1B1A2B2

.
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Example 3.2.9. The state |ψ〉 = 1√
3
(|00〉AB + |11〉AB + |22〉AB) is not decom-

posable. For any encoding, we have

M
BA1B1A2B2

|ψ〉 =
1√
3

[
1 1

1 0

]
or

1√
3

[
1 1

0 1

]
or

1√
3

[
1 0

1 1

]
or

1√
3

[
0 1

1 1

]
,

none of which are of rank 1.

3.2.3 Decomposability of General Bipartite Systems

The decomposability of general D × D systems is assessed in an identical

manner to what has been done for the bipartite ququarts, with the only change

being dimensionality.

Example 3.2.10.

1. D = 6, d1 = 2, d2 = 3;

|ψ〉 = 1√
6
(|00〉AB + |11〉AB + |22〉AB + |33〉AB + |44〉AB + |55〉AB)

M
BA1B1A2B2

|ψ〉 =
1√
6

[
1 1 1

1 1 1

]

for any encoding, so |ψ〉 is decomposable.

34



3. MAIN RESULTS

2. D = 6, d1 = 2, d2 = 3;

Making the encoding

|00〉AB 7−→ |0000〉A1B1A2B2
|11〉AB 7−→ |0011〉A1B1A2B2

|22〉AB 7−→ |1100〉A1B1A2B2
|33〉AB 7−→ |1111〉A1B1A2B2

|44〉AB 7−→ |0022〉A1B1A2B2
|55〉AB 7−→ |1122〉A1B1A2B2

gives

M
BA1B1A2B2

|ψ〉 =
1

2

[
1 1 0

1 1 0

]
so |ψ〉 is decomposable.

3. D = 12, d1 = 3, d2 = 4;

|ψ〉 = s00 |00〉AB + s11 |11〉AB + s22 |22〉AB + s33 |33〉AB + s44 |44〉AB +

s55 |55〉AB+s66 |66〉AB+s77 |77〉AB+s88 |88〉AB+s99 |99〉AB+s1010 |1010〉AB+

s1111 |1111〉AB

There are 12! different encodings to check before we can determine

whether |ψ〉 is decomposable. Is there any way to reduce this com-

plexity?

From the last example above, we see how the number of possible encodings

blows up factorially. It might very well be that |ψ〉 is decomposable, and

that the encodings allowing this are obvious, but often it is not easy to tell.

To establish that |ψ〉 is not decomposable, we have to run through all the

encodings and make sure all the resulting M
BA1B1A2B2

|ψ〉 ’s are not of rank 1.

Proposition 3.2.11.

1. The maximum number of encodings we have to run through to decide

decomposability for D = d1 × d2 is given by

(d1d2)!

d1!d2!
.
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2. If an encoding allowing decomposability exists, there exist at least (d1−
2)!(d2 − 2)! other such encodings.

Proof.

1. For each encoding, we have to find out the resulting M
BA1B1A2B2

|ψ〉 ’s rank.

Are there different encodings resulting in the same rank for M
BA1B1A2B2

|ψ〉 ?

Practically, are there permutations of a matrix’s elements such that the

permuted matrix has the same rank as before?

Yes! It is an elementary result from linear algebra that row and column

swaps do the job. The question thus boils down to how many different

results we can obtain by applying row swaps/column swaps/combina-

tions of both on the matrix. This is where the permutation matrices in

Section 2.3 comes in handy. Pre-multiplying a matrix by a permutation

matrix permutes the matrix’s rows, while post-multiplying permutes the

columns. Also, from the properties 2.3.2, we deduce that there are at

most d1!d2! different matrices that can result from these operations, all

of which have the same rank. Thus the maximum number of encodings

we have to run through is divided by this number, giving

(d1d2)!

d1!d2!
.

2. The reasoning here is the same as above, but we have to be a little

cautious. If the largest and smallest Schmidt Coefficients are unique,

then we cannot permute them out, c.f Remark 3.2.7. Thus the number

of rows/columns we can permute are each reduced by two. Now if we

have an encoding that leads to decomposability, then permuting the

‘inner’ rows/columns would lead to the same rank (= 1) as well, hence

decomposability too.

Remark 3.2.12. Note that the proposition above works even for the worst-

case combinatorial scenario, when all the Schmidt Coefficients are unique. If
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there are identical elements, the complexity reduces drastically. An extreme

example would be the state |ψ〉 = 1
2
(|00〉AB + |11〉AB + |22〉AB + |33〉AB), where

all encodings lead to decomposability.

3.3 Extensions of The Method

Now we ask - are the techniques we have developed so far applicable to more

complex systems as well? We shall consider two different extensions of the

bipartite system, namely multipartite systems and ‘finer’ decompositions.

