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Abstract 

We have developed a 780.24 nm laser source for Rubidium cooling by frequency doubling the fiber-

amplified output (20 W maximum) of a 1560 nm distributed feedback semiconductor seed laser. The 

doubling is performed using a periodically-poled lithium niobate nonlinear crystal, through a process 

called quasi-phase matching. We want to maximize the conversion efficiency of the seed laser frequency 

(1560 nm) into its second harmonic (780 nm), for which we have investigated the following factors: 

input power and polarization, temperature and poling period, and position of focal point. Their 

influences on the conversion efficiency are measured and presented graphically. After optimizing these 

factors, we have measured the temporal behavior of the power and wavelength of the frequency-

doubled beam, and have graphically presented these as well. Next, we review a few factors whose 

influence on conversion efficiency went unresearched for want of time, and these set a signpost for 

future research efforts. We conclude by studying safety issues pertaining to high-power laser beams, 

and look at ways to estimate if the optics used are compatible with the laser and amplifier utilised.      
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1. Rationale for project 

 

Laser cooling and manipulation of rubidium atoms requires several hundreds of milliwatts of 

light at 780 nm. The telecommunications industry has focused on developing the 1500 – 1600 

nm wavelength band because silica glass – used in fiber optics for long-haul communications – 

attains an attenuation loss minimum near 1550 nm. Consequently, it is quite difficult to source 

out reliable high-power diodes, optical amplifiers and phase modulators operating near 780 nm, 

with which Rubidium laser-cooling can be performed. The latest generation of Ti:sapphire lasers 

offers high power output and better reliability than previously available, but it is relatively 

expensive. The entire system, including pump laser and fluid cooling loop, is not very compact 

[1] and requires regular alignment and maintenance. Hence, it is desirable to develop a 

compact, rugged laser set-up for rubidium cooling that uses easily available components. 

Fortunately, the telecommunications spectrum of 1500 – 1600 nm is just double of the 

wavelength that laser cooling of rubidium demands (the rubidium D2 transition line – to be 

exploited in laser cooling – is at 780.24 nm). Frequency doubling a telecom laser is a suitable 

laser source for rubidium cooling, whilst the vast array of resources developed for the telecom 

industry is simultaneously opened up to atomic physicists working with rubidium.   

  

2. Overview of project 

 

We have developed a source of 780 nm laser light by frequency doubling the amplified output of 

a 1560 nm telecom laser. The seed laser is a fiber-coupled, distributed-feedback (DFB) 

semiconductor laser that is tunable within the 1559 – 1561 nm bandwidth. The DFB laser has a 

linewidth of 100 kHz, is intrinsically single-mode, and generates outputs of 1 – 5 mW. This is fed 

into an erbium-doped fiber amplifier which boosts the laser output to 20 W, which is then 

frequency doubled using a periodically poled lithium niobate (PPLN) nonlinear optical crystal. 
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3. Introduction to Nonlinear optics 

 

The frequency doubling process (or second harmonic generation) mentioned previously is the 

most prominent example of nonlinear optics, which is a class of light-matter interactions 

wherein the optical properties of a medium are modified by light. Typically, one thinks of linear 

optics in the following fashion: light enters a medium, gets modified by the latter before exiting 

it. The modification induced is an intrinsic property of the medium independent of the incident 

light. 

  

In contrast, for nonlinear optics, the modification induced is itself dependent on the incident 

light. Besides SHG, another nonlinear optical phenomenon is the intensity-dependence of the 

refractive index; it occurs when a highly-intense light beam strikes a suitable nonlinear optical 

crystal, which changes the refractive index of the medium, thereby further refracting the light. 

Hence, the modification induced in the optical path taken by the incident light depends on both 

the medium of propagation and the strong intensity of the incident light. Usually, only laser 

beams possess sufficient intensity to modify the properties of matter.  

 

The “nonlinearity” in nonlinear optics refers to the response (output) being nonlinear as a 

function of the driving force (input). A mechanical analogue is a spring with two balls attached 

to either end, wherein the Hooke’s law regime dictates that the extension (output) of the spring 

is directly proportional to the agent exerting a force on the spring (input). Beyond a certain 

threshold extension, the extension of the spring fails to respond linearly to the driving force, and 

the Hooke’s law regime is breached. This can be translated directly into the optical realm by 

replacing the balls and springs with atoms and electronic bonds, and the driving force by a 

propagating electromagnetic wave. So, how exactly does this process convert a 1560 nm 

infrared beam passing into a nonlinear crystal into a 780 nm output beam?  

 

To understand this, we consider a simple model which illustrates the process of nonlinear 

frequency conversion at the atomic scale. Suppose the nonlinear crystal is composed of atoms 

comprising a positively charged nucleus surrounded by an electron cloud. In equilibrium, the 

positive and negative charge centers coincide, so the net polarization of the material vanishes 

(Figure 1(a)). If a light wave with frequency ω1 strikes the material, the associated electric field 
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exerts a force on the electron cloud and distorts it; this distortion physically separates the 

positive and negative charge centers which induces an electric polarization within the material 

(Figure 1(b)).  

 

 

 

Figure 1 [2]: The black center represents the positively charged nucleus whilst the 
outer gray ring represents the surrounding electron cloud.  

(a) When no electric field is present, the centers of positive and negative charge 
coincide and there is no induced polarization.  

(b)  An applied electric field distorts the electron cloud so that the centers of charge 
are spatially separated and an electric polarization is induced. 

 

 

Whilst the electron cloud is being driven by the time-varying electric field of the incident light – 

from one side of the nucleus to the other – an oscillating polarization is simultaneously created. 

If there exists a linear relationship between the polarization and applied electric field, the time-

varying polarization is also sinusoidal at frequency ω1. Since an accelerating charge radiates an 

electromagnetic wave, this sinusoidally-varying polarization radiates its own electric field at 

frequency ω1, just like an antenna wire. The electric field radiated by the polarization interferes 

with the electric field originally present in the material, and this interference leads to the phase 

shift which is attributed to the refractive index of the material.   

In contrast, if the relationship between the induced polarization P and the electric field E is 

nonlinear (i.e. the Polarization v Electric Field curve is not a straight line), the generated 

polarization is not equivalent for an applied field whose strength is +E0 as it is for a field of −E0. 

This point is illustrated In Figure 2 (top left graph) by considering that the polarization P2 is much 

greater in magnitude than P1. Consequently, the polarization response to an applied sinusoidal 

field (Figure 2, bottom left) is not a pure sinusoid, but is distorted (Figure 2, top right, dark 

Figure 1(a) Figure 1(b) 
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curve). This distortion signals the presence of components in the polarization response at 

frequencies other than ω1, such as the strong second-harmonic frequency component at 2ω1 

(Figure 2, top right, light line in lower half). This is the atomic origin of SHG.  

   

 

 

We can mathematically describe the complete relationship between the polarization P(t) and  

the applied electric field E(t) depicted in Figure 2 by means of a power series expansion: 

 

                    
                                     

 

The    
     term is called the first-order (linear) polarization whereas the    

      and 

   
      terms are, respectively, known as the second- and third-order nonlinear polarizations.   

The different orders correspond to different oscillation modes of the time-varying polarization. 

Different phenomena occur depending on the order of the polarization. The first term of this 

+E0 

-E0 
P1 

P2 

Figure 2 [2]: For a nonlinear 
medium, where the 
polarization is related to the 
applied electric field in a 
nonlinear way, a 
sinusoidally-varying electric 
field will induce a 
polarization that contains 
frequency components at 
higher harmonics of the 
incident frequency. In this 
example (top right graph), 
the induced polarization 
response (dark black curve) 
can be decomposed into a 
component at the applied 
frequency and at the 
second harmonic of the 
applied frequency (light gray 
trace).  
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expansion causes first-order (or linear) phenomena, such as the refraction of light. The second-

order term, involving the square of the electric field, gives rise to second-order nonlinear effects 

such as second harmonic generation (SHG), sum-frequency generation and optical rectification. 

The third-order term, involving the cube of the electric field, gives rise to effects such as third-

harmonic generation, intensity-dependent refractive index, and Brillouin scattering. Some of 

these processes are summarized in the table hereunder: 

 

 

Second-order Nonlinear Polarization Third-order Nonlinear Polarization 

Second Harmonic Generation 
 

(out) = 2 x (in) 
 

Third Harmonic Generation 
 

(out) = 3 x (in) 
 

Sum Frequency Generation 
 

(out) = 1(in) + 2(in) 
 

 
Intensity-dependent refractive index 

Difference Frequency Generation 
 

(out) = 1(in) - 2(in) 
 

 

Optical Rectification 
 

A static electric field is generated 
within the crystal. 

 

Table 1: A list of the various optical processes that can occur as a result of the 
second-order (left column) and third-order (right column) nonlinear polarization 
discussed in the preceding paragraph. 
 

 

For this paper, we shall restrict attention to the nonlinear second-order      term, which is 

directly related to SHG, in which a single laser beam of frequency ω1 is passed through a 

nonlinear crystal and frequency-doubled light emerges with frequency 2ω1. This current 

research was conducted in the Cold Atom Laboratory, where an intense laser beam at 780 nm is 

needed for spectroscopy and trapping of Rubidium atoms, so the incident beam was pumped 

using a 1560 nm distributed feedback semiconductor laser source. Figure 3 is an overview of the 

SHG process.    
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Figure 3: A graphic representation of the second harmonic generation (SHG) 
process, also known as frequency doubling, in which the “colour” (or frequency) of an 
incident light is being altered.  

 

In Figure 2, we looked at SHG through a graphical approach, which signaled the presence of new 

frequency components in the output that were absent in the input light. This approach is 

qualitative, at best. Equation (1) offers the prospect of proving rigorously the presence of the 

second-harmonic. Suppose – to a nonlinear crystal – we apply a monochromatic light wave field 

of the typical form:  

 

      
        

  

In this case,  

 

                             
        

 
      

 

                           
       

                

 

The output contains a 2  component even if only   was input – the frequency has been 

doubled! The aforementioned procedure is formally known as the time-domain approach to 

nonlinear optics, as the electric field and polarization are expressed as functions of time. This 

perspective works for simple monochromatic input fields, but becomes cumbersome when 
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more complicated mixed-frequency fields are involved. In that case it is perhaps more natural to 

use a frequency-domain description, which is related to the time-domain description through 

the Fourier transform. Since our incident laser is an ultra-low linewidth DFB laser, which typically 

oscillates in a single longitudinal mode, we shall not venture into the frequency domain 

approach.  

