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Abstract

Density functional theory has been used extensively for the description of boson and
fermion gases, but only few studies are available for mixtures of bosons and fermions
where two fermions can form bosons as a diatomic molecule. In this thesis, we propose
an explicit form of the energy functional underlying the conversion process and explore
the particle densities in various parameter regimes.
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Chapter 1

Introduction

1.1 Quantum Many-Body Problem

With the advance of modern quantum mechanics, simple atomic and molecular systems

became fairly well understood with the help of the Schrödinger equation. However,

when the number of particles in the system starts to increase, wavefunction methods

soon encounter the so-called “exponential wall” in computational complexity. Soon as

N ≈ O(10) the wavefunction can become impractical to solve even using the most pow-

erful computers(5). The problem becomes even more severe when dealing with physical

processes that involve millions or even billions of particles (i.e. chemical reaction). Hence,

more efficient methods are in demand.

In 1964, a new method was suggested by Hohenberg and Kohn to tackle this many-

body problem(3). Instead of calculating the N-particle wavefunction Ψ of the system,

Ψ = Ψ(~r1, ~r2, ..., ~rN). (1.1)

They used the one-particle density function n(~r) of the particles to represent the sys-

tem. The density function can be formally regarded as a contracted version of N-particle

wavefunction,

n(~r) = N

∫
Ψ∗(~r, ~r2, ..., ~rN)Ψ(~r, ~r2, ..., ~rN)d~r2d~r3...d~rN , (1.2)

where N is the number of particles. Hence we have the normalization condition

N =

∫
d~r n(~r). (1.3)

This approach was motivated by the pioneer works from Thomas and Fermi in the

1920s(8), which, however, it is a relatively rough estimation for many physical systems.

Hohenberg and Kohn overcame this deficiency by introducing the so-called Hohenberg-

Kohn theorem which links the density function and the external potential bijectively(5).
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1.2 Hohenberg-Kohn Theorem

The Hohenberg-Kohn theorem states that for any physical system, the ground state den-

sity function n(~r) uniquely determines the underlying external potential, up to an irrele-

vant constant(3). A simple proof for a non-degenerate ground state is illustrated here. It

first makes use of the variational principle which states that any trial wavefunction ψ for

the system will lead to an energy no less than the ground state energy Eg of the system,

〈ψ|Ĥ|ψ〉 ≥ Eg . (1.4)

When an external potential Vext is applied, the total energy E can be calculated by

E = 〈ψ|(T̂ + Û)|ψ〉+

∫
d~r Vextn(~r), (1.5)

where T̂ is the kinetic energy operator and Û is the interactive energy operator. Next we

consider two systems applied with different external potential energies V1(~r) and V2(~r).

Let E1 and E2 be the ground state energies, and let ψ1 and ψ2 be the ground state

wavefunctions of the two Hamiltonians. Suppose both potentials lead to the same density

n, we have

E1 = 〈ψ1|(T̂ + Û)|ψ1〉+

∫
d~r) Vextn(~r), (1.6)

E2 = 〈ψ2|(T̂ + Û)|ψ2〉+

∫
d~r Vextn(~r). (1.7)

By virtue of the variational principle,

E1 < 〈ψ2|(T̂ + Û)|ψ2〉+

∫
d~r Vextn(~r), (1.8)

E2 < 〈ψ1|(T̂ + Û)|ψ1〉+

∫
d~r Vextn(~r), (1.9)

If we add up (1.8) and (1.9),

E1 + E2 < 〈ψ1|(T̂ + Û)|ψ1〉+ 〈ψ2|(T̂ + Û)|ψ2〉+

∫
d~r Vextn(~r) +

∫
d~r Vextn(~r), (1.10)

rearranging the terms we get a contradiction,

E1 + E2 < E1 + E2. (1.11)

Hence, we have shown by contradiction that two systems with the same density function

must have the same external potential applied. Since the external potential determines

the wavefunction and thus the density function, with the introduction of Hohenberg-Kohn

Theorem, we can now draw a unique link between a Hamiltonian and its density function

and use the density function in place of wavefunction as a representation of a system. In
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other words, the total energy E is a functional of the density n(~r).

1.3 Ultracold Gas

In nature there are two types of particles - fermions and bosons. We can identify them by

their intrinsic spins. Fermions have half-integer spins, and bosons all have integer spins.

Besides spin, their most prominent difference is that fermions obey Pauli’s exclusion

principle, but bosons do not. This implies that no two identical fermions occupy the

same state at the same time, while bosons have no restriction on number of particles per

state. This difference becomes more evident when temperature T of the system drops

close to 0K, and at T = 0 the system reaches its ground state. We call particles at this

temperature degenerate gas.

An ultracold fermionic gas follows the so-called “Fermi-Dirac statistics”. The total en-

ergy of the system, as Hohenberg-Kohn Theorem states, is a functional of the density of

fermions. The explicit form of this functional at zero-temperature limit has been worked

out by Thomas and Fermi in 1927(8),

E = CF
~
M

∫
d~r n

5
3 (~r) +

∫
d~r V (~r)n(~r), (1.12)

where CF is a dimensionless constant and M is the mass of the fermion. This equation

is often referred to Thomas-Fermi approximation, and we will briefly demonstrate the

reasoning behind it in the next section.

1.4 Thomas-Fermi Approximation

In a free fermion gas, if a system contains a large number of fermions, uniformly distributed

in phase space, and as long as we are interested in the particle number, its density operator

at temperature T = 0 can be represented as

ρ̂ = 2η(µ− Ĥ), (1.13)

where µ is the chemical potential and the factor 2 is from the spin multiplicity. For a free

fermion gas the Hamiltonian is given by

Ĥ =
P̂ 2

2m
. (1.14)
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We find the Wigner function of the density function to be (D = 3)

ν(~r, ~p) =
2

h3
η(µ−H(~r, ~p)) =

2

h3
η(µ− ~p2

2m
), (1.15)

which is simply a sphere in the momentum space. The spatial density function can then

be easily obtained,

n(~r) =
2

h3

∫
d3~p η(µ− ~p2

2m
)

=
2

h3

∫
d3~p η(p2

f − ~p2)

=
2

h3

∫ pf

0

dp 4πp2

=
8πp3

f

3h3
.

