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Abstract

The Bell experiment [3] was designed to determine if local realistic models

can account for certain experimental outcomes. The violation of Bell in-

equalities for a given set of experimental data would prove otherwise: the

data cannot be pre-determined by a local realistic model [7], and in par-

ticular the outcome possess private randomness. The amount of private

randomness present in the outcomes depends on the extent of Bell viola-

tion measured by the CHSH value. However, in order to obtain the CHSH

value, one often depends on the assumption that the measured state is in-

dependently and identically distributed (IID). The relaxation of the IID

assumption may pose problems especially in the case of finite-size statis-

tics [2,9,15]. Indeed, there exist non-IID situations which hinders the certi-

fication of Bell violation. We will be studying those situations using a data

analysis protocol which allows the relaxation of IID assumption, known as

the prediction-based ratio (PBR) protocol [15]. By making the appropri-

ate modifications to this protocol, it is possible to quantify the amount of

private randomness present in the outcome of non-IID Bell experiments.
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Chapter 1

Introduction

The essence of science lies within its reproducibility through observations

and experimentations. Hence, it is crucial that the data extracted from

scientific experiments are interpreted correctly. The study of statistics is

the tool for scientists to do just that.

The probabilistic nature of the measurement outcomes from quantum

system demands an infinite data sample from the system with independently

and identically distributed (IID) state in order to determine the probabilities

of occurrence of all possible outcomes. Only then, a complete picture of the

studied system can be achievable.

In the field of statistics, the state parameter estimations from finite data

sampled from IID processes are well studied and known. However, if there

is a drift in the state of the measured system or a change in the environment

of the experiment, the IID assumption will fail to hold. The task of studying

these systems were made to be more challenging by the fact that sampling

infinite data from such system could be infeasible or physically impossible.

These considerations have a direct impact on the field of quantum in-

formation. Thus, there have been many recent theoretical works done on

the topics like quantum state estimation [12], determination of non-classical

correlations with information-theoretic distance [10] and certification of Bell

violation [2, 8, 9, 15] which considers cases of finite statistics.

The discussions of this paper will be focused on the Bell experiment [3]

with relaxation on the IID assumption, due to its many applications. The

proposition of Bell experiment has its historical purpose in falsifying local

realism [7]. In recent years, the applications of Bell experiment extend to
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the generation of private randomness [11] and quantum cryptography [1].

In following chapters, discussions of Bell experiment, its application as

random number generator and the certification of Bell violation and private

randomness generation in non-IID Bell experiment will be presented.

Firstly, the notion of randomness and the quantity that measures ran-

domness, min-entropy, will be introduced. Then, a distinction will be made

between random and pseudo-random processes. Subsequently, the idea of

local realism will be brought forth and the construction of Bell experiment

to falsify local realistic models will be mentioned. Next, it will be shown

that indeed private randomness can be extracted from Bell violation.

The framework of hypothesis testing will be briefly discussed together

with the data analysis protocols for Bell experiment which were introduced

by Zhang and his coworkers [15]. Finally, the PBR protocol will be applied

to certain non-IID situations and modified to quantify private randomness

from non-IID Bell experiment.
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Chapter 2

Preliminaries

In this chapter, all relevant background knowledge required to appreciate

the work will be introduced.

In the first section, the notion of randomness will be introduced with

classical example and quantified using min-entropy. Then, we will show

that randomness is not an absolute quantity as it depends on the amount of

relevant information which is available to the observer. Finally, the distinc-

tion between randomness and pseudo-randomness will be demonstrated.

In the second section, the notion of local realism and its role in physics

will be formally introduced. Next, we will demonstrate how Bell experiment

is able to put local realistic model to the test. In order to achieve that, it is

necessary to determine the predictions of the experimental outcomes drawn

by local realistic models and quantum theory. By making comparison of

different predictions, we will be able to construct a criterion, which is known

as Bell inequalities, whereby local realistic models can be falsified.

2.1 Randomness

2.1.1 Introduction to Randomness

Consider the scenario of rolling a six-sided die, we define X as the outcome

of the die roll. The possible outcomes of X is 1,2,3,4,5 and 6, denoted

by X ∈ {1, 2, 3, 4, 5, 6}. Then, we assume that the probabilities of any

outcomes occurring to be non-zero. Here, X is a random process because it

is impossible to predict with definite confidence the outcome of each trial of

X.
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By rolling the die repeatingly indefinitely, it is possible to obtain the

probability distribution, ρ, of the outcomes. The probability distribution,

ρ, can be represented by a vector as shown below:

ρ(X) = (Pr(X = 1),Pr(X = 2), · · · ,Pr(X = 6)) (2.1)

Here we denote Pr(X = x) as the probability that the event, X, results in

the outcome, x.

The notion of randomness describes the unpredictability of an event. A

random process is required to have more than one possible outcomes and

the probability for each outcome to occur has to be non-zero. In this way,

it is impossible to make prediction on the outcome with definite confidence.

2.1.2 Quantifying Randomness: min-entropy

There exist many quantities in the literature which quantifies randomness

and the commonly used quantity for Bell experiment is the min-entropy,

Hmin. In this section, we will introduce the min-entropy and demonstrate

how min-entropy is a good quantity which describes randomness.

Consider a guessing game where Alice will roll a six-sided die and Bob

has to guess the outcome, X. Given that Bob has knows the probability

distribution of the outcome, ρ(X), what will be Bob’s strategy to maximise

his chance of winning this game? Obviously, the best strategy that Bob

could adopt is to choose the most probable outcome.

In this case, the probability that Bob wins the guessing game is the

probability that the most probable outcome occurs. This probability is

known as the guessing probability, denoted by Prguess(X).

It is apparent that a minimal Prguess will describe an event with maxi-

mum randomness. On the other hand, a maximal Prguess, which has a value

of 1, describes a deterministic event. A good measure of randomness should

therefore taken into account of the Prguess of the event.

Next, if two independent trials of X were to be conducted, the Prguess

of the combined event, X1, X2, is given by:

Prguess(X1, X2) = Prguess(X1)Prguess(X2) (2.2)

However, since randomness describes the uncertainty of an event, a good
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measure of randomness should have an additive properties between 2 inde-

pendent events.

In order to fulfil these properties of the randomness of events, we define

the min-entropy, Hmin, of an event, X, as follows:

Hmin(X) = − log2[Prguess(X)] (2.3)

The unit of min-entropy is bit. The logarithmic base of 2 is chosen

because in information theory, a bit of information has 2 possible states,

namely 0 and 1. Therefore, given a maximally random bit, the Prguess will

be given by 1
2 which translate to a min-entropy, Hmin, of 1 bit.

2.1.3 Randomness for whom?

Randomness is relative to the different amount of relevant information avail-

able to the observer and this can be demonstrated by the following example.

Now, consider that Alice hid a ball underneath 1 of the 3 inverted cups, and

Bob has to guess under which cup is the ball hidden. Assume that the cups

are perfectly opaque and there is no way that Bob has the information of

the whereabouts of the ball, other than it being in 1 of the 3 cups . Now,

we denote these information available to Bob to be B.

Since Bob’s best available strategy is to make a wild guess, which implies

that guessing probability of outcome, X, conditioned on the information

available to Bob is given by:

Prguess(X|B) =
1

3
(2.4)

Now, we define the conditioned min-entropy of the event, X, given by

the information B, to be as follows:

Hmin(X|B) = − log2[Prguess(X|B)] (2.5)

= − log2

[
1

3

]
≈ 1.58 bits (2.6)

However, since Alice hid the ball, she has complete information about

the ball’s whereabouts. Hence, if we denote the information available to
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Alice as A, the min-entropy conditioned on A is given by:

Hmin(X|A) = − log2[Prguess(X|A)] (2.7)

= − log2[1] = 0 bit (2.8)

From the above example, it is clear that the same event viewed from

different point of views give rise to different results of conditioned min-

entropy. Hence, it is conclusive that randomness does depend on the amount

of information available.

These events which appear random due to the lack of information are

known as pseudo-random events. With sufficient information, all pseudo-

random events are deterministic. If we denote any pseudo-random events as

Xp and all possible information obtainable from the system by C, we can

write:

Hmin(Xp|C) = 0 (2.9)

For the purpose of this paper, the generation of pseudo-random outcomes

is not of any interest. The discussion in the following chapters will be focused

on the random outcomes generated by Bell experiment, XB, whereby the

following condition is met.

Hmin(XB|C) > 0 (2.10)

2.2 Bell experiments

2.2.1 Local Realism

Local realism [7] is one of the many possible physical models which seeks to

explain the behaviour of nature. The notion of local realism consists of two

components, namely locality and realism.

• Locality is a physical concept which states that the rate at which

information propagates over space is upper bounded by the speed of

light. According to locality, there are no instantaneous cause and effect

over any non-zero spatial distance as information takes time to travel

over space.

• Realism requires the properties of all physical objects to be real re-

gardless of the measurements made on these objects. In other words,
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the act of measurement merely uncover the pre-established value of the

measured property. By taking a measurement on a physical object,

the state of the object is not altered in anyway.

The local realistic model works flawlessly in the realm of classical physics.

In classical physics, any faster-than-light speed propagation is strictly pro-

hibited by special theory of relativity which obeys the locality constraint.

Additionally, in classical physics, all degrees of freedom of a physical object

is governed by its equation of motion. Therefore, with the knowledge of the

appropriate equations of motion, one will be able to make prediction of the

outcome of any measurement made on the physical object. This statement

could only be true if the concept of realism truly describes nature. Thus, in

the classical picture, local realism is a valid model which describes nature.

However, as it will be evident later, the local realistic model is not com-

patible with the quantum theory and there exist experiments, which are

known as Bell experiments, which seek to determine if nature can indeed be

described by the local realistic model.

2.2.2 Bell Experiment

In 1964, John Stewart Bell came up with an experimental scheme [3] which

can potentially put the validity of the local realistic model to the test. Subse-

quently, it is experimentally implemented in 1969 by John Clauser, Michael

Horne, Abner Shimony and Richard Holt (CHSH) [6].

