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Abstract

We are now in the midst of the second quantum revolution, where one seeks to exploit
the fundamental rules of quantum mechanics so as to construct hardware that allows
us to control quantum systems at an individual level, from the invention of atomic
clocks to the race for quantum supremacy that is on the rise around the globe. A
special type of quantum hardware called the quantum simulator, as envisioned by
Richard Feynman in 1982, is one that can efficiently mimic other quantum systems
by exploiting quantum parallelism and is being brought to reality thanks to recent
advances in technology.

Quantum simulators can be extremely useful for solving quantum many-body
problems, the computational resource required for which, if simulated on a classical
computer, would grow exponentially with the number of particles in the system.
Meanwhile, most of the phenomena present in real-life materials arise from many-
body problems, such as the high-Tc superconductivity.

In this thesis, we will first review the concept of quantum simulation and some
of its major platforms. We then study the Bose-Hubbard model, which is a simple
many-body interacting model that gives rise to the Mott-to-superfluid quantum phase
transition, that has been observed with a quantum simulator implemented with cold
atoms in optical lattices.

Inspired by experimental advanced in nonlinear quantum optics, in the second part
of the thesis, we theoretically study the quantum simulator consisting of interacting
photons in coupled resonator arrays, described by the Jaynes-Cummings-Hubbard
model, that can exhibit quantum many-body phases of strongly correlated photons.

In recent decades, there has been tremendous development in machine learning
and artificial neural networks, and we are currently witnessing a virtuous and exciting
cross-fertilisation between machine learning and physical sciences. Among the various
interfaces, artificial neural networks are emerging as a powerful tool for solving many-
body problems, with successful applications to lattice models.

Inspired by these successes, in the last part of the thesis, we present a variational
method of probing quantum phases in the Bose-Hubbard and the Jaynes-Cummings-
Hubbard models based on artificial neural networks and machine learning algorithms,
as well as the novel results that we have obtained. Our work provides a numerical
tool for benchmarking the quantum simulator for small system sizes on a classical
computer, and suggests that the choice of an optimal artificial neural network in
studying quantum many-body system is problem specific.
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Chapter 1

Introduction

The idea of simulating one physical system with another has been present throughout
the history of human civilisation. Around 2000 years ago, the ancient Chinese and
Greeks both built mechanical apparatus to simulate and predict apparent motions of
celestial objects [1]. In recent decades, with the development of modern computer
technologies, simulating physics with computers has opened up a novel era for science.
To simulate a real-life physical system with computers, one needs to first build a
mathematical model describing the system, and by changing the various parameters of
the model and solving the equations using computers, predictions about the systems
can be made from the solutions. Such an approach is extremely useful especially
when the physical system of interest is not experimentally accessible or when the
cost of trial-and-errors on the system itself is high. For example, weather forecast
can be achieved by simulating the behaviour of the atmosphere [2]; the application
of computational fluid dynamics has allowed efficient design of aircraft [3].

When the system of interest comes to a scale where the physics is governed by
quantum mechanics, the equation describing the dynamics of the system is the well-
known Schrödinger equation:

i~
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 , (1.1)

where i is the imaginary unit, ~ is the reduced Planck constant, Ĥ is the Hamiltonian
of the system and |ψ(t)〉 is the state vector that contains all information of the system
at instant t, living in a complex vector space known as the Hilbert space. The key
challenge in solving the Schrödinger equation lies in the fact that the dimension of
the Hilbert space, or in other words, the number of complex coefficients required to
describe the vector |ψ〉, grows exponentially with the size of the physical system.
Consider a system of N spins-1/2 particles, the dimension of the state vector is 2N .
When N is as small as 50, the storage of the vector |ψ〉 requires several petabytes
of memory assuming each coefficient requires 1 byte to represent, which is on the
order of magnitude of the memory capacity of Trinity, one of the largest among the
existing supercomputers today [4]. This number is, however, far below the number
of electrons in any real-life material which is of the order 1023. The computational
complexity therefore forbids the exact simulation of real-life physical materials on a
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quantum mechanical scale given today’s computational resource.

1.1 Quantum simulation

Facing the problem of complexity, in 1982 Richard Feynman proposed the idea of sim-
ulating quantum mechanical systems using quantum computers, which are computers
“built of quantum mechanical elements which obey quantum mechanical laws” [5]. It
has been shown later in [6] that the quantum computers conceived by Feynman, based
on quantum bits and circuits, can be programmed to simulate any local quantum sys-
tem efficiently, where the time and spatial resources required for the simulation are
only proportional to the time and space taken by the system of interest.

However, such universal, or “digital” quantum simulator requires the ability to
fully control individual quantum particles in a many-body system as well as the
interactions between them, such that the quantum bits and gate operations can be
realised and performed with high fidelity, which still has a long way to go before
these assumptions can be experimentally realised. A more realistic approach that is
possible in the near-term future consists of building an “analogue” quantum simulator.
Such simulators are specially designed quantum hardware that mimic the system to
be simulated, in the sense that there exists a mapping between the Hamiltonian of
the simulator and that of the system, and that the state of the simulator can also
be mapped to that of the system. A good quantum simulator is one such that its
state is experimentally accessible for both preparation and measurement, and that
the Hamiltonian can be controlled to a certain extent. By preparing the simulator in
an appropriate initial state that maps to the initial state of the system, and letting it
evolve under the effect of the engineered Hamiltonian, one can probe and study the
behaviour of the system by performing measurements on the simulator.

1.1.1 Major platforms for quantum simulation

To date, many platforms have been proposed and realised for performing quantum
simulation. We briefly review some of the major platforms in this section.

Cold atoms

Neutral atoms can be trapped in optical lattices and cooled down to temperatures
close to absolute zero, providing a versatile platform for simulating many-body physics
[7]. Optical lattices are created by the interference patterns of overlapping laser
beams that can create an effective periodic trapping potential for the atoms via
dipole interaction. They can be engineered to create any lattice geometry including
those simulating the structures in solid-state materials. For example, the Mott-to-
superfluid transition in the Bose-Hubbard model can be efficiently simulated using
such technique [8].
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Trapped ions

Apart from neutral atoms, ions can be trapped by electric fields oscillating at radio
frequency [9], laser-cooled and manipulated with precision [10]. While neutral atoms
interact weakly with each other, trapped ions have much stronger interaction due
to Coulomb repulsion. Various models have been simulated with trapped ions such
as frustrated spins systems [11] and discrete time crystals [12]. Due to the high
controllability of trapped ions, this platform is also promising for realising digital
quantum computations [13].

Interacting photons

In complementary to the atom-based platforms, hybrid light-matter systems have
emerged as quantum simulators, inspired by advances in cavity quantum electrody-
namics (QED) in both optical and microwave regimes [14]. Photons in the cavity
can be engineered to interact via coupling with the atoms, and strongly correlated
photons can be achieved in coupled resonator arrays (CRAs) that can be used to
simulated the Mott-to-superfluid phase transition of light [15, 16, 17]. This thesis
will be mainly focusing on this platform.

Among various implementations of interacting photons, superconducting circuits
have been envisioned to be a most promising physical platform [18, 19], where the
quantum “particles” used for simulation are the circuit excitations. The circuit can
behave as “artificial atoms” yet having more freedom in design and tunability com-
pared to real atoms. They can be further coupled to circuit LC-resonators, that
serve as “cavities” to form CRAs. On the other hand, as the circuit implementa-
tion does not necessarily conserve the total number of excitations as in the case of
real atoms, they are naturally complement to the cold atom platform by accessing
out-of-equilibrium physics.

1.2 Quantum simulation of quantum phase transi-

tion

We have seen that quantum simulation can be potentially helpful in studying quantum
systems involving a large number of interacting particles, also known as many-body
systems. As pointed out in [10], analogue quantum simulators can be less sensitive
to errors compared to digital quantum simulators, since they can provide qualitative
results even in the absence of full quantitative details. For example, quantum phase
transitions are typically robust against local perturbations and can thus be studied
using analogue quantum simulators.

One encounters phase transitions in everyday life. The source of life, liquid water,
turns into vapour when it boils in a kettle, and turns into solid ice when it is in a
freezer. While phases of matter are omnipresent, this subject has been at the heart
of material science and many other domains of physics [20]. In a physical context,
phases describe regimes of matter where physical properties are uniform throughout
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the material and a phase transition refers to abrupt changes in these properties,
when the system goes from one phase into another resulting from changes in external
parameters. A classical phase transition, such as that of water, happens at finite
temperature and are therefore caused by thermal fluctuations in the constituting
particles of the material. In quantum physics, transitions between different phases
of matter can occur even in the absence of thermal fluctuation, i.e. at absolute zero
temperature, due to the quantum fluctuations[21] in the ground state of the system.
Such phase transitions are referred to as quantum phase transitions (QPTs) that
describe sharp changes in the properties of the ground state of a system at absolute
zero temperature. Thanks to advances in cooling technologies, it is possible to achieve
in a laboratory environment temperatures as low as several millikelvins, for example
using a commercial dilution refrigerator, where the thermal fluctuation is negligible
compared to quantum fluctuations, allowing for QPTs to be observed and studied.

Quantum phases of matters are of great interest of study as they can account for
phenomenon such as high temperature superconductivity in cuprate superconductors
[22]. However, as many-body physical problems, QPTs are in general difficult to
study using classical techniques unless certain approximations are used.

This thesis will focus on the quantum simulation of QPTs in the Bose-Hubbard
model and in the Jaynes-Cummings-Hubbard model. The latter can be implemented
with interacting photons in coupled resonator array systems, that can be used as a
quantum simulator for the QPTs. We will finally show how we can study these two
models using machine learning techniques.

1.3 Bose-Hubbard model

The Bose-Hubbard (BH) model describes a system of interacting bosons on a lattice,
that can be realised by cold atoms in optical lattices, as sketched in Fig. 1.1, defined
by the following Hamiltonian:

ĤBH = −t
∑
<i,j>

b̂†i b̂j +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i, (1.2)

where < i, j > denotes nearest neighbour pairs of lattice indices, b̂†i and b̂i are the

bosonic creation and annihilation operators for the lattice site i and n̂i = b̂†i b̂i is
the corresponding bosonic number operator. The first term describes the nearest-
neighbour hopping of bosons with hopping amplitude t. The second term describes
the on-site interaction between bosons characterised by the parameter U , where U > 0
signifies that the interaction is repulsive and vice versa. The third term determines
the number of particles in the ground state via the chemical potential µ.

To understand the phases present in the BH model, we start by looking at two
limiting cases. In the following we consider a one-dimensional lattice with N sites.
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Figure 1.1: Schematic of the Bose-Hubbard model realised by cold atoms in optical
lattices.

1.3.1 Strong interaction regime (U >> t)

In the limit of U >> t, the hopping term becomes negligible and the Hamiltonian
reduces to a sum of local Hamiltonians

Ĥ =
U

2

N∑
i=1

n̂i(n̂i − 1)− µ
N∑
i=1

n̂i =
N∑
i=1

ĥi, (1.3)

where

ĥi =
U

2
n̂i(n̂i − 1)− µn̂i (1.4)

is a localised Hamiltonian for the site i. Clearly the eigenstate for each ĥi are the
number states

ĥi |ni〉 = Ei |ni〉 , Ei =
U

2
ni(ni − 1)− µni. (1.5)

The ground state of the system is therefore such that each ni minimises the local
eigen-energy Ei:

ni = max{0, b µ
U
c+ 1}, (1.6)

resulting in well-defined integer number of particles per site, which characterises the
Mott insulator (MI) phase.

