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Abstract 
 

Dark energy may have been widely accepted as the prominent candidate to explain our 

accelerating universe, but recent studies have shown that      gravity models may be a 

better solution. These gravity models which stemmed out from the mathematical 

framework of the teleparallel equivalence of general relativity (TEGR) have been shown 

to fit several cosmological observational constraints better than the use of a 

cosmological constant. In this study, I proposed three different two-parameter      

functions, and proceed to verify whether they explain the accelerating universe better 

than the Lambda Cold Dark Matter (ΛCDM) model. This is done by using two-

dimensional    tests to find their best-fit model parameter   and the mass density 

parameter at present day     , using three observational constraints: the Type Ia 

Supernovae Test (SNE), the combined Cosmic Microwave Background and Baryonic 

Acoustic Oscillation Test (CMB/BAO) and the Observational Hubble Data (OHD). 

Various analytical, computational and numerical methods have been used in the study, 

and the results showed that while a reciprocal power      model fits the observational 

constraints the best, its results seemed indistinguishable from the ΛCDM model. The 

value of      obtained from the analysis is consistently found to be around 0.29. 
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Chapter 1 

 

INTRODUCTION 

 

1.1 The Universe As We See It 
The universe that we live in had always been a mystery to mankind. How it began, what 

is happening to it now, and what will it become in the future: these are just a few of the 

questions that scientists have been working hard to sought for a reliable answer. These 

are important questions, as a further understanding about this mysterious black void 

space is essential for the survival of the human race in the distant future. A better 

understanding on our universe might be able to save us from catastrophes that we do 

not foresee. 

 

To understand the universe, we first have to observe it. After observing it, we 

then need to come up with physical theories to explain why it behaves as it is. Since the 

renaissance era of science and technology, physicists have made huge progress into 

understanding it better. Just 100 years ago, we had Albert Einstein coming up with 

general relativity to explain the universe as a geometrical structure; 50 years later, we 

have set our feet on the moon. Not longer than 20 years ago, we found out that the 

universe not only has been expanding, but expanding at an accelerating rate. And in the 

recent years, many scientists and research groups has been working hard to explain this 

acceleration using various kinds of theories, and fitting these theories with various 

kinds of observational constraints. 

 

 While general relativity is well known by most students who study physics, it has 

a lesser known counterpart known as teleparallel gravity, which also serves the same 

purpose to explain the shape and structure of the universe in mathematical equations. 

General relativity and teleparallel gravity are fundamentally and theoretically different 

from one another: in simple words, general relativity uses curvature to describe gravity, 

while teleparallel gravity uses torsion instead. Teleparallel gravity is not new: it had 

been around since the 1920s, and currently many physicists have revived this theory to 

work on new alternatives to the cosmological constant. One prominent method is to 

modify teleparallel gravity into      gravity (also known as torsion gravity), in which 

the whole bulk of this thesis will be about. 
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1.2 Motivation 
In the recent years, there are many online literatures which use      gravity to explain 

the accelerating universe. In the recent 2010, Wu et al had studied the observational 

constraints on      gravity.1 From then on,      gravity models had been studied by 

various groups of people in various aspects: Keisuke and team studied the 

perturbations of      gravity,2 Wu and team proceeded to study its phantom divide line 

crossing,3 but most research groups introduced new distinct      functions to fit our 

current observational constraints. 

 

 This project is motivated by the ongoing researches on      models, and the 

intention to study how      functions are formulated, what are the other possible forms 

of      functions, which      function fits our observational tests the best, and 

ultimately to determine whether      gravity is a promising alternative to dark energy. 

Thus in this project, the teleparallel equivalence of general relativity will be studied, a 

few new      functions will be formulated, and    tests will be used against 

observational data to test the validity of these functions. After comparing them with one 

another, a conclusion will be drawn. 

 

 

1.3 Outline of this Thesis 
This thesis will begin with a theoretical overview of general relativity, and will include 

the equations and concepts needed to understand the structure of the universe. Then 

the teleparallel gravity theory will be introduced, it will be compared with general 

relativity so that the reader will know their similarities and its advantages over general 

relativity. After that, the discussion will turn to how general relativity and teleparallel 

gravity have to be modified in order to account for the accelerating universe, and thus 

the introduction of dark energy (the cosmological constant), modified-gravity / 

modified-matter theories, and finally the introduction of      gravity. 

 

 After laying down the foundations of the theory, this thesis will proceed to 

discuss how these theories / models can be verified, which is through observational 

constraints. 5 different observational constraints will be discussed, and information on 

the sources of these tests, the data measured and the reliability of the tests will be 

presented. These 5 observational constraints are the type Ia supernovae test (SNE), 

cosmic microwave background (CMB), baryonic acoustic oscillation (BAO), observed 

Hubble data (OHD) and gamma ray bursts (GRB).  

 

At this point, the reader should have sufficient knowledge on the background 

and theory of      gravity, thus the methodologies will be introduced: the thesis 
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proceeds to explain the computational, statistical and numerical methods used to obtain 

the results of this work. These methods include introduction to the    tests, numerical 

root finding methods and integration methods. This thesis will then end with the 

tabulation of results, the discussion of results, the conclusion and the suggestions for 

future work. 

 

  



5 
 

  



6 
 

Chapter 2 

 

THEORETICAL OVERVIEW OF      GRAVITY 

 

2.1 Introduction 
This section will be a step-by-step process to help the readers understand the basics 

of      gravity. Instead of jumping straight into explaining what      gravity is, this 

section will start with an overview of general relativity, which is what most readers are 

more familiar with. Teleparallel gravity will be introduced after the foundations of 

general relativity have been laid: its history, its underlying principles and the 

motivation to study it will be discussed. It will later be compared with general relativity 

so that the reader will identify the differences and similarities between the two theories. 