The experimental scheme adopted by CHSH involves a bi-partite system,

whereby both parties, typically given the name Alice and Bob, are space-like

separated. Then, 2 particles produced by a source will then propagate to

each party. Both Alice and Bob are required to make a measurement on

their given particle. Each party is allowed to choose 1 out of the 2 different,

possible types of measurements and each measurement will give 1 out of the

2 different, possible outcomes. This particular scenario of Bell experiment

with 2 parties, 2 measurement settings and 2 outcomes is also known as the

CHSH experiment.

Here, we denote the measurements of Alice and Bob to be i and j re-

spectively and we denote the 2 possible measurements to be 1 and 2, as such

i, j ∈ {1, 2}. Similarly, we denote the outcomes of the measurements made

by Alice and Bob to be a and b respectively and we denote the 2 possible
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Figure 2.1: The diagram of a CHSH experiment. Each particle from the source will enter the
devices of Alice and Bob. Then, Alice and Bob will select a setting (either 1 or 2) for the
measurement made on the particle that entered the device. Finally, the outcome (either -1 or 1)
will be displayed on the device.

outcomes to be -1 and 1, as such a, b ∈ {−1, 1}.
Now, we will introduce a local variable, λ, which provides strategies for

the measured particles to behave accordingly. One can see λ as a set of

strategies whereby when one inputs the values of i and j, λ will produce the

outcomes, a and b. In other words, the knowledge of λ allows one to predict

the outcome. This can be illustrated by the following equation:

Prguess( a b | λ )
LR
= 1 (2.11)

That being said, the direct result of a Bell experiment is not the guessing

probability but the conditional probabilities, Pr( a b | i j ), which can be

written as:

Pr( a b | i j ) =

∫
dλ ρ( λ | i j )Pr( a b | i j λ ) (2.12)

where ρ( λ | i j ) is the probability distribution of λ given a specific

values of i and j. The above expression is nothing other than the Bayes’

theorem written for continuous variable, λ, with an integral instead of the

convention summation for discrete random variables.

Since both parties are space-like separated, by invoking the locality con-

straint, we can infer that no information can travel between Alice and Bob.

Taking this into consideration, we can write down 3 constraints on the sys-

tem, namely the outcome independence, measurement independence and the

no-signalling constraint.
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The outcome independence comes about because each party will only

have information based on the particle he/she received from the source and

the measurements made on the particle. Hence, we can write:

Pr( a b | i j λ ) = Pr( a | i j λ )Pr( b | i j λ ) (2.13)

Likewise, using the same argument, the information of one party’s mea-

surement on his/her particle does not travel to the other party. Therefore,

the no-signalling constraint can be mathematically written as:

Pr( a | i j λ ) = Pr( a | i λ ) (2.14)

Pr( b | i j λ ) = Pr( b | j λ ) (2.15)

Finally, since the measurement is made after the particles are produced,

λ has to be measurement independence. This can be expressed by:

ρ( λ | i j ) = ρ( λ ) (2.16)

Now, using the 3 constraints that we have introduced earlier, we can

rewrite the equation for Pr( a b | i j ) to:

Pr( a b | i j ) =

∫
dλ ρ( λ )Pr( a | i λ )Pr( b | j λ ) (2.17)

Under the assumptions of local realism, the outcomes of the measure-

ments are required to have definite values, able to be determined via some

form of equation of motion, prior to measurements. In other words, the

particles measured by Alice and Bob are required to have a pre-established

agreement on the outcomes of the measurements. This deterministic nature

of the particles meant that with the knowledge of λ will give us a definite

value of a and b for its corresponding measurements i and j. Therefore, the

probabilities Pr( a | i λ ) and Pr( b | j λ ) can only take up the values 0 or

1 depending on the measurements i, j and variable λ. Mathematically, we

can write:
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Pr( a | i λ )
LR
= δ(a− f(i, λ)) (2.18)

Pr( b | j λ )
LR
= δ(b− g(j, λ)) (2.19)

Bell Inequalities

From the CHSH experiment, it is desirable to obtain an expression from the

measurement outcomes which values can be bounded by the local realism

assumption. In this way, if a violation of such bound can be observed ex-

perimentally, one can reject local realism. This bound is known as the Bell

inequality.

The CHSH measurement expression is a linear combination of the cor-

relation functions, Ei,j of the outcomes a, b given the measurement settings

i, j. The correlation function can be written as:

Ei,j = Pr(a = b|i, j)− Pr(a 6= b|i, j) (2.20)

Recall that the measurement outcomes a, b ∈ {−1, 1}, which implies

that the product of the outcome, ab, is related to its correlation in following

expression:

ab =

{
1 if a = b

−1 if a 6= b

Hence, the correlation function, Ei,j , can be rewritten to be:

Ei,j = Pr(ab = 1|i, j)− Pr(ab = −1|i, j) (2.21)

= 〈(ab)i,j〉 (2.22)

= 〈aibj〉 (2.23)
LR
= 〈ai〉 〈bj〉 (2.24)

In the third step of the derivation, the no-signalling constraint was in-

voked which requires the independence between a and j, similarly also be-

tween b and i. Also, in the last step of derivation, the local realism assump-

tion requires the independence between measurement outcomes a and b as

their only dependence are the measurement settings and strategy, λ.

After going through the required knowledge about the correlation func-
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tion, the CHSH measurement expression can be defined as follows:

CHSH = E11 + E21 + E12 − E22 (2.25)

Now, by applying the local realism constraint on the CHSH measure-

ment, the current interest is to determine the upper bound of CHSH values.

This can be shown in the following derivations:

max
LR

CHSH = max
LR

(E11 + E21 + E12 − E22) (2.26)

LR
= max

LR
(〈a1〉 〈b1〉+ 〈a2〉 〈b1〉+ 〈a1〉 〈b2〉 − 〈a2〉 〈b2〉) (2.27)

= max
LR

(〈a1〉 [〈b1〉+ 〈b2〉] + 〈a2〉 [〈b1〉 − 〈b2〉]) (2.28)

= 2 (2.29)

By the same argument, the minimum CHSH value is determined to be

-2. Hence, the range of values of CHSH as predicted by any local realistic

model is given by:

−2 ≤ CHSH ≤ 2 (2.30)

However, without losing any generality, it is useful to just consider the

positive values of CHSH. By doing so, we will arrive at the famous CHSH

inequality, which is given by:

E11 + E21 + E12 − E22 ≤ 2 (2.31)

The above criterion has to be met by any local realistic model. Of course,

there exist other CHSH values which falls outside the range of the inequality.

It is apparent that the range of CHSH values without any constraint is given

by −4 ≤ CHSH ≤ 4. In the next section, the violation of the Bell inequality

will be demonstrated via quantum theory.

Violating Bell Inequalities

In quantum theory, we can write the CHSH measurement expression as an

operator denoted by Ŝ and is given by:

Ŝ = Â1 ⊗ B̂1 + Â1 ⊗ B̂2 + Â2 ⊗ B̂1 − Â2 ⊗ B̂2 (2.32)
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In this case, the CHSH inequality will be given by:

〈
Ŝ
〉
≤ 2 (2.33)

where
〈
Ŝ
〉

=Tr(ρ̂Ŝ) with ρ̂ representing the density matrix of the system

of the 2 particles measured by Alice and Bob and Tr is the trace operation.

Since local realistic model requires the upper bound of
〈
Ŝ
〉

to be 2, we will

be able to reject local realism by obtaining experimental data that proves

the relation
〈
Ŝ
〉
> 2.

Now, we will like to find out whether there exist values of
〈
Ŝ
〉

pre-

dicted by quantum theory which violates the CHSH inequality. The obvious

approach is to determine the upper bound value of
〈
Ŝ
〉

as predicted by

quantum theory. It is known that the constraint of
〈
Ŝ
〉

by quantum theory

is given by the Tsirelson bound [5].

To derive the mathematical expression of Tsirelson bound, we will now

take the square of the operator Ŝ. Now, recall that the possible eigenvalues

of Âi and B̂j are ±1. Therefore, the values of
〈
Â2
i

〉
and

〈
B̂2
j

〉
have to be 1.

Hence, we can conclude that A2
i and B̂2

j are 1. Now, Ŝ2 can be expanded

and simplified to the following expression:

Ŝ2 = 41⊗ 1− [Â1, Â2]⊗ [B̂1, B̂2] (2.34)

Since we are only interested in determining the upper bound of the eigen-

value of Ŝ2, there is no need to evaluate the above expression, consideration

of its maximum magnitude of its eigenvalue is sufficient. Let us consider the

maximum magnitude of the eigenvalues of the commutator [Â1, Â2].

max|[Â1, Â2]| = max|Â1Â2 − Â2Â1| (2.35)

≤ max|Â1Â2|+ max|Â2Â1| (2.36)

≤ 2 max|Â1| max|Â2| (2.37)

= 2 (2.38)

In the second step of the derivation, recognise that the maximum eigen-

value of the difference between 2 operators corresponds to the scenario when

the eigenvalues of the 2 operators have the opposite sign. Moreover, the mag-
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nitude of the eigenvalue of the difference between 2 operators will be simply

the sum of the magnitudes of the constituent eigenvalues. Also, in the third

step of the derivation, we invoked the Cauchy-Schwarz inequality.

By similar arguments as the derivation above, the maximum magnitude

of the eigenvalues of [B̂1, B̂2] is also 2. Now, it is obvious that the maximum

magnitude of eigenvalues of Ŝ2 is 8. Finally, by taking square root of this

relationship, we will arrive at the famous expression of the Tsirelson bound:

〈
Ŝ
〉
≤ 2
√

2 (2.39)

This inequality shows the possible values of
〈
Ŝ
〉

according to quantum

theory. It is apparent that according to quantum theory, there exist a range

of values of
〈
Ŝ
〉

which is forbidden by local realistic models. This implies

that if the condition 2 <
〈
Ŝ
〉
≤ 2
√

2 is experimentally observed, there is a

violation of local realism.

The LR Polytope

Since the measurement settings values of i, j are chosen arbitrarily, the

Bell inequalities under measurement settings permutations are equally valid.