(1.16)

The Fermi momentum pf is related to be spatial density of fermions by

pf =

[
3h3n(~r)

8π

] 1
3

. (1.17)

We can then evaluate the kinetic energy of the ensemble to be

EK =

∫ ∫
d3~rd3~p ν(~r, ~p)

~p2

2m

=

∫
d3~r

∫
dp 4πp2 2

h3
η(p2

f − p2)
p2

2m

=
4π

mh3

∫
d3~r

∫ pf

0

dp p4

=
4π

mh3

∫
d3~r

p5
f

5
.

(1.18)

Substituting the expression of pf (1.17), we get

Ekin =
3h2

10m
(

3

8π
)
2
3

∫
d3~r n

5
3 . (1.19)

This is the Thomas-Fermi approximation of the kinetic energy. Although our calculation

is done for D = 3, similar arguments can be carried out for lower dimensions. In fact, the

explicit form of the functional can be obtained by a simple dimensional analysis. Suppose

the energy functional of a D-dimensional system has the form

Ekin = CD
~2

m

∫
dD~r nk. (1.20)

The dimension of ~2
m

is

[
~2

m
] = [E][L]−2, (1.21)
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the dimension of n is

[n] = [L]−D, (1.22)

and the dimension of integral is

[nkdD~r] = [L]−kD+D. (1.23)

Thus, comparing with (1.21), we get

−kD +D = −2,

k =
D + 2

D
,

(1.24)

and then we have

Ekin = CD
~2

m

∫
dD~r n

D+2
D . (1.25)

Here CD is a dimensionless constant that can be derived using the same method illustrated

earlier. For example, for a one-dimensional system

C1 =
π2

24
. (1.26)

and the energy is given by

Ekin =
~2π2

24m

∫
dx n3. (1.27)

1.5 Bose-Einstein Condensate

In a boson gas, unlike for fermions, there is no restriction on the number of bosons per

state. When T = 0K, all the bosons occupy the ground state of the system to minimize

the total energy. This behaviour of boson gases is called Bose-Einstein condensate.

In a degenerate boson gas, let the N-particle wavefunction be Ψg and let a single particle

wavefunction be ψg, the ground state in Bose-Einstein condensate can then be described

as

Ψg = ψg(~r1)ψg(~r2)...ψg(~rN). (1.28)

By (1.2), the ground state density ρ(~r) of the system is

ρ(~r) = N

∫
Ψ∗g(~r, ~r2, ..., ~rN)Ψg(~r, ~r2, ..., ~rN)d~r2d~r3...d~rN

= Nψ∗gψg.

(1.29)

Hohenberg-Kohn theorem states that the energy of the system is a functional of ρ(~r).

According to Schrödinger equation, the total kinetic energy of the system can be calculated
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as

Ekin = − ~2

2m
N

∫
d~r ψ∗g∇2ψg(~r) =

~2

2m
N

∫
d~r (∇ψg)2. (1.30)

Since the ground state wavefunction in a one-dimensional system is always nondegenerate,

real, and does not change sign(6), according to (1.29) one can then replace
√
Nψg with

√
ρ and obtain

Ekin =
~2

2m

∫
d~r (∇√ρ)2. (1.31)

1.6 Hohenberg-Kohn Variational Theorem

Much of the use of density functional theory comes from this variational theorem first

suggested by Hohenberg and Kohn(3). It makes use of the important property of a ground

state, that is, the energy being at its minimum. Since energy is a functional of density

function n(~r), any first order variation of density δn(~r) must vanish. In a system with a

fixed number of particles N , the problem becomes a constrained variational problem with

a constraint

N =

∫
d~r n(~r). (1.32)

The variation of E with respect to n(~r) gives

δ

δn

[
E + µ

(
N −

∫
d~r n(~r)

)]
= 0, (1.33)

where µ is the Lagrange multiplier, and it is often referred to as chemical potential. Once

the explicit form of E in n is known, the ground state density can be immediately obtained

by simply solving (3.16). This method will be frequently used in the later chapters.

1.7 Particle Conversion

Density functional theory (DFT) has been frequently applied to ultracold bosonic gas(4;

10), ultracold fermionic gas(2; 1), and sometimes even a mixture of both gases(9). How-

ever, none of those investigations has considered the possibility of conversion between two

types of particles via chemical reactions. For example, two Lithum-6 atoms can combine

through the formation of chemical bond and form a Lithum dimer Li2, which is a boson.

In the present thesis, we aim at the description of such a conversion within DFT.

The paper will be structured as follows. In Chapter 2, we will first look at mixture of

bosons and fermions but with no interaction between them (i.e. no conversion will occur),

and develop necessary techniques to understand it. In Chapter 3 we will make use of the

methods and apply them onto interacting mixtures of bosons and fermions (i.e. conversion

occurs). In Chapter 4, we will present the numerical solutions that we obtained.
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Chapter 2

Mixtures of Non-Interacting Bosons
and Fermions

2.1 Energy Functional

Consider a system containing a mixture of non-interacting fermions and bosons where

bosons are formed by two fermions as diatomic molecules. By non-interacting we mean

that there is no interaction except the Pauli exclusion principle. Let the number of

fermions beNF and the number of bosons beNB, respectively. Since there is no interaction

between the two types of particles, their numbers are separately conserved,

NF = Const.

NB = Const.
(2.1)

Let the density function of fermions be n(~r), and let the density function of fermions be

ρ(~r), the normalization conditions say,

NF =

∫
dD~r n(~r),

NB =

∫
dD~r ρ(~r),

(2.2)

where D is the dimension of the system. In the zero-temperature limit, the system reaches

its ground state. Hohenberg-Kohn theorem hence implies that the total energy of fermions

and bosons are functionals of fermion and boson density functions, respectively. Denoting

the total energy of fermions as E(F) and that of bosons as E(B), we have

E(F) = E(F)[n(~r)],

E(B) = E(F)[ρ(~r)].
(2.3)

Generally in a system there are many interaction terms that contribute to the total energy,

for instance, the contact energy, the magnetic dipole-dipole interaction, etc. All of these

have been studied extensively in the literature(1). Bearing in mind that our objective is to
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use density functional theory to understand the effects of the particle conversion process.

None of these interactions seems to help us with the understanding, and at the same time,

they make the calculation more cumbersome. Hence we will ignore these contributions

for the time being.