3.3.1 General n-partite Systems

Figure 4: Simulating n entangled qudits

Analogously to Definition 3.1.2, we have

Definition 3.3.1. A pure state |ψ〉 ∈ (CD)⊗ (CD)⊗ (CD) is decomposable

if there exist tripartite states |ϕ〉A1B1C1
, |ϕ′〉A2B2C2

of dimensions d31, d
3
2, where

d1 × d2 = D and an encoding such that

|ψ〉 = |ϕ〉A1B1C1
⊗ |ϕ′〉A2B2C2

.

The main result is not applicable here as for n-partite systems where n > 2,

there is no Schmidt Decomposition (c.f. [4], [5]). There is a weaker, gener-

alized form of the Schmidt Decomposition, which we shall include here for
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completeness. The author however is unable to make good use of it in this

problem.

Theorem 3.3.2 (Generalized Schmidt Decomposition). [5] Suppose we

have a pure state |Ψ〉 ∈ H1⊗· · ·⊗Hn, where n ≥ 3 and dim(H1) = dim(H2) =

· · · = dim(Hn) = d ≥ 2. Then for r = 1, 2, . . . , n there is a basis {|ψri 〉 : i =

1, . . . , d} of Hr such that in the expansion

|Ψ〉 =
∑
i1...in

ci1...in |ψ1
i1
〉 |ψ2

i2
〉 . . . |ψnin〉

the coefficients ci1...in have the following properties:

1. cjii...i = ciji...i = · · · = cii...ij = 0 if 1 ≤ i < j ≤ d

2. ci1...in is real and non-negative if at most one of the ir differs from d

3. |cii...i| ≥ |cj1...jn| if i ≤ jr, r = 1, . . . , n.

Remark 3.3.3. For the special case of the tripartite qubit, i.e. n = 3, d = 2,

we have (c.f. [4])

|Ψ〉 = λ0 |000〉+ λ1e
iϕ |100〉+ λ2 |101〉+ λ3 |110〉+ λ4 |111〉

where λi ≥ 0, 0 ≤ ϕ ≤ π and
∑

i λ
2
i = 1.

3.3.2 Finer Decompositions

For simplicity, let us consider a three-component decomposition (all decompo-

sitions so far were two-component decomposition). The general definition of

the n-component decomposition is easily formulated.

Definition 3.3.4. A pure state |ψ〉 ∈ (CD) ⊗ (CD) is 3-decomposable if

there exist bipartite states |ϕ〉A1B1
, |ϕ′〉A2B2

, |ϕ′′〉A3B3
of dimensions d21, d

2
2, d

2
3,

where d1 × d2 × d3 = D and an encoding such that

|ψ〉 = |ϕ〉A1B1
⊗ |ϕ′〉A2B2

⊗ |ϕ′′〉A3B3
.
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Figure 5: A finer simulation of entangled qudits

In this case, the methods developed above is applicable, simply via itera-

tion - if AB decomposes into A1B1 and A′B′, then we attempt to decompose

A′B′ itself. This is best demonstrated via a concrete example, using by now

what should be our favourite state - the maximally entangled state.

Example 3.3.5. Let D = 8, and d1 = d2 = d3 = 2. The state |ψ〉 =
1

2
√
2
(|00〉AB + |11〉AB + |22〉AB + |33〉AB + |44〉AB + |55〉AB + |66〉AB + |77〉AB)

is 3-decomposable.

Proof. To see this, first make the encoding between

BAB = {|00〉AB , |11〉AB , |22〉AB , |33〉AB , |44〉AB , |55〉AB , |66〉AB , |77〉AB , }

B(A1B1)(A′B′) = {|00〉A1B1
|00〉A′B′ , |00〉A1B1

|11〉A′B′ ,

|00〉A1B1
|22〉A′B′ , |00〉A1B1

|33〉A′B′ ,

|11〉A1B1
|00〉A′B′ , |11〉A1B1

|11〉A′B′ ,

|11〉A1B1
|22〉A′B′ , |11〉A1B1

|33〉A′B′}.
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Doing so gives

M
B(A1B1)(A

′B′)
|ψ〉 =

1

2
√

2

[
1 1 1 1

1 1 1 1

]
,

so |ψ〉 is (2-)decomposable, into

|ϕ〉 =
1√
2

(|00〉A1B1
+ |11〉A1B1

)

and

|α〉 =
1

2
(|00〉A′B′ + |11〉A′B′ + |22〉A′B′ + |33〉A′B′).