1.3.2 Weak interaction regime (t >> U)

In the limit of t >> U , the on-site interaction is negligible and the Hamiltonian
becomes

Ĥ = −t
∑
<i,j>

b̂†i b̂j − µ
N∑
i=1

n̂i, (1.7)

which can be diagonalised using Fourier transform (assuming periodic boundary con-
dition):

Ĥ =
∑
k

(εk − µ)ˆ̃b†k
ˆ̃bk,

ˆ̃bk =
1√
N

N∑
j=1

b̂je
−ikj, εk = −2t cos k, (1.8)
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where

k =
2π

N
m, m ∈ {0, 1, · · · , N − 1}. (1.9)

Therefore, the ground state for fixed number of particles m will be the state where
all particles condense into the k = 0 state in the Fourier space:

|ΨSF〉 =
1

m!
(ˆ̃b†k=0)m |0〉 , ˆ̃b†k=0 =

N∑
i=1

b̂†i , (1.10)

which characterises the superfluid (SF) state because of the delocalisation of particles.

1.3.3 Mean-field theory

To study the system in the regime between the aforementioned two limiting cases, one
can use the mean-field theory, which is done by ignoring correlations between sites.
This approximation is exact in the infinite dimensional case. The order parameter
can be chosen to be

ψ =< b̂i > . (1.11)

With the decoupling approximation:

b̂†i b̂j =< b̂†i > b̂j+ < b̂j > b̂†i− < b̂†i >< b̂j >, (1.12)

the mean-field Hamiltonian becomes

ĤMF =
∑
i

ĥMF
i , ĥMF

i = −µn̂i +
U

2
n̂i(n̂i − 1) + tzψ2 − tz(ψ∗b̂i + ψb̂†i ), (1.13)

where z is the coordination number. The ground state energy can be obtained using
second order perturbation theory:

Eg = −µn+
U

2
n(n− 1) + ψ2(tz + (tz)2(

n

U(n− 1)− µ
+

n+ 1

µ− Un
)) +O(ψ4)

= const.+mψ2 +O(ψ4).

(1.14)

Using Landau theory [23] we expect the phase transition to occur at m = 0, which
gives:

1 + tz(
n

U(n− 1)− µ
+

n+ 1

µ− Un
) = 0. (1.15)

The corresponding phase diagram can be obtained by plotting equation (1.15), as
shown in Fig. 1.2(a). We note that the mean-field phase diagram can also be obtained
numerically instead of using the perturbation treatment in finding the ground state
energy. For each set of parameters U, t and µ fixed in equation (1.13), the ground
state energy can be found as a function of the order parameter ψ by diagonalising
the local Hamiltonian (with a certain truncation on the boson number) hi and taking
the smallest the eigenvalue Eg. Minimising Eg with respect to ψ yields the value of
the order parameter physically adopted by the system. The diagram obtained using
this method is shown in Fig. 1.2(b).
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Figure 1.2: Comparison between the phase diagrams obtained using (a) analytical
mean-field theory and (b) numerical mean-field theory for the 3D Bose-Hubbard
model (z = 6), with truncation of boson number at nmax = 10. Figure (a) is plotted
according to equation 1.15, where the lobes on the left correspond to the Mott insu-
lator phase and the region on the right corresponds to the superfluid region. Figure
(b) shows the order parameter ψ as a function of t/U and µ/U . It shows the Mott
insulator lobes corresponding to the regions with ψ = 0 and the rest corresponds to
the superfluid phase. The plot is reproduced from [24] using our code attached in
Appendix A.1.

1.3.4 Exact diagonalisation

The BH model can also be solved numerically by performing exact diagonalisation
on the Hamiltonian with truncation on the maximum number of bosons allowed per
site and the number of sites in the lattice. The order parameter is chosen to be
the variance of the number of bosons on the middle site var(n̂). A resulting phase
diagram is shown in Fig. 1.3.

We note that one can define an number operator for the total number of bosons
on the lattice,

N̂boson
total =

∑
i

n̂i, (1.16)

which commutes with ĤBH, implying that the eigen-spectrum of the latter can be
grouped into sub-manifolds labelled by the total number of bosons. Therefore, we
can also study the BH model in a canonical ensemble formalism, where we fix the
total number of bosons, in which case the chemical potential term in the Hamiltonian
is removed,

ĤBH
CE = −t

∑
<i,j>

b̂†i b̂j +
U

2

∑
i

n̂i(n̂i − 1), (1.17)
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Figure 1.3: Order parameter as a function of t/U and µ/U in the 1D BH model
in grand canonical ensemble, calculated using exact diagonalisation with the code
attached in Appendix A.2. The simulation is done on a lattice containing 6 sites with
periodic boundary condition and the maximum number of particles is 4. On the left
of the figure the areas with darker colour correspond to the Mott insulator phase and
the brighter area on the right corresponds to the superfluid state. Note that due to
the small system size, the order parameter in the dark-coloured lobes doesn’t exactly
go to 0.

Figure 1.4: Order parameter as a function of U/t. in the 1D BH model in canonical
ensemble, on a lattice of 6 sites with a total of 6 bosons, calculated using exact
diagonalisation with the code attached in Appendix A.3. The maximum number of
bosons allowed on one site is 3. As the interaction increases the system moves from
superfluid phase to Mott insulator phase, where the order parameter drops to zero.
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where the label “CE” signifies the canonical ensemble and the Hilbert space of the
system is restricted to the sub-manifold with a fixed total number of bosons. The
characteristics of the BH model can be studied in the unit-filling sub-manifold, where
the total number of the bosons is the same as the number of sites in the lattice. By
performing the same exact diagonalisation procedure and choosing the same order
parameter var(n̂), we obtain the phase transition diagram as shown in Fig. 1.4.
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Chapter 2

Quantum many-body phases of
strongly interacting photons

Having seen the quantum phases presented in the BH model, we will show in this
chapter that by realising photon-photon interaction, the MI-SF transition can be
simulated using hybrid light-matter systems. To begin with, we will introduce the
canonical quantisation of light, that will give rise to the notion of photons. We
will then discuss the mechanism of light-matter interaction, described by the Jaynes-
Cummings model, that finally leads to the realisation of quantum many-body phases
of light in coupled resonator arrays, described by the Jaynes-Cummings-Hubbard
model.

2.1 Quantisation of light

Figure 2.1: Schematic of a single-mode cavity with perfectly reflecting mirrors located
at z = 0 and z = L, where the electric field ~E is polarised in the x direction.

Consider a single-mode electromagnetic field confined to a one-dimensional cavity
along the z axis with perfectly reflecting mirrors parallel to the xy plane and sepa-
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rated by a distance L, as sketched in Fig. 2.1. The fields must vanish at those two
boundaries and thus form a standing wave in the cavity. Assuming that the cavity
contains neither source nor media, the electromagnetic field satisfies the Maxwell’s
equations without the source terms,

~∇× ~E = −∂
~B

∂t

~∇× ~B = µ0ε0
∂ ~E

∂t
~∇ · ~B = 0

~∇ · ~E = 0,

(2.1)

written in SI units, where µ0 is the vacuum permeability, ε0 being the vacuum permit-
tivity and µ0ε0 = 1/c2 with c being the speed of light in vacuum. We further assume

that the electric field is polarised along the x direction, such that ~E(~r, t) = ~exEx(z, t),

implying that the magnetic field is polarised along y direction, ~B(~r, t) = ~eyBy(z, t).
The solution to the Maxwell’s equations can be written as

Ex(z, t) =

√
2ω2

d

V ε0
q(t) sin (kz),

By(z, t) =
µ0ε0
k

√
2ω2

d

V ε0
p(t) cos(kz),

(2.2)

where ωd is the frequency of the cavity mode that satisfies the boundary condition,
i.e. ωd ∈ {cmπ/L | m = 1, 2, · · · }, k is the corresponding wave number k = ωd/c,
V is the effective volume of the cavity, q(t) is a time-dependent factor having the
dimension of length and p(t) = ṗ(t) is the time derivative of q(t).

The Hamiltonian of the single-mode field in the cavity is given by its classical field
energy,

Hcav =
1

2

∫
dV [ε0 ~E

2(~r, t) +
1

µ0

~B2(~r, t)]

=
1

2
(p2 + ω2

dq
2),

(2.3)

from which one can easily verify that p and q form a pair of canonical conjugate
variable as they satisfy the Hamilton’s equations:

dp

dt
= −∂H

cav

∂q
dp

dt
=
∂Hcav

∂p
.

(2.4)

To perform the canonical quantisation of the fields, one simply promote the con-
jugate variables p(t) and q(t) to operators p̂ and q̂ and impose the canonical commu-
tation relation:

[q̂, p̂] = i~. (2.5)
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We further define the non-Hermitian operators

â =

√
1

2~ωd
(ωdq̂ + ip̂),

â† =

√
1

2~ωd
(ωdq̂ − ip̂),

(2.6)

with which we can write the Hamiltonian as

Ĥcav = ~ωd(â†â+
1

2
), (2.7)

where [â, â†] = 1.
We can therefore identify the Hamiltonian to that of a quantum harmonic oscil-

lator, where â and â† are simply the annihilation and creation operators for photons.
The eigenstates are denoted {|n〉 | n = 0, 1, 2, · · · } with the number n indicating the
number of photons in the cavity, the eigen-energies being En = ~ωd(n + 1/2). We
can also define the photonic number operator to be n̂ = â†â that share the same
eigenstates with the Hamiltonian. We set ~ = 1 from now on for convenience.

2.2 Jaynes-Cummings model

The interaction between an atom and the photons in the cavity can be described by
the Jaynes-Cummings (JC) model [25] with the Hamiltonian

ĤJC = Ĥcav + Ĥatom + Ĥ int, (2.8)

where
Ĥcav = ωdâ

†â, (2.9)

which is the free energy of the photons as derived from Section 2.1 with the constant
term dropped. Ĥatom is the free energy term of the atom and Ĥ int is the interaction
term between the atom and the photons.

An atom can be trapped in a cavity to realise strong effective photon-photon
interaction. When the atomic transition between the ground state |g〉 and the first
excited state |e〉 is coupled to the cavity mode, the atom can be treated as a two-level
system, such that its free energy is given by the Hamiltonian (setting the ground state
energy to 0):

Ĥatom = ω0 |e〉 〈e| , (2.10)

where ω0 is the energy difference between the two energy levels. We also define the
atomic raising and lowering operators as follows:

Ŝ+ = |e〉 〈g| , Ŝ− = |g〉 〈e| . (2.11)

The atom is coupled to the cavity field via dipole interaction, giving the interaction
Hamiltonian

Ĥ int = − ~̂d · ~̂E (2.12)
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where ~̂E = ~ex
√

ωd

ε0V
(â + â†) sin(kz) according to Section 2.1, and ~̂d is the electric

dipole operator of the atom. From the parity consideration 〈e| ~̂d |e〉 = 0 = 〈g| ~̂d |g〉,
we can write without loss of generality, assuming that 〈e| ~̂d |g〉 = ~d is real,

~̂d = ~d(|g〉 〈e|+ |e〉 〈g|)
= ~d(Ŝ− + Ŝ+).