 

For the SHG process to occur, the standard conservation laws must be applied. Conservation of 

energy is guaranteed by Planck’s relation. Since we are annihilating 2 photons at    and 

generating one photon at       , conservation of energy is satisfied. 

 

Conservation of momentum must also be taken into account, since the interacting particles 

(photons) are all momentum carriers. In nonlinear optics, it is more convenient to refer to 

wavevector conservation than momentum conservation. The relation      connects the 

momentum (p) to the wavevector (k). The subscripts 1 and 2 refer to the incident fundamental 

and second harmonic output beams respectively. By conservation of momentum, we have:   

 

       

using       we arrive at   

 

         

and after simplifying, we get  

 

       

 

which leads us to the equation formally known as the phasematching condition 

 

                  

 

This is the defining equation of SHG. Its fulfillment directly impacts the efficiency of the SHG 

process, i.e. the conversion of the incident fundamental beam to its second harmonic. The goal 

of SHG is not simply to double some photons at fundamental frequency; rather it is to convert as 

much of the fundamental power into its second harmonic as is possible. Conservation of energy 

is guaranteed by using photons at half the desired frequency, so the entire business of SHG (or 

frequency doubling) boils down to meeting the phasematching condition. What happens if the 

phasematching criterion is not satisfied? Equation (1) implies that there will possibly be several 

harmonics generated in any nonlinear interaction. We would like to suppress the extra 
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components and magnify the second harmonic one by fulfilling its requisites. Typically, the 

different harmonics necessitate different conditions; this is clear from the condition for SHG i.e.  

        . The factor of two arises from the frequency doubling process, and for third 

harmonic generation, the condition would be:         . Hence, if the set-up is tuned with 

such parameters that only the phasematching conditions for SHG are satisfied, we are able to 

maximize the amount of second harmonic photons that are generated. Hence, the whole SHG 

task reduces to one of finding the right conditions for it. In this paper, we will be investigating 

the various physical factors that can be varied to study how they affect the SHG efficiency factor 

(which we define as the power generated at the second harmonic per unit power input at 

fundamental frequency). Returning to equation (2), we can simplify it by substituting 

        

 

 
    

  
 

    

  
   

 

and exploiting the relation       , we obtain 

 

 
    

   
 

    

  
   

 

which yields 
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Hence, in the specific case of SHG, the phasematching condition simply means that both the 

fundamental frequency and second harmonic must encounter the same refractive index. Even 

though both beams are travelling in the same medium, this condition is quite challenging to 

fulfill as chromatic dispersion implies that the refractive index is a monotonically-decreasing 

function of wavelength, as evidenced by Figure 4 [3].  

 

Figure 4: Due to material dispersion, the refractive index of light propagating in a 
medium is uniquely dependent on the wavelength of the light.  

 

The beam at the fundamental and second harmonic would definitely experience different 

refractive indices, unless some extraneous factor helps overcome the refractive index difference 

arising from chromatic dispersion.  

 

Two such factors have been commonly utilized by nonlinear optics workers: 

 

(a) birefringent phase matching 

(b) quasi-phase matching 

 

For birefringent phasematching, the goal is to satisfy the condition       (equation (3)) or, 

equivalently,      (equation (2)), as closely as possible. Briefly speaking, a birefringent crystal 

is an optical material in which the refractive index depends on the polarization of the wave. This 

property can be used to compensate the refractive index difference between the fundamental 

and second-harmonic wave resulting from normal dispersion by arranging the fundamental and 

second harmonic beams to have different polarizations.   
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However, this approach is subject to certain limitations, as stated by Boyd [4]: 

 

(i) certain crystals lack birefringence entirely, or 

(ii) the birefringence present may not be sufficient to compensate the effects of chromatic 

dispersion; this severity of this issue increases at higher frequencies as the refractive 

index rises rapidly at higher frequencies but the birefringence (difference between the 

ordinary and extraordinary refractive indices) tends to be more nearly constant. 

 

In this paper, we will be utilizing the second approach known as quasi-phase matching (QPM), 

which generates second harmonic output without actually fulfilling the phasematching 

condition     .  

 

We first lay the visual framework upon which the theory shall be laid. The graph in Figure 5 [5] 

encapsulates the entire theory of SHG and phasematching. The vertical axis represents the 

intensity of the second harmonic light generated (the chief quantity of interest) as a function of 

the crystal length. Graph A exemplifies perfect birefringent phasematching       , Graph B 

portrays imperfect birefringent phasematching (     , whilst Graph C represents quasi- 

phasematching (     but with corrective mechanism).  

 

In addition, we introduce the concept of a coherence length    as the maximum distance over 

traversed over which the second harmonic waves generated are in phase with each other. This 

implies that the second harmonic intensity is expected to rise in magnitude for a distance of up 

to one coherence length, before the second harmonic waves begin slipping out of phase and 

some power is re-converted back to fundamental frequency, which causes the second harmonic 

intensity to drop. The distance equivalent to one    will be evaluated in equation (6).  
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Figure 5: Stepwise build up of second-harmonic power due to QPM. Curve A shows the 
build up with perfect      phasematching. Curve B shows the build up achieved with 
     and QPM, where an additional π phase shift is introduced every unit length    by 
introducing a periodic poling of the nonlinear crystal. Curve C shows the periodic build 
up and decrease of second-harmonic power with      and no QPM. 
 

The goal of this paper is to generate as much power at the second harmonic as is possible. 

Hence, we need to scrutinize an equation which yields the second harmonic intensity in terms of 

various relevant parameters. In other words, we are looking for analytical expressions to 

quantify the graphs in Figure 5. Risk et al [2] have presented such an expression for SHG 

intensity as a function of crystal length, amongst others parameters:  

       
      

 

  
     

     

      
        

   

 
  

                                                                                    
        

   

 
          

      
 

  
     

     
       

D 

E 

F 
QPM occurs 

at F… 

...so the SHG intensity rises till D… 

…instead of falling to zero at E. 

C 

A 

B 

Curve 
Curve 

Curve 

This is the flipping 

that QPM achieves. 

A 

C 

B 
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where   is a constant incorporating information regarding the crystal and the incident light,   is 

the crystal length,    is the intensity of the incident light and    is as defined in equation (2). 

Formally,    is called the wavevector mismatch. This equation leads to two distinct cases: 

     (finite wavevector mismatch) and      (zero wavevector mismatch). 

______________________________________________________________________________ 

Case 1:      

This occurs in birefringent phasematching; the       term in equation (4) becomes unity due to 

its vanishing argument and we have (treating   and    as constants): 

          

This is represented in curve A of Figure 5, where the output SHG intensity grows quadratically 

with crystal length. 

______________________________________________________________________________ 

Case 2:      

For the case of finite wavevector mismatch, we perform some simplification to equation (4): 

Treating   and   as constants, we get 

               
   

 
   

 

  
 
 

     
   

 
  

            
   

 
        

Hence, the second harmonic intensity simply oscillates between zero and a maximum 

repeatedly, no matter how long the crystal used is. This is represented in curve C of Figure 5. 

______________________________________________________________________________ 

QPM pertains to case 2       . However, instead of letting the intensity fall to zero after 

each unit distance (lc), we “flip” the curve so that it rises in the opposite. Returning to Figure 5, 

and comparing curve B with C between lc and 2lc we see this “flipping” occurring at point F – 

hence, when z = 2lc the intensity has risen substantially (point D) instead of falling back to zero 
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(point E). A physical mechanism is needed to accomplish this “flipping,” which is the heart of 

quasi-phase-matching. It is clear that some physical quantity needs to be modulated 

periodically. What is it, and how often do we flip it (in other words, what is the unit distance lc 

mentioned in Figure 5)? These two questions:  

What is being periodically modulated? 

What is the period of this modulation? 

will require a deep dive into QPM theory, which will be discussed next. 

______________________________________________________________________________ 

The final second harmonic power generated at the output crystal face is a sum of the second 

harmonic power arising from the infinitesimal waves generated at each point along the crystal. 

Each point should be seen as a minute antenna. If the waves by each antenna are in phase with 

each other – in other words, their wavevectors are parallel – the final second harmonic 

wavevector is the linear sum of all the minute wavevectors generated throughout the crystal, as 

shown in Figure 6. 

 

 

Figure 6: the wavevectors from different points along the crystal are “in phase” (i.e. 
parallel) with respect to each other, so the final second harmonic wavevector is a direct 
sum of the individual wavevectors. 
 

Now, we prove the above ideas mathematically. The generated second-harmonic field – in the 

frequency domain – is given by Risk [2] as: 

           

  
                                   

where   is a constant incorporating parameters associated with the nonlinear crystal and the 

incident laser beam,    is the second harmonic frequency and    is the wavevector mismatch 

defined previously. When we integrate over distance i.e. x we obtain a term like            

along with its complex conjugate. This term represents the superposition of second-harmonic 

waves generated at different points in the crystal. The complex number         has magnitude 1 
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and phase angle      .We can represent this complex number as a phasor of length 1 at an 

angle        . For visual clarity, we can approximate the continuous integral          

 
   

with a discrete sum:  

                                                                   

 

   

 

where      . We can now understand the phasors in Figure 6 better. If       then 

           and the integral has its maximum value – that is,   that is, all the phasors align in 

the same direction and add to give the maximum sum, corresponding to perfect constructive 

interference between second-harmonic contributions from different sections of the crystal.  

However, if the waves generated at each point are out of phase with each other, there is now 

an angle between each phasor and its neighbor. In Figure 7(a), there is a slight phase error 

between the second harmonic contributions from different portions of the crystal, so that 

perfect constructive interference does not occur and the second harmonic output is reduced.  

 
 

 

 

 

Figure 7: A phasor approach to understanding how QPM helps enhance the second 
harmonic intensity (see in-text explanation after this for details).  
 

Figure 7(a) Figure 7(b) 

without phase matching with quasi-phase matching 
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We observe, in Figure 7(a), that it takes six arrows to sum up to nullity. To aid physical intuition, 

let us attribute each arrow to a molecule; then, for every distance corresponding to six 

molecules the SHG intensity falls to zero. At three molecules, the wavevector magnitude has just 

reached a maximum [yellow arrow in Figure 7(a)]. We compare point F in Figure 5 against point 

A in Figure 7(a) and observe that the they both correspond to maximum intensity. At this point, 

we would like to flip the arrow at point A by 180o or  radians until it points in the opposite 

direction as per point B in Figure 7(b); thus, the intensity will continue to rise for the distance 

equivalent to another three molecules, and the final wavevector after six molecules is 

represented by the blue arrow in Figure 7(b), instead of zero as in Figure 7(a). This phase shift of 

is needed every time a distance of three molecules is traversed by the second harmonic wave, 

and inducing it is known as quasi-phase matching. The three molecules merely served as an 

illustrative example; in general, this periodic distance is known as the coherence length. With 

the insight gained from the preceding phasor analysis, we can recast the two questions 

previously stated into the following form:  

 

How do we induce a phase shift of  every time a coherence length is traversed? 