After that, the reader will be introduced to the accelerating universe and the need to 

modify these theories to explain this phenomenon. This is where      gravity comes 

into the picture: it is one of the many methods used to explain the cosmic acceleration 

through the approach of teleparallel gravity. There are also many approaches from 

general relativity to explain the cosmic acceleration too, but only the cosmological 

constant and      gravity will be discussed in this work, and the reader can compare 

their similarities with      gravity. 

 

 

2.2 General Relativity 
 

The Metric 

In general relativity, it is said that space and time are treated with equal footing. Gravity 

is introduced as a geometrical structure, and our equations work in a 4-dimensional 

spacetime, with coordinates          . General relativity suggests that the gravitational 

field and force that we know is generated from the geometry of spacetime itself, and all 

the information on how gravity will act on the mass particles held in that particular 

space will be contained in the metric tensor. For example, a flat spacetime follows the 

metric of the Minkowski space: 

 

                      (1) 

 

As it can be seen, a metric is something like a coordinate system, and in this case, 

it is just a Cartesian coordinate, with an extra time coordinate having a different sign 
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from the rest. The universe that we know however, might not be flat as Minkowski 

suggested, and it might not even be static. Most scientists would agree that the best 

metric to describe our current universe is the Friedman-Lema  tre-Robertson-Walker 

(FLRW) metric, 

                
   

     
                  (2) 

 

where          characterizes the flatness of the universe, being closed, flat and open 

universe respectively. A closed universe has its geometry like the surface of a sphere, it 

will expand, and eventually contract back again to a singularity, also known as the ‘Big 

Crunch’. The open and flat universe on the other hand, would expand forever, and might 

end up with a ‘Big Freeze’ or a ‘Big Rip’ at different rates.4      is the scale factor, it is 

assumed to be a time dependent radius of the universe. Thus if we have a universe 

expanding at constant velocity, it will have a positive first derivative, and so on. The 

FLRW metric defines the geometry of our current universe, and current observations 

have shown that     seems to be the best fit.5 

 

Curvature 

The open-ness, close-ness and flat-ness of the universe are concepts of curvature. A 

closed universe has positive curvature, an open universe has negative curvature, and a 

flat universe has zero curvature. The curvature has significant effects on how vectors 

are transported from one point to another, affecting where it should be pointing based 

on how the space is curved. Consider a vector      . In Euclidean geometry, we know 

that when the vector moves from    to       , we get the small change in    to be 

                  
       

   
   . However in a curved space (non-Euclidean 

geometry), we need to include the concept of parallel transport, which is to maintain the 

direction of the vector when we move along a ‘straight’ line according to that space.5 

The changes to the components of    through parallel transport will be proportional not 

only to the displacement    , but also the original component    itself. Thus the vector 

moving from    to        would have a derivative known as the covariant derivative, 

 

   
  

   

   
    

    (3) 

 

The mathematical rule here, is that this covariant derivative must always 

transform as a tensor.    
  is known as the Christoffel symbol, collectively they are 

components of the Levi-Civita Connection.    
  can be derived from the equation of 

motion, and is related to the metric through the equation 
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                      (4) 

 

where    
 

   
, and     is the FLRW metric, which is just equation (2), or more 

precisely,            
     

     
              and                  . The index 

0 refers to the time component, and the indices 1, 2 and 3 refer to the space component. 

In general relativity, this Levi-Civita connection is formulated with the conditions that 

spacetime is torsionless     
     

   and that the metric is preserved          . 

Therefore, a spacetime metric with non-zero Christoffel symbols equates a curved 

spacetime.  

 

Having said that, whether a space is curved is more rigorously defined by 

studying the possibility to transport a vector (say,   ) between two points without the 

result dependent on the path. If the vector transports independent of the path, the 

spacetime is flat, and from equation (3) we will arrive at 

 

   
   

    
      (5) 

 

Doing a second derivative to the equation, and using the fact that the order of indices of 

second derivatives can be switched, we will arrive at the necessary condition for 

flatness, 

    
 

   
 
    

 

   
    

    
     

    
          

   (6) 

 

where         
  is the Riemann Curvature Tensor. As it suggests, the spacetime is flat if the 

Riemann Tensor vanishes everywhere. Taking the trace of         
 , we then get the Ricci 

Tensor, 

          
       

       
     

    
 
    

    
 
 (7) 

 

Technically, the Ricci Tensor controls the growth rate of the volume of the metric in the 

spacetime. Thus the difference in geometry between an ordinary Euclidean n-space and 

the Riemannian spacetime can be determined by the information provided in the Ricci 

Tensor.6 The tensor can be further contracted to give the Ricci scalar, 

 

         (8) 
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The Ricci scalar also acts as a mathematical object to compare the deviation of 

volume between a Euclidean space and spacetime, but in this case it is metric dependent, 

while the previous two tensors could be defined from any affine connection.7 

 

Einstein-Hilbert Action & Einstein Field Equation 

The Ricci scalar plays an important role in general relativity, as it happens to be the 

Lagrangian density of Einstein-Hilbert action, 

 

    
  

    
          

   (9) 

 

Here    is the Lagrangian density describing any matter fields in the spacetime, while g 

is the determinant of the metric. An action is an attribute of the dynamics of a physical 

system, it is a mathematical functional which takes the trajectory of the system as its 

argument, and it outputs a real number.8 Using the principle of least action        and 

a lot of mathematics, we arrive at the famous Einstein’s field equation, 

 

    
 

 
     

   

  
    (10) 

 

    is the energy-momentum tensor, which contains the information of all the 

constituents (radiation, baryonic and non-baryonic matter) in our universe, is the part 

derived from   . More precisely,     is the energy density,         is the momentum 

density (or energy flux) and     is the stress tensor.9 Einstein’s equation is an equation 

of motion, the equation tells us that the existence of energy and matter would bend the 

spacetime around it, causing the Newtonian ‘gravitational force’ as we know when two 

massive bodies are close to one another. 