Thus, for a given Bell experiment there are multiple Bell inequalities bound-

ing the set of probability distribution of settings and outcomes which can be

accounted for by local realistic model. Amidst this mess, by interpreting this

set of probability distribution geometrically, it clears up the mess creating

by considering multiple equations without any intuition of the scenario.

Since there are 16 different settings-outcomes combinations, a settings-

outcomes probability distribution can be interpret as a point residing in

the real space, R16. Each coordinate of its position in R16 are in fact the

probability of occurrence corresponding to the axis. Hence, there are 2

constraints on all outcome-settings probability distributions, x, that dictates

the allowed subspace for the distributions to reside in.

1. Positivity of probabilities: xi > 0, i ∈ [1, 16]

2. Convexity of probabilities:
∑16

i=1 xi = 1

Geometrically, the above mentioned subspace is a “quadrant” of a 16-

dimensional hyper sphere. In this subspace, there exists a set of probabilities
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Figure 2.2: LR Polytope and Quantum Set in geometrical representation. The blue square denoted
“LR” represents the LR polytope which contains all probability distributions which fulfils the
local realism constraints. The red circle represents the quantum set which contains all probability
distributions which can be accounted by quantum theory.

distributions constraint by local realistic models, denoted by LR. This LR

set is defined by its linear constraints known as the Bell inequalities. In this

geometric picture, a total of 8 Bell inequalities have to be considered. These

Bell inequalities are as shown below:

1. E11 + E21 + E12 − E22 ≤ 2

2. E11 + E21 + E12 − E22 ≥ −2

3. E11 + E21 − E12 + E22 ≤ 2

4. E11 + E21 − E12 + E22 ≥ −2

5. E11 − E21 + E12 + E22 ≤ 2

6. E11 − E21 + E12 + E22 ≥ −2

7. −E11 + E21 + E12 + E22 ≤ 2

8. −E11 + E21 + E12 + E22 ≥ −2

These 8 linear constraints will form the borders of a polytope and this

polytope contains all probability distributions which can be explained by

local realistic models. For convenience, this polytope is defined to be the

local realism (LR) polytope.
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Additionally, recall that all settings-outcomes distribution that can be

accounted for by quantum theory is defined by the Tsirelson’s bound. Since

the Tsirelson’s bound has less constrain on the CHSH value, intuitively, the

LR polytope will be included in the quantum set.

Figure 2.2 is a diagram which attempts to give an intuition of the geo-

metric interpretation of Bell violation. This diagram is not a stereographic

projection from R16 to R2, the square and circle are purely symbolic to

aid the visualisation of hyper-dimensional objects. From the diagram, any

settings-outcomes distribution that is found to be lying outside the LR poly-

tope is said to violate Bell inequality.

Of course, the distribution is expected to lie within the quantum set. If

it happens that the distribution is found to be lying outside the quantum

set, quantum theory will not be able to explain such experimental outcome

correlations.

In later chapters, this geometric interpretation of Bell violation will be

used to explain data analysis protocol with much clarity than equations.

2.2.3 Randomness in Bell Experiment

One of the important applications of Bell experiment is the generation of

random numbers. As shown in the previous section, by conducting the Bell

experiment, it is possible to determine if the particles measured by Alice

and Bob behave according to any local realistic model or not.

Since the assumption of realism demands a pre-determined value for

any degrees of freedom prior to measurement, having the knowledge of that

value would renders that quantity to be deterministic. Since all classical

phenomenon can be explained by some local realistic models, it implies that

all classical phenomenon are deterministic or, at best, pseudo-random.

Fortunately, according to quantum theory, there exist some states that

produce correlations which violate the Bell inequality. In such scenarios, the

local realism assumption breaks down which implies that the predetermina-

tion of these measurement outcomes are not allowed.

Since the measurement outcomes are only determined upon the moment

of measurement, it is impossible to make a prediction of the outcomes with

complete confidence. In this way, the Bell experiment is able to generate

private random numbers. Hence, violating the Bell inequalities certifies that

the outcomes produced are indeed private and random.
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In order to relate the amount of randomness produced in a Bell exper-

iment and Bell violation, consider an arbitrary pure state given by |ψ >=

cos θ|00 > + sin θ|11 > undergoing measurements of a Bell experiment. The

maximum achievable CHSH value for such quantum state over all measure-

ments can be found to be:

maxCHSH = 2
√

1 + sin2 2θ (2.40)

In this problem, it is only required to consider the guessing probability

of one party and in this example we choose to consider Alice’s measurement.

Recognise that the guessing probability of Alice’s measurement is given by

the probability of the most probable outcome over all possible measurements

made by Alice. Given the state |ψ >, the most biased marginal probability

is given by:

P (+|ẑ) =
1

2
(1 + cos 2θ) (2.41)

By solving the above two equations simultaneously, we will arrive at

the guessing probability of the outcome from Alice’s measurement, which is

given by:

Prguess(a|i) =
1

2

1 +

√
2−

(
CHSH

2

)2
 (2.42)

Therefore, the min-entropy of the outcome, a, measured by Alice can be

computed and is given by:

Hmin(a|i) = log2

1

2

1 +

√
2−

(
CHSH

2

)2
 (2.43)

= 1− log2

1 +

√
2−

(
CHSH

2

)2
 (2.44)

For any outcomes that do not violate Bell inequality (ie. CHSH = 2),

it can be shown that Hmin(a|i) = 0. On the other hand, for any outcomes

which violates the Bell inequality, the Hmin(a|i) is always positive which

implies that the outcomes are indeed private and random if Bell inequality

is violated. On top of that, the amount of randomness obtained is related

to the extent of Bell violation (ie. the CHSH value).
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Chapter 3

Hypothesis Testing for Local

Realism

Instead of writing Bell’s inequality in the form of an averaged quantity over

measurements and outcomes, it is possible to phrase Bell’s inequality in

the form of a hypothesis test and quantifying the Bell violation with p-

values. This will allow the data analysts to relax the IID assumption of Bell

experiment.

In this chapter, the framework of hypothesis testing will be briefly in-

troduced. Also, several data analysis protocols for Bell experiment will be

discussed. The content of this chapter is based on the main reference on

which we build [15].

3.1 Hypothesis Testing

In many experiments in the laboratories, the common main objective is to

prove or disprove a hypothesis using evidences supported by the experimen-

tal results. The extraction of experimental data from the setup can be seen

as a form of statistical sampling from the population of interest. The data

analysis done after every experiment aims to provide a good estimation of

the population’s parameters.

In the field of statistics, there exist a well structured procedure to prove

or disprove hypothesis, which is known as hypothesis testing. In this sec-

tion, the framework of the hypothesis testing will be introduced and briefly

discussed.
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The first step of hypothesis testing is to define the hypotheses. In this

step, one has to define the null hypothesis, H0 and the alternative hypothesis,

Ha. It is common practice to construct the H0 to be the hypothesis that the

experimenter would like to reject. Thus, H0 is often called the hypothesis of

“no effect” by statisticians. On the other hand, the role of Ha is to provide

an alternative explanation of the experimental results in the case when H0

is rejected.

In the following statistical tests against local realism, the H0 and Ha are

given as follows:

H0 : The results can be explained by local realistic model

Ha : The results cannot be explained by local realistic model

The next step of hypothesis testing is to select the test statistics. The test

statistics is the distribution that the variable of interest takes up. Assuming

each experimental trials are independently and identically distributed (IID)

and the sample is randomly chosen and has a large sample size, then the

normal distribution will be suitable to be the test statistics.

Once the test statistics has been obtained, the p-value can be computed.

Assuming that the H0 is true, the p-value is defined as the probability

of obtaining the observed or more extreme statistics. In this paper, the

protocols consider only the one-tailed test of the test statistics T . Thus,

we will define p-value of T given the experimental data x to be the largest

possible Pr(T ≥ T (x)) over all T constrained by local realism.

The final step is to decide whether or not to reject H0. If the p-value

is small, then the result is statistically significant and therefore we reject

H0. However, the distinction between large and small p-values were poorly

defined. Hence, statisticians introduced the term “significance level”, usually

denoted by α, to define the boundary between “large” p-values and “small”

p-values.

In hypothesis testing, when p-value is smaller than α, we reject H0. The

choice for the value of α is completely arbitrary. Historically, Sir Ronald

Fisher set α to be 0.05 and this remains the convention in many existing

literature.

Today, many statisticians felt that it is not necessary to fix a value for α.

For a given p-value, the rejection of H0 will be valid for all values of α such
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that p-value ≤ α. Therefore, the p-value itself represents the lower bound of

α such that the rejection of H0 holds. Therefore, the results of hypothesis

testing is presented with the p-value.

3.2 Conventional Method: SD-based Protocol

In this section, a data analysis methodology known as the standard deviation

(SD)-based protocol will be introduced and the framework of this protocol

which leads to the p-value will be discussed.

3.2.1 Rewriting the Bell inequalities

As the conventional expression of CHSH inequality contains expectation

values of certain measurements and it offers very little intuition on the way

it is supposed to be computed. Now, a new form of expression of Bell

inequalities will be introduced to cut down on the ambiguity. Typically, a

Bell inequality can be written as:

〈S(x)〉 ≤ B (3.1)

where S(x) is the measurement function which takes up real values, x

is the setting and outcome combination of a single trial measurement and

B is the upper bound value of 〈S(x)〉 which can be accounted for by local

realism.

For the case of the CHSH inequality, the measurement function, S(x),

will given by the mathematical expression:

S(x) = (1− 2δi,2δj,2)ab/pi,j , and B = 2 (3.2)

From the two above-mentioned equations, the familiar CHSH inequality

can be obtained and is as shown below:

〈S(x)〉 =
∑
i,j,a,b

pi,j,a,b(1− 2δi,2δj,2)ab/pi,j (3.3)

=
∑
i,j,a,b

pa,b(1− 2δi,2δj,2)ab (3.4)

= 〈a1b1〉+ 〈a1b2〉+ 〈a2b1〉 − 〈a2b2〉 (3.5)

≤ 2 (3.6)
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Notice that S(x), a function of experimental data x, is the test statistics

in the hypothesis testing for local realism. Ideally, one can perform the

experiment to obtain a value of 〈S(x)〉 to show that the value is greater than

B, hence, violating local realism. However, in practice, we will expect our

experimental results to deviate from the “true value” of the measurement.