(2.13)

Therefore, the Hamiltonian becomes

Ĥ int = g(Ŝ− + Ŝ+)(â+ â†), (2.14)

where

g = −(~d · ~ex)
√

ωd
ε0V

sin(kz) (2.15)

characterises the coupling strength.
At this point the Hamiltonian contains terms that do not conserve the total num-

ber of excitations of the atom and the photons, we will now show that these terms can
be omitted under certain approximation. Transforming from the Schrödinger picture
into the interaction picture defined by the free Hamiltonian Ĥ free = Ĥcav + Ĥatom,

Ĥ int(t) = eiĤ
freetĤ inte−iĤ

freet

= g(Ŝ−âe−i(ωd+ω0)t + Ŝ+âei(ω0−ωd)t + H.C.),
(2.16)

we see that the terms associated with Ŝ−â and Ŝ+â† oscillate a higher frequency
ωd+ω0, while the other two terms conserve the number of total number of excitations
and oscillate at a lower frequency ω0 − ωd. When |ω0 − ωd| << |ω0 + ωd| (the
rotating-wave approximation), we can drop the fast oscillating terms and obtain the
Jaynes-Cummings Hamiltonian:

ĤJC = ωdâ
†â+ ω0Ŝ

+Ŝ− + g(Ŝ−â† + Ŝ+â). (2.17)

The eigenstates of the Hamiltonian can be shown to be

|n,+〉 = sin θ |g, n〉+ cos θ |e, n− 1〉 ,
|n,−〉 = cos θ |g, n〉 − sin θ |e, n− 1〉 ,

(2.18)

with the energies

EJC
n,± = nωd +

∆

2
±

√
(

∆

2g
)2 + n, n = 1, 2, · · · , (2.19)

where ∆ = ω0−ωd is the detuning, tan 2θ =
2g
√
n

∆
. For n = 0, the eigenstate is |g, 0〉

with E0 = 0. These eigenstates are hybrid states of atomic and photonic excitations
and are known as polaritons. We can also define a polaritonic number operator:

N̂pol = â†â+ Ŝ+Ŝ−, (2.20)

that counts the total number of excitations and shares the eigenstates with the Hamil-
tonian:

N̂pol |n,±〉 = n |n,±〉 . (2.21)
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2.3 Photon blockade effect

The spectrum of the JC Hamiltonian is nonlinear in n, which accounts for the effective
photon-photon interaction mediated via the atom. For a fixed number of polaritons
n, the ground state of the system in the corresponding sub-manifold is |n,−〉 with
energy En,−, which is a convex increasing function of n, implying that the presence
of a photon in the cavity makes it harder to add a second photon, because of the
increasing energy gap E1,−−E0 < E2,−−E1,−. This effect is called photon blockade,
acting as a strong effective repulsion between photons, that has been realised in
the experiment [26, 27]. Note that the detuning ∆ changes the nonlinearity of the
spectrum and in the limit of large detuning ∆ >> g, the energies reduces to be

En,± = nωd +
∆

2
(1± 1)± ng

2

∆
, (2.22)

which are linear in n, in which case there is no more photon blockade effect.

2.4 Jaynes-Cummings-Hubbard model

Having seen the realisation of effective photon-photon interaction resulting from the
photon blockade effect in the nonlinear cavities, we will now show that it will give
rise to the Mott-to-superfluid transition of phases of light that is analogue to that in
the BH model. Strongly correlated photons can arise from coupled resonator arrays
(CRAs), each resonator being a nonlinear cavity with Jaynes-Cummings interaction,
and the cavities are coupled via nearest-neighbour photon hopping. This system
of CRA, as sketched in Fig. 2.2(a), can be described by the Jaynes-Cummings-
Hubbard (JCH) model [15, 16], which is a variant of the JC model. Consider a one-
dimensional chain of L coupled cavities, each one doped with a single two-level atom,
the Hamiltonian consists of the sum of the local terms describing the JC interaction
in each cavity and the hopping terms between nearest neighbours:

ĤJCH =
∑
k

ĤJC
k +

∑
<j,k>

A(â†j âk + âj â
†
k)

=
∑
k

[
ωdâ

†
kâk + ω0Ŝ

+
k Ŝ
−
k + g(Ŝ−k â

†
k + Ŝ+

k âk)] +
∑
<j,k>

A(â†j âk + âj â
†
k)

(2.23)

where < j, k > denotes nearest neighbour pairs of indices, A is the photon hopping
amplitude between adjacent cavities, â†k(âk) is the creation (annihilation) operator

for the photons in cavity k and Ŝ+
k (Ŝ−k ) is the atomic raising (lowering) operator in

cavity k.
We also define the number operator for the total number of excitations (polaritons)

in the system,

N̂Pol
total =

∑
k

N̂pol
k

=
∑
k

(â†kâk + Ŝ+
k Ŝ
−
k ).

(2.24)
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One can show that N̂pol
total commutes with the Hamiltonian ĤJCH, therefore the eigen-

spectrum of the latter can also be grouped into sub-manifolds labelled by the total
number of excitations, which is similar to the case of BH model. Note that with the
assumption that ωd and ω0 are the largest energy scales in the system, the ground
state of ĤJCH will be the vacuum, as illustrated in Fig. 2.2(b).

Therefore, to study the phases present in the JCH model, one can consider the
ground state of the system in the Hilbert space restricted to the unit-filling sub-
manifold, i.e. the number of polaritons being the same as the number of cavities, or
in other words, the filling factor n̄ =< N̂pol

total > /L = 1. At resonance (∆ = 0) and in
the strong coupling regime (g >> A), the strong nonlinearity in each cavity results in
photon blockade preventing two photons to be present in the same cavity, effectively
blocking the photon hoping and leading to the Mott-like ground state, i.e.,

|G〉n̄=1 = |1,−〉 ⊗ |1,−〉 ⊗ · · · ⊗ |1,−〉 . (2.25)

In the limit of large detuning and strong hopping amplitude, and cavities become
linear and photon blockade effect is suppressed. The system is effectively described
by the BH model without the interaction term, resulting in the superfluid phase of
photons.

The Mott-to-superfluid phase transition can be studied by choosing the order
parameter to be the variance of polaritonic number at a certain site (e.g. the middle
site), measuring the fluctuation in the number of excitations. A diagram obtained
from exact diagonalisation is shown in Fig. 2.2(c).

2.4.1 Mean-field theory

One can add a chemical potential1 term in the JCH model, as proposed in [17], to
have a more direct analogy with the BH model. The Hamiltonian can then be written
as

ĤJCH
GCE = ĤJCH − µN̂pol

total, (2.26)

where µ is the chemical potential and the label “GCE” signifies the grand canonical
ensemble.

We can then proceed to calculate the mean-field phase diagram. The order pa-
rameter is chosen to be ψ =< âk > and by applying the decoupling approximation,
the mean-field Hamiltonian reads

ĤJCH
MF =

∑
k

ĥJCH
MF,k

ĥJCH
MF,k = ĤJC

k − zAψ(â†k + âk) + zA|ψ|2 − µN̂pol
k ,

(2.27)

where z is the coordination number. Similar to our treatment in section 1.3.3, we can
find the condition for phase transition with Landau theory, where the ground state

1While photons do not naturally have a chemical potential, it is possible to engineer one as
proposed in [28].
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(a) (b)

(c)

Figure 2.2: (a) Schematic of Jaynes-Cummings-Hubbard model, which describes a
coupled array of single-mode cavities, each coupled to a two-level atom. (b) The
energy spectrum of the JCH model, grouped into sub-manifolds labelled by polariton
numbers. (c) Order parameter (Variance of N̂pol on the middle site) as a function of
detuning of the JCH model, with g/A = 102, calculated using exact diagonalisation
in canonical ensemble. For each number of sites L, the simulation is done in the
unit-filling sub-manifold of polaritons, reproduced from [15] using our code attached
in Appendix A.4. The truncation for the maximum number of photons allowed in
each cavity is nmax = 3. As the detuning increases the system changes from Mott
insulator into the superfluid phase, showing a non-zero variance in the polaritonic
excitation number.

energy is found by second order perturbation theory and expressed in series in the
order parameter ψ:

Eg = Eµ
n,− + zAψ2 + z2A2ψ2Rn +O(ψ4)

= const.+mψ2 +O(ψ4),
(2.28)
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where
Eµ
n,± = EJC

n,± − µn,

R0 = −
(cos2 θ1

Eµ
1,−

+
sin2 θ1

Eµ
1,+

)

Rn =
( |√n+ 1 cos θn cos θn+1 +

√
n sin θn sin θn+1|2

Eµ
n,− − E

µ
(n+1),−

+
|
√
n+ 1 cos θn sin θn+1 −

√
n sin θn cos θn+1|2

Eµ
n,− − E

µ
(n+1),+

+
|
√
n cos θn cos θn−1 +

√
n− 1 sin θn sin θn−1|2

Eµ
n,− − E

µ
(n−1),−

+
|
√
n cos θn sin θn−1 −

√
n− 1 sin θn cos θn−1|2

Eµ
n,− − E

µ
(n−1),+

)
,

(2.29)

where EJC
n,± is the eigen-energy of the JC Hamiltonian and θn is defined by tan 2θn =

2g
√
n

∆
. The phase transition takes place at m = 0, which gives

1 + zARn = 0. (2.30)

The phase diagram can be obtained by plotting equation 2.30, as shown in Fig.
2.3(a). Note that the mean-field phase diagram can also be computed numerically
using the method described in Section 1.3.3, where the order parameter ψ is solved
by minimising the ground state energy of the mean-field Hamiltonian, the graphical
result of which is shown in Fig. 2.3. On these phase diagrams we can identify the
Mott insulator lobes with order parameter being zero, and the superfluid phase with
a non-zero order parameter, which are similar to the phase diagram of the BH model.

2.5 Techniques for probing quantum many-body

phases

As an interlude, we briefly summarise and review some of the techniques for probing
quantum many-body phases of matter.

The methods we have explored so far in this thesis are mainly the mean-field
theory and exact diagonalisation. In all cases, we re-derived the results using our
own developed codes as shown in the appendix. The mean-field theory approach al-
lows for an analytical solution of the phase diagram for simple Hamiltonian, however,
this approximation ignores local fluctuations and is inaccurate in low dimensions.
Meanwhile, exact diagonalisation allows for an exact solution with very little approx-
imation, yet is only feasible for small systems where the dimension of the Hilbert
space is not too large.