How long is “one coherence length”? 

Starting with the second, the  phase shift needs to be induced whenever the second harmonic 

intensity is a maximum, such as at point F in Figure 5.  

 

Using the analytical expression for the intensity, equation (5):  

            
   

 
  

The intensity of the second harmonic attains its first maxima at  

 
   

 
   

 

 
  

We define the coherence length      as the distance traversed by the electromagnetic wave in 

the crystal medium from entry till the first maxima, whereby: 

      
 

  
 . 
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Since the wavevector in the crystal is    
  

   
 , where n is the medium refractive index, we 

have  

    
 

  
    

 

      
  

 

   
 

 

             
       

   the pump wavelength (which is twice the desired wavelength) and n, the refractive indices, 

depend on the material used. Hence, from these two input parameters alone, one can compute 

the desired coherence length. Equation (6) is identical to that given by Ghatak and Thyagarajan 

[6] for computing the coherence length in QPM.      

In phasor terms, the coherence length    just defined corresponds to the distance traversed by 

the beam in the crystal till the second harmonic intensity reaches point A in Figure 7(a), which is 

the longest possible net phasor that can exist. Any distance traversed by the beam exceeding    

implies that the net phasor (yellow arrow in Figure 7(a)) continues rotating anticlockwise past its 

maximum length, thus declining in length and causing the second harmonic intensity to drop.    

    

How do we induce a phase shift of  every time a coherence length is traversed? 

Returning to the first question, we take note that for ferroelectric materials, such as lithium 

niobate, there exists a threshold temperature (called the Curie temperature) below which a 

spontaneous electric polarization Ps is present even in the absence of an external electric field. 

This polarization originates from an internal charge separation due to the atomic arrangement 

in the crystal. This charge separation defines a direction connecting the negative charge center 

to the positive one; thus, ferroelectric materials have a “polar axis” that acts as a directional 

reference by which the crystal can differentiate between an applied electric field that points in 

the same direction as the spontaneous polarization from one that points in the opposite 

direction.  
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Figure 8 [2]: A graphical representation of how inverting the spontaneous ferroelectric 
polarization can induce a phase shift of  radians in the second harmonic wave, which 
helps enhance SHG efficiency through the QPM mechanism that has been detailed in 
Figure 5 (graphically) or equivalently in Figure 7 by a phasor plot. 
 
Suppose, at zero applied field, we invert the polarity of the intrinsic polarization from C to 
D. This induces a  rad phase shift in the second harmonic wave generated, as 
evidenced by the downward to upward flipping in the 2ω1 wave from A to B.    
 

Figure 8 shows the effect of the spontaneous polarization on SHG. Figure 8(a) is similar to Figure 

2, except that in Figure 2, P = 0 when E = 0, whereas in Figure 8(a), P = Ps when E = 0. The 

applied electric field at fundamental frequency causes a charge separation that adds to and 

subtracts from the fixed charge separation arising from the spontaneous polarization. In Figure 

8, the nonlinear response of the induced polarization has been decomposed into components at 

the fundamental and second-harmonic frequencies. Figure 8(b) shows the same effect when the 

direction of the spontaneous polarization is reversed. The second-harmonic components of the 

two responses are 180◦ out of phase with each other. Hence, if we invert the spontaneous 

polarization periodically, we have a mechanism for producing the 180◦ phase shift required to 

implement QPM.  

 

Figure 8(a) 
Figure 8(b) 

C

  

D

  

A  
B  
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How is a domain-inverted structure with a period as small as tens of micrometers produced in a 

nonlinear crystal? Currently, the most successful and ubiquitous approach is to deposit a 

periodic electrode, such as a patterned metal film, on one surface of the crystal (Figure 9(b), 

blue arrows). A uniform electrode is applied to the opposite surface (Figure 9(b), long red 

arrow). When a sufficiently large electric field is applied to these electrodes, inverted domains 

begin nucleating under the regions where the periodic electrode is in contact with the crystal. 

Under the influence of the applied field, these domains grow until they occupy the area directly 

under the electrode and extend across the entire crystal thickness. Periodic poling of this nature 

has been successfully demonstrated in lithium niobate, forming periodically poled lithium 

niobate (PPLN), which is the crystal to be used for this current project. 
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Figure 9: An overview of the electric field poling process to produce periodically-poled 
crystals. 

 

- 
+ 

Before Periodic Poling 

After Periodic Poling 

A periodic electrode is 

deposited on top of the 

lithium niobate crystal. 

After switching on, the 

electric polarization is now 

in the opposite direction for 

those regions of the crystal 

above which an electric field 

has been applied. 
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Figure 9(b) 

The entire green area 
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is applied to the 

bottom surface. 
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4. Factors affecting efficiency of Second Harmonic 
Generation 

 

Previously, we have looked at the basic principles of QPM. We now focus on one aspect which is 

the goal of this project: to convert as much of the incident power at the fundamental frequency 

into its second harmonic. Hence, the conversion efficiency, as defined by              

           is an appropriate benchmark by which our performance can be gauged. To achieve 

the aforementioned target, a theoretical analysis will be performed to identify, comprehend and 

implement factors (listed immediately below) which would maximize the conversion efficiency.  

 

4.1 Temperature and poling period 

4.2 Boyd-Kleinman focusing factor 

4.3 Input power 

4.4 Polarization 

4.5 Photorefractive effects 

4.6 Number of longitudinal modes   

4.7 Location of beam focus  

 

 

4.1 Temperature and poling period 

 

We start off with the first factor. For QPM, a unique poling period is needed for every wavelength. 

Deviation from this poling period would not maximize the conversion efficiency [5]. However, our 

periodically-poled crystals came with fixed periods of 19.20µm, 19.50µm, 19.80µm, 20.10µm and 

20.40µm, none of which corresponded to our target wavelength (of 1560 nm). Hence, temperature 

tuning is performed whereby thermal expansion of the crystal lengthens its poling period slightly, 

thereby allowing a broader range of wavelengths to be converted efficiently. The temperature-length 

relationship is governed by the linear thermal expansion coefficient of lithium niobate [7]:   
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Returning to equation (6), 

 

             
          

 

we define the poling period      as twice the coherence length    (Figure 10): 

 

 

 

 

 

 

 

Figure 10: An illustration of why the poling period is twice the coherence 
length. 

 

and thus rewrite equation (6) as follows: 

 

            
            

 

 

Now, we make explicit what was being suppressed earlier, which is the temperature-dependence of the 

refractive index (compare the arguments of equations 8 and 9): 

Each of these rectangles represents 1 coherence length since the intrinsic 

polarization is pointing in the same direction within each rectangle… 

… and a pair of coherence lengths constitute a poling period, since that is 

the basic repeating unit from which an entire can be built by translation. 
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In truth, the temperature of a medium also affects its refractive index – indirectly – by altering its 

density. A higher temperature causes the density of the medium to fall and become less viscous, 

allowing light to travel faster in it which yields a smaller refractive index. The converse happens as 

temperature falls. 

By varying the temperature, both the left-hand side (LHS) and the right-hand sides (RHS) of equation     

are changing. For the LHS, the refractive indices are functions of temperature and wavelength through 

the Sellmeier equations, whereas the poling period increases monotonically with temperature on the 

RHS. The temperature at which the above relation attains equality is the phasematching temperature. 

To solve the equation, and thereby derive the phasematching temperature, we bring forth the Sellmeier 

equation, which relates the wavelength   and temperature to the refractive index   as follows [8]: 

 

           
       

             
 

       

       
 

           

                             

 

The values of the Sellmeier coefficients (   to   ) are tabulated in Appendix 1.  

We now substitute equations 7 and 10 into 9:  

          
       

  
            

 
       

  
      

 
             

       

  
            

 
       

  
      

 
    

 
 

                                    
        

 

Theoretically, this equation can be solved since only the temperature is unknown, but being a 

transcendental function forbids analytical solutions. It is apt to exploit a numerical method, such as the 

Newton-Raphson’s iterative procedure, to solve for the root of the equation, which would give the 

phasematching temperature for a particular wavelength. This procedure should then be repeated for a 

list of wavelength values, whilst holding the poling period   (in the denominator of the RHS) constant.  

This would give a list of values describing how the phasematching temperature varies with the 

wavelength for a single unexpanded poling period (consider any one column in Figure 11, from 19.2 m 
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to 20.4 m). The entire process can then be repeated for another value of the unexpanded poling 

period, which would give another list. In Figure 11, we offer a sample of values representing numerical 

solutions for equation (11); as expected, there are five lists, each representing a different poling period. 

 

 

Figure 11: Sample values showing numerical solutions to equation (11). 

Since this table is critical to the entire QPM business, it is worth interpreting in detail. Consider the box 

shaded in red, which is read as follows: to maximize the conversion efficiency of a 1555.4 nm incident 

beam, the crystal is translated laterally until the beam is striking the 19.5 m channel, but this latter 

period is still insufficient; hence, the temperature is raised to 36.12 oC whereby the poling period 

expands slightly until it attains the ideal phasematching value such that equation (11) is satisfied. Under 

such conditions, the incident light will be converted with maximum efficiency into its frequency-doubled 

harmonic.  

For this paper, we should be looking at values near the 1560 nm spectral range. Using equation (11) 

again, we obtained the following approximate temperatures:  

 

Temperature/oC Unexpanded 

Poling Period/m 

143.29 19.2 

72.36 19.5 

 

Table 2: Relevant combinations of temperature and unexpanded poling 

periods for efficient conversion of 1560 nm pump wavelength 
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Hence, if the initial unexpanded poling period of 19.20 µm (or 19.50µm) is used, the optimal 

temperature for quasi-phase-matching is expected to be approximately 143OC (or 72 OC); these values 

are based on equation (11). However, some deviation between these numerically-computed values and 

the empirically-derived ones is expected, since it would not be possible to practically reproduce those 

perfect conditions as were assumed in the calculations. For instance, the incident beam needs to strike 

the crystal head-on, at normal incidence (see Figure 22); however, this may not be fulfilled practically 

due to the difficulties associated with aligning the beam on such a microscopic crystal. In addition, the 

calculations assume a perfect crystal of alternating upward- and downward-pointing domains of equal 

length (Figure 10), but due to imperfections in the periodic poling process, certain domains may not be 

poled correctly leading to irregular structures like: 

 

Figure 12: An imperfect PPLN crystal where the third domain failed to invert 
downward. 