Now we further attempt to decompose |α〉. If this fails, |ψ〉 is still (2-

)decomposable. If this works, |ψ〉 is then 3-decomposable. Make the encoding

between

BA′B′ = {|00〉A′B′ , |11〉A′B′ , |22〉A′B′ , |33〉A′B′}

BA2B2A3B3 = {|00〉A2B2
|00〉A3B3

, |00〉A2B2
|11〉A3B3

,

|11〉A2B2
|00〉A3B3

, |11〉A2B2
|11〉A3B3

},

we have

M
BA2B2A3B3

|α〉 =
1

2

[
1 1

1 1

]
,

which is certainly of rank 1. So |α〉 itself is decomposable into

|ϕ′〉 =
1√
2

(|00〉A2B2
+ |11〉A2B2

)

and

|ϕ′′〉 =
1√
2

(|00〉A3B3
+ |11〉A3B3

).

Thus, |ψ〉 is 3-decomposable, where

|ψ〉AB = |ϕ〉A1B1
⊗ |α〉A′B′ = |ϕ〉A1B1

⊗ |ϕ′〉A2B2
⊗ |ϕ′′〉A3B3

.
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4 Python Code for evaluating Bipartite Sys-

tems

#Takes in matrix ( l i s t o f l i s t s ) . This func t i on checks

f o r L . I . o f rows , or not .

de f m a t r i x r a n k i s 1 (mat) :

i f f i n d n o n z e r o i n m a t r i x (mat) == ’Bad Matrix ’ :

r e turn Fal se

e l s e :

i , j = f i n d n o n z e r o i n m a t r i x (mat)

r e f r ow = mat [ i ]

f o r n in range (0 , l en (mat) ) :

i f n != i :

row1 = re f r ow . copy ( )

row2 = (mat [ n ] ) . copy ( )

row1 ind = row1 [ j ]

row2 ind = row2 [ j ]

i f tup l e (map( lambda x : x∗ row2 ind , row1 )

) != tup l e (map( lambda x : x∗ row1 ind , row2 ) ) :

r e turn Fal se

re turn True

#Aux i l i a ry

de f f i n d n o n z e r o i n m a t r i x (mat) :

f o r i in range (0 , l en (mat) ) :

f o r j in range (0 , l en (mat [ 0 ] ) ) :

i f mat [ i ] [ j ] != 0 :

r e turn ( i , j )

r e turn ’Bad Matrix ’
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#Takes in l i s t , r e tu rn s a l i s t conta in ing a l l permuted

v e r s i o n s o f the input l i s t , i n c l u d i n g d u p l i c a t e s .

de f p e r m l i s t ( l s t ) :

i f l en ( l s t ) == 1 :

re turn [ l s t ]

r e s u l t = [ ]

f o r i in range (0 , l en ( l s t ) ) :

temp = l s t . copy ( )

temp . pop ( i )

r e s u l t . extend ( l i s t (map( lambda x : [ l s t [ i ] ]+ x ,

p e r m l i s t ( temp ) ) ) )

re turn r e s u l t

#Used to count number o f d i f f e r e n t permutat ions . Returns

a d i c t i o n a r y where the keys r e p r e s en t the permuted

matr i ce s and the va lue s the number o f d u p l i c a t e s .

de f count ( i t e r a b l e ) :

r e s u l t = {}
f o r item in i t e r a b l e :

i f item not in r e s u l t . keys ( ) :

r e s u l t [ item ] = 1

e l s e :

r e s u l t [ item ] += 1

return r e s u l t

#Converts matrix to l i s t .

de f f l a t (mat) :

r e s u l t = [ ]

f o r row in mat :
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r e s u l t . extend ( row )

re turn r e s u l t

#Converts l i s t to mxn matrix .

de f conv to mn ( l s t ,m, n) :

r e s u l t = [ ]

counter = 0

f o r i in range (0 ,m) :

r e s u l t . append ( l s t [ counter : counter+n ] )

counter += n

return r e s u l t

#Aux i l i a ry

de f accum ( i t e r a b l e , operator , i n i t ) :

r e s = i n i t

f o r i in i t e r a b l e :

r e s = operator ( res , i )

r e turn r e s

#Aux i l i a ry

de f f a c t o r i a l (n) :

r e turn accum ( range (n+1) [ 1 : ] , lambda x , y : x∗y , 1)

#Aux i l i a ry

de f num perm(mat) :

r e turn accum (map( lambda x : f a c t o r i a l ( x ) , count ( f l a t (

mat) ) . va lue s ( ) ) , lambda x , y : x∗y , 1)

#Takes in a matrix , r e tu rn s a l l permuted matr i ce s o f

rank one toge the r with the number o f d i f f e r e n t
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encodings ( i f they e x i s t ) , o the rw i s e r e tu rn s ’None ’ .