 

One last equation in this section to be introduced would be the geodesic equation, 

 

    

   
     

    

  

   

  
 (11) 

 

This equation is derived by extremizing the proper time   along a timelike world line 

using the Euler-Lagrange equation. The geodesic equation generally tells us that free 

falling motion may be curved, and depending on the curvature of the spacetime, the 

shortest distance between two points may not be a ‘straight’ line. So this geodesic 

equation together with Einstein’s equation will dictate how free-falling objects move in 

spacetime, and these are the fundamental mathematics of general relativity. 
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In summary, once we know the metric and the constituents of a spacetime, we 

can derive information on its curvature, and further deduce how matter and radiation 

react in such a spacetime through an equation of motion. General relativity, in simple 

words, says that the geometry of spacetime affects how the particles in it interact with 

one another. 

 

 

2.3 Teleparallel Gravity 
Teleparallel gravity is also known as the teleparallel equivalence of general relativity, or 

teleparallelism in the older days. As mentioned earlier, this theory serves to explain 

gravitation using equations, just like general relativity. However, this theory is very 

different and much more complicated than general relativity, among the most important 

aspects are that teleparallel gravity imposes zero curvature, while general relativity 

assumes zero torsion. Teleparallel gravity is much more mathematically involved, it 

requires advanced knowledge in differential geometry for readers to understand it 

better. For the interest of the reader, the following section will be a brief history of the 

formulation of this theory, and the explanation of the theory will come in the next 

subsection. 

 

2.3.1 History 

When general relativity was formulated in the 1900s, efforts had been made to unify 

gravity with electromagnetism. The first person who started the effort was none other 

than H. Weyl, whom although didn’t succeed, had laid the foundations of what we know 

today as gauge theory and invariances.10 In the 1920s, Albert Einstein worked on the 

mathematical structure of teleparallelism, he introduced a tetrad (a field of orthonomal 

bases) on a tangent space, which had 16 independent components to unify gravity and 

electromagnetism. Unlike the spacetime metric which had only 10 independent 

components, he wanted to use the extra 6 components to include electromagnetism. 

However, his efforts failed. 

 

While teleparallelism included the concept of torsion without curvature, Cartan 

formulated an even more general idea of spacetime around the same time. This was the 

birth of the Einstein-Cartan Theory, in which he suggests that torsion and curvature are 

separate degrees of freedom, and predicted that while energy and momentum are the 

source of curvature, something has to be the source of torsion (much later proven to be 

spin).10 

 

Teleparallelism was left alone for quite some time, until 1961 when Møller used 

it for a different purpose, which was to find a tensorial complex for the gravitational 
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energy-momentum density, in which however wasn’t invariant under local Lorentz 

transformation. Following his work, Hayashi and Nakano formulated the gauge theory 

for teleparallelism in the translation group.10 Then in 1962, Plebanski and Pellegrini 

formulated the Lagrangian for teleparallel gravity, and it was then proven by Cho to be 

equivalent to the Einstein-Hilbert Lagrangian up to a divergence term under local 

Lorentz transformation.10 

 

From the 1970s onwards, many physicists had been fine-tuning the 

fundamentals of teleparallelism, properly constructing and defining the many terms 

involved, which in turn became what we know today as the teleparallel equivalence of 

general relativity, or teleparallel gravity. Many research groups in the recent years had 

been working on teleparallel gravity, modifying it into torsion gravity as an alternative 

to the cosmological constant to explain the our accelerating universe. 

 

2.3.2 Theory 

Teleparallel gravity can be interpreted as a gauge theory for the translation group. 

Unlike general relativity, it has no geodesics, but instead uses torsion as a source of 

‘force’ just like the Lorentz force in electromagnetism.11 Because of that, teleparallel 

gravity does not need the equivalence principle to be valid. This is important since the 

equivalence principle in which general relativity is constructed on has faced some 

problems at the quantum level. As the theory of teleparallel gravity is highly technical, 

the following paragraphs will only act as a simple introduction to teleparallel gravity, it 

should provide the bare minimum knowledge enough for the reader to understand 

what this project is about. The tedious calculations and derivations will be omitted. 

 

Some Basic Differential Geometry 

General relativity works in the Riemannian spacetime, where torsion   vanishes 

everywhere. Teleparallel gravity on the other hand, works in the  eit en     s a eti e, 

in which the curvature   vanishes instead. These two spacetimes belong under the 

umbrella of the generalized Riemann-Cartan spacetime, in which the curvature and 

torsion are non-zero. Incidentally, we are also familiar of the Minkowski spacetime, in 

which both curvature and torsion are zero. These concepts are visually summarized in 

Fig. 1 in the next page. From the figure, it can be seen that teleparallel gravity is just 

another way of explaining gravity, and it acts as the complement to general relativity.  

 

In order to further explain the concepts of teleparallel gravity, we need to move 

away from our comfortable spacetime coordinates into a more generalized 

mathematical space, which is the manifold of tangent space. From this point onwards,  
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Fig. 1: Concept Map of The Different Spacetimes12 

 

Greek alphabets will be used to denote indices of spacetime, while Latin alphabets will 

be used to denote indices in the tangent space. Firstly, we need the setup of a non-trivial 

tetrad     
 , a set of 4 orthonomal vector fields physically used to interpret spacetime. 