Assuming that these trials of measurements are IID, a good experimental

practice is to take a large number of readings. From the experiment, we

obtain x1, · · · , xn from n trials. The conventional practice to estimate the

value of 〈S(x)〉 is to take the average value of S(x) of the individual trials

over all n trials and is given by:

S̄ =
1

n

n∑
k=1

S(xk) (3.7)

=
1

n

n∑
k=1

∑
i,j

pi,j(1− 2δi,2δj,2)ab/pi,j (3.8)

= 〈a1b1 + a1b2 + a2b1 − a2b2〉 (3.9)

However, this convention does not give us the minimum variance esti-

mate of 〈S(x)〉 since the setting distribution pi,j is known. Next, we will

introduce an improved data analysis protocol which is known as SD-based

protocol. This protocol works under the IID assumption of the CHSH ex-

periment.

3.2.2 Introduction to SD-based Protocol

As mentioned in the previous section that the estimate of 〈S(x)〉 using S̄ is

not ideal. Therefore, a new estimate S̃ is introduced and the expression of

S̃ is given by:

S̃ =
∑
i,j

pi,j

∑
a,b n(i, j, a, b)I(i, j, a, b)∑

a,b n(i, j, a, b)
(3.10)

=
∑
i,j

∑
a,b n(i, j, a, b)(1− 2δi,2δj,2)ab∑

a,b n(i, j, a, b)
(3.11)

20



=
∑
i,j

(1− 2δi,2δj,2) 〈aibj〉 (3.12)

= 〈a1b1〉+ 〈a1b2〉+ 〈a2b1〉 − 〈a2b2〉 (3.13)

where n(i, j, a, b) is defined as the number of trials with the corresponding

settings and outcomes of i, j, a and b. The above expression mimics the form

of the original CHSH inequality which is essentially the “sum of means” in

contrast of the “mean of sums” in the example of S̄.

Subsequently, one has to find the standard deviation of S̃ so that the

violation of local realism can be objectively quantified. In an event that

a violation of local realism is observed (i.e. S̃ > B), we can express the

violation by standard deviations by computing S̃−B
σ , where σ is the standard

deviation of S̃.

Assuming that the results are IID, the distribution of S̃ is normally

distributed. Hence, we can compute the p-value as follows:

pSD = Q

(
S̃ −B
σ

)
(3.14)

where Q(x) is the Q-function which is essentially the integral of a stan-

dard normal function from x to ∞. (Recall that the standard normal func-

tion is a Gaussian function with mean of 0 and standard deviation of 1)

3.2.3 Limitations of SD-based Protocol

Additionally, a huge drawback of SD-based protocol is that it does not

account for memory effect. The approach is to assume that every single

trial and measurement is independent and identically distributed, which is

not realistic in the experiments. In the next section, another protocol will

be introduced to relax this assumption.

3.3 Relaxing IID: Martingale-based Protocol

In this section, a modification of the SD-based protocol is made to account

for non-IID trials of the Bell experiment. This protocol is based on the

Martingale theory which deals with random variable which behaviour based

on the outcome of the previous runs, also known as “memory effect”.
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Here, the Martingale theory will be introduced and the framework of the

Martingale-based protocol will be put forth.

3.3.1 Martingale

Before diving into the Martingale-based protocol, it is crucial to introduce

the idea of Martingale. Consider a situation where repeated measurements

will be made on a random variable X. On the kth trial, the measurement

outcome will be denoted as Xk. Therefore, after n trials, a string of mea-

surement outcomes X1, · · · , Xn will be obtained. A Martingale has to fulfil

the following condition:

〈Xn+1|X1, · · · , Xn〉 = Xn (3.15)

By induction, the expectation value of X for every trial is the same,

therefore, the knowledge of the outcomes from past trials do not give any

advantage in predicting the outcomes of the future trials. However, Mar-

tingale is a subset of two larger classes of stochastic processes known as

sub-martingale and super-martingale and are defined as follow:

〈Xn+1|X1, · · · , Xn〉 ≥ Xn (sub-martingale) (3.16)

〈Xn+1|X1, · · · , Xn〉 ≤ Xn (super-martingale) (3.17)

In these cases, the expectation values of X are not no longer guaranteed

to be constant throughout the trials. Consider two parties making a guess

of the next outcome of X, one of them has the knowledge of the outcomes

of previous trials and the other do not have the information. Clearly, the

one with the information of previous trials has an advantage other.

Relating the above exercise to Bell experiment, the expectation value of

S(x) measured in the experiment may depend on previous outcomes, also

known as the presence of memory effect. In fact, the measurement made in

a Bell experiment can be interpreted as a super-martingale, which will be

proven in the next section.
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3.3.2 Introduction to Martingale-based Protocol

Let us consider a super-martingale time sequence Mk =
∑k

l=1(S(xl)−B). In

this section, we assume that the measurement settings are chosen randomly

and independently by both parties according to the distribution pi,j . For all

local realistic models, given the information of all settings and outcomes of

previous trials, denoted by Wk, the expectation value of Mk is given by:

〈Mk|Wk〉 = 〈S(xk)−B +Mk−1|Wk〉 (3.18)

= 〈S(xk)|Wk〉 −B + 〈Mk−1|Wk〉 (3.19)

= 〈S(xk)|Wk〉 −B +Mk−1 (3.20)

≤Mk−1 (3.21)

In the above exercise, we invoked the identity of 〈S(xk)|Wk〉 ≤ B as for

all local realistic models, regardless of any information of prior settings and

outcomes, the Bell inequality will be satisfied. Hence, it is shown that the

time sequence, Mk, is indeed a super-martingale.

Additionally, we know that the range of values of S(xk) is −4 ≤ S(xk) ≤
4. Hence, this implies that the increment between every subsequent term of

Mk, mathematically written as Mk −Mk−1 is bounded by 2 extrema. The

upper bound, bu, is given by 4 − B while the lower bound, bl, is given by

−4−B.

Finally, it is proven that for any local realistic model, the time sequence

Mk is a super-martingale with bounded increment as shown above. Now,

we can invoke the Azuma-Hoeffding inequality to construct the p-value of

the Martingale-based protocol. For any local realistic model, the probability

that an estimate ŜLR is greater than or equals to the experimentally observed

Ŝ is give by:

PLR(ŜLR ≥ Ŝ) = PLR(Mn ≥ n(Ŝ −B)) (3.22)

≤ exp

(
−2n(Ŝ −B)2

(bu − bl)2

)
(3.23)

The above exercise has provided with an upper bound of PLR(ŜLR ≥ Ŝ)
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which implies a valid p-value of:

pmart = exp

(
−n(Ŝ −B)2

16

)
(3.24)

In the above equation, we have substituted bu − bl = 8.

3.3.3 Limitations of Martingale-based Protocol

According to Zhang [15], the Martingale protocol is suboptimal, which

means that more trials are required to observe the same level as of vio-

lation as compared to a protocol which is asymptotically optimal. We will

discuss in details about the notion of this optimisation in the next section.

Additionally, the Martingale protocol is constructed based on a partic-

ular Bell inequality, and hence, posing a constraint on user who might wish

to deal with other scenarios of Bell experiments.

3.4 Asymptotically Optimal: PBR Protocol

In this section, a protocol with an entire different approach will be intro-

duced. The prediction based ratio (PBR) protocol exploits the statistical

distance between the settings-outcomes frequencies and its closest distribu-

tion constraint by local realistic model to compute its p-value.

This protocol is said to be asymptotically optimal which meant that with

a given amount of experimental data, the protocol will reflect its maximum

amount of violation in the asymptotic limit.

3.4.1 The notion of Statistical Strength

As discussed in the earlier section, the goal of the data analysis of a Bell

experiment is to find the p-value of the experimental result. Recall that

if the p-value takes up a small numerical value, it would provide a strong

evidence for the violation of local realism in the Bell experiment.

As more non-local data are collected and analysed, the stronger evidence

it present against local realistic model and therefore p-value will decrease.

The relationship between p-value and confidence gain rate, G, after obtain-

ing n sets of data is defined as follows:

p = 2−Gn (3.25)
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An optimal confidence gain rate is defined to be the statistical strength

which will result in the most rapid decay of p-value. Hence, if a data analysis

protocol is asymptotically optimal, it is able to discredit the null hypothesis

with the least amount of data.

3.4.2 The Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KL Divergence), also known as relative

entropy in some literature, is a quantity which measures the difference be-

tween 2 different probability distribution. The KL Divergence from distri-

bution q to p, denoted by DKL(q||p), is given by:

DKL(q||p) =
∑
x

qx log2

[
qx
px

]
(3.26)

Even though KL Divergence may represent some kind of statistical dis-

tance between distributions q and p but by definition, it is not a true metric

due to its asymmetrical property (ie. DKL(q||p) 6= DKL(p||q) in general).

The KL Divergence from q to p is the number of bits of information

lost when p is approximated to q. In its application in hypothesis testing,

given the experimental data, x, the data analyst will like to find out if prob-

ability distribution p can be responsible for producing x, where in fact, q

is the “true” probability distribution of the data. A large KL Divergence

will provide strong evidence against the hypothesis that probability distri-

bution p generates the data x. Given non-zero prior probabilities on q and

p, the posterior probability that p generates x rather than q is given by

2−nDKL(q||p)+O(n) [13].

By defining the appropriate probability distributions to be q and p, the

KL divergence can be interpreted as the statistical strength of a hypothesis

testing [13]. In fact, the optimal confidence-gain rate for rejecting p in favour

of q is given by DKL(q||p).

3.4.3 Introduction to the PBR Protocol

The Prediction Based Ratio (PBR) protocol was constructed to address the

issues of memory effect of the SD-based protocol and the sub-optimality of

the Martingale-based protocol. In this protocol, we will rewrite the Bell

inequality and we will prove that this method of proving the violation of
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local realism is asymptotically optimal.