To tackle this problem, many other numerical techniques have been developed in
the past 30 years aiming to efficiently represent the state of the system using much
less information compared to the size of the Hilbert space. Notable examples include
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Figure 2.3: Comparison between phase diagrams for a CRA lattice with z = 3. (a)
Analytical mean-field diagram at resonance (plot of equation 2.30 at ∆ = 0). (b)-(d)
Numerical mean-field diagrams: order parameter as a function of photon hopping
log10(A/g) and chemical potential (µ − ωd)/g, with ∆ = 0, ∆ = −2g and ∆ = 2g
respectively, obtained from numerical simulation. The lobes in Figure (a) on the
left (under the curve labelled “stable region”) and the dark regions in (b)(c)(d) with
ψ = 0 correspond to the Mott insulator phase, while the other regions correspond to
the superfluid phase. Note that the phase diagram obtained from analytical mean-
field theory in (a) agrees well with the lobes in (b), both taken at resonance (∆ = 0),
and that a non-zero detuning will shift the lobes as demonstrated in (c) and (d). The
results are reproduced from [29] using our code attached in Appendix A.5.

tensor networks (TNs) [30], density functional theory [31], quantum Monte-Carlo
[32]. However, those methods are known to be limited to certain classes of problems.
For example, tensor networks are inefficient for describing highly entangled or high-
dimensional systems. Quantum Monte-Carlo suffers from the sign problem when
representation fermionic systems.
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Recently, artificial neuron networks have been proposed to solve quantum many-
body problems in complementary to the above methods [33]. In essence, the task of
finding an efficient representation of the state can be viewed as dimension reduction
and feature extraction, as commonly encountered in the field of machine learning. In
the next chapter, we will revise and describe in detail these algorithms that we will
use to probe the quantum phases in the BH model and the JCH model.
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Chapter 3

Machine learning quantum phases
of matter

In recent decades, with the development in computer technology, we have witnessed
more and more successful applications of machine learning in various domains, in-
cluding pattern recognition, product recommendation, data mining, game playing,
etc. Here we will describe its basics and show how we can use machine learning ap-
proaches to probe quantum phases of matter. Specifically, we will study the phases
of the BH and the JCH models using artificial neural networks in a reinforcement
learning scheme.

3.1 Machine learning basics

Formally the term “machine learning” can be defined as follows [34]: A computer
program is said to learn from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T , as measured by P , improves
with experience E. In general, machine learning algorithms can be categorised as
follows:

• Supervised learning: the machine tries to build a mathematical model through a
set of labelled data [35], known as training data, where each training example in
the data contains both input and the desired output, after which the machine is
capable of predicting the output from new input data. Such algorithm is widely
used in regression and classification [36].

• Unsupervised learning: the machine takes a set of unlabelled training data con-
sisting of only input data without the desired output. The algorithm identifies
patterns in the data, as commonly used in data clustering.

• Reinforcement learning: this type of learning algorithms does not require train-
ing data. Instead, the machine learns how to take actions in a certain environ-
ment, based on a penalty-and-reward mechanism, so as to optimise an objective.
It can be, for example, used to train a game playing software against a human
opponent.
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Practically, the framework called the artificial neural network (ANN) is widely
used in machine learning algorithms. An ANN is a set of connected nodes, that are
inspired by the immense network of neurons in animal brains. They are typically
powerful tools for processing complex data.

In the context of learning the quantum phases of matter, supervised (unsuper-
vised) learning allows the machine to be trained by a set of configurations which are
sampled from known (unknown) phases [37, 38, 39], while in reinforcement learning,
the machine is trained using variational approaches, and the actual phases are not
known prior to the training [33, 40, 41, 42, 43, 44, 45]. The latter case is more realistic
because exact sampling from quantum phases are not always possible.

In reinforcement learning, an ANN can serve as a variational ansatz for the wave
function of the system. Recent studies have been mostly focusing on two types of
ANNs, namely the restricted Boltzmann machine (RBM) and the feed forward neural
network (FFNN). [33] has shown that the RBM is capable of describing interacting
quantum spin systems in both one and two dimensions. Their approach achieves
accuracy higher than existing tools at that time and has sparked tremendous interests
in RBM in solving quantum many-body problems. Subsequent works have shown that
RBMs are capable of capturing exotic topologically-ordered phases [46, 47, 48]. These
phases contain infinitely long-range entanglement and cannot be captured with the
conventional TNs.

The use of FFNNs in quantum many-body problems has also been explored in
parallel with RBMs. In some cases, FFNNs are shown to have faster learning time
than RBMs [48, 42], including the case of Bose-Hubbard model [41, 45, 44].

3.2 Machine learning the ground state of a quan-

tum system

The application of reinforcement learning in probing quantum phases requires a vari-
ational formalism of the problem. This can be achieved by adopting the variational
method in quantum mechanics, for which we present a simple demonstration.

Suppose that for a given Hamiltonian Ĥ, we want to find its ground state |ε0〉,
which satisfies the time-independent Schrödinger equation,

Ĥ |ε0〉 = E0 |ε0〉 , (3.1)

where the ground state energy E0 is the smallest eigenvalue of H. We further assume
that H admits a discrete spectrum and that the eigenstates {|εn〉 , n = 0, 1, 2, · · · }
form an orthonormal basis for the Hilbert space. Then for any arbitrary state |ψ〉
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(which we do not assume to be normalised), the expectation value of Ĥ is then

〈ψ| Ĥ |ψ〉
〈ψ|ψ〉

=

∑
εn′ ,εn′′ 〈ψ|εn′〉 〈εn′| Ĥ |εn′′〉 〈εn′′ |ψ〉∑

εn′ | 〈εn′|ψ〉 |2

=

∑
εn′ En′| 〈εn′|ψ〉 |2∑
εn′ | 〈εn′|ψ〉 |2

≥
∑

εn′ E0| 〈εn′ |ψ〉 |2∑
εn′ | 〈εn′ |ψ〉 |2

= E0,

(3.2)

i.e. bounded below by the ground state energy. This quantity can thus be a natural
choice of the cost function in the learning procedure, which, when minimised, gives
both the ground state energy and a ground state ket, which is of interest in the study
of quantum phases of matter.

However, this is not a trivial process as the resource required to represent a general
state in the Hilbert space still grows exponentially with the system size. One therefore
demands an ansatz |ψ(W)〉 depending on a set of parametersW , where the number of
parameters is much smaller than the dimension of the Hilbert space. A good ansatz
should not only be efficient in encoding the state, i.e. it captures the “correct” region
in the Hilbert space that contains or is close to the ground state we are looking for,
but also should allow fast evaluation of the cost function and the gradient, which will
be used for updating the variational ansatz parameters during the learning procedure.

3.2.1 Artificial neural networks for strongly correlated lat-
tice models

Inspired by the success of [33], which solved for the ground state of Ising model and
Heisenberg model using ANNs as state ansatz combined with reinforcement learning
scheme, we will adapt this method for studying the Bose-Hubbard model [49, 41, 44]
and the Jaynes-Cummings-Hubbard model, with focus on the latter, since it is the
first time to our knowledge where the ANNs have been applied to the JCH model.
The essence is to represent the state ansatz using an ANN, and then optimise the cost
function using Variational Monte-Carlo (VMC) [50] approach. For a given physical
lattice of L sites, for which we want to find the ground state, we can expand an
arbitrary state in a basis of occupation number (in the second quantisation formalism).
For Bose-Hubbard model, we use the basis

BBH = {|n1, n2, · · · , nL〉}, (3.3)

where ni ∈ {1, 2, · · · , nmax} is the number of bosons on site i with a truncation at
nmax. For each configuration

SBH = (n1, n2, · · · , nL), (3.4)

we will use the ANN to find the corresponding wave function ΨBH(SBH), such that
the full state can be written as

|ΨBH〉 =
∑
SBH

ΨBH(SBH) |SBH〉 . (3.5)

29



Similarly, for the JCH model, an arbitrary state in a system with L sites can be
expanded in the basis

BJCH = {|np1, na1, n
p
2, n

a
2, · · · , n

p
L, n

a
L〉}, (3.6)

where npi ∈ {1, 2, · · · , nmax} is the number of photons in cavity i with a truncation at
nmax and nai ∈ {0, 1} is the atomic excitation number at site i, indicates whether the
atom is in state |g〉 or |e〉. For a given configuration

SJCH = (np1, n
a
1, n

p
2, n

a
2, · · · , n

p
L, n

a
L), (3.7)

we are to find the wave function ΨJCH such that the full state is

|ΨJCH〉 =
∑
SJCH

ΨJCH(SJCH) |SJCH〉 . (3.8)

In the following, we will drop the superscripts “BH” and “JCH” if the context leads
to no ambiguity, e.g. we will denote write

|Ψ〉 =
∑
S

Ψ(S) |S〉 , (3.9)

where Ψ(S) = 〈S|Ψ〉 is the wave function and S denotes the tuple

S = (vi) = (v1, v2, · · · ), (3.10)

such that in the context of the BH model we have the mapping

vi = ni (3.11)

and that in the context of the JCH model we have the mapping

v2k = nak, v2k−1 = npk. (3.12)

We will then introduce how to represent the wave function Ψ(S) using ANNs.

Restricted Boltzmann machine for lattice models

We first explore the Restricted Boltzmann machine (RBM) as the ANN wave function
ansatz for the ground state, as shown in Fig. 3.1(a).

The wave function ansatz for the configuration S is given by

ΨRBM(S;W) =
∑

{hj=±1}

e
∑

i aivi+
∑

j bjhj+
∑

i,j Wijaibj , (3.13)

where the vi’s are the values taken by the visible units, each having a local weight
ai, the hj’s are the values of the hidden units, each one can be either +1 or −1 and
having a local weight bj, the Wij’s are the interaction weights between the two layers
and W is the set of all parameters of this ansatz, i.e.

W = {ai, bj,Wij | i = 1, 2, · · · , N ; j = 1, 2, · · · ,M} (3.14)
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(a) (b)

Figure 3.1: Schematics of the two ANNs we studied for the BH and the JCH lattice
models: (a) Restricted Boltzmann machine, with a visible layer and a hidden layer,
that is fully connected between layers. (b) Feed forward neural network, with a visible
layer, a single hidden layer and an output layer consisting of one node, that is also
fully connected between successive layers. In both ANNs, the visible units take values
of the quantum numbers of the system of interest. The hidden units in RBM can
only take values of ±1 while those in FFNN take values determined by the visible
units via the activation function.

for an RBM with N visible units and M hidden units, where all parameters are
complex-valued in order to allow for the amplitude and the phase of the wave function
to be encoded. The summation in equation (3.13) can be carried out analytically,
giving

ΨRBM(S;W) = e
∑

i aivi ×
M∏
j=1

Fj(S), (3.15)

where
Fj(S) = 2 cosh

[
bj +

∑
i

Wijvi]. (3.16)

One can qualitatively see that due to the full connection between the visible and the
hidden layers, tracing out the hidden units allows the ansatz to capture long-range
correlations between the visible units, thus making the ansatz capable of representing
states with entanglement. Note that for an RBM with N visible units and M hidden
units, the total number of ansatz parameters1 is

|W| = M +N +M ×N = O(M ×N), (3.17)

while the dimension of the Hilbert space grows exponentially with N .
One can easily calculate the log-derivatives for this ansatz with respect to the

1As pointed out in [33], symmetries of the lattice structure can be exploited to reduce the num-
ber of parameters. For example in the presence of lattice translational symmetry, the number of
parameters is O(M).
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parameters,
∂

∂ai
log ΨRBM(S) = vi,

∂

∂bj
log ΨRBM(S) = tanh

(
bj +

∑
i

Wijvi),

∂

∂Wij

log ΨRBM(S) = vi tanh
(
bj +

∑
i

Wijvi),

(3.18)

which will be used in a gradient-based optimisation algorithm.