The tetrad is related to the metric by the following equation: 

 

           
     

  (12) 

 

 In this general tangent space, we need to redefine our connection        
 

 to include 

components which general relativity neglected. A connection is a general term which 

defines the idea of transporting data along a family of curves. In other words, the affine 

connection tells us how vectors are differentiable in their nearby points, it allows the 

connection of nearby tangent vector fields.13 The expression of the general connection is 

as follows: 

       
 

   
   
      

    
   
     
     

 (13) 

 

where      
  is called the spin connection, a connection on the spinor bundle. This 

equation could also be re-written as 

 

     
      

     
        

     
   

   
 (14) 

 

Just like the Levi-Civita connection       
 

, the affine connection defines the 

covariant derivative, and it should be the more general form. The general covariant 

derivative now becomes 

   
     

      
    (15) 

 

This equation will be revisited later.  
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Curvature and Torsion Tensor 

Now that we understand how connection works, we proceed to define our general 

curvature and torsion tensors, 

 

       
         

         
       

      
       

      
 (16) 

       
        

        
       

     
       

     
  (17) 

 

These are how the curvature and torsion tensors look like in differential geometry, and 

later we will see that the equations in general relativity are just the special case of this 

general notation. Using equation (14), indeed we can re-write these two equations in 

purely spacetime form, 

 

       
 

   
   
    
        

          
 
         

 
       

 
      
 
       

 
      
 

(18) 

       
 

     
 
       
        

 
       

 
(19) 

 

Here it has to be noted that       
 

      
 

 , as the terms without the ‘checks’ are reserved 

for the usual notations in general relativity. To further understand how these two 

equations turn out differently in the Riemann and Weitzenbo ck spacetime, we can 

rewrite equation (13) as11 

 

      
 

 
 

 
                                           
                             

 

 
 

 
        

   
        

   
       

 
 

               
                            

 
 

  
(20) 

 

The equation       
 

    
 
        

 
 helps us to identify how it reverts back to its 

better-known form in general relativity. By definition, the Riemann spacetime is 

torsionless        
 

       
 
 , so equation (19) immediately gives us        

 
       

 
  . With 

this information, we see that equation (20) immediately becomes       
 

    
 

, and once 

plugged into equation (18) gives us the Riemann tensor that we are familiar with. 

Equation (20) also helps us to visualize the definition of our general covariant 

derivative. Equation (15) can now be written as 

 

   
     

      
         

     (21) 

 

This expression roughly means that the general covariant derivative now includes a 

partial derivative, a parallel transport correction due to curvature, and in addition to 

that a correction due to torsion. 
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In the Weitzenbo ck spacetime, it is defined that the spin connection that is 

vanishing, namely      
   . With this information, we can see straight away that 

equation (13) gives us        
 

   
   
      

 , equation (16) gives us        
   , and finally 

equation (17) gives us        
        

        
 . So from this discussion thus far, we see 

that the equations for        
 

 ,        
  and        

  are very different in the Riemann and 

Weitzenbo ck spacetimes, and they are not to be confused. 

 
The Teleparallel Lagrangian 

The Lagrangian density of teleparallel gravity    is defined to be 

 

   
   

    
 

 
   

    
 
 

 
       
 
   
    

 
 

 
       
 
         
  

 
 

 
    
      
         
  
 

(22) 

 

where        
  . The first term in equation (22) exists following the rules of the usual 

Lagrangians of gauge theories, while the next two terms exist due to the fact that the 

tetrad field enables algebra and spacetime indices change into one another.11 With some 

mathematical manipulation, equation (22) can also be re-written as 

 

   
   

    
                    

  
    
      (23) 

   
   

    
       

    (24) 

 

In equation (24),       is known as the superpotential,                        
  
            

  .  

 

It is intuitive to ask whether the Lagrangian in teleparallel gravity is equivalent 

to the Lagrangian in general relativity. In fact, a vigorous mathematical proof is able to 

show that these two Lagrangians are equivalent up to a divergence term, 

 

          
   

   
        
  
  (25) 

 

The divergence term is a surface term, it should vanish when the Lagrangian is 

integrated through all spacetime, 

  
  

    
         (26) 
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The principle of least action is able to yield the exact same Einstein’s field equation as 

expected. 

 

 To summarize this section, teleparallel gravity is formulated on a differential 

geometrical framework, it works in the Weitzenbo ck spacetime, it has vanishing 

curvature but finite torsion, and its Lagrangian is equivalent to the Einstein-Hilbert 

Lagrangian up to a divergence term. This is the mathematical framework that is needed 

to study      gravity in section 2.5.2. 

 

 

2.4 Comparison of General Relativity and Teleparallel 

Gravity 

 

2.4.1 Summary Table 

The table below summarizes the key conceptual differences between general relativity 

and teleparallel gravity: 

 

GENERAL RELATIVITY TELEPARALLEL GRAVITY 

Covariant Derivative 

   
     

     
       

     
      

         
     

Connection 

Levi-Civita Connection Weitzenbo ck Connection 

   
 
 
 

 
                              

 
   

   
      

  

Curvature Tensor 

        
       

       
     

    
 
    

    
 

          
    

Torsion Tensor 

      
           

        
        

  

Action 

    
  

    
          

       
  

    
        

   

Table 1: Comparison of General Relativity and Teleparallel Gravity 
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2.4.2 Why Teleparallel Gravity? 

Studying teleparallel gravity requires a lot of hard work: one needs to have sufficient 

knowledge in differential geometry and Lie algebra to understand the equations and to 

get a clearer picture of the theory. A natural question to ask would be, ‘why study 

teleparallel gravity?’ It turns out that teleparallel gravity has a lot of advantages and 

interesting points that made it worth discovering. 

 

Firstly, teleparallel gravity welcomes back the picture of ‘force’ through the 

contorsion tensor, and it shows up as a gauge theory just like other forces like 

electromagnetism. As said earlier, general relativity uses the geodesic equation, which is 

a concept unique to its own. The existence of the geodesic equation causes a lot of 

inconsistencies if one attempts to unite gravitation with other forces, as the spin 

connection that general relativity works in has made gravitation and inertial effects 

mixed together.10 With that, it is impossible to write down an energy-momentum tensor 

for gravitation without inertia contributing. In fact, this was the reason why Møller 

resolved to teleparallelism in the first place. 