The total energy of the system comes from four major contributions - the kinetic energy of

fermions, the kinetic energy of bosons, the potential energy of fermions and the potential

energy of bosons. The kinetic energy of fermions, denoted as E
(F)
kin , is given by Thomas-

Fermi approximation,

E
(F)
kin = CD

~2

mF

∫
dD~r n

D+2
D , (2.4)

where mF is the mass of the fermion particle and CD is a dimensionless constant depending

on the the number of spatial dimensions of the system. With a trapping potential VF

applied on fermions, the potential energy E
(F)
pot becomes

E
(F)
pot =

∫
dD~r VF (~r)n(~r). (2.5)

Bosons, in the zero-temperature limit, form the Bose-Einstein condensate. We denote the

kinetic energy of bosons as E
(B)
kin , and it is given by (1.31),

E
(B)
kin =

~2

2mB

∫
dD~r

(
∇
√
ρ(~r)

)2

. (2.6)

With an external trapping potential VB, its potential energy is given by

E
(B)
pot =

∫
dD~r VB(~r)ρ(~r). (2.7)

Apart from the energy related to the boson-formation (discussed in the next chapter), the

total energy of the system ETOT is known.

ETOT =E
(F)
kin [n] + E

(F)
pot[n] + E

(B)
kin [ρ] + E

(B)
pot [ρ]

=CD
~2

mF

∫
(dD~r) n

D+2
D +

∫
dD~r VF (~r)n(~r)

+
~2

2mB

∫
dD~r

(
∇
√
ρ(~r)

)2

+

∫
dD~r VB(~r)ρ(~r).

(2.8)

This energy functional is bounded from below as long as trapping potentials are bounded

functions since all other terms are positive. Hence, the ground state of this Hamiltonian

exists and can be explored through the method of variation.
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2.2 Methods of Variation

When the system is in its ground state, the first order variation of energy vanishes with

respect to infinitesimal variations in n and ρ. Under the constraints in (2.1) we have a

constrained variational problem,

δ

δn

[
ETOT + µF

(
NF −

∫
dD~r n(~r)

)]
= 0,

δ

δρ

[
ETOT + µB

(
NB −

∫
dD~r ρ(~r)

)]
= 0,

(2.9)

where µF and µB are the Lagrange multipliers resulting from the two constraints in (2.1).

We call them the chemical potential of fermions, and the chemical potential of bosons,

respectively. From (2.9), we can solve for n.

δ

δn

[
ETOT + µF

(
NF −

∫
dD~r n(~r)

)]
=
δ

δn
E

(F)
kin [n] +

δ

δn
E

(F)
pot[n]− µF

δ

δn

∫
dD~r n(~r)

=CD
~2

mF

δ

δn

∫
dD~r n

D+2
D +

δ

δn

∫
dD~r VF (~r)n(~r)− µF

=CD
~2

mF

D + 2

D
n

2
D + VF − µF = 0,

(2.10)

and we get

n =

[
(µF − VF )

DmF

(D + 2)~2CD

]D
2

+

. (2.11)

The “+” subscript indicates that we require n ≥ 0. The boson density ρ can also be

obtained from (2.9). However, instead of using the variation of ρ, it is simpler to vary
√
ρ.

δ

δ
√
ρ

[
ETOT + µB

(
NB −

∫
dD~r ρ(~r)

)]
=

δ

δ
√
ρ
E

(B)
kin [ρ] +

δ

δ
√
ρ
E

(B)
pot [ρ]− µB

δ

δ
√
ρ

∫
dD~r ρ

=
~2

2mB

δ

δ
√
ρ

∫
dD~r (∇√ρ)2 +

δ

δ
√
ρ

∫
dD~r VB(~r)ρ− µB

δ

δ
√
ρ

∫
dD~r ρ

=− ~2

2mB

δ

δ
√
ρ

∫
dD~r
√
ρ ∇2√ρ+ 2VB

√
ρ− 2µB

√
ρ

=− ~2

2mB

2∇2√ρ+ 2VB
√
ρ− 2µB

√
ρ = 0.

(2.12)
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It simply reduces to the Schrödinger equation of a single boson particle.

− ~2

2mB

∇2√ρ+ (VB − µB)
√
ρ = 0. (2.13)

This result is not surprising since we have not yet included any interaction between

fermions and bosons. At T = 0 all bosons condensate to the ground state and effectively

behave like a giant particle.

2.3 System in a One-Dimensional Harmonic Trap

As an example, we consider a one-dimensional system under harmonic trapping potentials

centred at origin with the same frequency ω for bosons and fermions,

VF =
1

2
mFω

2x2,

VB =
1

2
mBω

2x2.
(2.14)

Substitute it back to (2.11) and substitute the value for C1 from (1.26), we find

n(~r) =

[
(µF −

1

2
mFω

2x2)
8mF

~2π2

] 1
2

+

. (2.15)

The “+” subscript denotes that when the expression in the bracket is not positive, it is

evaluated as zero. In fact, one can see from (2.15), fermions form a centralized packet

around origin (see Fig. 2.1) with sharp edges located at

xC = ±
√

2µF
ω2

. (2.16)

Next we solve for the density of bosons. Substituting (2.14) back to (2.13) we get

− ~2

2mB

d2

dx2

√
ρ+

1

2
mBω

2x2√ρ = µB
√
ρ. (2.17)

This reduces to the familiar problem of a quantum harmonic oscillator. The system

reaches its ground state when

µB =
1

2
~ω, (2.18)

corresponding to a solution of
√
ρ being

√
ρ =

√
NB

(mBω

π~

) 1
4
e−mBωx

2/2~. (2.19)
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Hence the density of bosons is

ρ = NB

(mBω

π~

) 1
2
e−mBωx

2/~. (2.20)

It implies that, at T = 0, bosons form a Gaussian distribution centred at origin under a

harmonic trap (see Fig. 2.1).

Figure 2.1: Densities of bosons and fermions. The horizontal axis represents the spatial dimension and

the vertical axis represents the number of particles per unit length.

2.4 Energy Profile

Having derived the density of fermions n(~r) and the density of bosons ρ(~r), we will next

investigate how the energy of the system scales with the increasing particle number. This

is particularly important for the theory to be used by experimentalists.

There are two types of particles in the system existing independently of each other, thus
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we can investigate them separately. First we look at the total energy of bosons,

E
(B)
TOT = − ~2

2mB

∫
dx
√
ρ

d2

dx2

√
ρ+

∫
dx

1

2
mBω

2x2ρ

=

∫
dx
√
ρ

(
− ~2

2mB

d2

dx2

√
ρ+

1

2
mBω

2x2√ρ
)
.

(2.21)

According to(2.17) and (2.18), we have

E
(B)
TOT =

∫
dx
√
ρµB
√
ρ

=µBNB =
1

2
NB~ω.

(2.22)

The energy of bosons scales linearly with the number of bosons. Next we look at how the

energy of fermions scales with the number of fermions. From (2.15) we have

NF =

∫
dx n(x)

=

∫
dx

[
(µF −

1

2
mFω

2x2)
8mF

~2π2

] 1
2

+

.