 

Such defects can occur in the poling process because the electrodes to be deposited on the crystal are 

only tens of micrometers long, and a number of errors can arise in the lithographic printing process 

dealing with such microscopic resolution. For instance, if the temperature of the deposition chamber is 

not set correctly – either due to equipment or human error – the electrodes may fail to deposit at a 

certain location where they were supposed to; consequently there will be no inversion of polarization at 

that location leading to an incorrectly-poled structure.    

Defects such as that in Figure 12 lead to a change in the effective poling period encountered by the 

incident beam, such that the new (i.e. effective) poling period does not correspond to the old 

phasematching temperature for a given input wavelength. This explains why differences may arise 

between the computed and empirical phasematching temperature, due to a variety of experimental 

(alignment issues) and engineering (such as crystal defects) reasons.  

It is the goal of this paper to empirically establish the optimum temperature for the relevant poling 

period. Nonetheless, the equations (and their numerical solutions) are a potent tool to illuminating the 
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underlying mechanism; in addition, by foretelling the expected optimal temperatures, they shorten the 

discovery time by allowing the researcher to home in on the correct temperature more swiftly.     

 

4.2 Input power 

 

Secondly, the conversion efficiency is increased by raising the pump power (at fundamental frequency). 

As the latter increases, the second harmonic power exhibits a quadratic increase. Boyd and Kleinman [9] 

have derived the relationship between the input (fundamental frequency) power and second harmonic 

power under optimum focusing conditions (these focusing conditions will be discussed in the next 

section):   

          
        

 

     
     

   
           

 

         
  

We return to equation (1): 

                    
                                     

and consider only the second-order nonlinear polarization,           
        which causes SHG: 

 

          
            

                 

 

We now offer a simple argument to explain why the output power is quadratically – and not linearly – 

proportional to the input power. We know that the input intensity is proportional to the amplitude of 

the input electric field squared        , which is in turn proportional to the second-order nonlinear 

polarization            
   

  from equation 12. Hence, by doubling the input power, we double the 

intensity as well since area is assumed constant throughout. Therefore           
      , as well as the 

amplitude of the second harmonic electric field, doubles; the latter quantity causes the output SHG 

intensity to increase fourfold. Hence, an increase of input power results in a quadratic increase in the 

SHG power generated.     
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4.3 Boyd-Kleinman focusing factor 

 

Thirdly, we explore the best way to focus the beam into the crystal in order to maximize SHG power. 

Boyd and Kleinman (1968) [9] have explained how this is done.  

In the ideal case, if laser beams did not diverge at all, one simply has to focus the beam as tightly as 

possible to obtain the smallest spot size. In this case, the average intensity across the entire crystal 

length is maximized and thus the SHG output is also maximized (it has been demonstrated qualitatively 

in the preceding section that the SHG power increases quadratically with the input power).  

In practice, we use Gaussian beams that diffract in the plane transverse to the propagation direction. 

The more tightly the beam is confined, the more rapidly it will diffract. Hence, the high-intensity region 

is confined to a small area near the beam waist, and it will not be possible to maintain that confinement 

over a very long length. Equation (4) shows that the interaction length directly determines the 

conversion efficiency; thus, we are forced to accept a trade-off between tight confinement and long 

interaction length. Hence, for a crystal of a fixed length, there is an optimum focusing condition that 

represents a compromise between tight confinement and long interaction length. It is this condition that 

is known as the Boyd-Kleinman focusing condition (see equation (13)). 

To aid intuition, imagine that if the spot size is too small, the beam has been focused very tightly and 

thus it will diffract faster spatially in the plane transverse to the propagation direction.. Hence, whilst 

the intensity at the minimum beam waist is high, the intensity at the other points in the crystal will be 

much lower and consequently the average intensity integrated over the entire crystal will also be low 

leading to a low conversion efficiency. On the other hand, if the spot size is too large, the beam diffracts 

less but the average intensity of the incident beam along the entire crystal will again be low, since it was 

low at every point along the crystal to begin with. Somewhere in between, a compromise is struck 

where the spot size is neither excessively large nor too small, at which the intensity attains a maximum.  

However, Boyd and Kleinman (1968) [9] did not specify optimized values for spot size; rather, they 

analysed the issue from the complementary viewpoint, which is the degree of divergence, as quantified 

by the confocal parameter (confocal parameter = 2 x Rayleigh length). The link between the spot size 

and the confocal parameter is as follows: the smaller the spot size, the faster the beam will diffract 

spatially and the shorter the confocal parameter.  
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Their analysis culminated in the following relation, the Boyd-Kleinman focusing condition: 

 

                 

 

where L is the crystal length and b is the confocal parameter. For this paper, 

 

  
 

    
 

    

    
         

 

                 
     

 
         

 

From laser focusing theory, if a collimated Gaussian beam with beam radius w0 hits a focusing lens with 

focal length f, the beam radius at the beam waist wf (minimum spot size) is given by: 

 

   
  

   

 

 

 

Figure 13: An illustration of the various parameters involved in laser focusing: the 
minimum spot size wf achievable is determined by the incident beam size 2w0, 
the wavelength  and the focal length f. 
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The Rayleigh range is:  

   
   

 

 
 

 

 
 

  

   
 
 

 
 

 
 

 

  
 
 

 

   
      

 

 
  

                        

 
         

Hence, a converging lens of focal length 65.5 mm is appropriate for our set-up, which corresponds to a 

beam waist of 29.6 mm. We used the closest available lens (50 mm), which represents a beam waist of 

22.6 mm.   

 

4.4 Polarization 

 

The polarization state of the input beam directly affects the SHG efficiency. When the incident 

electromagnetic wave propagates through the crystal, its electric field component induces rapid 

oscillations in the lithium niobate dipoles provided there is effective coupling between the two. Hence, 

there is maximum energy transfer from the incident field to the oscillating dipoles, which consequently 

begins radiating at the second harmonic with maximum efficiency. The incident electromagnetic wave 

must drive the nonlinear polarization     . Therefore only the electric field component in this direction 

is contributing. Mathematically,           , where is the relative angle between the plane containing 

the lithium niobate dipole and the electric field. The maximum value is obtained by letting     , 

which makes the two preceding planes parallel. Hence, maximum SHG power occurs by aligning the 

polarization plane of the incident beam parallel to the dipole moment vector of the crystal. 

 

 

4.5 Photorefractive effects 

 

Table 2 reveals that one can use two temperatures for a 1560 nm pump wavelength, provided the 

poling period is changed accordingly. This generates an extra degree of freedom in optimizing the input 

parameters. Photorefractive effects degrade SHG efficiency more strongly at low than at high 

temperatures. Hence, exploiting this new degree of freedom implies choosing that poling period at 

which the higher crystal temperature is involved. For our case, this implies using the 19.5 m poling 

period at 142oC.   
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The mechanism of photorefractive degradation is as follows: at low crystal temperatures, intensity-

dependent refractive index effects deteriorate the spatial beam quality since the beam intensity 

distribution follows a Gaussian profile. Hence, different points – in the pane transverse to beam 

propagation – in the crystal experience different laser intensities, and consequently different refractive 

indices, via two distinct mechanisms: thermal effects and photorefractive effects.  

 

Firstly, thermal effects occur as the intensity distribution (and heating rate) within the crystal varies 

spatially, so the beam encounters slightly different refractive indices at different points (the Sellmeier 

equations (10) relate the temperature dependence of refractive indices); hence, the spatial quality of 

the beam degrades, leading to lower average beam intensity throughout the crystal. Since the second 

harmonic power generated is dependent on the average squared intensity integrated across the crystal, 

the former decreases at low temperatures.  

 

Secondly, photorefractive effects achieve a similar spatially-dependent refractive index. The spatially-

dependent beam intensity alters the local space-charge distribution by a spatially-dependent electron 

photo-excitation rate. This results in charge migration from locations of high to low electron density, 

which generates a position-dependent electric field and refractive index (via the electro-optic effect) 

[10]. 

 

The net effect of the two processes is that the beam encounters a spatially-dependent refractive index. 

This degrades its spatial quality since the beam refracts unpredictably, leading to an overall decrease in 

average beam intensity throughout the crystal and the consequent decrease in second harmonic power 

generated.  

 

Recent theoretical computations by Guohui et al [11] have suggested that the second factor dominates 

the first, though Jedrzejczyk et al [12] and Louchev et al [13] offer a contrasting viewpoint. We have 

been unable to verify either claim due to an inability to measure the temperature or refractive index 

distribution within the small crystal. However, the real cause is not important since the ultimate 

observable effect on the beam is exactly the same – spatial profile degradation.       
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On the other hand, if the temperature is high, the uniform thermal heating from the oven largely 

overwhelms any minute spatial differences in heating rates caused by the non-uniform intensity profile 

of the Gaussian beam. The entire crystal is at a uniform temperature, and photorefractive effects do not 

adversely affect the maximum intensity attainable. The preceding ideas are well-evidenced by the 

scatter plot obtained by Peil et al [1]:  

 

 

Figure 14: Experimental results from Peil et. al. [1] showing the adverse effects (in 
the form of much lower efficiency) of performing SHG at low temperatures (compare 
the first two and last two points) owing to photorefractive effects. By using the 
channel with a higher (i.e. >100oC) phasematching temperature (see red arrow), the 
SHG efficiency rose from approximately 10% to 70% (see blue arrow). 

 
 
Hence, maximum SHG conversion efficiency is attained by minimizing photorefractive effects 
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5 Experimental set-up of SHG apparatus 
 

We now look at the various components of the SHG set-up we constructed. 

 

The DFB semiconductor seed laser generates a weak (2-4 mW) 1560 nm narrow linewidth beam that is 

fed into the erbium-doped fiber amplifier for power enhancement up to 20W. A visible laser is injected 

and combined with the invisible infrared beam using a polarizing beam splitter so that the latter 

becomes visible and easy to manipulate spatially. A half-wave plate is inserted next to control the 

polarization of the beam entering the crystal. After that, the PPLN crystal is placed in an oven for 

temperature tuning; the oven is sandwiched by two converging lenses – the first one for focusing the 

beam into the crystal such that the minimum beam waist coincides with the crystal’s geometrical center, 

and the second one for collimating the beam leaving the crystal to ensure that it possesses a good 

(Gaussian) spatial quality. Next, the beam Is filtered – by a dichroic mirror – into the (desired) second 

harmonic (780 nm) component and  the residual, unconverted pump beam (1560 nm). The former is 

injected into a Rubidium cell for frequency stabilization and locking, before being coupled to a long-

range fiber optical cable for transmission to the experiments.  