 

Secondly, the gauge description of teleparallel gravity remains a consistent 

theory in the absence of universality. Teleparallel gravity is consistent with the strong 

equivalence principle, but at the same time is valid even without it. It does not violate 

the      gauge invariances of electromagnetism.11 Thus we can see that teleparallel 

gravity provides a better framework than general relativity to resolve the unification of 

gravitation and quantum mechanics, since the equivalence principle in which general 

relativity holds strongly onto cannot co-exist with the uncertainty principle. This allows 

many existing conflicts to be solved: spin-2 fields can be coupled to gravitation, and 

gravitation can be quantized using the mathematical framework of teleparallel 

gravity.11 

 

Most important of all, teleparallel gravity is an easier environment to work with 

when it comes to explaining the accelerating universe. In general relativity,      gravity 

models are one of the many attempts made to act as an alternative to the cosmological 

constant. However, it produces 4th order equations and 2nd derivatives which are hard 

to work with, and it also suffers from weak field tests, gravitational instabilities, and it 

doesn’t determine a  matter dominated era previous to the accelerating era.14      

gravity models however, are only 2nd order equations with up to 1st derivatives, they 

are easier work with and calculate. The mathematics of      and      gravity will be 

explained in sections 2.5.1 and 2.5.2. 
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All in all, despite the difficulty to understand the theory, teleparallel gravity 

seems to have many implications on our current efforts to unite forces and to resolve 

inconsistencies between them. Currently there is no new known physics of torsion. A 

suggestion was that there might be new physics in neutron stars, since the alignment of 

neutrons might produce a macroscopic spin, and consequently a torsion field.10 

However, since the physics of neutron stars is well understood with general relativity, 

and that teleparallel gravity is just an alternative view of it, we shouldn’t expect 

anything new to arise from it. Teleparallel gravity, in the words of Arcos, is a “new way 

to look at all gravitational phenomena, including those shaping the universe itself”.11 

Many current gravitational phenomena (like gravitational lensing) may have a different 

interpretation using teleparallel gravity, and thus studying this theory would definitely 

be worth the time. We should not rule out the possibilities of finding new motivations 

for experiments, or even new physics through the understanding of teleparallel gravity. 

 

 

2.5 The Accelerating Universe 
Physicists have long known that the universe is expanding since the days of Hubble, 

when he first realized that galaxies and stars are moving away from one another, and he 

suggested his famous Hubble constant. Yet it wasn’t until the recent 1998 when Saul 

Perlmutter and group found out that the universe is not only expanding, but at an 

accelerating rate.5 The fact that the universe is not static has baffled many, and 

modifications had to be made to Einstein’s equation to account for this expanding 

universe. 

 

Let us revisit the FLRW metric (equation (2)) and Einstein’s field equation 

(equation (20)). To know how the universe expands and accelerates, we need to study 

the scale factor     . Assuming a homogeneous, isotropic and a perfect-fluid-dominated 

universe               , we plug equation (2) into equation (20) and we get two 

independent equations known as the Friedman equations: 

 

 
  

 
 
       

  
  

   

  
 (27) 

 
       

  
 
   

  
  (28) 

 

Here   and   are the pressure and the energy density of the fluid. Plugging equation (28) 

into equation (27), we get 

  

 
  

   

  
   

 

 
  (29) 
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For a universe to accelerate, The second derivative of     ,    has to be positive. If 

we assume that the universe is flat      , we find that the equation must satisfy the 

condition   
 

 
  

 

 
, in which we define   to be the equation of state. It is easy to see 

that a matter or radiation dominated universe cannot cause an accelerating universe. If 

we analyze the energy-stress tensor, we will see that dust (or slow moving matter in 

general) has    , since     for dust. On the other hand, relativistic matter (or 

radiation in general) has   
 

 
, as the radiation pressure is 

 

 
 of its density due to the 

randomization of photons in all directions.15 Therefore, we see that a universe 

dominated by matter or radiation alone cannot make the universe expand: the 

electromagnetic and gravitational forces could only create a decelerating universe.  

 

To explain the accelerating universe, we need to either introduce a new 

substance that has negative pressure     
 

 
 , or we make a modification to the 

gravity theories, or we make a modification on matter. The following subsections will 

briefly explain the current approaches to solve the problem from the general relativity 

and the teleparallel gravity point of view. 

 

2.5.1 The Approach from General Relativity 

There are in fact many ways to explain the accelerating universe, but to ensure that the 

discussions are closely related to this work, Only 2 methods will be discussed, and they 

are the cosmological constant and the      gravity model.  

 

Cosmological Constant 

In order to explain the cosmic acceleration, some physicists suggested the existence of a 

new form of substance called the dark energy. This dark energy should have a negative 

pressure and equation of state    
 

 
 in order that the universe expands at an 

accelerating rate. 

 

One of the possible representations of dark energy is the cosmology constant  . 

Initially Einstein introduced the cosmological constant so that he can explain a static 

universe. However, his efforts failed because firstly the static equilibrium he suggested 

was unstable, and secondly because now we know that the universe isn’t static at all. 

The same cosmological constant used by Einstein is now resurrected and used with a 

new interpretation. Therefore equation (20) with the addition of the cosmological 

constant now becomes 

    
 

 
          

   

  
    (30) 
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Here the term      is the dark energy substance that we introduced. This cosmological 

model with the added constant term is known as the Lambda Cold Dark Matter (ΛCDM) 

model. Writing it in terms of a energy-momentum tensor (subscript DE means dark 

energy), 

 

     
   

  
      (31) 

 

we get     
   

   
     , and thus     . So if we assume a matter-dominated 

universe (subscript  ) with the presence of dark energy, the Friedman equations 

become 

 
  

 
 
       

  
 
   

  
     (32) 

 
       

  
 
   

  
    

   

  
  (33) 

 

and if we put equation (33) into equation (32), we see that 

 

  

 
 
   

   
          (34) 

 

This means that a positive acceleration is possible if the percentage of dark energy is 

more than half the percentage of matter. In fact, dark energy models suggest that the 

universe is filled with 28% matter and 72% dark energy, thus proving that the 

cosmological constant is a viable method to prove that the universe expands at an 

accelerating rate.  