First, we define the PBR, Rk(x), given settings and outcomes, x, for the

kth trial to be:

Rk(x) =
q

(k)
x

p
(k)
LR,x

(3.27)

where q
(k)
x is defined to be an estimate of the kth setting and outcome

combinations distribution based on information prior to the kth trial of the

experiment. In the next section, possible methods that can be used to

estimate future setting and outcome combinations will be discussed. p
(k)
LR,x is

the probability distribution of setting and outcome combinations constrained

by local realistic models such that the KL Divergence from q
(k)
x to p

(k)
LR,x is

the minimum over all sets of distribution allowed by local realistic model.

The PBR, Rk(x), is constructed such that it is non-negative and for any

local realistic model, 〈Rk(x)〉 ≤ 1 given that the setting distribution is given

by pi,j . This inequality condition is the Bell inequality in the case when

PBR protocol is used to analyse Bell experiment data because it defines the

upper bound of the quantity 〈Rk(x)〉 which can be accounted for by local

realistic model. In order to take into account of any possible memory effect

in the experiment, we introduce a new variable Pk, and it is defined by:

Pk(x) =

k∏
l=1

Rl−1(xl) (3.28)

Similar to the Martingale protocol, one is able to find the conditional

expectation of Pk given all possible available information of the setting and

outcome combinations before the kth trial, denoted by Wk. It follows that

the conditional expectation of Pk for any local realistic model is given as

follows:
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〈Pk|Wk〉 =

〈
k∏
l=1

Rl−1(xl)|Wk

〉
(3.29)

=

〈
k−1∏
l=1

Rl−1(xl)×Rk−1(xk)|Wk

〉
(3.30)

= 〈Pk−1 ×Rk−1(xk)|Wk〉 (3.31)

= Pk−1 × 〈Rk−1(xk)|Wk〉 (3.32)

≤ Pk−1 (3.33)

In the fourth step of the proof above, notice that the conditional ex-

pectation of Pk−1 given Wk is given by Pk−1 itself because with all the

information about the setting and outcome combinations prior to kth trial,

we can determine precisely the value of Pk−1. In the final step of the proof

above, the inequality is a direct consequence of the previous claim that for

any local realistic model, 〈Rk(x)〉 ≤ 1.

Hence, it is proven that for any local realistic model that 〈Pk〉 ≤ 〈Pk−1〉,
one can conclude that for any local realistic model, the variable Pk is indeed

a supermartingale. Additionally, notice that P1 = R0 and since 〈Rk(x)〉 ≤ 1,

it implies that 〈P1〉 ≤ 1. Using the relation 〈Pk〉 ≤ 〈Pk−1〉, we can conclude

that for any local realistic model, 〈Pk〉 ≤ 1 for all k.

Notice that unlike in the Martingale protocol, the values of Pk ranges

from 0 to∞ and hence, there are no finite bounds on the values of Pk. Even

though Pk is a supermartingale, Azuma-Hoeffding Inequality is incompatible

with the PBR protocol and an alternative method has to be used to find

the p-value.

3.4.4 P-value of the PBR Protocol

Similar to previous protocols, suppose that the Bell experiment is run for

n trials and the experiment results x1, · · · , xn are obtained. Using these

results, we are able to obtain a specific value for Pn, which will be denoted

by P̂ . Hence, it will be reasonable to define the p-value as the probability

of Pn ≥ P̂ given by any local realistic model. Hence, we are able to exploit

the statistical nature of Pn to find a simpler form for the p-value.

Let us introduce an indicator random variable, IP such that:
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IP =

{
1 if Pn ≥ P̂
0 if Pn < P̂

Notice that P̂ is non-negative as earlier defined. Therefore, if one mul-

tiplies Pn by IP , notice that if Pn < P̂ , the product will be simply 0 but if

Pn ≥ P̂ , the product will be simply given by Pn which has a value smaller

than P̂ . In both cases, we have similar conclusion and we can safely write

down the following inequalities:

P̂ × IP ≤ Pn (3.34)

=⇒ 〈Pn〉 ≥
〈
P̂ × IP

〉
(3.35)

≥ P̂ × (1× Pr(Pn ≥ P̂ ) + 0× Pr(Pn < P̂ )) (3.36)

≥ P̂ × Pr(Pn ≥ P̂ ) (3.37)

The above inequality can be rearranged into:

Pr(Pn ≥ P̂ ) ≤ 〈Pn〉
P̂

(3.38)

The above inequality relation is also known as the Markov inequality.

Previously we have established that for any local realistic model, 〈Pn〉 ≤ 1.

However, in the case that 〈Pn〉 ≥ P̂ , we have a value for probability greater

than 1, which is unacceptable. Therefore, in these cases, we set probability

to 1. Therefore, the probability of Pn ≥ P̂ given by any local realistic model

is given by:

PrLR(Pn ≥ P̂ ) ≤ min(
1

P̂
, 1) (3.39)

Apparently, using the method above, it is not possible to obtain a tight

value of the p-value. However, an observation of a small valued upper bound

of the p-value is sufficient to reject the null hypothesis. Alas, we define the

p-value of the PBR protocol to be:

pPBR = min(
1

P̂
, 1) (3.40)
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3.4.5 Estimating settings-outcomes distribution

In order to apply the PBR protocol on any Bell experiment results, it is

essential to have a standard procedure to predict future settings-outcomes

distribution. The approach in PBR protocol is to find an estimation q′ of

the “true” probability distribution q of the settings-outcomes combinations.

After n trials of the Bell experiment, the settings and outcomes x1, · · · , xn
will be known. Without the knowledge of the state of the measured parti-

cles, the only information that the prediction of q can only be based on the

empirical frequencies, fx, given by:

fx =
1

n

n∑
k=1

δxk,x (3.41)

The 2 constraints that has to be satisfied by q and likewise q′ are as

follows:

1. No-signalling constraint: P (a|i, j) = P (a|i) and P (b|i, j) = P (b|j).

2. Setting distribution constraint: Since the setting distribution, pi,j is

known, q has to fulfil the following equation: pi,j =
∑

a,b qi,j,a,b

Now, we denote the set of probability distributions which satisfy the

above constraints to be V . By assuming IID trials, we are able to compute

a first estimate of q, denoted by q0, as follows:

q0 = arg max
q′∈V

L(f |q′) (3.42)

where L(f |q′) =
∏
x

qnfxx (3.43)

The above is the Maximum Likelihood Estimation problem which can

be solved numerically using the sequential quadratic programming. This

algorithm is designed to solve non-linear optimisation problem with linear

constraints.

There are 2 main problems foreseen to arise if q0 computed is to be used

to compute the p-value from PBR protocol. The first problem arises when

there exist zero probabilities in some settings-outcomes combination in q0

which will cause the resulting p-value to be 1 with no chance of recovery. A
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simple solution would be to incorporate an uniform distribution, u, into the

estimated probability distribution as follows:

q1 =
n

n+ 1
q0 +

1

n+ 1
u (3.44)

The second problem involves the initial learning transient as a result

of insufficient information of the system to make useful estimates of future

settings and outcomes. If the states of the measured particles are known, it is

possible to estimate the probability distribution even before the experiment

which solves the initial learning transient problem.

However, in many problems, the state of the particles are usually un-

known prior to the measurement. In these situations, alternative solutions

are required to solve the initial learning transient problem. A solution is to

set Rk to be 1 until a substantial Bell violation had been observed. Addi-

tionally, the protocol should be run in blocks of experimental data so that

in each “run”, there is sufficient information about the experiment to give

an optimal p-value.

In order for the PBR protocol to adapt to any changes in the experiment,

the estimation of future settings and outcomes should be based on experi-

ment data of the recent trials. This can be achieved by making adjustment

of the data half-life, λd.

3.4.6 Proof of asymptotical optimality

Taking the asymptotic case of a Bell violating IID experiment, the estimated

probability distribution, q
(k)
x and the frequency of the settings-outcomes, fx,

will converge to the true settings-outcomes distribution, q. Similarly, p
(k)
LR,x

will converge to the corresponding pLR, optimal to q. It can be shown that

PBR protocol is indeed asymptotically optimal by the following argument.

Consider the − log p increment given the experimental data of an IID

Bell experiment:

− log p increment =
∑
x

fx log
q

(k)
x

p
(k)
LR

(3.45)

=
∑
x

qx log
q

pLR
(3.46)

= DKL(q||pLR) (3.47)
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Notice that the expected − log p increment of an IID Bell experiment re-

duces itself to the KL divergence from the true settings-outcomes probability

distribution to the optimal settings-outcomes distribution constraint by LR.

As mentioned in the previous section, the KL divergence shows the amount

of evidence against the hypothesis that pLR generates the experimental data.

Since in the IID limit, − log p converges to the DKL(qx||pLR) which is

the statistical strength of the hypothesis testing against local realism, then

the p-value generated by the PBR protocol is asymptotically optimal.

3.5 Geometric Interpretation of Hypothesis test-

ing

After much discussions on hypothesis testing, this section seek to describe

hypothesis testing on Bell violation using geometrical interpretation. In

hypothesis testing mentioned in previous sections, the aim is to find an

estimate of the settings-outcomes probability distribution and determine if

the estimate falls within the LR polytope.

Figure 3.1: PBR protocol in geometrical representation. The blue square denoted “LR” repre-
sents the LR polytope which contains all probability distributions which fulfils the local realism
constraints. The black cross represents the true probability distribution while the aim is to find
its best estimate (green cross) with the information of the observed frequencies (red cross). Upon
finding the estimate distribution, the optimal LR distribution can be computed which is required
by the protocol.

Figure 3.1 shows the framework of the PBR protocol using geometric
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representation as discussed earlier on. In the figure, the blue square rep-

resents the LR polytope where all probability distributions that can be ac-

counted for by local realism models reside in. The facets of the LR polytope

represents the Bell inequalities as mentioned earlier on.