(2.23)

Define xc and γ such that

µF ≡ 1

2
mFω

2x2
c , (2.24)

γ ≡ x

xc
. (2.25)

The integral becomes

NF =

∫ xc

0

dx

[
1

2
mFω

2(x2
c − x2)

8mF

~2π2

] 1
2

=

∫ 1

0

dγ x2
c

[
1

2
mFω

2(1− γ2)
8mF

~2π2

] 1
2

=
2mFω

~π
x2
c

∫ 1

0

dγ (1− γ2)
1
2

=
2mFω

~π
x2
c

π

4

=
mFω

2~
x2
c .

(2.26)
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The kinetic energy of fermions is given by

E
(F)
kin =

~2π2

24mF

∫
dx n3

=
~2π2

24mF

∫ xc

0

dx

[
1

2
mFω

2(x2
c − x2)

8mF

~2π2

] 3
2

=
~2π2

24mF

∫ 1

0

dγ xc

[
1

2
mFω

2x2
c(1− γ2)

8mF

~2π2

] 3
2

=
~2π2

24mF

x4
c

(
2mFω

~π

)3 ∫ 1

0

dγ
(
1− γ2

) 3
2

=
m2
Fω

3x4
c

16~
,

(2.27)

and the potential energy of fermions is

E
(F)
pot =

∫
dx VFn(x)

=
1

2
mFω

2

∫ xc

0

dx x2

[
1

2
mFω

2(x2
c − x2)

8mF

~2π2

] 1
2

=
1

2
mFω

2x3
c

2mFωxc
~π

∫ 1

0

dγ γ2
(
1− γ2

) 1
2

=
m2
Fω

3x4
c

~π
π

16

=
m2
Fω

3x4
c

16~
= E

(F)
kin .

(2.28)

The potential energy of fermions turns out to be exactly the same as its kinetic energy,

as expected from the virial theorem. Therefore, the total energy of fermions is given by

two times of its kinetic energy

E
(F)
TOT = 2E

(F)
kin =

m2
Fω

3x4
c

8~
(2.29)

Comparing with (2.26) we find that

E
(F)
TOT =

1

4
N2
F~ω (2.30)

The total energy of fermions grow quadratically with the number of fermions in the system.

Therefore the total energy of the system scales like

ETOT = NB~ω +
1

4
N2
F~ω (2.31)

We identify that two scaling laws exist in the system - one is linear with the number of

bosons; one is quadratic with the number of fermions. We will call them the “principle

scales” of the system. The method presented here relies on direct integrations. However,

as we will soon see, in a more complicated system, direct integrations are no longer
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practical. We will need to develop an alternative method to identify the principle scales

of the system.

2.5 Scale Transformation

We consider a scale transformation on the densities of fermions and bosons.

n(x)→ λα+1n(λx),

ρ(x)→ λα+1ρ(λx).
(2.32)

This transformation is specially designed such that the number of particles scales with λα

(for λ 6= 0). For example, after the scale transformation the number of fermions becomes

NF →
∫

dx λα+1n(λx) = λα
∫

d(λx) n(λx) = λαNF . (2.33)

Similarly,

NB → λαNB. (2.34)

Various energy terms also scale accordingly under the transformation. Since fermions and

bosons are non-interacting at this stage, we will talk about them separately. The kinetic

energy of fermions scales according to

E
(F)
kin → C1

~2

mF

∫
dx λ3α+3[n(λx)]3

=C1
~2

mF

λ3α+2

∫
d(λx) [n(λx)]3

=λ3α+2E
(F)
kin .

(2.35)

Its potential energy scales like

E
(F)
pot →

∫
dx

1

2
mFω

2x2λα+1n(λx)

=λα−2

∫
d(λx)

1

2
mFω

2(λx)2n(λx)

=λα−2E
(F)
pot.

(2.36)

Hence, the total energy of fermions becomes

E
(F)
TOT = λ3α+2E

(F)
kin + λα−2E

(F)
pot, (2.37)

and the system reaches its ground state when λ = 1. If the number of fermions is fixed,

any first order change of the total energy resulting from a variation of λ will vanish at

λ = 1. For a given potential NF entirely determines the total energy of the ground state.

15



It follows that

δNF
∂E

(F)
TOT

∂NF

= δ
(
λ3α+2E

(F)
kin + λα−2E

(F)
pot

)
. (2.38)

Taking derivative of λ on both sides, we get

dNF

dλ

∣∣
λ=1

∂E
(F)
TOT

∂NF

=
dλ3α+2

dλ

∣∣
λ=1

E
(F)
kin +

dλα−2

dλ

∣∣
λ=1

E
(F)
pot. (2.39)

Evaluating the derivatives, and setting λ = 1 we get

αNF
∂E

(F)
TOT

∂NF

= (3α + 2)E
(F)
kin + (α− 2)E

(F)
pot. (2.40)

We have the freedom to choose α. Let α = 0,

0 = 2E
(F)
kin − 2E

(F)
pot. (2.41)

One immediately finds that the kinetic energy of fermions is the same as the potential

energy of fermions, a result that we have observed earlier. Next let α = 2, we get

NF
∂E

(F)
TOT

∂NF

= 4E
(F)
kin . (2.42)

Define a “power operator” Px of the form

Px ≡ x
∂

∂x
, (2.43)

it effectively picks up the power of x in its operand as an eigenvalue. For example,

(x
∂

∂x
)xα = α xα. (2.44)

From equations (2.4-2.7), we know

P~E
(F)
TOT = 2E

(F)
kin

PωE
(F)
TOT = 2E

(F)
pot

PmF
E

(F)
TOT = −E(F)

kin + E
(F)
pot.

(2.45)

Comparing with (2.41), we have

PmF
E

(F)
TOT = 0,

P~E
(F)
TOT = PωE

(F)
TOT.

(2.46)

We find that E
(F)
TOT is independent of mF and its powers in ~ are always the same as its

powers in ω, implying the energy to be a function of ~ω. Comparing with (2.42),

2P~E
(F)
TOT = PNF

E
(F)
TOT = 2PωE

(F)
TOT. (2.47)
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Its powers in NF are twice of its powers in ~, yielding the total energy of fermions to be a

function of N2
F~ω, a result that we have observed before through direct integration. One

can carry out the same argument for boson and easily get E
(B)
TOT being a function of NB~ω.