 

The usual method to test this theory is to assume that     is arbitrary, and we 

use various observational constraints to fit and find the best fit value of     and     , 

the current density of matter in the universe. Others have also proposed a time or 

redshift-dependent     too. Kowalski et al used observational constraints from the type 

1a supernova, cosmic microwave background and the baryonic acoustic oscillation test 

to obtain values of                       
                   

       , which showed that our 

universe favours a model with dark energy.16 
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     Gravity Models 

     gravity models are considered as modified gravity models, where the gravitation 

laws of general relativity are modified to explain the accelerating universe. The basic 

principle behind it is to make the substitution       , where      means ‘function of 

 ’, with   being the Ricci Scalar. In this case, we make a modification of the Einstein-

Hilbert action equation (9) into 

 

   
  

   
            

   (35) 

 

Varying the action with respect to    , and taking the trace of it, we get two equations 

below,17 

         
 

 
             

          
     

   

  
   (36) 

                     
   

  
 (37) 

 

where       
  

  
,          and   is the D’Alembertian operator. Assuming a flat 

FLRW universe, equation (36) and (37) can be simplified to become 

 

         
   

  
   

           

 
         (38) 

          
   

  
     

             (39) 

 

These equations which related  , the Hubble parameter with the      functions 

are required for observational test fittings. Equations (38) and (39) simply mean that as 

long as we can find a suitable      function with a few variable parameters, after fitting 

it with data from an observational test, we will be able to conclude whether it is a good 

alternative to the cosmological constant or not, provided that the function has no 

stability issues. However, the      functions chosen are not arbitrary, they need to 

fulfill certain conditions. Let    be the curvature at the present time, we need17 

 

1.          at     , for the stability of cosmological perturbations; 

2.           at     , to avoid anti-gravity, or avoiding gravitons turning into 

ghosts (degrees of freedom with kinetic energy terms with the ‘wrong’ sign18); 

3.           at     , the model should revert to      model at high density; 

4.    
      

     
   at the de Sitter point (a point which corresponds to a vacuum 

solution and   is constant17), satisfying             . 
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The following are two of the many      gravity models that satisfy the above 

requirements: 

          

 
 
  
 
  

 
 
  
 
  

  

(40) 

          

 
 
 
 

  
 

   
  

   
 
 

 
 
 
 

 (41) 

 

In these models,    are constants, while   and   are varying parameters to be found 

through observational constraints. A best fit value of   or   could be found by 

conducting    tests against various observational data, and the lower the    the better 

the model fits the observational data. 

 

     gravity models have many implications, interpretations and aspects that 

could be studied. Its observational signatures, its local gravity constraints, the different 

transformational approaches (like the Palatini formalism) are just a few of the many 

things that one could study about this theory. In fact,      gravity models are not 

entirely flawless: many of these      models have problems like matter instability, the 

absence of matter era, or have conflicts with the standard model of particle physics.  

Most of the time,      functions are required to be made such that their deviation from 

the ΛCDM model must be small.17 But practically,      gravity models involve 4th-order 

equations, and thus making the entire fitting process tedious. 

 

Other Approaches 

Besides the cosmological constant and the      gravity theory, there are many other 

approaches to explain the accelerating universe. There is a group of theories know as 

the modified matter models, where they have included exotic matter sources in the 

energy-momentum tensor which possess negative pressure. Such models are like 

quintessence (canonical scalar field), k-essence (scalar fields with non-canonical kinetic 

terms), coupled dark energy with dark matter models and etc.17 There is also another 

group of theories known as the modified gravity models, in which      gravity is just 

one of it. Examples of other modified gravity models are the Gauss-Bonnet dark energy 

model (extension of      gravity), scalar-tensor theories (  coupled to a scalar field) 

and the Dvali-Gabadadze-Porrati (DGP) model (a braneworld in 5 dimensions).17 

 

Lastly, there are also methods that one could explain cosmic acceleration 

without dark energy. These methods include inhomogeneities in the distribution of 
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matter, the presence of underdensed bubbles (void model) and the back-reaction of 

cosmological perturbations.17 In summary, there are a lot of approaches to explain the 

accelerating universe, and researches are continuously being done in order to fit these 

cosmological models with observational data, to affirm their viability and validity. 

 
2.5.2 The Approach from Teleparallel Gravity 

As the research on teleparallel gravity is fairly recent, there are not as many methods in 

teleparallel gravity to explain the cosmic acceleration as compared to general relativity, 

although every model in general relativity should have a teleparallel equivalent. In this 

section,      gravity will be introduced, and this will be the gravity model used for this 

project. 