In the PBR protocol, using the observed settings-outcomes frequencies

generated by the Bell experiment (represented by the red cross), the data

analyst is to find an estimation (represented by the green cross) of the true

probability distribution (represented by the black cross) of the system. Using

the estimate, the analyst will then be able to find an optimal LR distribution

(represented by the red cross in the LR polytope) by minimising the KL

Divergence of the estimate with any point in the LR polytope. Finally, the

p-value can be computed using the estimated distribution and the optimal

LR distribution as discussed in the previous section.
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Chapter 4

Results

Since there exist different data analysis protocols with varying relaxation of

assumptions on the Bell experiment, a comparison between these protocols

should be made via implementation of these protocols on some concrete

situations where complete information about the experiment is known. In

the following non-IID situations, it will underline the importance of having

a protocol which relaxes the IID assumption to avoid drawing the wrong

conclusion from a set of Bell experiment results.

Thereafter, the aim is to have a protocol which also enables data analyst

to conclude the amount of private randomness that is generated from the

Bell experiment. An attempt was made with promising results which can

potentially open the doors to an avenue to quantify randomness from non-

IID Bell experiment.

4.1 Non-IID Situations

In order to test the robustness of the data analysis protocols mentioned in

the earlier chapters, one has to consider Bell experiment with non-IID states.

In this section, non-IID situations known as the “2-days experiments” will

be introduced and data analysis protocols introduced in the last chapter will

be used in these experiments.

4.1.1 Situation A (2
√
2 , 2)

Consider a situation where by the data collected from the Bell experiment

is produced by maximally entangled state which gives maximal Bell vio-
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lation(CHSH= 2
√

2). However, on the second day of the experiment, the

source of the maximally entangled particles is removed and the Bell exper-

iment produces deterministic outcomes (CHSH=2). In this situation, some

of the outcomes are non-local while some are not.

If one picks up the settings and outcomes data produced by the Bell

experiment and assumes that the outcomes produced are IID, then one will

conclude that the CHSH value will be in-between 2 and 2
√

2, depending

on the amount of data produced in each day. Recall that for SD-based

protocol, the p-value depends on the difference between the observed value

of CHSH and 2. In the case where by the amount of data produced on day

2 is much larger than day 1, the CHSH value will approach to 2. The above

discussion demonstrates that by using protocols which assumes IID trials in

non-IID situation, the presence of random outcomes diluted in large amount

of deterministic data will not be detected.

On the other hand, the PBR protocol is able to recognise the presence

of non-local correlations due to the small but finite KL divergence from q
(k)
x

to p
(k)
LR,x. Therefore, the PBR protocol is able to provide a strong evidence

against local realism despite the size of the non-local settings-outcomes data

is small with respect to that of the local settings-outcomes data.

Figure 4.1 shows a graph plotted − log2 p value against the number of

trials resulted by performing SD-based protocol and PBR protocol on the

same set of data produced by the 2-day experiment(Situation A). In this

paper, the results of any data analysis protocol on Bell experiment will be

presented in − log2 p, instead of p-value, since the resultant p-values in this

paper vary over orders of magnitude.

Referring to Figure 4.1, the responses to the deterministic data on day 2

by the two protocols are clearly distinct. The − log p value given by the SD-

based protocol decays rapidly to 0 but the − log p value given by the PBR

protocol decays and gradually stabilise at 70% of its maximum value. It

is apparent that two opposite conclusions are drawn from the two different

data analysis protocols. The PBR based protocol confirms that the data

from the experiment cannot be explained by any local realistic model but

the SD-based protocol suggests the otherwise.

This experiment explicitly shows that the SD-based protocol is unable

to cope with the change in state of the experiment and hence, giving a false

interpretation of the system.
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Figure 4.1: This is a graph of the computed − log p against number of trials for the 2-days
experiment where the first 10% of the data has a maximum Bell violation (i.e. CHSH=2

√
2)

where is subsequent 90% of the data is deterministic (i.e. CHSH = 2) using the IID analysis (SD-
based protocol) and PBR protocol. For the IID analysis results, the initial p-value is numerically
smaller than the accuracy of MATLAB but in the region of local data, the − log p value plunges
to 0 rapidly. For the PBR protocol, the graph shows that in the region of deterministic data, the
decay of the graph slows down quickly and stabilises.

4.1.2 Situation B (2
√
2 , −2

√
2)

In this section, a variant of the “2-days experiment” will be examined. In

this situation, instead of producing deterministic outcomes on day 2, the

state of the source is changed to that of the opposite maximum Bell vio-

lation (CHSH=−2
√

2). Clearly in this situation, Bell inequality is violated

throughout the experiment, and it is known that all the outcomes produced

by this experiment are non-local.

Here, an ideal data analysis protocol will be able to account for the

change in state of the system and recognise that the outcomes produced are

all non-local regardless of the relative size of the data produced in day 1 and

day 2.

Recall that the choice of q
(k)
x in the PBR protocol is free and the conven-

tional method used is mainly based on the frequencies of the setting-outcome
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combinations. The conventional method of estimating q
(k)
x may not be ideal

in situation B because correlated outcomes between Alice and Bob in day 1

will be anti-correlated in day 2 and anti-correlated outcomes in day 1 will be

correlated in day 2. This means that the overall frequencies in the “2-days

experiment” will reflect a statistics of uncorrelated outcomes between Alice

and Bob. Thus, by estimating q
(k)
x via the conventional means, such q

(k)
x

can be explained by a local realistic model and hence a − log p value of 0.

Since the choice of q
(k)
x for a given Bell experiment data is free, it is

allowed to let the influence of the data obtained on the estimation of q
(k)
x

decay with a specific data half-life, denoted by λd. In the previous case of

the “2-days experiment” (Situation A) the data half-life, λd, is set to be

infinite. This corresponds to the situation where by all the data from every

trials used in the analysis protocol is given equal weightage. For any finite

data half-life, the data obtained from the experiment is “forgotten” at a

certain rate during the computation of q
(k)
x .

As mentioned earlier, the PBR protocol analyse data in blocks with the

frequencies of settings-outcomes events in the kth block is denoted by bk.

Also, the size of block is denoted by NB. Finally, the expression for the

frequencies of settings-outcomes events used for computation of q
(k)
x after

(NB ∗ k)th trials, denoted by fk, is given by:

fk = (1− xk)fk−1 + (xk)bk (4.1)

where

xk+1 =
2
NB
λd xk

1 + 2
NB
λd xk

, x1 = 1 (4.2)

The above expressions show that by varying λd, it is possible to obtain

different but equally valid settings-outcomes distribution estimation, q
(k)
x .

Figure 4.2 shows a graph plotted − log p-value against number of trials of

the “2-days experiment” with varying λd.

As seen in Figure 4.2, the graph corresponding to λd = ∞ shows a

significantly lower − log p value as compared to cases where λd is finite.

Also, it is observed that with 10,000 trials conducted in day 1, only 1,700

trials that are conducted in day 2 are required to bring down the − log p-

value to 0 and stabilises. Subsequently, after conducting 61,200 trials in day

2, the graph will begin to pick up a positive gradient.
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Figure 4.2: This is a graph of the computed − log p against number of trials with the first 10%
of the data having CHSH value of 2

√
2 and the subsequent 90% of the data having CHSH value

of −2
√

2 using the PBR protocol. A series of analysis had been processed with varying values of
data half-life and it is found that the data-half life of 1000 gives an optimisation of − log p value
given that the block size of 200. When the data half-life is smaller than 1000, the gradient of the
graph is sub-optimal. However, when the data half-life exceeds 1000, the observed ’dip’ at day 2
will be pronounced.

This unusual phenomenon occurs because the settings-outcomes frequen-

cies, f , is the mixture of 2 different sets of settings-outcome frequencies pro-

duced by sources that violates Bell’s inequality in the opposite directions.

The proportion of the individual constituent sets of settings-outcome fre-

quencies will define the properties of f and in turn, have an effect on the

distribution estimation, q
(k)
x . Thus, such changes will be reflected in the

− log p value processed by the PBR protocol.

In order to explore the behaviour of the the overall settings-outcomes

frequencies, f , it is intuitive to write down the expression for the CHSH of

f as a function of the proportion, β, of the settings-outcome frequencies of

day 2, which is given by:

CHSH = 2
√

2(1− β)− 2
√

2β (4.3)

37



As mentioned earlier, for values of β between 17
117 and 612

712 , the PBR protocol

gives a − log p-value of 0. This range of values of π corresponds to the

following inequality −2.03 < CHSH < 2.00. The result is not surprising

because the statistics of the overall frequencies can be explained using local

models, even though it does not truly reflect the actual situation of the

experiment.

On the other hand, if the data half-life, λd, is given a finite value, the

data produced by the Bell experiment at a later time will have a heavier

weightage on the computation of f . Referring to Figure 4.2 again, the

graph corresponding to λd = 1 and λd = 1000 show a similar dip in − log p

value as the case of infinite data half-life when the experimental data from

day 2 is introduced. However, for cases of finite data half-life, the − log p

value increases subsequently because the influence of data from day 1 on the

computation of q
(k)
x becomes negligible.

By varying λd and obtaining its corresponding − log p value, it is ob-

served that the optimal data half-life that produces the highest − log p value

is λd = 1000. There are 2 competing effects in play here: if λd has a large

value, then there is a large proportion of day 1 data used in the compu-

tation of q
(k)
x , lowering the − log p value. On the other hand, if λd has a

small value, then there will be a higher fluctuation of the frequencies giving

rise to a large statistical distance between the frequencies and the “true”

settings-outcomes distribution, thus, lowering the − log p value.

4.1.3 Reviewing Situation A

In the previous section, it was concluded that it is essential to set a finite

data half-life, λd, for non-IID Bell experiments, in order to obtain the right

conclusion from the PBR protocol.

Additionally, recall that in Situation A, while an infinite λd does not

render the conclusion given by PBR protocol invalid, it causes a “dip” in the

− log p-value. This is undesirable because additional deterministic outcomes

on day 2 should not affect the extent of Bell violation observed.