 

A schematic outline of our set-up is presented in Figure 15. 
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Figure 15: A schematic outline of the various components that constitute our SHG set-up.
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6 In-depth analysis of each component 

 

In this section we look at each component in detail to study the role it plays in generating SHG output. 

This would also signal areas for improvement and offer clues as to which of the factors are most critical 

in achieving our target i.e. high SHG efficiency. 

 

6.1 Seed laser 

 

A distributed feedback (DFB) laser is used as the source laser for subsequent amplification and 

frequency doubling. The key advantage of the DFB laser used is the narrow linewidth of 100 kHz. To 

perform spectroscopy on the atoms, the laser frequency must match the rubidium transition frequency 

as closely as possible, which can be practically achieved by using a laser with a narrow linewidth. 

 

Besides a narrow linewdith, it is critical to ensure that the laser frequency and the rubidium frequency 

are centered at the same value. It is pointless to speak of a narrow linewidth if the laser is lasing at, say, 

1561 nm and the atomic transition line is centered at 1556 nm, for instance. In this case, there will be 

little coupling between the laser photons and the atoms. For the rubidium cooling, the D2 transition line 

at 780.24 nm will be utilized. Hence, the DFB laser must also be engineered to lase at this value. The 

laser can then be temperature-tuned over a spectral width of approximately 1-2 nm to home in on the 

precise frequency of 780.24 nm. We opted to center our DFB laser at 1560 nm, giving us a range of 

operation of roughly 1559-1561 nm; this spectral range contains double of the desired rubidium D2 

transition line (780.24 nm).      
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Figure 16: A screenshot from the manufacturer’s datasheet showing the various wire 
colorings and their respective uses. 
 

 

The DFB laser arrived as a standalone module without any power supply unit. Simply put, there were six 

bare wires (Figure 16) dangling from the laser module so a circuit board was designed to supply the laser 

with a reliable and safe source of electricity.  

 

Each of the six wires serves a purpose: 

 

Pin 1: Supplies the baseline voltage of +5V to the laser 

Pin 2: Variable voltage (0.1 – 3V) to control the temperature of the laser, which allows a slow tuning in 

the interval 1559 – 1561 nm 

Pin 3-5: Grounded 

Pin 6: Variable voltage (0 – 2.5V) to control the bias current through the laser, which controls the laser 

power and allows fast frequency tuning. 

     

The circuit components in Figure 17 were soldered onto a circuit board to supply the laser with its 

electrical power requirements. 
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Figure 17: An electric circuit diagram representing the power supply unit for the DFB 
laser 
 

Prior to wiring and firing up the laser, it is essential to test it using a multimeter to ensure that all output 

voltage values fall within the range specified by the manufacturer. It would be disastrous if the voltages 

are in large excess of the recommended values, which may trigger a current surge that might 

incapacitate the delicate components inside the laser. However, a voltage value slightly lower than 

specified is not a material issue as it simply means that the laser may not be operating at full power. 

 

Circuit board performance 
 

Laser Pin Ideal Voltage (V) Measured Voltage (V) Result 

1 5.00 5.02 Pass 
2(min) 0.100 0.043 Pass 
2(max) 3.000 2.982 Pass 
6(min) 0.000 0.000 Pass 
6(max) 2.500 2.412 Pass 

 

 

Table 3: A report of how our circuit board fared in comparison to the values specified 
by the laser manufacturer. 
 

All the measured values are generally close to what has been specified by the manufacturer, except for a 

few minor deviations. The only significant discrepancy lies in the minimum value of pin 2, whose 

minimum value fell to 0.043 V, significantly lower than the 0.100 V specified. This occurred as a 140   
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resistor could not be found, so a 150   resistor was used instead; consequently, the voltage sharing 

ratios were adversely affected, which manifested in the aforesaid anomaly. However, since the 

discrepancy is negative, the risk of current surges leading to fried laser components is negligible. The 

core of the circuit is the L7805 voltage regulator, which provides an extremely stable output voltage of 

+5 V. In addition, to minimize the likelihood of overheating and a potential meltdown, the laser module 

was attached to a multi-fin heat sink, as per Figure 18, and the entire combination was screwed onto an 

empty circuit board, before being slotted into an electrical rack.   

 

 

Figure 18: The laser module and heat sink are shown here and the entire package 
was placed in a rack for stability. 
 

 

 

6.2 Fiber Amplifier 

 

A typical setup of a simple erbium-doped fiber amplifier (EDFA) is shown in Figure 19. The core of the 

amplifier is the erbium-doped single-mode optical fiber, which is pumped with light from two laser 

diodes (bidirectional pumping). 
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Figure 19: A schematic outline of the essential components of an erbium-doped fiber 
amplifier is shown, including the two pumping laser diodes (LD 980 nm) and the 
active gain medium which is a single-mode erbium-doped (Er3+) fiber. 
 

The relevant energy levels of erbium are shown in Figure 20.  The amplifier pump laser operates at 980 

nm, which causes excitation of the erbium atoms from the 4I15/2 to the 4I11/2 state [Figure 20, step 1], 

followed by a fast phononic decay to the 4I13/2 state [Figure 20, step 2] – which has a relatively long 

mean lifetime, as occurs in meta-stable states – which can subsequently amplify light in the 1.5-μm 

wavelength region via stimulated emission back to the ground-state manifold 4I15/2 [Figure 20, step 3]. 

 

 

An interesting observation we made regarding the fiber amplifier is its nonlinearity of output with 

respect to input. The front-panel screen on the amplifier allows power tuning from 1% to 100%, which 

theoretically corresponds to powers of 0.2W to 20W (maximum possible output). Contrary to 

expectations, the amplifier began lasing at 0.63W even at 1%. This is a safety hazard as an unsuspecting 

user may insert optical components that are designed for, suppose, powers below 500 mW, in which 

Figure 20: An energy-level diagram 
of the various electronic states of 
erbium.  

 

Step 1 Step 2 

Step 3 

Er3+ 
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case the components may sustain irreversible damage. The most likely explanation for this anomalous 

behavior is the existence of a threshold power below which lasing cannot occur. Besides the 

abovementioned issue, the fiber amplifier is relatively hassle-free to operate. 

 

The singular concern which expended the greatest amount of time is the risk of back-reflections 

obliterating the amplifier. Generally, the issue revolves around inadvertently placing reflective 

components like mirrors in front of the amplifier, which may cause the high-powered beam emerging 

from the amplifier to flood back into it, and thus the circulating power within the amplifier may exceed 

its damage threshold. Two solutions were studied for this purpose: (a) a faraday isolator and (b) a 

quarter-wave plate (QWP) in series with a polarizing beamsplitter (PBS) (see Figure 21). For solution (b), 

any back-reflected beam (point A) is constrained to execute a double pass through the QWP, leading to 

a /2 – phase shift by the time it returns to the PBS (point B), thus forcing it to reflect harmlessly away 

(path C) from the optical path returning directly to the fiber amplifier (path D). 

 

 

 

 

 

Unfortunately, both solutions were ultimately rendered unsuitable and we proceeded without either. A 

suitable faraday isolator could not be found that could withstand power levels of 20W, whilst a quarter-

wave plate generates circularly-polarized light that is grossly inappropriate for frequency doubling. The 

latter demands light that is polarized linearly along the dipole moment plane (see Section 6(d)), and 

circularly-polarized light has a negligible component along the aforesaid plane. Before switching on the 

Figure 21: An illustration of how a QWP in series with a PBS can channel back-reflected light 
(blue lines) away from the optical path heading directly back to the amplifier, in case reflective 
components like mirrors are inadvertently placed in front of the beam.  
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amplifier, we proceeded with a fundamental analysis of the entire set-up to identify potential sources of 

back-reflections. All transitive optics used (Figure 15) were anti-reflection coated whose coating’s 

maximum transmittance lies in the 1050 – 1620 nm spectral region. Such anti-reflection coating is 

classified as C-class coating by Thorlabs. At 1560 nm, the reflectance for C-class coated dichroic mirrors 

is approximately 0.03%, so the maximum possible back-reflection is below 6 mW. The amplifier itself is 

equipped with a built-in isolator that offers protection against back-reflections up to -30 dB, which 

should generally be able to handle the aforesaid 6 mW of back-reflections without causing any optical 

damage to the amplifier. The most critical elements are the lenses that focus and re-collimate the beam, 

which have the greatest amount of anti-reflection coating compared to smaller optics. Using optics with 

the wrong coatings can be disastrous as it can have a relatively high reflectance at the incident 

wavelength, thus causing the beam to be back-reflected. This is why we chose such anti-reflection 

coating whose spectral range includes our operating wavelength of 1560 nm.  

 

 

6.3 Frequency doubling apparatus – oven and PPLN crystal 

 

The temperature tuning for the PPLN crystal is to be performed using an internally-designed oven. The 

oven is the housing for the PPLN crystal. Besides adjusting the crystal temperature, it offers physical 

protection for the crystal (see Figure 23), which is essential considering the cost of the crystal. 

Undoubtedly, the key performance indicator for the oven is its long-term temperature stability, which is 

elaborated fully in Section 7. Here we look at another issue related to the oven. The critical part of the 

project is ensuring that the incident beam from the amplifier actually passes through the correct 

channel within the crystal out of 5 available channels, since only one is usable for a particular 

temperature. The entry face of each channel has an area of approximately (1 x 1) mm2 and the beam’s 

diameter is about 0.8 mm upon entering a channel. There is a very narrow tolerance range for 

positioning the beam, which means that a slight deviation from the ideal position would result in a 

decline in second harmonic output. Hence, the beam must be normally incident at the correct channel 

(second channel from top of Figure 22(a)), so that it passes through that channel for the entire crystal 

length. Also, the beam should not straddle several channels diagonally (Figure 22(c)), as then the 

frequency doubling process would not be occurring along the entire crystal length and the second 

harmonic output is sub-optimal. Neither should the beam be incident at the intervening space between 
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two channels, for then little SHG is expected since the effective interaction length during which the 

beam traversed the correct channel is almost negligible (Figure 22(b)).  