This method does not require integrations and is capable of deriving the principle scales

of the system, hence we will use it to study the principle scales of interacting system in

the next chapter.
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Chapter 3

Mixture of Interacting Bosons and
Fermions

3.1 Energy Functional

The system becomes more interesting when we allow fermions to form diatomic bosons.

Then, one immediately finds that the number of fermions and the number of bosons are no

longer conserved separately. Instead, a unique combination of the two particle numbers

is kept as a constant,
1

2
NF +NB ≡ N = Const.. (3.1)

We now introduce an interaction term to the total energy of the system to represent the

interaction between two particles. (2.8) then has an additional term EI ,

ETOT = E
(F)
kin [n] + E

(F)
pot[n] + E

(B)
kin [ρ] + E

(B)
pot [ρ] + EI [n, ρ]. (3.2)

However, to our knowledge there is no literature on the explicit form of this additional

interaction energy functional. We propose that it is of the following form,

EI [n, ρ] = −
∫

dD~r Bρ+ A

∫
dD~r
√
ρn. (3.3)

The first term in (3.3) is well justifiable. We know that each boson is a composition of

two fermions via chemical bond, and the energy associated with each bond is given by

the binding energy B. The binding energy density is therefore product of binding energy

and the density of bosons. The second term in (3.3), instead, has no classical analogue.

Its justification lies in the formalism of second quantization of quantum mechanics which

motivates the coupling of
√
ρ and n.

In second quantization approach, instead of dealing directly with wavefunctions one deals

with creation and annihilation operators. We can create a boson using boson creation

operator b̂†

b̂†|NB〉 = const.|NB + 1〉. (3.4)
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The number in the ket indicates the number of particles in the system. Similarly one can

remove a fermion from the system using the fermion annihilation operator f̂ .

f̂ |NF 〉 = const.|NF − 1〉. (3.5)

Consider a process where two fermions are destroyed and one boson is created, it can be

represented as

b̂†f̂ f̂ |NB, NF 〉 = const.|NB + 1, NF − 2〉. (3.6)

Since such an interpretation corresponds, in Schrödingers picture, to an overlap of two

fermions and one boson wavefunctions, it is suggestive that the interaction process can

be approximated by

b̂†f̂ f̂ −→ ψbψfψf , (3.7)

where ψb is the wavefunction of boson and ψf is the wavefunction of a fermion. Hence,

the energy term is proportional to the product of the three wavefunctions with coupling

constant A. This is, of course, not meant to be a rigorous justification, but it is suggestive

enough that one should make an attempt to compute its consequence. This term will be

referred to as the overlapping term or overlapping effect in the later sections.

With the energy functional known, one may want to directly apply variational theorem

to get the densities of fermions and bosons. However, this is not advisable at this stage

because the system may not even have a ground state energy (i.e. not bounded from

below). As a first step, one has to check the boundedness of the Hamiltonian.

3.2 Boundedness of Hamiltonian

First let us take a closer look at the Hamiltonian of the system as in (3.2),

ETOT = E
(F)
kin [n] + E

(F)
pot[n] + E

(B)
kin [ρ] + E

(B)
pot [ρ] + EI [n, ρ]

= CD
~2

mF

∫
dD~r) n

D+2
D +

∫
dD~r) V (~r)n(~r)

+
~2

2mB

∫
dD~r

(
∇
√
ρ(~r)

)2

+

∫
dD~r VB(~r)ρ(~r)

−
∫

dD~r Bρ+ A

∫
dD~r
√
ρn.

(3.8)

Evidently only terms that are negative contribute to possible unboundedness, and one

can easily see that term −
∫

dD~r Bρ is bounded from below.

−
∫

dD~r Bρ = −BNB ≥ −BN. (3.9)
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Hence, for bounded potential energies (then, without loss of generality, VF , VB ≥ 0) the

only term that matters is the conversion energy when A < 0.

A

∫
dD~r
√
ρn. (3.10)

In fact one can also show that this term is bounded from below for D = 1. Let A′ =

−A > 0 and consider the combination of two terms as follows and we can claim that

ETOT > C1
~2

mF

∫
dx n3 − A′

∫
dx
√
ρn−BN. (3.11)

Using Cauchy-Schwarz inequality on the second term,

−A′
∫

dx
√
ρn ≥ −A′

(∫
dx ρ

) 1
2
(∫

dx n2

) 1
2

≥ −A′
√
N

(∫
dx n2

) 1
2

.

(3.12)

We can apply Cauchy-Schwarz inequality on it again and get

−A′
√
N

(∫
dx n2

) 1
2

≥ −A′
√
N

[(∫
dx n

) 1
2
(∫

dx n3

) 1
2

] 1
2

≥ −A′N
3
4

(∫
dx n3

) 1
4

.

(3.13)

Substitute (3.13) back to (3.11) and let

κ ≡
(∫

dx n3

) 1
4

, (3.14)

we get

ETOT ≥ C1
~2

mF

κ4 − A′N
3
4κ−BN, (3.15)

and the right hand side is clearly a polynomial of κ and bounded from below. Hence we

have shown that the ground state energy of such Hamiltonian exists and one can now

apply Hohenberg-Kohn variational theorem.

3.3 Methods of Variation

We know that when the system resides in the ground state, the total energy is stationary

with respect to variations of fermion and boson densities. With the new constraint given
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by (3.1), instead of having two different Lagrange multipliers, we have only one.

δ

δn

{
ETOT + µ

[
N −

∫
dD~r

(
1

2
n+ ρ

)]}
= 0,

δ

δρ

{
ETOT + µ

[
N −

∫
dD~r

(
1

2
n+ ρ

)]}
= 0.

(3.16)

Here µ is the new Lagrange multiplier. Solving it using the same method as non-

interacting case, we get the density of fermions.

δ

δn

[
ETOT + µ

(
N −

∫
dD~r (

1

2
n+ ρ)

)]
=CD

~2

mF

δ

δn

∫
dD~r n

D+2
D +

δ

δn

∫
dD~r VF (~r)n(~r)

+ A
δ

δn

∫
dD~r
√
ρ n− 1

2
µ

=CD
~2

mF

D + 2

D
n

2
D + VF + A

√
ρ− 1

2
µ = 0,

(3.17)

yielding

n =

[
(
1

2
µ− VF − A

√
ρ)

DmF

(D + 2)~2CD

]D
2

+

. (3.18)

Similarly we get the density of bosons by variation w.r.t.
√
ρ.