Figure 4.3 shows the analysis generated by PBR protocol done with

different λd with similar conclusion. However, PBR protocol with a finite

λd provides users with a p-value that is representative of the extent of Bell

violation observed in the Bell experiment.

Initially, a “dip” in − log p-value with infinite λd could imply that there
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Figure 4.3: The graph plotted − log p against number of trials of Situation A with varying data
half-life. The graph shows that with a finite λd, the “dip” observed initially can be prevented.

exist deterministic or oppositely Bell violating data. However, with finite

λd, deterministic data has no observable effect on − log p-value. Hence,

by inspection of the graph, data analysts can interpret the nature of the

experimental data.

4.2 Randomness from PBR protocol

The PBR protocol was designed by Zhang and his collaborators to falsify

local realism given the experimental data from a Bell experiment with pos-

sible memory effect. Hence, the PBR protocol does not provide any avenue

to quantify the amount of randomness produced from Bell violation.

The hope in this section is to provide a stepping stone for any future

ambition to quantify randomness from non-IID Bell experiment. This sec-

tion will illustrate that by making modification to the PBR protocol, it is

possible to determine a lower bound of randomness obtained from non-IID

Bell experiment outcomes.
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4.2.1 Changing the Null Hypothesis

Recall that previously, the null hypothesis for all the above mentioned pro-

tocols is defined as the results produced by the Bell experiment cannot be

explained by any local realistic model. Here, it is more useful to phrase the

null hypothesis in terms of Bell violation. For the examples in the previous

chapters, we have the hypotheses:

H0 : All trials have values of CHSH less than or equals to 2

Ha : There exists trials with value of CHSH greater than 2

The above hypotheses describes a hypothesis testing that gives 2 types of

conclusion, either the experimental data gives statistical evidence to prove

or disprove the existence of any experimental outcomes which violates the

Bell inequality, CHSH ≤ 2. Notice that by varying the null hypothesis and

increase the number of hypothesis tests on the same experimental data, we

are able to probe the “strength” of Bell violation using a series of these

hypothesis tests. Each hypothesis test can be represented by just its null

hypothesis since the alternative hypothesis will then be implied.

In order to illustrate this idea, a series of null hypotheses are constructed

below:

H0,0 : All trials have value of CHSH less than or equals to 2

H0,1 : All trials have value of CHSH less than or equals to 2.1

H0,2 : All trials have value of CHSH less than or equals to 2.2

H0,3 : All trials have value of CHSH less than or equals to 2.3

H0,4 : All trials have value of CHSH less than or equals to 2.4

H0,5 : All trials have value of CHSH less than or equals to 2.5

H0,6 : All trials have value of CHSH less than or equals to 2.6

H0,7 : All trials have value of CHSH less than or equals to 2.7

H0,8 : All trials have value of CHSH less than or equals to 2.8

After running through the data analysis processes with each of these

null hypotheses, the analysis will each generate a p-value. The p-values will

increase as we vary from H0,0 to H0,8 and this can be explained by the follow-

ing geometric interpretation. For simplicity, the CHSH value being tested
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Figure 4.4: The expanding “test” polytope in geometrical representation. This figure shows that
as the “test” polytope expands, it fills up the space which contains all distributions which are
physically allowed. Hence, any position in space will have a reduced distance from the expanding
“test” polytope.

against in a particular hypothesis test shall be defined as the hypothesis

CHSH. (i.e. H0,0 has a hypothesis CHSH to be 2)

The set of probability distributions that is fulfil by each null hypothesis

can be described by a polytope. Now, we term the polytope which the esti-

mated probability distribution, q
(k)
x , is tested against to be “test” polytope.

As the “test” polytope expands, the proximity from any allowed position to

the “test” polytope decreases and hence, the p-value increases.

The expansion of the “test” polytope can be visualised with the repre-

sentation presented in figure 4.4. Even though the diagram is not a stere-

ographic projection of the polytope on the 2-dimensional space, but it pro-

vides a good intuition of the evolution of the “test” polytope of the proposed

scheme. As presented in the diagram, as the “test” polytope expands, the

proximity of any point in the quantum set will decrease until it is being

consumed by the polytope.

In order to find out the approximate position of the system’s probability

distribution, the modified hypothesis tests should run sequentially from H0,0
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to H0,8. In this way, when the − log p-value hits 0 for the first time in a par-

ticular test, the position of the estimated distribution, q
(k)
x , will be closest to

the facet of the corresponding polytope than the other polytopes. This pro-

vides an intuition of the position of the estimated probability distribution,

q
(k)
x .

Recall that in the preliminary chapter, it is established that the amount

of randomness in the measurement outcome is related to the CHSH value.

Therefore, the position of the estimated probability distribution will shed

light on the amount of randomness present in the experimental outcomes

analysed by the modified PBR protocol.

4.2.2 The Implementation of the Modification

In the PBR protocol, the p-value generated from a set of experimental result

depends on the estimation, q
(k)
x and the optimal LR distribution, p

(k)
LR,x.

However, when the null hypothesis is changed, the usage of p
(k)
LR,x will no

longer be valid. Instead, an optimal probability distribution, denoted by pop

contained by the corresponding polytope should be considered.

pop = arg min
p∈test polytope

DKL(q||p) (4.4)

In order to obtain pop, the above minimisation problem has to be solved.

The most efficient approach is to study how p
(k)
LR,x is obtained.

Finding p
(k)
LR,x

The first task will naturally be to identify the extremal points of the LR

polytope as these points will effectively define the points which are included

in the polytope. Also, these extremal points of the polytope can be inter-

preted as local vectors, P (ab|ijλ), where each local strategy is represented

by a λ value.

The local vector will define the allowed and forbidden correlations ob-

tained in the Bell experiment by local realistic models. Given a set of ex-

perimental data generated by a Bell experiment which does not violate any

Bell inequality, one can interpret the data as a result of a linear combination

of these local strategies, λ.

The local vector is expressed in terms of a 16-by-16 matrix with row rep-
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resenting each local strategy, λ and the column representing each settings-

outcomes combination, x = a, b, i, j. Recall that p
(k)
LR,x is the optimal prob-

ability distribution of settings and outcomes constraint by local realistic

model and is essentially PLR(ab|ij). Hence, p
(k)
LR,x can be written as:

p
(k)
LR,x =

∑
λ

ρ(λ)P (ab|ijλ) (4.5)

Where ρ(λ) is the distribution of local strategies adapted. The above

equation shows that p
(k)
LR,x can be obtained by solving for ρ(λ) since the local

strategies, P (ab|ijλ), are known.

For convenience, the following calculations to obtain ρ(λ) will be written

in matrix form and the indices i, j and k are matrix indices which should not

be confused with the Bell experiment settings i and j. Now, we rewritten

the local strategies in matrix form to be hij where indices i, j ∈ [1, 16].

Rewritting the minimisation problem:

ρ(λ) = arg min
f≥0,

∑
f=1

DKL({qj}||{
∑
i

fihij}) (4.6)

= arg min
f≥0,

∑
f=1
{
∑
j

qj log2(
∑
i

fihij)} (4.7)

These class of problems are well studied and its solution can be achieved

via the Expectation Maximisation (EM) algorithm [14] as given below:

f
(n)
i = f

(n−1)
i

∑
j

(
hij∑

k f
(n−1)
k hkj

)
qj , for n = 1, 2, · · · (4.8)

The above algorithm is to be iterated with any f
(0)
i > 0 and the numerical

values of the array, fi, will converge to ρ(λ).

Finding pop

As the “test” polytope expands out of the LR polytope in the proposed

scheme, the extremal points of the “test” polytope changes. In this section,

the main task is to find all extremal points of the “test” polytope as that

will provide the full list of strategies, hi,j , available within the polytope.

Once, hi,j is obtained, pop can be easily determined by using the above EM

algorithm.
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In our approach, the CHSH value of the “test” polytope is first identified

in order to define the inequality constraints on the probabilities distributions.

The Polyhedral Representation Transformation Algorithm (PORTA) [4] has

the capabilities of interchanging maximal points and inequality constraints.

In particular, the traf function converts ieq files, which contains the list

of inequalities and equalities constraints, to poi files, which contains list

of maximal points, and vice versa. The list of 23 inequalities bounding

the “test” polytope can be found in the appendix. After applying the traf

function on the inequalities constraint, a total of 80 maximal points will

be given. Hence, pop can be obtained and used to test experimental data

against an expanded polytope.

4.2.3 Results of the Modification

To prove the validity of the modified PBR protocol, the protocol is applied

to simulated experimental results with known parameters. An agreement

between the known parameters and the conclusion drawn from the modified

PBR analysis will demonstrate its validity.

The analysis results of two different IID Bell experiments done using

the modified PBR protocol are presented and discussed below. Finally,

this discussion will be wrapped up by an attempt on quantifying private

randomness from Bell experiment using the modified PBR protocol while

relaxing the IID assumption.

Experiment A: IID Maximum Violating Bell Experiment

The experimental outcomes of a IID maximally violating Bell experiment

(CHSH = 2
√

2) are used to run the modified PBR protocol. From previous

experiments, a positive linear relationship between − log p-value and the

number of trials is expected of an experimental data of IID Bell experiment.

In figure 4.5, the linear relationship between − log p and number of trials

is observed for all 9 hypothesis tests, in agreement with above prediction.

Also, note that the final − log p-value are positive values for all hypothesis

tests as the “test” polytope expands. This implies that there exist some mea-

surement outcomes which display non-local correlations with CHSH value

greater than 2.8. Indeed, having to know that the true value of CHSH of the

measured system is 2
√

2, it confirms the findings of the modified protocol.
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Figure 4.5: The surface plot of − log p-values against number of trials against the hypothesis
CHSH. The surface plot is generated by running the experimental data of an IID Bell experiment
with maximum Bell violation on the modified PBR protocol.

Experiment B: IID Bell Experiment with CHSH=2.42

Now, experiment B aims to investigate the validity of the modified proto-

col when the CHSH of the experimental data is lower than the hypothesis

CHSH. In this experiment, simulated experimental data from IID Bell ex-

periment (CHSH = 2.42) was fed into the modified PBR protocol and the

results are presented in figure 4.6.