 

 

 

Figure 22: (a) The primary challenge is in ensuring that the incident beam passes 
through the correct channel (second channel from top) for the entire length of the 
crystal. (b) If the beam is not incident at the channel’s center, it may intrude onto the 
next channel since the channels are closely spaced and (c) if the angle of incidence 
is non-normal, the beam would travel diagonally across multiple channels even if it 
entered the correct channel. 
 

 

The guiding principle latent within the aforementioned discourse is that the second 

harmonic intensity is proportional to the effective interaction length (equation (4)), which is 

the spatial extent for which the beam is traversing through the correct channel. This 

demands very precise control of the position of the oven, for which we have employed a 

positioning stage upon which the oven is mounted (Figure 23). 

Figure 22(c) Figure 22(a) 

Incident beam 

Figure 22(b) 

Emerging 
beam 
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6.4 Alignment laser 

 

The incident infrared laser (=1560 nm) is invisible to the naked eye. Therefore, before aligning the 

infrared beam to the crystal (as discussed immediately above), it is necessary to mark its position, for 

which a few options were considered. 

 

Firstly, an infrared-viewing telescope set was used in an attempt to observe the beam. Whilst this is an 

innovative approach, it must be used with some caution. Alignment work in optics is usually done at low 

power levels (in our case, perhaps 1% of full amplifier power, approximately 650 mW). However, at such 

low levels, the beam has a low scattering – and visibility – within the crystal. The beam traversing the 

crystal becomes visible in the IR viewer when the amplifier power exceeded 20% (~5 W), and it is slightly 

hazardous to perform optics alignment work with such high powers. Secondly, when placing an infrared 

detector card near the crystal to detect the position of the beam. This caused minute sparks to be 

produced, and this practice was deemed grossly unsuitable due to the risk of contaminating the crystals 

with residues from the detector card. The focused laser beam was so intense that it caused some 

Figure 23: The oven is mounted onto a positioning stage, whose knob allows fine lateral 
translations, which is crucial to align the beam onto the correct channel as illustrated in Figure 
22(a). 
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combustion of the chemicals within the card. Hence, the detector card technique could not be used as a 

long-term, reliable way of marking the invisible beam. The safest and least costly technique was to inject 

an overlapping visible laser beam into the optical path of the invisible beam. As long as both beams 

overlap perfectly, the visible beam can be used as a marker to align the invisible beam onto the right 

crystal channel. The trickiest part is ensuring that the two beams actually overlap, which was 

accomplished with the aid of two irises (Figure 24). After that the alignment beam is used to position the 

optics.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: The two irises are used to align the visible and invisible beam with each other, after 
which the invisible beam can be positioned using the visible one as a marker.  
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Hence, the crystal can now be positioned using the visible beam alone, as shown in Figure 25.       

   

 

 

Figure 25: The crystal with a red spot from the visible alignment laser beam. The 
spot can be seen because the anti-reflection coating on the entry face of the crystal 
is optimized for spectral values in the vicinity of 780 nm and 1560 nm, and 
reflects/scatters 650 nm rather well, allowing it to be detected by the human eye.   
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7 Experimental results  

 

In this chapter, I will describe the experimental results that I obtained during the course of this project.  

 

7.1 Temperature Bandwidth  

Firstly, we look at the temperature acceptance bandwidth curves for our crystal. The temperature 

acceptance bandwidth is calculated from the full-width at half maximum (FWHM) of the SHG intensity-

temperature plot. In other words, we are trying to calculate the amount by which the temperature must 

deviate from the optimum value before the SHG power falls to half its maximum value. We denote twice 

this value as the temperature bandwidth   THWFM. This is a crucial quantity as it would offer an 

estimate of how tightly the crystal temperature must be controlled to ensure no significant power 

degradation at the second harmonic.  

 

The temperature tunes the phasematching condition though thermal expansion. As the temperature 

rises, the crystal expands and the poled periods’ length increase slightly. The new period no longer 

corresponds to the optimum value for the pump wavelength (of 1560 nm); rather the new period 

corresponds to some new value for the wavelength. However, since the incident light is monochromatic, 

the net result is that the conversion efficiency at the original pump wavelength decreases. This is why 

the  THWFM is a crucial quantity for benchmarking the performance of any SHG set-up.   

 

We have obtained the following graphs for the temperature acceptance bandwidth near 80oC, using a 

poling period of 19.5m and near 150oC, using a poling period of 19.2m: 
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Figure 27: The SHG Power v Temperature plot we obtained near 150oC using a period of 19.2 m. 

Figure 26: The SHG Power v Temperature plot we obtained near 80oC using a period of 19.5 m. 
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We now derive a theoretical value for the FWHM temperature bandwidth near 80oC based on a formula 

given by Risk et. al. [5]: (this formula has been derived in detail by Fejer et. al. [4])  

        
        

    
   
  

 
   
  

 
     

          
 
  

 

The values of the refractive indices are obtained from the Sellmeier equations given by Gayer et. al. [8] 

           
       

             
 

       

       
 

    

                                                         and coefficients a1 - b4 are given in Appendix 1. 

                                                                

                         

                        

Before we obtain the       , we need to derive an expression for 
  

  
, starting from 

  

           
       

             
 

       

       
 

    

  
  

  
    

  

  
 

 

  
 

       

               
  

       
 

  

  
 

  

  
 

 

  
    

  

  
 

 

  
 

       

               
  

       
 

  

  
  

It now remains to find an expression for  
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Hence, 

  

  
 

 

  
                

 

  
 

         

             
  

  

       
 
             

 

 

Now, we evaluate the middle term in the preceding equation: 

 

  
 

         

             
  

 

  
 

         

             
 
  

  
 

 
  

  
 
                                              

                
  

                                 
                                              

                
  

 

Hence, 

                              
  

  
 

         

  
     

                                              

                  
  

       
   

By substituting in the values for the coefficients a1 to b4, and f =        ,   = 1560 x 10-9 m and T = 

80.4oC, we obtain: 

 

   

  
              

   

  
              

  is the linear thermal expansion coefficient as given by Kim and Smith (1969) [7]: 
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Hence,         
       

    
   
  

 
   
  

 
     

          

   
       

      
   
  

 
   
  

 
     

          

         

Our empirically-obtained temperature bandwidth at FWHM is 2.7oC, moderately close to the 1.8oC 

obtained from theoretical considerations. The deviation in the bandwidth can be explained by the same 

reasons that the empirical phasematching temperature differs from theoretical computations (see 

Section 4.1). Primarily, the issue revolves around misaligning the beam onto the crystal at non-normal 

incidence which causes the beam to encounter an effective poling period that is slightly different from 

the actual value used in computations. Just as this affects the phasematching temperature, so will it 

affect the temperature bandwidth. This is because even slight misalignment will cause the beam to 

encounter an incorrect poling period – and consequently a sub-optimal SHG power – at each 

temperature value. Hence, the bandwidth, which is simply the width of the SHG power v temperature 

curve, is also inaccurately determined.   

 

7.2 Polarization  

Next, we look at the role of varying the input polarization on the conversion efficiency. 
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Figure 28: The SHG Power v Polarization plot we obtained near 80oC using a period of 19.5 m 
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A highly periodic function is clearly visible, with the conversion efficiency peaking every time the half-

wave plate is rotated by about 90o. For our data, the first (and second) peak occur at 22.0O (and 111.0O) 

respectively, giving a period of approximately 89o. At these orientations of the half-wave plate, the 

polarization axis of the half-wave plate coincides exactly with the dipole moment of the nonlinear 

polarization generated within the nonlinear crystal (see Section 4.4). 

 

The peaks are expected to repeat every 90o because a half-wave plate uses birefringent materials as /2 

- phase retarders. Hence, every rotation of the HWP by 90o from an intensity maxima rotates the 

polarization state of the output beam by 180o, which causes maximum coupling between the incident 

light and PPLN crystal since they are aligned in a vectorially parallel fashion. This generates the largest 

nonlinear polarization within the PPLN crystal which produces the strongest second harmonic field. The 

intensity minima occur when the HWP is rotated by 45o from an intensity maximum, so the output beam 

is rotated by 90o; hence, the output beam polarization is perpendicular to the crystal dipoles and no 

coupling occurs since a horizontal field cannot exert a vertical force.  

The trigonometric least-squares regression curve for our data points is:  

                             

We would like to analyse this regression function, to predict how the output SHG power depends on the 

input pump power (the experimental data for this is given in the following section).  

We make the assumption that, for the beam, its                  since the area of the incident 

beam is fixed. Malus’ law states: 

                        

based on the aforementioned assumption. Now, theoretical considerations dictate that         
 , but 

we would like to verify this fact experimentally, so we let: 

      

         
 

                       

The first proportionality relates the power exiting the crystal to the power entering it and based on the 

above substitution, the latter’s exponent changes from 2 to  . The second proportionality is simply 

Malus’ law, except that the analyser (HWP) precedes the polarizer (PPLN) as per Figure 29. By    , 
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reference is not being made to the magnitude of the power along path A (Figure 29). Even if the HWP is 

rotated, the power along A is constant, and only its polarization is changing. Rather, by     we are 

referring to the amount of power along path A that effectively couples to the PPLN crystal. This coupling 

is dependent on the relative directions of the PPLN dipoles and the polarization state of the beam at A. 

It is this coupling that invokes Malus’ law, explaining the second inequality. These powers – Po, Pin and 

Pout – are portrayed in Figure 29.     

 

 

 

 

 

 

 

 Hence,  

                         

 

where   is a phase factor that translates the sine curve into its corresponding cosine. Comparing 

           with the regression equation, we deduce   
    

 
       Hence our experimental data 

proves the theoretical relationship         
  very well. In the following section, we look at the explicit 

data relating the input and output power.      

 

 

7.3 Input Power  

 

Now, we present the explicit data relating the power generated at the second harmonic (780 nm) as a 

function of the input (fundamental frequency at 1560 nm) power. This was measured at 80.4 oC using a 

poling period of 19.5 m.  
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Figure 29: A schematic outline of the various powers mentioned in the preceding paragraph. 
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As the pump power (at fundamental frequency) increases, the second harmonic power exhibits a 

quadratic increase, as evidenced by a strong positive correlation coefficient when regression analysis 

was used to fit the experimental data to a power-law curve. The quadratic regression curve is visually a 

good fit for a majority of the data points, which is based on well-grounded theoretical computations. 