δ

δ
√
ρ

[
ETOT + µ

(
N −

∫
dD~r (

1

2
n+ ρ)

)]
=

~2

2mB

δ

δ
√
ρ

∫
dD~r (∇√ρ)2 +

δ

δ
√
ρ

∫
dD~r VB(~r)ρ

−B δ

δ
√
ρ

∫
dD~r ρ+ A

δ

δ
√
ρ

∫
dD~r
√
ρ n− µ δ

δ
√
ρ

∫
dD~r ρ

=− ~2

2mB

2∇2√ρ+ 2VB
√
ρ− 2B

√
ρ+ A n− 2µ

√
ρ = 0,

(3.19)

yielding

− ~2

2mB

∇2√ρ+ (VB −B − µ)
√
ρ = −1

2
An. (3.20)

The introduction of boson-fermion interaction effectively adds an inhomogeneity to (3.20)

and at the same time, it modifies the trapping potential that fermions see into an effective

potential,

Veff = VF + A
√
ρ. (3.21)
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The effective chemical potentials of fermions and bosons, in comparison with (2.11)-(2.13),

are related to the combined Lagrange multiplier via

µ
(F)
eff =

1

2
µ,

µ
(B)
eff = µ+B,

2µ
(F)
eff = µ

(B)
eff −B.

(3.22)

If we adjust A→ 0, we will effectively reduce to the non-interacting problem with chemical

potentials of bosons and fermions connected in a specific way as governed by (3.22).

3.4 System in a One-Dimensional Harmonic Trap

As what we did for non-interacting system, we will again focus on a one-dimensional

system (i.e. D = 1) to simplify the problem. External harmonic trapping potentials are

applied to both bosons and fermions

VF =
1

2
mFω

2x2,

VB =
1

2
mBω

2x2.
(3.23)

Substituting it back to (3.18-3.20) we get

n =

[
(
1

2
µ− 1

2
mFω

2x2 − A√ρ)
32mF

h2

] 1
2

, (3.24)

− ~2

2mB

d2

dx2

√
ρ+ (

1

2
mBω

2x2 −B − µ)
√
ρ = −1

2
An. (3.25)

Clearly (3.25) is a nonlinear differential equation with no obvious analytic solutions. To

extract some useful information from this set of equations, we consider two cases according

to the value of A that we choose.

3.4.1 No Overlapping Effect

We first investigate what will happen when A = 0. We call it “no overlapping” because

when A = 0, the overlapping term in the total energy functional no longer contributes.

(3.24-3.25) reduce to

n =

[
(
1

2
µ− 1

2
mFω

2x2)
32mF

h2

] 1
2

+

(3.26)

− ~2

2mB

d2

dx2

√
ρ+ (

1

2
mBω

2x2 −B − µ)
√
ρ = 0 (3.27)
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It seems that it reproduces the non-interacting problem discussed earlier, but in fact this

is not the case. Instead of having two independent chemical potentials µF and µB, now

there is only one chemical potential µ connecting the two types of particles. In other

words, the particles can still inter-convert but just that the conversion is “free of charge“

in a way that it does not cost any extra energy other than the binding energy B. To

solve for the densities, one identifies that (3.27) is simply the familiar one dimensional

harmonic oscillator equation with a ground state yielding

µ =
1

2
~ω −B. (3.28)

When B ≥ 1
2
~ω, the chemical potential becomes non-positive, which makes fermions

distribution vanish because the density function n(x) has to be strictly positive. Hence all

fermions will form bosons and condensate to the ground state of bosons. When B ≤ 1
2
~ω,

the fermion distribution becomes non-vanishing.

n(x) =

[
(
1

4
~ω − 1

2
B − 1

2
mFω

2x2)
32mF

h2

] 1
2

. (3.29)

xc, defined to be the boundary of fermion distribution, is then related to B via

1

2
mFω

2x2
c =

1

4
~ω − 1

2
B =⇒ xc =

√
~ω − 2B

2mFω2
. (3.30)

Therefore, as the binding energy gets larger, the support of the fermion density gradually

decreases and eventually vanishes whenB = 1
2
~ω. For fixed B the total number of fermions

remains fixed when the total particle number N , as defined in (3.1), varies. However this

does not apply to bosons since (3.27) is a linear differential equation whose solution is only

determined up to an multiplicative constant. The latter is only determined by invoking

normalization condition. Therefore given a fixed N , we can then uniquely determine the

boson density to be

√
ρ =

√
NB

(mBω

π~

) 1
4
e−mBωx

2/2~

=

√
N − 1

2
NF

(mBω

π~

) 1
4
e−mBωx

2/2~.

(3.31)

This indicates when we add in new particles to the system, all of them become bosons

although there is a non-vanishing fermion density. This is plausible as fermions cannot

occupy the same state. As the fermion number increases it gradually requires more energy

and becomes energetically unfavorable to be fermions. This trend is illustrated in Fig.

3.1. It shows that the number of fermions remains at a constant while the number of

bosons increases linearly as the total number of particle increases.
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Figure 3.1: NF and NB against N . The solid line represents the number of bosons in the system, and

the dashed line represents the number of fermions.

3.4.2 Weak Overlapping Effect

Next we investigate the case when A is not zero but a very small number (i.e. |A| << 1)

such that the density of bosons remains approximately unaffected. We call the non-

interacting solutions obtained in (3.29) and (3.31) as n0 and ψ0, and we will calculate the

first order corrections to the fermion density. Let the first order corrected fermion density

be n1, we have

n1 =

[
(
1

2
µ− 1

2
mFω

2x2 − Aψ0)
32mF

h2

] 1
2

. (3.32)

Using (3.31) one gets

n1 =

[
(
1

2
µ− 1

2
mFω

2x2 − A
√
NB

(mBω

π~

) 1
4
e−mBωx

2/2~)
32mF

h2

] 1
2

. (3.33)

The fermions are effectively exposed to a potential

Veff(x) =
1

2
mFω

2x2 + A
√
NB

(mBω

π~

) 1
4
e−mBωx

2/2~. (3.34)
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After a superposing with a Gaussian function, the effective potential, instead of having

zero potential at origin, now has a slightly positive potential with magnitude

E0 = A
√
NB

(mBω

π~

) 1
4
. (3.35)

As a consequence, fermions no longer peak at the origin, but instead, they form two peaks

at some distance from the origin. We find the location of peaks by requiring

d

dx
Veff = 0, (3.36)

yielding

x = ±

√
2~
mBω

ln

(
mBE0

mF~ω

)
. (3.37)

In the case when the overlapping effect is not weak, we can only rely on numerical tools

to get approximate solutions of the densities (discussed in the next chapter). However,

if we are only concerned about how the total energy of system scales with the particle

number, we can apply the scale transformation to find the principle scales of the system.