Feed forward neural network for lattice models

Another ANN we explored as wave function ansatz is the feed forward neural network
(FFNN) with a single2 hidden layer, as shown in Fig. 3.1(b). Similar to the RBM,
the visible units take values of the quantum numbers S = (vi), while they also serve
as the input units to the network and determine the values of the hidden units hj by

hj = f
(∑

i

W
(1)
ij vi + bj), (3.19)

where the bj is called the bias, the W
(1)
ij ’s are the interaction weights between the

input layer and the visible layer and f is the activation function. As suggested in [44]
we adopt

f(x) = log(cosh(x)) (3.20)

in this work. The output layer, containing only one unit, gives the value of the wave
function ansatz and is determined by the hidden layer:

ΨFFNN(S;W) = exp
(∑

j

W
(2)
j hj), (3.21)

where the W
(2)
j ’s are the interaction weights between the hidden layer and the output

layer and W is the set of all parameters,

W = {W (1)
ij ,W

(2)
j , bj | i = 1, 2, · · · , N ; j = 1, 2, · · · ,M}, (3.22)

where all parameters are complex-valued, with

|W| = N ×M +M +M = O(M ×N), (3.23)

where N is the number of visible units and M is the number of hidden units. Note
that in this network information flows in one direction from the input layer to the
output layer, which is where the name “feed forward” comes from.

2Note that in general, an FFNN can have multiple hidden layers between the visible (input) and
the output layer.
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We can also explicitly calculate the log-derivatives for this ansatz:

∂

∂W
(1)
ij

log ΨFFNN(S) = W
(2)
j vi tanh

(
bj +

∑
i

W
(1)
ij vi

)
,

∂

∂W
(2)
j

log ΨFFNN(S) = log
[

cosh
(
bj +

∑
i

W
(1)
ij vi

)]
,

∂

∂bj
log ΨFFNN(S) = W

(2)
j tanh

(
bj +

∑
i

W
(1)
ij vi

)
.

(3.24)

For both RBM and FFNN, we define the parameter

α =
number of hidden units

number of visible units
=
M

N
(3.25)

to be the hidden unit density.

3.2.2 Variational Monte Carlo for the ground state of lattice
models

With the ANN ansatz, we are now ready to find the ground state through a rein-
forcement learning procedure using Variational Monte-Carlo (VMC) [50] approach.
As introduced in Section 3.2, the cost function can be chosen to be the energy, that
is to be minimised:

E(W) =
〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉

, (3.26)

where Ĥ ∈ {ĤJCH, ĤBH}, Ψ ∈ {ΨRBM,ΨFFNN} depending on the specific problem.
For any operator O its expectation value can be written, using the closure relation∑
S |S〉 〈S| = 1, in the form of a probabilistic sum,

< Ô > =
〈Ψ| Ô |Ψ〉
〈Ψ|Ψ〉

=

∑
S,S′ 〈Ψ|S〉 〈S|O |S ′〉 〈S ′|Ψ〉∑

S 〈Ψ |S〉 〈S|Ψ〉

=

∑
S,S′ Ψ∗(S)OS,S′Ψ(S ′)∑

S |Ψ(S)|2

=

∑
S |Ψ(S)|2

∑
S′ OS,S′

Ψ(S ′)
Ψ(S)∑

S |Ψ(S)|2

=
∑
S

Π(S)Oloc(S)

=<< Oloc >>,

(3.27)

where OS,S′ = 〈S| Ô |S ′〉, Π(S) =
|Ψ(S)|2∑
S |Ψ(S)|2

, Oloc(S) =
∑
S′ OS,S′

Ψ(S ′)
Ψ(S)

and

<< Oloc >> denotes the statistical expectation value of Oloc over the probability
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distribution Π(S). In particular, for the Hamiltonian operator Ĥ, we can write the
cost function as

E(W) =< Ĥ >=<< Hloc >>, (3.28)

where Hloc(S) =
∑
S′ HS,S′

Ψ(S ′)
Ψ(S)

.

Similarly, one can show that the gradient of the cost function can be written as
the expectation value of some random variable. By denoting

Dk(S) =
∂

∂pk
log Ψ(S), pk ∈ W , (3.29)

we have
∂

∂pk
E(W) =<< Gk >>, (3.30)

where Gk is the gradient estimator defined as

Gk(S) = 2Re[(Hloc(S)− << Hloc >>)D∗k(S)]. (3.31)

Stochastic sampling

The estimation of the cost function and its gradient can be achieved via stochas-
tic sampling over the probability distribution Π(S), as shown in equation (3.28,3.30).
The sampling can be done by a Markov chain Monte Carlo (MCMC) process, where we
generate a Markov chain of the visible unit configurations S(1) → S(2) → · · · S(k) · · ·
sampling the quantity |Ψ(S)|2 that the probability is proportional to. This can
be done through the Metropolis-Hastings algorithm [51], where at each step of the
Markov chain, an update of configuration from S to S ′ is randomly proposed with
probability Q(S ′|S) and the new configuration is accepted with probability

A(S → S ′) = min
{

1,
Π(S ′)
Π(S)

Q(S|S ′)
Q(S ′|S)

}
= min

{
1,
|Ψ(S ′)|2

|Ψ(S)|2
Q(S|S ′)
Q(S ′|S)

}
,

(3.32)

where Q(S|S ′) is the probability of proposing S as the updated configuration starting
from S ′. In practice, if one works in canonical ensemble formalism and wants to find
the ground state in the sub-manifold with a fixed total quantum number, the proposed
update S ′ should be such that

〈S ′| Ĥ |S〉 6= 0, (3.33)

since both Hamiltonians in our study (ĤBH and ĤJCH) conserve the total quantum
number.

Training protocol

We can now briefly summarise the training protocol of the reinforcement learning
scheme for finding the ground state. For a given problem (Hamiltonian Ĥ) and a
chosen ANN ansatz (|Ψ〉), the following steps are performed:
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1. Randomly initialise parameters W of the ansatz |Ψ(W)〉.

2. Repeat:

(a) Calculate cost function E(W).

(b) Calculate gradient3 of the cost function, i.e.
∂

∂pk
E(W), ∀pk ∈ W .

(c) Update parameters based on the gradient4. For example, using the steepest
gradient descent method, one performs the update

pk ← pk − η
∂

∂pk
E(W), ∀pk ∈ W ,

where η is called the learning rate.

until convergence of E(W).

Note that the calculations in step (a) and (b) are performed via stochastic sampling
as introduced in Section 3.2.2. If the cost function ends up converging to the global
minimum5, its value will yield the ground state energy of the Hamiltonian Ĥ and the
resulting state |Ψ(W)〉 will be a ground state, on which we can perform measurements
of other observables via stochastic sampling, such as the order parameter.

3.3 BH and JCH phases via machine learning

We applied the machine learning method6 of finding the ground state to both Bose-
Hubbard model and Jaynes-Cummings-Hubbard model for specific finite size systems.
First we solved the BH model with RBM for different parameters in the Hamiltonian
across the phase transition as a benchmark for this ANN ansatz. We then solved
the JCH model using both RBM and FFNN and compared the results with exact
diagonalisation. The results are novel to our knowledge and have not been published
before.

3.3.1 Machine learning results for the BH model

We study a one-dimensional chain of L = 5 sites of the BH model with periodic bound-
ary condition in canonical ensemble with unit-filling of bosons, where a truncation of
boson numbers at each site is set at nmax = 3, for which the exact diagonalisation can

3While the method presented in Section 3.2.2 provides an estimate for the gradient, there exist
other methods such as stochastic reconfiguration [52] that provides better stability, which is adopted
in our calculations.

4Note that there are many gradient based optimisation algorithms, steepest gradient descent
being one of them. In practice we have adopted the Adamax [53] for a more stable convergence.

5Note that it is possible for the value to converge to a local minimum, the reason can be the
incapability of the ansatz in capturing the correct state or due to inappropriate hyper-parameters
in the learning scheme.

6The program is based on and modified from NetKet[54].
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be easily carried out to find the ground state energy E0 and the energy gap E1−E0,
as a benchmark for the machine learning results.

(a) (b) (c)

Figure 3.2: (a) Relative error in the ground state energy (right axis) for different
values of U/t, plotted together with the order parameter (left axis) obtained from
exact diagonalisation. The error bars are determined from the standard deviation in
the cost function over the last 500 iterations. (b) Order parameter measured from
the RBM ansatz (yellow curve) compared to the exact value (blue curve). The values
and the error bars are determined from the average and the standard deviation of
the order parameter respectively over the last 500 iterations. (c) Relative error in
the ground state energy for fixed U/t with respect to hidden unit density. The error
bars are determined from the standard deviation in the cost function over the last
500 iterations.

We first study the performance of the learning algorithm with the RBM ansatz
in different phases of the system, where the optimisation is performed for different
values of U/t ranging from the SF to MI phase of the system. To learn the ground
state of the system, we fix the hidden unit density at α = 4 (i.e. 5 visible units and
20 hidden units in the RBM). Each time we perform 4000 iterations of parameter
updates and in each iteration 1000 samples are taken in the Monte-Carlo sampling
to estimate the cost function and the gradient. The final learning outcome of the
ground state energy is taken to be the average of the cost function over the last 500
iterations. We investigate the relative error, defined as the difference between the
learning result of the energy and the exact value divided by the energy gap, as shown
in Fig. 3.2(a). One can notice that the error increases at the phase transition, where
the order parameter changes between zero and non-zero, while it remains relatively
small for both MI and SF phase far from the phase transition. For the same values
of U/t, we also perform measurements of the order parameter var(n̂), as shown in
Fig. 3.2(b), demonstrating that one can reconstruct the order parameter and thus
the phase transition diagram from the ground state learnt by the ANN.

We then investigated the effect of varying the hidden unit density for a fixed value
of U/t. In particular, this value is chosen to be the one corresponding to the largest
error in Fig. 3.2(a). The result is shown in Fig. 3.2(c), where the error decreases and
then saturates around a certain level as the hidden unit density increases.
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3.3.2 Machine learning results for the JCH model

We study the JCH model consisting of a one-dimensional chain of L cavities with open
boundary condition in canonical ensemble with unit-filling of excitations, L ranging
from 3 to 8 with a truncation of photon number per cavity at nmax = 3. To study
the different phases of the system, we focus on the regime g/A = 102, as suggested in
[15]. From Fig. 2.2(c) we pick 3 values of ∆ to benchmark the performance of both
RBM and FFNN:

• ∆ = 10−1g, where the system is in Mott insulator phase,

• ∆ = 100.5g, where the system is at transition between the two phases,

• ∆ = 102g, where the system is in superfluid phase.

The exact ground state energy E0 as well as the gap E1 −E0 are then calculated for
these values of ∆ using exact diagonalisation. Note that ωd does not affect the order
parameter or the value of the gap, so it can be fixed to an arbitrary value.

Throughout the learning process with the two ANNs, for each data point we
perform 10000 iterations of parameter updates and in each iteration 1000 samples
are drawn in the Monte-Carlo sampling. An example of the variation of the cost
function with respect to the number of iterations is shown in Fig. 3.3, where the line
corresponding to RBM exhibits convergence.