Recall equation 11A:  

          
        

 

     
     

   
      

          

 

         
  

which yields the theoretical relationship between the input (fundamental frequency) and the second 

harmonic power under optimum focusing conditions. This quadratic relationship is reproduced to a 

reasonable degree by the data we obtained above, and is in agreement with that discovered by Sane et 

al [15].   
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Figure 30: The SHG Power v Input Power plot we obtained near 80oC using a period of 19.5 m 
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Here we can conclude that our set-up should produce an SHG output of: 

  

                  
              

 

We have obtained a value of 1.9892 for the exponent, in comparison to the theoretical value of 2. Now, 

let us estimate the uncertainty associated with 1.9892 using equation 11A. 

 

          
        

 

     
     

   
           

 

Firstly, we lump all the constants into  . By constant, we do not mean that the quantity is always 

invariant (such as crystal length, which is patently not upon heating), but we assume that sufficient 

relaxation time has been given to allow the system to equilibriate. Hence:   

 

      
   

 

  
  

 

We now change the exponent of Pin to an arbitrary parameter in order to estimate the uncertainty 

associated with it: 

 

      
   

 

  
                         

      
 

 
    

 
 

 

Taking base-10 logarithm on both sides and making   the subject, we get: 
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We now substitute in the relevant values in equation (13) to obtain          . 

 

Hence                    

 

The theoretical value of   i.e. 2 lies within the limits of experimental uncertainty associated with our 

experimental readings. Hence, we conclude that our experiment reproduces the theoretical relationship  

        
  to a reasonable degree.  

 

In addition, we can calculate the maximum power that our set-up should produce based on the 

quadratic regression curve obtained. From the regression relation                  , where x is the 

pump power (in W) and y is the SHG output power (in mW), we let x = 10 (maximum pump power) 

giving y = 2942 mW = 2.94 W. The uncertainty associated with this value computed as follows:  

             

                    
  

  

 

 
      

                    

Hence, we deduce that our set-up should be capable of reaching (2.94 + 0.09) W of output power when 

operating at full capacity. 
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7.4 Photorefractive Effects 
 

Next, we analyze how the maximum conversion efficiency attainable varies with the crystal 

temperature. We are trying to investigate if any photorefractive effects (Section 4.5) adversely affect 

our SHG conversion efficiency at low temperatures. We plot the absolute – instead of normalized – 

second harmonic power as a function of temperature because the latter would conceal the actual 

conversion efficiency.  

 

 

 
 

 

 
We observed that, contrary to the discovery of Peil et al [1], we did not achieve any significant 

enhancement in intensity when the higher temperature was used. The maximum power attainable was 

in fact lower when the crystal temperature was tuned near 150oC. The logical conclusion is that 

photorefractive effects are not influencing our crystal.  
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The most likely reason is that photorefractive effects in nonlinear crystals arise only from prolonged 

usage of high-intensity laser beams. Our laser amplifier was mostly operated at low powers (~500 mW) 

to obtain the various graphs in this section, which are independent of the incident power used. Hence, it 

is possible that photorefractive effects did not even attain a chance to manifest their adverse 

consequences, allowing us to attain superior conversion efficiency even at relatively low temperatures. 

It would be interesting to repeat the above readings after subjecting the crystal to a high-powered beam 

for several months, and then comparing the two graphs to check if there has been any temporal 

degradation in the conversion efficiency at the lower temperature.  

 

 

7.5 Temperature Stability of Oven 

 

We look at the temperature stability of the internally-designed oven with respect to time at 80.4 oC. 

 

 
 

 

The temperature of the oven is highly stable over the duration of usage near 80oC. This is visually 

evidenced by the temperature profile (beyond eight minutes) having relatively little fluctuations and the 
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Figure 32: Temperature behavior of the oven used for this paper 
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latter, whenever present, were of small magnitude. The longest stretch of continuous observation was 

about forty minutes, where temperature readings were taken every half-minute for the first ten 

minutes, and then every minute for the next thirty minutes, for a total of 50 data points, which were 

then plotted as above. The mean temperature and its standard error were evaluated from a 

spreadsheet, and are presented hereunder:   

                            

 

                                

As discussed earlier, a PID regulator (embedded within a Thorlabs Pro 8000 temperature regulator) was 

used to allow the oven to reach the desired temperature in the shortest possible time, as well as to 

minimize any random thermal fluctuations by restoring equilibrium within the shortest time interval. 

These random fluctuations may arise from external events such as lifting the cover of the oven.  

Random errors are relatively small (                 ). Hence, the oven delivers a highly-precise 

and stable temperature over several minutes of continuous operation, at least. However, the same 

cannot be said to hold true for systematic errors. At high temperatures, the oven perpetually settled 

down to a slightly lower temperature than was set. There are two temperatures involved here: the set 

temperature and the actual measured temperature. The former represents the value input by the user, 

whereas the latter is the temperature reading obtained by the temperature regulator. The goal is to 

ensure that the actual measured temperature is as close as possible to the ideal phasematching 

temperature. We define the difference between the set temperature and the temperature actually 

obtained as the offset. Near 80.400oC , this value was approximately 0.150oC. Hence, to actually obtain a 

temperature of 80.430oC, we simply raised the set temperature by the offset (in other words, we set 

80.580oC instead of 80.430oC). The offset amount itself (of 0.150oC) was remarkably constant even after 

multiple cycles of operation. Hence, this persistent offset did not have any material consequence on 

oven performance.      

Initially, we suspected this offset to arise from suboptimal PID values. However, this was ruled out when 

the offset remained even after thermally equilibrating for several hours. In general, PID values 

determine the time taken to attain equilibrium, but not the position of the equilibrium itself. Some 

suboptimal PID values were used to positively confirm this hypothesis. 



57 
 

This paper contends that the offset most likely arises from the fact that the ohmic heating rate can only 

be changed in discrete steps. The oven works as follows: for each temperature set, there is a heat loss 

rate as determined by Newton’s law of cooling. To maintain thermal equilibrium (or a stable 

temperature), the resistive heating elements must supply heat at exactly this rate, not higher or lower. 

However, it is not possible to supply just any value for the power (over a continuous spectrum of values) 

as the current and voltage values can only change in discrete steps – in increments of 0.001 A and 0.01 V 

respectively. Consequently, the ohmic heating rate changes in discrete steps as well due to the digital 

electronics used to measure and supply heating power. Hence, there are certain values for the heat loss 

rate which the resistors cannot supply exactly. A compromise has to be made and in our case it is 

apparent that the PID regulator opted for the nearest possible temperature (80.400oC) just below that 

which was set (83.550oC).  

 

 

7.6 Stability of Second Harmonic Power 

 

We look at the temporal performance of the second harmonic power obtained. It is important for the 

SHG set-up to deliver power reliably over extended durations as the success of the subsequent 

Rubidium spectroscopy (for which this laser is being built) hinges on stable power output levels. Data 

was taken every 5 seconds, yielding 240 data points over 20 minutes as per Figure 33. 
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The mean and standard error are: 

Power = (           ) mW 

The power output is highly stable, and shows relatively minor fluctuations (0.002/0.953 = 0.2%) about a 

mean value of 0.953 mW. The minute instability is attributable to fluctuations in the oven temperature, 

the pump wavelength from DFB laser and power levels of fiber amplifier output   

 

7.7 Position of Focal Point 

 

We now look at the effect of varying the position of the focal point within the crystal: 
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In general, as the focal point of the incident laser beam moves away from the geometrical center of the 

crystal, the SHG intensity exhibits a marked decline. The data points show considerable fluctuations and 

do not seem to lend themselves nicely to any curved regression line. This is actually acceptable as there 

was a large uncertainty in the measurement of distance. The nature of the oven mount allows only one-

directional translation along the x-axis with ultra-high precision, whereas the data in this section 

necessitates moving the oven along the y-axis. A ruler was manually clamped to the optical table and 

the oven was manually slid along the table. Hence the uncertainty in each distance measurements is 

about         The main purpose of this section is to perform a qualitative analysis to confirm the 

trend noted by Kleinman and Miller (1966) [14], which it does.  

 

7.8 Stability of Output Wavelength 

 

Lastly, we measure the wavelength of the frequency-doubled beam using a laser wavelength meter. 

Previously, we looked at the various factors affecting SHG power; however, powers alone are not 

sufficient if they are not of the correct spectral value, since we have a very precise requirement – 

rubidium cooling – that needs a 780.240 nm beam. Hence, having the correct wavelength is just as 
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important as high levels of power. In general, the wavelength is relatively stable about the mean value 

of 780.24 nm: 

 
 

 

 

The mean and standard error are: 

Wavelength = (             ) nm 

Physically, we observed that the wavelength exhibited slow and gradual oscillations about the central 

value of 780.240 nm. This small instability is marginally attributable to the DFB laser linewidth of 100 

kHz. Since       
  

  
  

 

        
 

              
     

              
                     

Hence the wavelength instability in the second harmonic beam is approximately 0.003 nm, which 

corresponds to about 1.5 GHz. In truth, 0.003 nm is not the actual linewidth of the emerging beam, so 

we are using the standard error of the measured output wavelength (which is 0.003 nm) as a guestimate 

for the true output beam linewidth, which can only be measured directly with an optical spectrum 

analyser. In any case, our estimated value is several orders of magnitude larger than the 100 kHz 

linewdith of the seed laser.  This is most likely due to frequency drifts of the DFB seed laser. 
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8 Reliability of data collected 

 

In this sub-section, we discuss some specialized techniques that were employed to improve the 

reliability of the various figures collected in the previous section. The reliability of the second harmonic 

power readings depend critically upon how well the harmonic separation was performed. If even a 

nominal amount of fundamental power (at 1560 nm) leaks into the second harmonic readings (at 780 

nm), the second harmonic figures will be grossly inflated. We have taken several steps to eliminate – as 

far as possible – any chance of having the fundamental laser beam from influencing the second 

harmonic readings. 

Firstly, a double dichroic mirror configuration was used to effect a double filtering of the fundamental 

1560 nm beam. Each mirror has a reflectance (dark blue line in Figure 36) of 2.49% at 1560 nm, so a 

double-configuration would have an effective reflectance of (2.49%)2 = 0.0622%. This would filter out 

99.94% of the incident, unconverted beam.  
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Secondly, we used a silicon photodiode with an acceptance window of 400 – 1100 nm. This precludes 

any chances for the fundamental beam to influence the second harmonic readings, since the detector 

would not even sense them. This point is only true for the photodiodes we utilized, due to the existence 

of a cut-off wavelength beyond which the photon energy is below the threshold energy needed to 

trigger a signal. Using a thermal detector (which measures the total amount of heat detected 

irrespective of wavelength) would not be able to exploit this property due to the absence of a cut-off 

wavelength in thermal detectors. 