de f pe rmutat ions o f rank1 (mat) :

r e s u l t = [ ]

m = len (mat)

n = len (mat [ 0 ] )

f i r s t e n t r y = mat [ 0 ] [ 0 ]

l a s t e n t r y = mat [m−1] [n−1]

num perms = num perm(mat)

e x i s t s = Fal se

permutat ions = s e t (map( lambda x : tup l e ( x ) ,

p e r m l i s t ( f l a t (mat) [ 1 :m∗n−1]) ) )

f o r p in permutat ions :

curr mat = conv to mn ( [ f i r s t e n t r y ]+ l i s t (p) +[

l a s t e n t r y ] ,m, n)

i f m a t r i x r a n k i s 1 ( curr mat ) :

e x i s t s = True

r e s u l t . append ( ( curr mat , num perms ) )

i f e x i s t s :

f o r i in r e s u l t :

p r i n t ( i )

e l s e :

p r i n t ( ’None ’ )

#Here are some sample runs

>>> matbel l2 = [ [ 1 , 1 ] , [ 1 , 1 ] ]

>>> permutat ions o f rank1 ( matbel l2 )

( [ [ 1 , 1 ] , [ 1 , 1 ] ] , 24)

>>> matbel l3 = [ [ 1 , 1 , 1 ] , [ 1 , 1 , 1 ] , [ 1 , 1 , 1 ] ]

>>> permutat ions o f rank1 ( matbel l3 )
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( [ [ 1 , 1 , 1 ] , [ 1 , 1 , 1 ] , [ 1 , 1 , 1 ] ] , 362880)

>>> mat = [ [ 1 , 1 ] , [ 0 , 0 ] ]

>>> permutat ions o f rank1 (mat)

( [ [ 1 , 0 ] , [ 1 , 0 ] ] , 4)

( [ [ 1 , 1 ] , [ 0 , 0 ] ] , 4)

>>> mat = [ [ 1 , 1 ] , [ 1 , 0 ] ]

>>> permutat ions o f rank1 (mat)

None

>>> mat = [ [ 8 , 5 , 3 ] , [ 2 , 1 , 0 ] ]

>>> permutat ions o f rank1 (mat)

None

>>> mat = [ [ 8 , 4 , 4 ] , [ 4 , 2 , 2 ] , [ 2 , 1 , 1 ] ]

>>> permutat ions o f rank1 (mat)

( [ [ 8 , 4 , 4 ] , [ 4 , 2 , 2 ] , [ 2 , 1 , 1 ] ] , 72)

( [ [ 8 , 4 , 2 ] , [ 4 , 2 , 1 ] , [ 4 , 2 , 1 ] ] , 72)

>>> mat = [ [ 8 , 6 , 4 , 2 ] , [ 4 , 3 , 2 , 1 ] , [ 0 , 0 , 0 , 0 ] ]

>>> permutat ions o f rank1 (mat)

( [ [ 8 , 6 , 2 , 4 ] , [ 4 , 3 , 1 , 2 ] , [ 0 , 0 , 0 , 0 ] ] , 96)

( [ [ 8 , 4 , 6 , 2 ] , [ 4 , 2 , 3 , 1 ] , [ 0 , 0 , 0 , 0 ] ] , 96)

( [ [ 8 , 6 , 4 , 2 ] , [ 4 , 3 , 2 , 1 ] , [ 0 , 0 , 0 , 0 ] ] , 96)

( [ [ 8 , 2 , 4 , 6 ] , [ 4 , 1 , 2 , 3 ] , [ 0 , 0 , 0 , 0 ] ] , 96)

( [ [ 8 , 2 , 6 , 4 ] , [ 4 , 1 , 3 , 2 ] , [ 0 , 0 , 0 , 0 ] ] , 96)

( [ [ 8 , 4 , 2 , 6 ] , [ 4 , 2 , 1 , 3 ] , [ 0 , 0 , 0 , 0 ] ] , 96)

>>> mat = [ [ 8 , 6 , 4 , 2 ] , [ 4 , 3 , 2 , 1 ] , [ 1 , 0 , 0 , 0 ] ]
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>>> permutat ions o f rank1 (mat)

None
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5 Conclusion

Thus, we finish the report. We have devised a technique to tell whether a

general bipartite pure state is decomposable or not, and made attempts to ex-

tend this method to n-partite systems (didn’t work) and ‘finer’ decompostions

(worked). In their paper [1], the authors came up with a definition of de-

composability for mixed states, but no progress was made on it. Future work

could be done on this, and perhaps, similarly to ‘measures’ of entanglement,

we could come up with ‘measures’ of genuine multilevel entanglement as well?
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