Figure 3.3: Cost function with respect to the iterations numbers for RBM and FFNN
while learning the ground state of the JCH model with L = 5, ∆ = 10−1g and α = 4,
in Mott insulator phase. The error bar is the standard deviation of the energy and
is invisible in this graph. While the energy given by RBM converges to the exact
ground state energy as mark by the black horizontal line, FFNN exhibits significant
instability.

The final learning outcome of the ground state energy is taken to be the average
of the cost function over the last 500 iterations. The relative error, defined as the
difference between the learning result of energy and the exact value divided by the
gap, is investigated for different system sizes and different hidden unit densities, as

37



(a) (b)

Figure 3.4: Relative error in the ground state energy of the JCH model obtained using
RBM and FFNN. (a) Error with respect to system size L for fixed hidden unit density
α = 4. (b) Error with respect to hidden unit density for fixed system size L = 8. The
error bars are determined from the standard deviation in the cost function over the
last 500 iterations. The legend is shared by both plots.

shown in Fig. 3.4, where the error increases with system size L and that the error
significantly grows as the system goes from MI phase (∆ = 10−1g) to SF phase
(∆ = 102g). In the MI phase, the error in RBM results can be significantly reduced
by increasing the hidden unit density, while in the SF phase, both ANNs have errors
greater than the gap, regardless of the hidden unit density. Since we noticed from
Fig. 3.3 that the energy calculated for MI phase using FFNN will not converge in
general, the calculation with FFNN is only done for ∆ = 102g, where the system is
in SF phase.

3.4 Discussion

The results above show that for the BH model, the RBM neural network ansatz is
capable of accurately representing the ground state and finding the order parameter
in both MI and SF phase. Although the error increases at the phase transition
between MI and SF, it remains several orders of magnitude smaller than the energy
gap between the ground state and the first excited state. Therefore, the RBM is a
sensible choice for studying the phases of the BH model.

In the study of the JCH model, only the MI phase can be accurately represented by
the RBM ansatz, and that the error can be reduced by using more hidden units in the
RBM, while FFNN fails to converge within the same number of iterations, although
it has been shown to work in the case of the BH model in [45]. This could be due to

the localised polaritonic states of the MI phase |ψ〉 '
∏⊗

K

1√
2

(|g, 1〉k−|e, 0〉k) having

richer structure compared to the BH model, the latter having no atomic degree of
freedom, that FFNN fails to capture. On the other hand, in the SF phase, the error
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in the results given by both ANNs stay higher than the energy gap regardless of the
number of hidden units. This could be again due to the atom-photon coupling that
makes the state structure more complicated for RBM and FFNN to capture. One
would expect that in the limit of strong hopping and weak coupling (g << A) both
ANNs should be able to accurately represent the ground state in SF phase, since in
this limit the atom and photons decouple and the model trivially reduces to the BH
model.

3.5 Conclusion

We have reviewed and studied the Bose-Hubbard model and the Jaynes-Cummings-
Hubbard model, the former being a simple model for quantum phase transition that
is a phenomenon of great interest in many scientific domains, the latter describing a
system of strongly interacting photons in coupled resonator arrays that can realise
quantum many-body phases of light, which can serve as a quantum simulator for the
Mott-to-superfluid transition.

These two models can be studied using various numerical and analytical tech-
niques, and the one that we have focused on in this work is machine learning, where
the ground state ansatz is represented by artificial neural networks, to our knowledge
a novel approach so far. We have studied the BH model using restricted Boltzmann
machine, and the JCH model using both restricted Boltzmann machine and feed for-
ward neural network, and examined the performance of these neural network ansätze
in a reinforcement learning scheme, for different phases of the models by compar-
ing the learning outcome with exact diagonalisation results. We have found that the
RBM is capable of accurately representing the ground state in both MI and SF phases
of the BH model while it can only represent accurately the ground state of the JCH
model in the MI phase, and that the errors in these cases can be reduced by increasing
the hidden unit density in the network. The failure of FFNN in the MI phase of the
JCH model together with the error of both RBM and FFNN in the SF phase of JCH
suggest that the choice of an ANN for studying the quantum phases in a many-body
system is problem-specific.

Nevertheless, we have gained a glimpse of the power of artificial neural network
and machine learning. Their entry to the domain of quantum simulation and quantum
many-body physics is more recent as compared to others fields of their applications,
yet one can expect that this emerging interdisciplinary field of research to sparkle
more interest and success in the future.
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[13] Hartmut Häffner, Christian F Roos, and Rainer Blatt. “Quantum computing
with trapped ions”. In: Physics reports 469.4 (2008), pp. 155–203.

[14] Herbert Walther et al. “Cavity quantum electrodynamics”. In: Reports on Progress
in Physics 69.5 (2006), p. 1325.

[15] Dimitris G Angelakis, Marcelo Franca Santos, and Sougato Bose. “Photon-
blockade-induced Mott transitions and X Y spin models in coupled cavity ar-
rays”. In: Physical Review A 76.3 (2007), p. 031805.

40



[16] Michael J Hartmann, Fernando GSL Brandao, and Martin B Plenio. “Strongly
interacting polaritons in coupled arrays of cavities”. In: Nature Physics 2.12
(2006), p. 849.

[17] Andrew D Greentree et al. “Quantum phase transitions of light”. In: Nature
Physics 2.12 (2006), p. 856.

[18] Dimitris G Angelakis. “Quantum Simulations with Photons and Polaritons”.
In: Quantum Science and Technology (Springer, 2017) (2017).
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Appendix A

Programming codes for numerical
solutions

A.1 Python code for calculating the numerical mean-

field phase diagram of the BH model

# −∗− coding : utf−8 −∗−
”””
Created on Wed Oct 10 15 : 4 1 : 4 5 2018

@author : z e j i a
”””
import numpy as np
import matp lo t l i b . pyplot as p l t
from sc ipy . opt imize import m in im i z e s ca l a r

c l a s s BH MF:
de f e g (ham) :

w, v=np . l i n a l g . e igh (ham)
return w[ 0 ]

de f i n i t ( s e l f , n max ) :
s e l f . n max=n max#t o t a l e x c i t a t i o n
s e l f . c r e a t e l o c a l o p e r a t o r s ( )

de f c r e a t e l o c a l o p e r a t o r s ( s e l f ) :
#photonic
s e l f . a=np . diag (np . s q r t (np . arange ( s e l f . n max ) +1) ,1 )
s e l f . a dag=s e l f . a .T
s e l f . n=s e l f . a dag . dot ( s e l f . a )
s e l f . I=np . i d e n t i t y ( s e l f . n max+1)

de f compute hamiltonian ( s e l f , t ,mu, z , p s i ) :
ham=−mu∗ s e l f . n+0.5∗ s e l f . n . dot ( s e l f . n−s e l f . I )−t ∗z∗ p s i ∗( s e l f . a+

s e l f . a dag )+t ∗z∗ p s i ∗∗2∗ s e l f . I
r e turn ham
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de f f i n d p s i ( s e l f , t ,mu, z ) :
de f e min ( p s i ) :

r e turn BH MF. e g ( s e l f . compute hamiltonian ( t ,mu, z , p s i ) )
#x0=10
r e s=min im i z e s ca l a r ( e min )
re turn r e s . x

de f main ( ) :
t e s t=BH MF(10)
#co rd ina t i on number
z=6
#r e s o l u t i o n
s i z e =500
t i=np . l i n s p a c e ( 0 , 0 . 0 5 , s i z e )
mui=np . l i n s p a c e (0 , 3 , s i z e )
g l o b a l p
p=np . z e ro s ( ( s i z e , s i z e ) )

f o r k1 in range ( s i z e ) :
t=t i [ k1 ]
f o r k2 in range ( s i z e ) :

mu=mui [ k2 ]
p [ k2 , k1]=np . abs ( t e s t . f i n d p s i ( t ,mu, z ) )

p l t . f i g u r e ( f i g s i z e =(12 , 10) )
p l t . imshow (p , o r i g i n=” lower ” , extent = [ 0 , 0 . 4 , 0 , 3 ] , a spect=” auto ” )
cb=p l t . c o l o rba r ( )
cb . s e t l a b e l ( ” order parameter ” , s i z e =20)
cb . ax . t i ck params ( l a b e l s i z e =20)
p l t . x l a b e l ( r ” $t /U$” , f o n t s i z e =20)
p l t . y l a b e l ( r ”$\mu/U$” , f o n t s i z e =20)
p l t . t i ck params ( l a b e l s i z e =20)
np . savez ( ’pos HB MFT N=’+s t r ( t e s t . n max )+’ z=’+s t r ( z )+’ r e s=’+s t r (

s i z e )+’ . dat ’ , hop=t i ,mu=mui , par=p)
#p l t . s a v e f i g ( ’ pos HB MFT N=’+ s t r ( t e s t . n max ) +’ z=’+ s t r ( z ) +’ r e s =’+

s t r ( s i z e ) + ’. pdf ’ )

i f name == ” main ” :
main ( )

A.2 Matlab code for the exact diagonalisation of

the BH model in grand canonical ensemble

c l a s s d e f BH<handle
p r o p e r t i e s

i s P e r i o d i c
L , n max , m i d s i t e
a , a dag , n
A , A dag , N
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I o n e s i t e
dim
t , mu
ham
order parameter

end

methods
func t i on obj=BH(L , n max , i s P e r i o d i c )

obj . i s P e r i o d i c =i s P e r i o d i c ;
obj . L =L ;
obj . n max =n max ;
obj . dim =(n max+1)ˆL ;
obj . c r e a t e l o c a l o p e r a t o r s ( ) ;
obj . c r e a t e l a t t i c e o p e r a t o r s ( ) ;
obj . m i d s i t e =round ( obj . L /2) ;

end

func t i on c r e a t e l o c a l o p e r a t o r s ( obj )
obj . a =spar s e ( s q r t ( d iag ( 1 : obj . n max , 1 ) ) ) ;
obj . a dag =transpose ( obj . a ) ;
obj . n =obj . a dag ∗ obj . a ;
obj . I o n e s i t e =spar s e ( eye ( obj . n max +1) ) ;

end

func t i on r e s=c r e a t e l a t t i c e o p e r a t o r ( obj , op )
r e s=c e l l (1 , obj . L ) ;
f o r i =1: obj . L

tmp=1;
f o r j =1: i−1

tmp=kron (tmp , obj . I o n e s i t e ) ;
end
tmp=kron (tmp , op ) ;
f o r j=i +1: obj . L

tmp=kron (tmp , obj . I o n e s i t e ) ;
end
r e s { i}=tmp ;

end
end

func t i on c r e a t e l a t t i c e o p e r a t o r s ( obj )
obj . A =obj . c r e a t e l a t t i c e o p e r a t o r ( obj . a ) ;
obj . A dag =obj . c r e a t e l a t t i c e o p e r a t o r ( obj . a dag ) ;
obj . N =obj . c r e a t e l a t t i c e o p e r a t o r ( obj . n ) ;

end

func t i on update hami l ton ian ( obj , t ,mu)
r e s=spar s e ( obj . dim , obj . dim ) ;
obj . t =t ;
obj . mu =mu;
f o r i =1: obj . L −1

r e s=res−t ∗( obj . A dag { i }∗ obj . A { i+1}+obj . A { i }∗ obj .
A dag { i +1}) ;

end
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i f obj . i s P e r i o d i c
r e s=res−t ∗( obj . A dag {1}∗ obj . A { obj . L }+obj . A {1}∗ obj .