 

Thirdly, we added a band-pass infrared filter for 780 nm to filter out other light sources that may 

influence the integrity of our readings. 

 

These are the measures we have implemented to ensure that our second harmonic power readings are 

accurate and reliable in terms of not being adversely tainted with the fundamental beam. 
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9 Future research directions 

 

Within time constraints, we have attempted to explore as many aspects of SHG by QPM using a PPLN 

crystal. Nonetheless, many exciting things remained on the drawing board and we would like to resume 

work on these areas as soon as possible.   

 

Firstly, we plan to study the wavelength acceptance bandwidth, or the range of wavelengths within 

which the conversion efficiency is acceptable. The following equation has been obtained by Fejer et al 

[5]:  

       
       

 
 
     

 
 

   

  
 

 

 

   

  
 
  

 

 

to describe the SHG power behaviour as the wavelength drifts away from the ideal phasematching 

value. We would like to generate graphs similar to the temperature bandwidths in Section 7 to study 

how the experimentally-obtained values compare with those based on theoretical equations.  

Secondly, a critical parameter that was left untouched is the confocal parameter.  Based upon the Boyd-

Kleinman [9] focusing theory, the confocal parameter is an optimizable figure upon which the 

conversion efficiency of SHG hinges critically. They have discovered that            (Section 4.2) is the 

optimal value, but it is worth investigating if that holds true for our set-up since their investigation was 

based in 1968 on normal birefringent phasematching and not quasi-phase matching. In brief, we would 

want to test if the switch to quasi-phasematching (wherein there is a finite wavevector mismatch) still 

maintains the validity of the Boy-Kleinman focusing condition.  

We have been unable to determine if any other research group has thus far investigated this value 

specifically for QPM, so we would be eager to perform it and analyse the results. The main obstacle was 

the shortage of C-coated lenses of a variety of focal lengths (anti-reflective C-coating implies optimal 

transmission near 1560 nm, which is crucial to prevent harmful back-reflections into the amplifier). A 

lens with a particular focal length implies a unique Rayleigh length, since the latter is simply a measure 

of the curvature about the beam waist. Hence, to perform this investigation, several C-coated lenses of 

various focal lengths will be needed to investigate the trend between the SHG efficiency and the 

confocal parameter. 
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In addition, there are several other interesting things that we could work on, such as using a telecom 

modulator to generate side bands at the fundamental frequency. In addition, we could place the PPLN 

crystal in a resonant cavity to check if any resonant cavity enhancement effects improve the SHG 

efficiency.  
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10 Safety and Sustainability issues  

 

In this section, we present issues pertaining to high-powered laser causing damage to optical 

components; we maintain that merely performing an experiment cannot be deemed sufficient until 

sufficient attention has been paid to the issue of long-term performance and reliability. A short-lived 

laser is undesirable for its users. A crude way is to ensure that each equipment functions for at least the 

duration of its standard operating lifetime; an excess signifies success and failure merits introspection. 

Hereunder, we analyse some of the problems and risks associated with using high-powered lasers.       

 

10.1 Damage threshold of PPLN crystal  

 

 

It is crucial to avoid optical damage, which may arise from the interaction between the intense laser 

beam and the lithium niobate crystal. The beam may displace atoms from the lattice to interstitial sites, 

which would degrade the regular atomic arrangement and, consequently, the optical quality of the 

crystal. The lifetime of the PPLN should be maximized. The damage threshold of lithium niobate is 100 

MW/cm2 (or 1 MW/mm2 or 1 TW/m2) [16].  

Looking at Figure 37, a few conclusions can be drawn from it. The chances of optical damage are likely to 

be greatest at the focus where the spot size is the smallest. Also, on the beam waist, the greatest 

intensity occurs at the center of the circular beam spot, as dictated by a Gaussian intensity profile. 

Hence, it suffices to calculate the intensity at the center of the focus. If this value is below the damage 

threshold, then every other point along the crystal is guaranteed to have even lower intensity. 

Consequently, the chances of optical damage occurring are remote under normal operating 

circumstances. 
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The spot size is measured by a knife-edge technique as depicted in Figure 38, wherein a straight edge 

knife (for this paper, a piece of silicon with an atomically-flat surface was used) is translated in a parallel 

fashion from “infinity,” or, more realistically, from several inches away from the laser beam.  

 

Figure 37: A schematic outline showing that the maximum intensity is expected to occur 
along the plane with the minimum spot size (known as the beam waist) based 
on                       . The entry and exit color of the beam is different, a 
representation of the frequency-changing process of SHG.   

 

Figure 38: A simplified version of the set-up used to measure the laser spot size. 
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We measure a modified form of the spot size, known as the 25-75 spot size, as follows. The total power 

of the beam is measured without any blocking, which is recorded as 2 mW. The beam is then sub-

divided into three segments as per Figure 39. The central segment represents 50% of total beam power, 

and it is flanked by two adjacent segments, each containing 25% of the beam power. The silicon disk is 

now translated across the beam, until exactly 25% of the beam is clipped, which is practically known 

when the power meter reading falls from 2 mW to 1.5 mW. This is recorded as x1. The translation 

process then resumes till exactly 75% of the beam is clipped, at which point the power meter reads 0.5 

mW, which is recorded as x2. Then,           is defined as the 25-75 spot size.    

 

 

The measurement procedure in Figure 38 yielded a series of 25-75 spot sizes plotted in Figure 40 and, 

for reasons outlined in Figure 37, we are only interested in the minimum spot size which, from  

Figure 40, is 25 m.    

 

 

 

Figure 39: 
Distribution of total 
beam power into 
three convenient 
segments for 
measuring the 25-
75 spot size.  

X1 X2 
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Now, the intensity at the center of the beam waist is given as follows:  

The Gaussian intensity distribution is 

     
       

  

where I0 is the maximum intensity at the center of the beam (i.e. where r = 0) and w is the 1/e2 beam 

waist radius. 

Since  
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Figure 40: Data representing variation of the 25-75 spot size as a function of distance from the 
lens. The minimum spot size is simply the lowest point on the curve, which is 25 m. 
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If we knew w, we could immediately calculate I0 and be done with. However, the 25-75 spot size 

measured previously is not the same as the 
 

               (which is w) in the above formula. Rather, 

the 25 m spot size (measured using 25-75 procedure) corresponds to a 1/e2 spot size of 30.8 m 

(Appendix 2 contains detailed derivation).  

    
  

   
 

      

           
                 

which is below the damage threshold of 1012 W/m2. Hence, under normal operating circumstances, the 

chances of optical damage occurring to the crystal are remote. It should be mentioned that this intensity 

of               occurs at a single infinitesimally-small point, and the intensity at other points in 

the crystal is expected to be much lower, which reinforces the above assertion that the chances of 

optical damage occurring within the PPLN crystal is remote.    

 

10.2 Laser Induced Damage Threshold  

 

We have just looked at the damage threshold of the PPLN crystal. Now, we turn our attention to the 

lenses used, since they too could be damaged by the high-powered laser beam. The damage mechanism 

differs in terms of whether the laser is operated in pulsed or continuous wave (cw) mode.  

In pulsed mode, the damage arises from electrons being stripped from the lattice structure of an optic. 

In cw mode, damage is triggered due to thermal effects arising from heat absorption in the coating or 

substrate.  

Since our laser is operating in cw mode, our focus needs to be on long-term damage arising from 

thermal absorption by the lenses causing optical degradation. The lenses used for this project had the 

following stated threshold:   

Damage Threshold 5.0 J/cm2 (1542 nm, 10 ns, 10 Hz, Ø0.181 mm) 

 

The laser damage threshold for cw lasers is more dependent on the material and geometric properties 

of the sample, and therefore, unlike for long-pulse lasers, it is more difficult to specify with a single 

quantity. This explains why the officially-stated damage threshold is only applicable for pulsed lasers.  
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A back-of-the-envelope calculation ostensibly indicates that the maximum irradiance allowed prior to 

the onset of laser-induced lens damage is (5 J/cm2) /(10 ns) = 500 MW/cm2 = 5 MW/mm2. Even though 

this is the threshold value for pulsed lasers, we can use it as a guestimate for the unknown cw damage 

threshold. To add a margin of safety since this is only a guestimate, the actual laser intensity used should 

be much smaller than this pulsed laser damage threshold. Hence, the maximum irradiance on the lens is 

approximately: 

 

    
  

   
                

 

  
              

      

           
         

 

which is several orders of magnitude lower than the pulsed damage threshold value. Consequently, no 

conspicuous beam profile degradation was observed over the duration of this experiment, a visible 

testimony to the fact that the lens did not undergo optical damage over the course of this project. 

 

Note: For this section, the 
 

               refers to the beam exiting from the fiber amplifier, which is 

also the beam striking the lens. The manufacturer’s manual gave the 
 

   beam diameter as 1.1 mm, so 

the corresponding beam radius is 1.1 mm/2 = 0.55 mm. This simple analysis could not be used in the 

previous part (section 10.1) as in that case the lens is focusing the beam to a microscopic spot, whose 

values can only be determined by the measurement procedures outlined in section 10.1. The 

manufacturer did not specify the post-focusing spot size since this depends on the type of lens used.  

Another contentious issue is the use of P = 10 W, whereas our amplifier has a peak rating of 20 W. We 

return to Figure 15, and observe that the alignment beam needs a PBS cube to be overlapped onto the 

invisible beam; this PBS cube dumps about half the amplifier output onto a beam-stopper plate, so only 

half the maximum power actually enters the lens and PPLN crystal. This explains why the maximum 

power value used in both this and the previous section is 10 W instead of 20 W.  
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11 Appendix  

1. Sellmeier coefficients for MgO-doped Lithium Niobate [8]: 

 

Sellmeier Coefficient 5% MgO:LN 

a1 5.756 

a2 0.0983 

a3 0.2020 

a4 189.32 

a5 12.52 

a6 1.32E-02 

b1 2.860E-06 

b2 4.700E-08 

b3 6.113E-08 

b4 1.516E-04 

 

 

2. Here, we establish a relation between the measured 25-75 spot size and the true 1/e2 spot size 

(to be used for damage threshold calculations). We change from polar to Cartesian coordinates: 

     
 

   

       
  
           

 

 

            

 

  

  
 

  

          
 

          
  

 

  

  
 

  

         
 

   

   

 

  

     
 

   

  

 

  

   

Define  
    

     
 

   
 

   

    

  
  

   
 

   

    

  
  

 = power contained from x=x1 to x =   over all y. 

For a normalized Gaussian distribution,   
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Numerical methods give the solution as         
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