3.5 Scale Transformation

We apply the same scale transformation to the densities of fermions and bosons

n(x)→ λα+1n(λx),

ρ(x)→ λα+1ρ(λx).
(3.38)

The conserved quantity N scales according to

N = NB +
1

2
NF → λαN. (3.39)

We have discussed in Chapter 2 that the kinetic energy and potential energy of fermions

scale by

E
(F)
kin → λ3α+2E

(F)
kin ,

E
(F)
pot → λα−2E

(F)
pot.

(3.40)

By the same method we can find how other terms in the total energy scale,

E
(B)
kin → λα+2E

(B)
kin ,

E
(B)
pot → λα−2E

(B)
pot .

(3.41)

25



Define EB and EA to be

EB = −
∫

dx Bρ,

EA =

∫
dx A

√
ρn,

(3.42)

and they scale according to

EB → λαEB,

EA → λ
3
2
α+ 1

2EA.
(3.43)

When λ = 1, variational principle requires that the first order changes of ETOT must be

entirely resulted from the first order changes in the particle number. We call ETOT as E

for now. We have

αN
∂E

∂N
= (3α + 2)EF

K + (α + 2)EB
K + (α− 2)EF

P

+ (α− 2)EB
P + αEB + (

3

2
α +

1

2
)EA.

(3.44)

Let α = 0 we get

0 = 2EF
K + 2EB

K − 2EF
P − 2EB

P +
1

2
EA. (3.45)

Let α = 2 we get

N
∂E

∂N
= 4EF

K + 2EB
K + EB +

7

4
EA. (3.46)

making use of the power operators defined in (2.43), we have

PNE = 4EF
K + 2EB

K + EB +
7

4
EA;

P~E = 2EF
K + 2EB

K ;

PωF
E = 2EF

P ;

PωB
E = 2EB

P ;

PmF
E = −EF

K + EF
P ;

PmB
E = −EB

K + EB
P ;

PBE = EB;

PAE = EA.

(3.47)

Note that we have distinguished the two frequencies in the trapping potentials and the

masses of the two types of particles in order to attain wider generality. The number of

variables to keep track doubles and hence we need a systematic treatment. System of

linear equations is often efficiently solved via linear algebra techniques, so we propose

the following linear algebra procedures to solve this problem. First we collect the linear
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dependence of power operators on energy terms in a matrix form,

4 2 0 0 1 7
4

2 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

−1 0 1 0 0 0

0 −1 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2 2 −2 −2 0 1
2


. (3.48)

The rows represent PN , P~, PωF
, PωB

, PmF
, PmB

, PB, PA as in (4.3) and the last row

represents the “null vector” given in (4.2). The columns represent EF
K , EB

K , EF
P , EB

P , EB

and EA, respectively. In order to find the inter-dependence of different power operators,

we need to find the nullspace of the transpose of the matrix. It turns out that the nullspace

is spanned by three vectors v1, v2 and v3, writing them in their row forms

v1 =

(
0,−1, 1, 1, 0, 0,−1

2
, 1, 1

)
,

v2 =

(
1,−1,−1, 0, 2, 0,−1,−7

4
, 0

)
,

v3 =

(
0,

1

2
,−1

2
,−1

2
, 1, 1, 0, 0, 0

)
.

(3.49)

Each of these vectors represents an inter-dependence among the power operators. Note

that the last element of each vector does not matter since it represents a “null vector”,

we simply ignore them. To eliminate the redundancies in the equations we form a new

matrix from these three row vectors and compute the reduced row-echelon form of the

matrix,  1 0 −2 −1 0 −2 −1 −3
4

0 1 −1 −1 0 0 0 1
2

0 0 0 0 1 1 0 −1
4

 . (3.50)

Each row of this matrix can be translated into an equation. For example, the first row

represents

PNE = −2PωF
E − PωB

E − 2PmB
E − PBE −

3

4
PAE. (3.51)

An easy way to solve it is, instead of writing out the equations in their full-forms, we

multiply −1 to all the elements and replace the first non-zero element of each row by a

“∗”. We get  ∗ 0 2 1 0 2 1 3
4

∗ 1 1 0 0 0 −1
2

∗ −1 0 1
4

 (3.52)
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Now we read the matrix column-by-column. Each number in a column represents the

power of the “∗” variable that goes with current variable. For example, column 3 repre-

sents ωF , the column is read as ωF goes with N2 and ~1. By this methods, we get that

the total energy of the system depends on five specific combinations of the parameters in

the system,

N~ωB, N2~ωF , N2mB

mF

, NB, N
3
4A~−

1
2m

1
4
F . (3.53)

Hence, the full expression of the energy must be a function of these five parameters.
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Chapter 4

Numerical Approach

4.1 Approach

We now consider (3.24 - 3.25) numerically. First, define a critical distance xc such that

µ = mFω
2x2

c . (4.1)

Then we know for sure that for A ≥ 0 and x > xc, the fermion density vanishes, and the

density of bosons reduces to a second-order linear differential equation,

− ~2

2mB

d2

dx2

√
ρ+ (

1

2
mBω

2x2 −B − µ)
√
ρ = 0. (4.2)

If we define

k ≡ mBω

~
,

z ≡
√

2kx,

a ≡ −µ+B

~ω
,

(4.2) becomes
d2

dz2

√
ρ− (

1

4
z2 + a)

√
ρ = 0. (4.3)

Differential equations of this form have well known solutions in terms of the parabolic

cylinder functions, and the two independent solutions of (4.3) are given by U(a, z) and

V (a, z)(7). The explicit forms of the two functions are not relevant in what follows, it is

their asymptotic behaviours for large z that are important. If z →∞,

U(a, z) → e−
z2

4 z−a−
1
2 , (4.4)

V (a, z) →
√

2

π
e

z2

4 za−
1
2 , (4.5)
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one finds that U(a, z) decays to zero for large z whereas V (a, z) increases exponentially.

Hence, the solution
√
ρ in the region x > xc can only be

√
ρ = fU(a, z), (4.6)

where f is an arbitrary multiplicative constant which will be referred to as the “shooting

parameter”. We can now choose any point x0 in the region x > xc, substitute it into (4.6)

along with an arbitrary choice of shooting parameters f and start numerical integration

of (3.25) from x = x0 towards x = −x0. Among the results obtained, we first pick the

solutions that are strictly positive, since
√
ρ cannot be negative, and then we select those

that are even, since the system is symmetric about the origin.