A dag { obj . L }) ;
end
f o r i =1: obj . L

r e s=r e s +0.5∗ obj . N { i }∗( obj . N { i}−spar s e ( eye ( obj . dim ) ) ) ;
end
f o r i =1: obj . L

r e s=res−obj . mu ∗ obj . N { i } ;
end
obj . ham =r e s ;

end

func t i on update order parameter ( obj )
[ v ,˜ ]= e i g s ( obj . ham , 1 , ’ s m a l l e s t r e a l ’ ) ;
obj . o rder parameter =BH. var (v , obj . N { obj . m i d s i t e }) ;

end

end

methods ( S t a t i c )
func t i on r e s=expect ( ket , op )

r e s=transpose ( ket ) ∗op∗ ket ;
end

func t i on r e s=var ( ket , op )
r e s=BH. expect ( ket , op∗op )−(BH. expect ( ket , op ) ) ˆ2 ;

end
end

end

L=6;N=4;
t e s t=BH(L ,N, t rue ) ;
s i z e =100;
t i=l i n s p a c e ( 0 , 0 . 4 , s i z e ) ;
mui=l i n s p a c e (0 , 3 , s i z e ) ;
pars=ze ro s ( s i z e , s i z e ) ;
f o r k1=1: s i z e

t=t i ( k1 )
f o r k2=1: s i z e

mu=mui ( k2 ) ;
t e s t . update hami l ton ian ( t ,mu) ;
t e s t . update order parameter ( ) ;
pars ( k2 , k1 )=t e s t . o rder parameter ;

end
end
f i g u r e ( )
name=[ ’ BH ed L=’ , num2str (L) , ’ N=’ , num2str (N) , ’ r e s=’ , num2str ( s i z e ) , ’ . mat

’ ] ;
save (name , ’ pars ’ )
imshow ( f l i p u d ( pars ) , ’ I n i t i a l M a g n i f i c a t i o n ’ , ’ f i t ’ )
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A.3 Python code for the exact diagonalisation of

the BH model in canonical ensemble

#! / usr / bin /env python3
# −∗− coding : utf−8 −∗−
”””
Created on Thu Jan 24 12 : 0 7 : 0 6 2019

@author : z e j i a n
”””
import numpy as np
import matp lo t l i b . pyplot as p l t
from sc ipy . spar s e import c s r mat r i x
from sc ipy . spar s e import kron , eye
import s c ipy . spar s e as spar s e

c l a s s BH:

de f i n i t ( s e l f , L , n max , canon i ca l=False ,M=0) :
s e l f . L=L
s e l f . n max=n max
s e l f . i sCanon i ca l=canon i ca l
s e l f . dim=(n max+1)∗∗L

#t o t a l number o f bosons
s e l f . c r e a t e l o c a l o p e r a t o r s ( )
s e l f . c r e a t e l a t t i c e o p e r a t o r s ( )
i f ( canon i ca l ) :

s e l f .M=M
s e l f . f i n d k e e p s i t e s ( )

de f c r e a t e l o c a l o p e r a t o r s ( s e l f ) :
s e l f . a=cs r mat r i x (np . d iag (np . s q r t (np . arange ( s e l f . n max ) +1) ,1 ) )
s e l f . a dag=s e l f . a . t ranspose ( )
s e l f . n=s e l f . a dag . dot ( s e l f . a )
s e l f . I o n e s i t e=eye ( s e l f . n max+1)

de f c r e a t e l a t t i c e o p e r a t o r ( s e l f , op loc , o p l a t ) :
L=s e l f . L
f o r i in range (L) :

tmp=1
f o r j in range ( i ) :

tmp=kron (tmp , s e l f . I o n e s i t e )
tmp=kron (tmp , op l o c )
f o r j in range (L−i −1) :

tmp=kron (tmp , s e l f . I o n e s i t e )
o p l a t . append (tmp . t o c s r ( ) )

de f c r e a t e l a t t i c e o p e r a t o r s ( s e l f ) :
s e l f .A=[ ]
s e l f . A dag =[ ]
s e l f .N=[ ]
s e l f . c r e a t e l a t t i c e o p e r a t o r ( s e l f . a , s e l f .A)
s e l f . c r e a t e l a t t i c e o p e r a t o r ( s e l f . a dag , s e l f . A dag )
s e l f . c r e a t e l a t t i c e o p e r a t o r ( s e l f . n , s e l f .N)
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s e l f . N tot=0
f o r i in range ( s e l f . L) :

s e l f . N tot=s e l f . N tot+s e l f .N[ i ]
de f update hami l ton ian ( s e l f , t ,mu,U=1, p e r i o d i c=True ) :

A=s e l f .A
A dag=s e l f . A dag
N=s e l f .N
L=s e l f . L
H=0
i f ( s e l f . i sCanon i ca l ) :

mu=0
lmax=L−1
i f ( p e r i o d i c ) :

lmax=L
f o r i in range ( lmax ) :

H=H−t ∗( A dag [ i ] . dot (A[ ( i +1)%L ] )+A dag [ ( i +1)%L ] . dot (A[ i ] ) )
+0.5∗U∗N[ i ] . dot (N[ i ]−eye ( s e l f . dim ) )−mu∗N[ i ]

N=s e l f .N[ 0 ]
i f ( s e l f . i sCanon i ca l ) :

H=H[ s e l f . s i t e s k e e p , : ] [ : , s e l f . s i t e s k e e p ]
N=N[ s e l f . s i t e s k e e p , : ] [ : , s e l f . s i t e s k e e p ]

H dense=H. todense ( )
w, v=np . l i n a l g . e igh ( H dense )
g=cs r mat r i x ( v [ : , 0 ] )
#order parameter p=var (n)
s e l f . order parameter=BH. var iance (g ,N)
s e l f . ground energy=w[ 0 ]
s e l f . gap=w[1]−w[ 0 ]

de f f i n d k e e p s i t e s ( s e l f ) :
”””
keep the b a s i s v e c t o r s with the c o r r e c t number o f e x c i t a t i o n s
”””
M=s e l f .M
s e l f . s i t e s k e e p =[ ]
dim=s e l f . dim
f o r i in range ( dim ) :

m=s e l f . N tot [ i , i ]
i f (m>M−0.5 and m<M+0.5) :

s e l f . s i t e s k e e p . append ( i )

de f var iance ( ket , operator ) :
r e turn BH. expec ta t i on ( ket , operator . dot ( operator ) )−BH. expec ta t i on

( ket , operator ) ∗∗2

de f expec ta t i on ( ket , operator ) :
r e turn ket .T. dot ( operator ) . dot ( ket ) [ 0 , 0 ]

de f main ( ) :
g l o b a l t e s t , u range , pars , engs
L=3
n boson=3
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n max=3
t e s t=BH(L , n max , canon i ca l=True ,M=n boson )
s i z e =26
u range=np . l og space (−1 ,2.75 , s i z e )
pars=np . z e r o s ( s i z e )
engs=np . z e r o s ( s i z e )
gaps=np . z e ro s ( s i z e )
f o r i in range ( s i z e ) :

t e s t . update hami l ton ian (1 , 0 ,U=u range [ i ] )
pars [ i ]= t e s t . order parameter
engs [ i ]= t e s t . ground energy
gaps [ i ]= t e s t . gap

p l t . f i g u r e ( f i g s i z e =(12 , 10) )
p l t . p l o t ( u range , pars )
p l t . x s c a l e ( ’ l og ’ )
p l t . x l a b e l ( r ’$U/ t$ ’ , f o n t s i z e =30)
p l t . y l a b e l ( ’ order parameter ’ , f o n t s i z e =30)
p l t . t i ck params ( l a b e l s i z e =30)

# p l t . f i g u r e ( )
# p l t . p l o t ( u range , engs )
# p l t . x s c a l e ( ’ l og ’ )

np . savez ( ’HBL ’+s t r (L)+’M’+s t r ( n boson )+’N ’+s t r ( n max )+’ 1 . dat ’ , pars=
pars , engs=engs , u range=u range , gaps=gaps )

#

i f name == ” main ” :
main ( )

A.4 Matlab code for the exact diagonalisation of

the JCH model in canonical ensemble

c l a s s d e f j ch < handle
p r o p e r t i e s

i s P e r i o d i c
L , n max , n boson
a , a dag , n photon , I one photon
s p , s m , s z , I one atom
A, A dag , N photon
N polar i ton , N t o t p o l a r i t o n
S p , S m , S z
I o n e s i t e
s i t e s k e e p
ham crop
m i d s i t e
dim
om d , de l ta , J , g
gs energy , gap , order parameter

end

methods
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f unc t i on obj=jch (L , n boson , n max , i s P e r i o d i c )
obj . dim=((2∗(n max+1) ) ˆL) ;
obj . i s P e r i o d i c=i s P e r i o d i c ;
obj . L=L ;
obj . n max=n max ;
obj . n boson=n boson ;
obj . c r e a t e l o c a l o p e r a t o r s ( ) ;
d i sp ( ’ l o c a l ope ra to r s c r ea ted ’ )
obj . c r e a t e l a t t i c e o p e r a t o r s ( ) ;
d i sp ( ’ l a t t i c e ope ra to r s c r ea ted ’ )
obj . f i n d k e e p s i t e s ( ) ;
d i sp ( ’ un i t f i l l subspace found ’ )
obj . m i d s i t e=round ( obj . L/2) ;

end

func t i on c r e a t e l o c a l o p e r a t o r s ( obj )
%l o c a l ope ra to r s
obj . a=spar s e ( s q r t ( diag ( 1 : obj . n max , 1 ) ) ) ;
obj . a dag=transpose ( obj . a ) ;
obj . n photon=obj . a dag∗ obj . a ;
obj . I one photon=spar s e ( eye ( obj . n max+1) ) ;

obj . s p=spar s e ( diag (1 ,−1) ) ;
obj . s m=transpose ( obj . s p ) ;
obj . s z=obj . s p ∗ obj . s m ;
obj . I one atom=spar s e ( eye (2 ) ) ;
obj . I o n e s i t e=kron ( obj . I one atom , obj . I one photon ) ;

obj . a=kron ( obj . I one atom , obj . a ) ;
obj . a dag=kron ( obj . I one atom , obj . a dag ) ;
obj . n photon=kron ( obj . I one atom , obj . n photon ) ;

obj . s p=kron ( obj . s p , obj . I one photon ) ;
obj . s m=kron ( obj . s m , obj . I one photon ) ;
obj . s z=kron ( obj . s z , obj . I one photon ) ;

end

func t i on r e s=c r e a t e l a t t i c e o p e r a t o r ( obj , op )
r e s=c e l l (1 , obj . L) ;
f o r i =1: obj . L

tmp=1;
f o r j =1: i−1

tmp=kron (tmp , obj . I o n e s i t e ) ;
end
tmp=kron (tmp , op ) ;
f o r j=i +1: obj . L

tmp=kron (tmp , obj . I o n e s i t e ) ;
end
r e s { i}=tmp ;