 

     Gravity 

Also known as torsion gravity, this model looks very similar to      gravity, as it too 

involves the change in action, but in this case       .   is the torsion scalar, it is also 

the component of the teleparallel Lagrangian. The teleparallel action (equation (26)) 

now takes the form 

    
  

    
          

  (42) 

 

where    is the matter component of the Lagrangian. Using the principle of least action 

       in variation with the tetrad, we arrive at 

 

  
    
    

                
    
    

      
 
  
    
       

 

 
  
           

   
  
     (43) 

 

This equation may look intimidating, but simplifications can be done. We assume 

a flat homogeneous and isotropic FLRW universe, our teleparallel Lagrangian (equation 

(24)) magically simplifies to       , where   is the Hubble parameter. If we 

substitute this new information into equation (43), and taking the    and    components 

(proof omitted), we arrive at our modified Friedman equations: 

 

               
    

  
  (44) 

                                 
    

  
   (45) 

 

When compared these equations to equations (38) and (39) of      gravity, one 

can easily see that this set of equations is much easier to handle. They are at maximum 

2nd-order equations and are easier to manipulate. Equation (44) will be the starting 
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point of this project: when a new      is formulated, it will be plugged into equation (44) 

and an equation of   in terms of the other variables will be produced. With this 

equation, we will fit it to the observational constraints / data, which will be explained in 

Chapter 3. The      function introduced, like those in      theories, should contain at 

least one free parameter, whereby it could be varied and find a best fit value for it when 

fitted to observational    tests. As for the conditions for proposing a viable      

function, this will be discussed in Chapter 4. 

 

An important note here is that      gravity might have stability issues, or some 

unforeseen problems that might arise when using certain arbitrary functions, just like 

     gravity. Ong and group have noted that      gravity might suffer problems in time 

propagation and evolution.19 Keisuke also pointed out that one has to conduct non-

linear analysis on      gravity to ensure that it has no stability issues.2 But this project 

assumes that there are no fatal issues arising from this model which would render this 

model obsolete. For future work, it is suggested that the other aspects of      gravity be 

looked into to ensure the validity of this model. 

 

Another note would be that the modified models we have seen thus far are 

metric dependent, and they assume a flat, homogeneous and isotropic FLRW universe. 

This unavoidable assumption has to be taken in order to proceed to simplify many 

calculations. In fact, it isn’t much of a danger since this metric still fits our current 

observable universe the best. There are other metric independent studies (like 

cosmography) which explain the cosmic acceleration, but it will be beyond the scope of 

this thesis. 
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Chapter 3 

 

THE OBSERVATIONAL CONSTRAINTS 

 

3.1 Overview 
In order to prove that our theory is consistent with observations, we need to conduct 

observational tests to constrain our model. In our case,      models with one free 

parameter are suggested, and once these      models are substituted into equation 

(44), we will get an equation of     , and it will plugged into various equations used in 

the following observational tests, so that their theoretical values will be compared with 

those data observed. In the following section, 5 kinds of observational tests will be 

discussed, they are the type Ia supernovae, cosmic microwave background, baryonic 

acoustic oscillation, observational Hubble data and gamma-ray bursts. Of these 5 

observational constraints, only the first 4 tests would be used to constrain the      

functions. The reasons for not including the gamma-ray bursts test will be explained in 

section 3.6. 

 

 

3.2 Type Ia Supernovae 
A supernova is a stellar explosion, a cataclysmic nuclear explosion in stars. Generally 

stars that have masses greater than 8   continue to heat up and undergo mass loss 

and gas depletion up till a certain point where its core suddenly collapses due to 

degeneracy pressure and photodisintegration. The super red giant star will then 

explode to form a supernova. Supernovae are very luminous objects which sometimes 

outshine an entire galaxy, but will later fade off slowly with time.  

 

Type Ia Supernovae (SNE Ia) are supernovae that do not contain hydrogen, and 

presents a singly ionized silicon (Si II) line at 615nm near peak light.20 Unlike normal 

supernovae, SNE Ia are said to occur in binary star systems, in which one star is a white 

dwarf, and the other a bigger star.  In simple words, the gas from the bigger star is 

spilled to the white dwarf, and the white dwarf explodes as it reaches its critical mass, 

forming an SNE Ia. The detailed formation process of an SNE Ia is explained in Fig. 2.  

 

Since all SNE Ia explosions occur at almost the same condition, the luminosity-

time relation of the SNE Ia is said to follow a characteristic light curve, in which the peak 

of the curve is quite consistent at a value of absolute magnitude        . Therefore, 
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SNE Ia have been used by many astronomers as standard candles to determine 

intergalactic distances. 

 

 
Fig. 2: The Progenitor of a Type 1a Supernova21 

 

One way to measure intergalactic distances is to measure the luminosity of a 

distant object. The luminosity distance of a supernova is defined to be 

 

  
     

 

   
 (46) 

 

where   is the absolute luminosity of the supernova, and   being the radiant flux at that 

point. Assuming a flat FLRW metric, the luminosity and radiant flux of the supernova 

has been calculated to be22 

         
 (47) 

  
  

    
   

(48) 

 

where   is the coordinate of space, and    is the luminosity of the SNE Ia at    .   is 

the redshift of the SNE Ia, and   is related to the scale factor through the equation 
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(49) 

 

where    is the scale factor at the current time. The redshift of a celestial object is 

positive if the universe is expanding away from the observer, thus in an accelerating 

universe, we expect to see further high-redshift galaxies to be much fainter than 

galaxies nearer to us.  

 

Plugging equations (47) and (48) into (46), we get 

 

               (50) 

 

Now using the properties of a light-like geodesic, –                 , equation (50) 

will turn into 

                 
 

 

         
 

    
   

  

  

(51) 

 

By taking the time derivative on both sides for equation (49), we could use this relation 

to modify equation (51) into 

             
 

     
   

 

 

 (52) 

 

This is the luminosity distance of SNE Ia, in terms of its redshift and the Hubble 

parameter. Therefore if we can derive an expression of      from our proposed      

gravity models, we can substitute the equation into this expression to find the 

luminosity distance of a SNE Ia given its redshift. 

 

The luminosity distance of a supernova can be measured only indirectly through 

the measurement of the distance modulus   , which is a difference between its absolute 

magnitude           and its maximum apparent magnitude   
   .    is defined to 

be 

              
  
  
  (53) 

 

   is measured in parsecs (pcs), while the units of   in this expression is in           . 