4.2 Density Profile

Following the procedures described in Section 4.1, we identify solutions of different kinds

as we vary the chemical potential µ. Fig. 4.1 shows a solution with one fermion peak

centred at the origin and two boson peaks located at some distance away from the origin.

Figure 4.1: A density plot of fermions and bosons. The solid line represents the density of fermions and

the dashed line represents the density of bosons.

Fig. 4.2 shows a different kind of solution which has two fermion peaks located at some

distance away from origin and a Gaussian-like boson distribution centred at the origin.
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Figure 4.2: A density plot of fermions and bosons. The solid line represents the density of fermions and

the dashed line represents the density of bosons.

There are also solutions with three fermion peaks, as shown in Fig. 4.3

Figure 4.3: A density plot of fermions and bosons. The solid line represents the density of fermions and

the dashed line represents the density of bosons.
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An alternating pattern of bosons and fermions is observed in all solutions obtained, which

shows that the bosons and fermions behave, to some extend, “mutually exclusive”. This

is in fact not unexpected. When the density of fermions overlaps significantly with the

density of bosons, the overlapping term in the total energy increases (since we set A > 0)

and becomes energetically unfavorable. Hence, it is expected that the densities of bosons

and fermions will be spatially “exclusive” in the ground state.

Each solution that we obtained is associated with two parameters - the shooting param-

eter f and the chemical potential µ. In the next section we will explore how these two

parameters are related.

4.3 Shooting Parameters

If we collect all the “successful” shooting parameters f and plot them against their cor-

responding xc - a quantity that is related to µ through (4.1). We get the graph shown in

Fig. 4.4.

Figure 4.4: Shooting parameter f against xc

It shows that each chemical potential does not correspond to a unique shooting parameter

f since the plot consists of many different branches. The missing points along the branches

are likely to be resulted from numerical errors. At xc ≈ 3.3× 10−4m, the system emerges

from one branch to three branches. We will take a closer look at this region and examine

how the densities differ along different branches. As shown in Fig. 4.5, the two lower

branches seem to originate from a single point, and the lowest branch disappears after
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reaching f = 0.

Figure 4.5: Shooting parameter f against xc. A closer plot at xc ≈ 3.3× 10−4m

If we take shooting parameters from three different branches and plot their densities, we

will find that they all correspond to different kinds of densities. For example, the top

branch in Fig. 4.5 corresponds to densities of the same kind as in Fig. 4.1 (i.e. one single

fermion peak located at the origin), while the lowest branch has densities of the same kind

as in Fig. 4.2 (i.e. two fermion peaks located at some distance away from the origin).

However, not all of the branches represent the true ground state of the physical system

because different branches are likely to have different total energies, and also from our

experience in quantum mechanics, the more nodes there are in the system the higher the

total energy is. To verify this we have to study how the total energy of the system changes

with the chemical potential.

4.4 Energy Profiles

Knowing the densities of fermions and bosons, one can easily calculate the total energy of

the system. The shooting parameters are plotted against xc in the nearby region of xc =

3.3 × 10−4m (where branching occurs) and are shown in Fig. 4.6(a). The corresponding

total energies ETOT are then plotted against N , the number of particles, and are shown

in Fig. 4.6(b).
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Figure 4.6: f against xc (left), ETOT against N (right)

The reason that ETOT is plotted against N instead of xc is that the chemical potential

is only an auxiliary parameter that we set to minimize the total energy, and it is not a

physical quantity, whereas the total number of particles is a physical quantity that can

be measured directly in experiments. It can be easily seen that the three branches of in

Fig. 4.6(a) also correspond to three branches in Fig. 4.6(b). Clearly, the lowest branch

in Fig. 4.6(b) represents the ground state energies curve , and it turns out that this

branch corresponds to densities of the same kind as Fig. 4.1 (with a single fermion peak

at the origin). This matches our expectation that the densities with fewer nodes are likely

to have a lower total energy. The ground state of the system, based on the numerical

results that we have gathered so far, always seem to correspond to a single fermion peak

at the origin with two boson peaks at some distance away from the origin (See Fig. 4.1).

This formation of a boson shell that encloses fermions in its center can be experimentally

verified.
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Chapter 5

Future Works

The present work explored a simple physical system - a mixture of inter-converting bosons

and fermions. To illustrate how density functional theory sheds light on the problem we

made some physically motivated simplifications. First of all, the system is constrained in

one-dimensional space, which, although greatly simplified the calculation, also to some

extend, may have contributed to the difficulty of the problem. One easily see that when

we change the system to two-dimensional, the differential equation for bosons becomes

an ordinary linear differential equation w.r.t
√
ρ (3.18, 3.20). This is certainly worth

exploring.

We have, in fact, not justified so far why we restrict the parameter A to be positive. We

have proven in a one-dimensional system that the Hamiltonian is bounded from below

even if A < 0. The dynamics can be even richer when A < 0, but its physical implication

may need a careful re-examination because physically it implies a decrease in energy,

hence a large stability, when bosons and fermions are heavily packed together. There

are many other contributions to the total energy of the system, for example, the contact

potential and dipole-dipole interaction. We ignored these terms for simplicity and in

order to prevent them from interfering our study on conversion process. However, most

certainly these terms do matter in practice. Any experiments that attempt to verify the

results presented should take into consideration on the side effects from the other energy

terms.

As we mentioned before, the ansatz that we proposed to be responsible for the particle

conversion process is more of an educated guess than a derived result. Experimental

attempts will greatly help to validate this approach, and variation of energy with respect

to particles is a good starting point of experimental testing.
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Chapter 6

Conclusion

Fermions to bosons conversion, a process that has rarely been previously studied in the

context of density functional theory, is explored both analytically and numerically in the

paper. The calculation is primarily based on an ansatz that is proposed to account for

the interaction energy during particle conversion. It is of form

EI [n, ρ] = −
∫

dD~r Bρ+ A

∫
dD~r
√
ρn (6.1)

With the introduction of this term, the dynamics becomes surprisingly rich including

decentralization of particles, formation of shells and possible phase transitions as number

of particles changes. Without doubt the density functional approach provides a unique

insight into the dynamics of particle exchange process. It not only derives the spatial

density distributions of bosons and fermions, but also shed light on how energy scales

as the number of particles varies, an important property that experimentalists may find

interesting.
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