From figure 4.6, it can be observed that, like the previous test, all graphs

show positive linear relationship between − log p and the number of trials.

The difference in this example is that the graph flattens to 0 when the

hypothesis CHSH hits 2.5. This implies that there exist some experimental

outcomes in the experiment data to have a CHSH value of greater than 2.4.

This shows consistency between the true parameter of the state and the

analysis result.

Indeed, the− log p-values stays at 0 when the hypothesis CHSH is greater

than the CHSH of the experimental data. This is shown in the graph where

the test CHSH is greater than 2.4. These results presented in experiment A

and B can conclude that the modified PBR protocol has the capability to
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inform user about the extent of the Bell violation in the experimental data.

Figure 4.6: The surface plot of − log p-values against number of trials against the hypothesis
CHSH. The surface plot is generated by running the experimental data of an IID Bell experiment
with a CHSH value of 2.42 on the modified PBR protocol.

Randomness from Experiment A

Now that the validity of the modified protocol has been established, certifi-

cation of private randomness with modified PBR protocol can proceed.

Recall that the p-value is the maximum probability to obtain the ob-

served or more extreme statistics given that H0 is true. H0 will be rejected

if the p-value is smaller than the significant value, α. Also, recall that the

value of α is arbitrary and is the probability which H0 is rejected when it

should not be.

For the purpose of this discussion, the α is set to be 0.001, which means

that for 99.9% of the time, the rejection of H0 is done correctly. This means

that to reject H0, − log p-value has to be at least 10.0.

The choice of using any hypothesis test is equally valid with the ex-

ception of H0,0 because the proof of a Bell violation with only prove the

presence of private randomness, and is just limited to that. For the purpose

of discussion, H0,5 will be used to quantify randomness from the experi-
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ment outcome. Since the hypothesis CHSH of H0,5 is given by 2.5, each

experimental outcome with CHSH of 2.5 has a min-entropy of 0.268 bit.

When running an experimental data on the modified PBR protocol with

hypothesis CHSH of 2.5, if the − log p-value hits 10.0, it implies that with

99.9% confidence that there exist at least 1 outcome which has CHSH value

more than 2.5. This means that with 99.9% confidence that within the

outcomes which contributes to the − log p-value of 10.0, there exist at least

0.268 bit of randomness.

The proposed scheme to quantify private randomness for non-IID Bell

experiment involves running the modified PBR protocol and reseting the

− log p-value to 0 once it exceeds 10. The number of times the − log p-value

exceeds 10.0 will be multiplied by 0.268 bit which gives the amount of private

randomness present.

Figure 4.7: Plot of − log p against the number of trials of experiment A. In this graph, the − log p
resets to 0 when it exceeds 10. The red line visually marks the − log p of 10.

The results of the proposed scheme on experiment A is shown in figure

4.7. According to the figure, the − log p-value exceeds 10 on 9 occasions

after 12,400 trials. This implies that after 12,400 trials, the scheme certifies
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at least 2.412 bits of randomness are present with 99.9% confidence.

In fact, there are a total of 81 occasions when − log p-value exceeds 10 in

the full run of 100,000 trials. Thus, it is certified that there exist 21.708 bits

of private randomness in experiment A with 99.9% confidence. In contrast,

if the assumption of IID is valid, it is apparent that there are 100,000 bits

of randomness present in the same experimental outcomes.
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Chapter 5

Summary and Future Works

5.1 Summary

Bell experiment is able to produce private randomness which can be verified

by observing the violation of Bell inequality. Computation of the CHSH

value, which is a linear combination of the outcome correlations, is essential

to prove a Bell violation.

However, it was shown that the validity of the conventional computa-

tion of CHSH value only extends within the realm of IID Bell experiments.

Fortunately, it was verified in this paper that the PBR protocol provides

a viable alternative to prove the existence of Bell violation in non-IID Bell

experiments.

It is clear that the PBR protocol by itself does not give clear instructions

on obtaining the estimated probability distribution of the settings and out-

comes, q
(k)
x . A different data half-life value, λd, will give rise in a different

q
(k)
x which may result in totally opposite conclusions given by the protocol.

In this way, the choice of q
(k)
x remains free and different p-values maybe

obtained by different data analysts using the same data. A possible stan-

dardisation could be done by taking the minimum p-value over all λd to the

order of magnitude.

That being said, the sole purpose of the PBR protocol is to provide

proof for the presence of Bell violation in experiment and the protocol do

not provide users sufficient information to study the extent of Bell viola-

tion of a non-IID Bell experiment. This makes quantifying the amount of

private randomness in the outcome of Bell experiment impossible using the
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PBR protocol. Fortunately, by making the appropriate modifications to the

protocol, the user will be able to obtain a lower bound of the amount of pri-

vate randomness possessed by the experimental outcome of a non-IID Bell

experiment.

5.2 Future Works

The quest to quantify private randomness produced by non-IID Bell exper-

iment is far from over. In order to leave no stone unturned, it is important

to seek out other feasible methods while working on the current ones.

While working on the “2-days” experiment (Situation A), it is noticed

that by re-scrambling the order of the trials using pseudo-random numbers,

the p-value remains constant with a small degree of fluctuation. However,

the difference is that the graph of − log p against number of trials for the

scrambled data is linear, resembling the IID cases.

This should not be surprising because essentially while scrambling the

sequence of the data, the average outcome correlations remains the same. On

the other hand, it is highly probable the experimental data from day 1 and

day 2 are evenly spread over all data blocks. Hence, it is indistinguishable

between the experimental data of an IID Bell experiment with CHSH value

of 2
√

2
10 + 18

10 and the scrambled data from “2-days” experiment. Obvious

that in both cases, the experiment outcomes contains the same amount of

randomness.

Given the above facts, it is reasonable to postulate that by analysing

data possessing the same amount of randomness with PBR protocol may

give rise to the same p-value. However, concrete studies and additional

evidences are required before such claims can be made.
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Figure 5.1: Graph of − log p against the number of trials for “2-days” experiment (Situation
A). The graph in black is generated using the original data while the others are generated by
re-shuffled data.
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Appendix A

List of inequalities bounding

“test” polytope

For the purpose of computing the pop in the modified PBR protocol, several

inequality constraints are required to be fed into PORTA in order to obtain

the extremal points of the expanded polytope. The constraints are as given:

1. Pr(a = 1, b = 1) ≥ 0

2. Pr(a = −1, b = 1) ≥ 0

3. Pr(a = 1, b = −1) ≥ 0

4. Pr(a = −1, b = −1) ≥ 0

5. Pr(b = 1)− Pr(a = −1, b = 1) ≥ 0

6. Pr(b = 1)− Pr(a = 1, b = 1) ≥ 0

7. Pr(b = −1)− Pr(a = −1, b = −1) ≥ 0

8. Pr(b = −1)− Pr(a = 1, b = −1) ≥ 0

9. Pr(a = 1)− Pr(a = 1, b = −1) ≥ 0

10. Pr(a = 1)− Pr(a = 1, b = 1) ≥ 0

11. Pr(a = −1)− Pr(a = −1, b = −1) ≥ 0

12. Pr(a = −1)− Pr(a = −1, b = 1) ≥ 0
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13. −Pr(a = −1)− Pr(b = −1) + Pr(a = −1, b = −1) ≥ −1

14. −Pr(a = −1)− Pr(b = 1) + Pr(a = −1, b = 1) ≥ −1

15. −Pr(a = 1)− Pr(b = −1) + Pr(a = 1, b = −1) ≥ −1

16. −Pr(a = 1)− Pr(b = 1) + Pr(a = 1, b = 1) ≥ −1

17. Pr(a = 1) + Pr(a = −1, b = −1) − Pr(a = 1, b = −1) + Pr(b =

1)− Pr(a = −1, b = 1)− Pr(a = 1, b = 1) ≥ −CHSH−2
4

18. Pr(a = 1) + Pr(b = −1) − Pr(a = −1, b = −1) − Pr(a = 1, b =

−1) + Pr(a = −1, b = 1)− Pr(a = 1, b = 1) ≥ −CHSH−2
4

19. Pr(a = −1) − Pr(a = −1, b = −1) + Pr(a = 1, b = −1) + Pr(b =

1)− Pr(a = −1, b = 1)− Pr(a = 1, b = 1) ≥ −CHSH−2
4

20. Pr(a = −1) + Pr(b = −1) − Pr(a = −1, b = −1) − Pr(a = 1, b =

−1)− Pr(a = −1, b = 1) + Pr(a = 1, b = 1) ≥ −CHSH−2
4

21. −Pr(a = −1) − Pr(b = −1) + Pr(a = −1, b = −1) + Pr(a = 1, b =

−1) + Pr(a = −1, b = 1)− Pr(a = 1, b = 1) ≥ −CHSH+2
4

22. −Pr(a = −1) + Pr(a = −1, b = −1) − Pr(a = 1, b = −1) − Pr(b =

1) + Pr(a = −1, b = 1) + Pr(a = 1, b = 1) ≥ −CHSH+2
4

23. −Pr(a = 1) − Pr(b = −1) + Pr(a = −1, b = −1) + Pr(a = 1, b =

−1)− Pr(a = −1, b = 1) + Pr(a = 1, b = 1) ≥ −CHSH+2
4

24. −Pr(a = 1) − Pr(a = −1, b = −1) + Pr(a = 1, b = −1) − Pr(b =

1) + Pr(a = −1, b = 1) + Pr(a = 1, b = 1) ≥ −CHSH+2
4

Constraints 1 to 4 are the positivity constraints of probabilities which

can be rewritten as Pr(ab) ≥ 0. Constraints 5 to 12 demand that the

conditional probabilities Pr(a|b) and Pr(b|a) has to be less than or equals to

1. Constraints 13 to 16 demand that the probabilities of outcomes a and/or

b occurring has to be less than or equals to 1. (ie. Pr(a∪b) ≤ 1) Constraints

17 to 24 are the CH inequalities which are equivalent to the CHSH inequality

but it deals with probabilities rather than correlations.
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