end
end

func t i on c r e a t e l a t t i c e o p e r a t o r s ( obj )
obj .A=obj . c r e a t e l a t t i c e o p e r a t o r ( obj . a ) ;
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obj . A dag=obj . c r e a t e l a t t i c e o p e r a t o r ( obj . a dag ) ;
obj . N photon=obj . c r e a t e l a t t i c e o p e r a t o r ( obj . n photon ) ;
obj . S p=obj . c r e a t e l a t t i c e o p e r a t o r ( obj . s p ) ;
obj . S m=obj . c r e a t e l a t t i c e o p e r a t o r ( obj . s m ) ;
obj . S z=obj . c r e a t e l a t t i c e o p e r a t o r ( obj . s z ) ;

obj . N po la r i ton=c e l l (1 , obj . L) ;
f o r i =1: obj . L

obj . N po la r i ton { i}=obj . N photon{ i}+obj . S z { i } ;
end
obj . N t o t p o l a r i t o n=spar s e ( obj . dim , obj . dim ) ;
f o r i =1: obj . L

obj . N t o t p o l a r i t o n=obj . N t o t p o l a r i t o n+obj . N po la r i ton {
i } ;

end

end

func t i on f i n d k e e p s i t e s ( obj )
M=obj . n boson ;
dia M=round ( diag ( obj . N t o t p o l a r i t o n ) ) ;
obj . s i t e s k e e p=f i n d ( dia M==M) ;

end

func t i on r e s=reduce ope ra to r ( obj , op )
r e s=op ( obj . s i t e s k e e p , : ) ;
r e s=r e s ( : , obj . s i t e s k e e p ) ;
r e s=spar s e ( r e s ) ;

end

func t i on obj=update hami l ton ian ( obj , om d , de l ta , g , J )

r e s=spar s e ( obj . dim , obj . dim) ;
om 0=om d+d e l t a ;
obj . om d=om d ;
obj . g=g ;
obj . J=J ;
obj . d e l t a=d e l t a ;
f o r i =1: obj . L

r e s=r e s+om d∗ obj . N photon{ i}+om 0∗ obj . S z { i } ;
r e s=r e s+g ∗( obj . A dag{ i }∗( obj . S m{ i })+obj .A{ i }∗( obj . S p{ i
}) ) ;

end
f o r i =1: obj . L−1

r e s=r e s+J∗( obj . A dag{ i }∗( obj .A{ i +1})+obj .A{ i }∗( obj . A dag
{ i +1}) ) ;

end
i f obj . i s P e r i o d i c

r e s=r e s+J∗( obj . A dag {1}∗( obj .A{ obj . L})+obj .A{1}∗( obj .
A dag{ obj . L}) ) ;

end
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r e s=obj . r educe ope ra to r ( r e s ) ;
%obj . ham crop=f u l l ( r e s ) ;
obj . ham crop=r e s ;

end
func t i on obj=update orde r paramete r spar s e ( obj )

n crop=obj . r educe ope ra to r ( obj . N po la r i ton { obj . m i d s i t e }) ;
[ v , d]= e i g s ( obj . ham crop , 1 , ’ s m a l l e s t r e a l ’ ) ;
obj . g s ene rgy=d (1) ;
gs=v ( : , 1 ) ;
obj . order parameter=jch . var ( gs , n crop ) ;

end
func t i on obj=update order parameter ( obj )

n crop=obj . r educe ope ra to r ( obj . N po la r i ton { obj . m i d s i t e }) ;
hc=f u l l ( obj . ham crop ) ;
[ v , d]= e i g ( hc ) ;
[ v , d]= sortem (v , d) ;
d=diag (d) ;
obj . gap=d (2)−d (1) ;
obj . g s ene rgy=d (1) ;
gs=v ( : , 1 ) ;
obj . order parameter=jch . var ( gs , n crop ) ;

end
func t i on obj=f i n d g r o u n d s t a t e e n e r g y s p a r s e ( obj )

d=e i g s ( obj . ham crop , 2 , ’ s m a l l e s t r e a l ’ ) ;
d i sp (d)
obj . gap=d (2)−d (1) ;
obj . g s ene rgy=d (1) ;

end

func t i on obj=f i n d g r o u n d s t a t e e n e r g y ( obj )
hc=f u l l ( obj . ham crop ) ;
[ v , d]= e i g ( hc ) ;
[ ˜ , d]= sortem (v , d) ;
d=diag (d) ;
obj . gap=d (2)−d (1) ;
obj . g s ene rgy=d (1) ;

end

end

methods ( S t a t i c )
func t i on r e s=expect ( ket , op )

r e s=transpose ( ket ) ∗op∗ ket ;
end

func t i on r e s=var ( ket , op )
r e s=jch . expect ( ket , op∗op )−( j ch . expect ( ket , op ) ) ˆ2 ;

end
end

end

%
%

53



L=5;
J=10ˆ(−5) ;
g=10ˆ(−3) ;
om d=10;
n max=3; n boson=L ;
n sample =50;
t e s t=jch (L , n boson , n max , 0 ) ;
d e l t a=logspace ( −2 .5 ,2 .5 , n sample ) ∗g ;
pars=ze ro s ( n sample , 1 ) ;
e i g e n e r g i e s=ze ro s ( n sample , 1 ) ;

% gaps=ze ro s ( n sample , 1 ) ;
f o r k=1: n sample

d=d e l t a ( k ) ;
d i sp (d) ;
t e s t . update hami l ton ian (om d , d , g , J ) ;
t e s t . update order parameter ( ) ;
pars ( k )=t e s t . order parameter ;
e i g e n e r g i e s ( k )=t e s t . g s ene rgy ;

% gaps ( k )=t e s t . gap ;
end
deltaByG=de l t a /g ;
name=[ ’ plotParL ’ , s p r i n t f ( ’%d ’ , L) , ’M’ , s p r i n t f ( ’%d ’ , n boson ) , ’nMax ’ ,

s p r i n t f ( ’%d ’ , n max ) , ’ nSample ’ , s p r i n t f ( ’%d ’ , n sample ) , ’ . mat ’ ] ;
% save (name , ’ pars ’ , ’ e i g e n e r g i e s ’ , ’ deltaByG ’ )
f i g u r e ( )
p l o t ( d e l t a /g , pars )
s e t ( gca , ’ XScale ’ , ’ l og ’ )

A.5 Python code for calculating the numerical mean-

field phase diagram of the JCH model

# −∗− coding : utf−8 −∗−
”””
Created on Wed Oct 10 15 : 4 1 : 4 5 2018

@author : z e j i a
”””
import numpy as np
import matp lo t l i b . pyplot as p l t
from sc ipy . opt imize import m in im i z e s ca l a r

c l a s s JCH MF:
de f e g (ham) :

w, v=np . l i n a l g . e igh (ham)
return w[ 0 ]

de f i n i t ( s e l f , n max ) :
s e l f .M=n max#t o t a l e x c i t a t i o n
s e l f . c r e a t e l o c a l o p e r a t o r s ( )
s e l f . c r e a t e l a t t i c e o p e r a t o r s ( )

de f c r e a t e l o c a l o p e r a t o r s ( s e l f ) :
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#photonic
s e l f . a=np . diag (np . s q r t (np . arange ( s e l f .M) +1) ,1 )
s e l f . a dag=s e l f . a .T
s e l f . n photon=s e l f . a dag . dot ( s e l f . a )

#atomic
s e l f . s p=np . diag (np . s q r t (np . arange (1 ) +1) ,−1)
s e l f . s m=np . diag (np . s q r t (np . arange (1 ) +1) ,+1)
s e l f . s z=s e l f . s p . dot ( s e l f . s m )

#i d e n t i t i e s
s e l f . I one atom=np . i d e n t i t y (2 )
s e l f . I one photon=np . i d e n t i t y ( s e l f .M+1)

de f c r e a t e l a t t i c e o p e r a t o r s ( s e l f ) :
#photonic
s e l f .A=np . kron ( s e l f . I one atom , s e l f . a )
s e l f . A dag=np . kron ( s e l f . I one atom , s e l f . a dag )
s e l f . N photon=np . kron ( s e l f . I one atom , s e l f . n photon )

#atomic
s e l f . S p=np . kron ( s e l f . s p , s e l f . I one photon )
s e l f . S m=np . kron ( s e l f . s m , s e l f . I one photon )
s e l f . S z=np . kron ( s e l f . s z , s e l f . I one photon )

#p o l a r i t o n i c
s e l f . N po la r i ton=np . add ( s e l f . N photon , s e l f . S z )

de f compute hamiltonian ( s e l f , om 0 , om d , g , k , z , ps i ,mu) :
ham=0
ham=ham+om 0∗ s e l f . S z+om d∗ s e l f . N photon+g ∗( s e l f . S p . dot ( s e l f .A)

+s e l f . S m . dot ( s e l f . A dag ) )
ham=ham−z∗k∗ p s i ∗( s e l f . A dag+s e l f .A)+z∗k∗np . abso lu t e ( p s i ) ∗∗2∗np .

i d e n t i t y (2∗ ( s e l f .M+1) )−mu∗ s e l f . N po la r i ton
return ham

def f i n d p s i ( s e l f , om 0 , om d , g , k , z ,mu) :
de f e min ( p s i ) :

r e turn JCH MF. e g ( s e l f . compute hamiltonian ( om 0 , om d , g , k , z ,
ps i ,mu) )

#x0=10
r e s=min im i z e s ca l a r ( e min )
re turn r e s . x

de f main ( ) :
f o r d e l t a in [ −2 ,0 , 2 ] :

t e s t=JCH MF(10)
om 0=1
om d=om 0−d e l t a
g=1
k=0
z=3
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s i z e =500
k i=np . l og space (−4 ,1 , s i z e )
mui=om d+np . l i n s p a c e (−2 ,0 , s i z e )
p=np . z e r o s ( ( s i z e , s i z e ) )
f o r n1 in range ( s i z e ) :

k=k i [ n1 ]
f o r n2 in range ( s i z e ) :

mu=mui [ n2 ]
p [ n2 , n1]=np . abs ( t e s t . f i n d p s i ( om 0 , om d , g , k , z ,mu) )

p l t . f i g u r e ( f i g s i z e =(12 , 10) )
p l t . imshow (p , o r i g i n=” lower ” , a spect=” auto ” , extent =[−4 ,1 ,−2 ,0] ,)
cb=p l t . c o l o rba r ( )
cb . s e t l a b e l ( ” order parameter ” , s i z e =20)
cb . ax . t i ck params ( l a b e l s i z e =20)
p l t . x l a b e l ( r ”photon hopping , l o g $ {10}(A / g ) $ ” , f o n t s i z e =20)
p l t . y l a b e l ( r ” chemical po t en t i a l , $ (\mu−\omega d ) /g$” , f o n t s i z e

=20)
p l t . t i ck params ( l a b e l s i z e =20)
np . savez ( ’JCH MF M=’+s t r ( t e s t .M)+’ d e l t a=’+s t r ( d e l t a )+’ z=’+s t r (

z )+’ r e s=’+s t r ( s i z e )+’ . dat ’ , logHop=ki ,mu=mui , par=p)
#p l t . s a v e f i g ( ’JCH MF M=’+ s t r ( t e s t .M) +’ d e l t a =’+ s t r ( d e l t a ) +’ z=’+

s t r ( z ) +’ r e s =’+ s t r ( s i z e ) + ’. pdf ’ )

i f name == ” main ” :
main ( )
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