If we want   to be measured in             , equation (53) can be re-written as 

 

                  
 

     
   

 

 

 (54) 
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Experimentally, the redshift of the supernova can be obtained by spectrometry, 

and the distance modulo is obtained by observing the apparent magnitude of a 

supernova and fitting it to the characteristic lightcurve. So the observed value of 

distance modulo could be compared with the theoretical value obtained from a 

particular model, and if we want to find the best fit model, the difference between these 

values should be as small as possible. The Supernova Cosmology Project (SCP) has 

compiled its latest dataset (Union2.1) which contains the distance modulo, redshift and 

uncertainty for 580 observed supernovae over many years,23 and these data will be 

used to conduct a    fit for the various      models. 

 

 

3.3 Cosmic Microwave Background Radiation 
Cosmic microwave background (CMB) is the thermal radiation filling the observable 

universe. It is explained by many cosmologists that the CMB is the radiation left over 

from the early stage of the universe, and is a proof to the existence of a Big Bang. The 

spectrum of radiation measured by the COBE satellite has a temperature of 2.735±0.06 

K, which is shown to have anisotropic properties5. The spectrum of the CMB follows a 

blackbody curve, which peaks at microwave regions. 

 

The anisotropy of the CMB temperature is said to be affected by the acceleration 

of the universe, and this situation leads to a linear shift in position of acoustic peaks. We 

first define the sound horizon   , the radius of a shell of baryonic matter moving 

outwards from the centre of the Big Bang after the decoupling epoch where the photons 

no longer interact with matter.    can be represented by the formula below: 

 

             
 

 

   (55) 

 

where   is the distance travelled by the sound, which can also be represented as 

   
 

 
  , and   being the scale factor.    is the speed of sound, which can be 

represented by the equation17 

 

   
 

        
 

 

     
   
   

 
(56) 

 

where    and    are the energy densities of baryons and photons respectively. Next, the 

CMB acoustic peaks can be represented by the formula 
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(57) 

 

where   
          is the commoving angular diameter distance evaluated at     , which is 

the redshift at the decoupling epoch (estimated value,          ), 

 

  
          

        

      
   

 

     
   

    

 

  (58) 

 

Once again assuming a flat universe, the CMB multipole    that corresponds to 

the angle    can be written as 

 

   
 

  
 

  

        
 

 

     
   

    

 

 (59) 

 

With the expression    calculated by Hu et al24, the multipole can be written as 

 

   
  

 
 
    
    

 
 
 
 

  

 

 
                             

           

 

 
 
 
 
  

 (60) 

 

where      and     are the scale factors at decoupling epoch and the radiation-matter 

equality respectively, and      and      are the baryon and photon density at current 

time.  

 

The expression  , 

           
 

     
   

    

 

(61) 

 

is known as the CMB shift parameter, it relates the angular diameter distance to the last 

scattering surface with the angular scale of the first acoustic peak in the CMB power 

spectrum. The change in cosmic expansion history from the decoupling epoch to the 

present day affects the CMB shift parameter, which in turn shifts the multipole. The 

Wilkinson Microwave Anisotropy Probe (WMAP) 5-year bound on CMB shift is 

measured to be              , and thus for a theoretical value of   calculated from 

     gravity models, we can fit and compare it to this value.17 
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The CMB data do not provide a tight constraint on dark energy, because firstly it 

depends weakly on    , and secondly, the CMB data tabulated by WMAP is highly 

dependent on the ΛCDM model.25 Thus, the CMB test is normally constrained together 

with the SNE observations.  

 

 

3.4 Baryonic Acoustic Oscillation 
Baryonic Acoustic Oscillation (BAO) is the regular periodic fluctuation in the density of 

the visible baryonic matter. It is caused by acoustic waves which existed in the early 

universe. Baryons are strongly coupled to photons before the decoupling epoch, so the 

oscillation of sound waves is imprinted in baryon perturbations. The case is similar to 

CMB anisotropy, but this phenomena is originated from the drag epoch instead of the 

decoupling epoch. The drag epoch is the time which the baryons are released from the 

Compton drag of the photons, while the decoupling epoch happened earlier, it is the 

time when the photons are able to travel far without being scattered or absorbed by 

baryons.26 BAO matter clustering can act as a standard ruler in cosmology, which means 

that its size is known, and we can determine its distance from earth by measuring its 

apparent angular diameter alone.  

 

Similar to CMB, we define the sound horizon    here, but this time at 

         , the redshift at the drag epoch: 

 

              
  

 

    (62) 

 

       is estimated by Eisenstein and Hu to be about 150Mpc.27 Next, we introduce what 

we are able to observe: the angular and redshift distributions of galaxies as power 

spectra. We are able to measure two ratios:    which characterizes the angle orthogonal 

to the line of sight, and    which characterizes the oscillations along the line of sight.17 

These two ratios are formulated as follows: 

 

      
      

  
      

        
          

 
(63) 

 

where   
       here is the commoving angular diameter distance, it is related to the 

proper angular diameter distance    by the equation   
    

  

   
. These two ratios are 

not observed independently, but instead measured together through the effective 

distance ratio     , observed from the spherically average spectrum, 
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(64) 

 

where       is defined to be,  

        
 

    
  

   

     

 

 

 

 

 

 
 

 (65) 

 

BAO is detected in a spectroscopic sample of luminous red galaxies (LRG) by the 

Sloan Digital Sky Survey (SDSS). The combined data obtained from the 2-degree Field 

(2dF) Galaxy Redshift Survey and SDSS measured      at two distinct redshifts, and 

their values are                         and                         .17 With 

these observed values, we can use equation (64) to compare the theoretical value with 

them for model fitting. The BAO test is seen as a powerful low-redshift probe, as it is 

limited by statistical uncertainties rather than systematic.28 Although a tighter 

constraint than CMB, BAO tests are still much weaker than SNE tests, and should be 

constrained together with SNE and BAO for a better effect. 

 

 

3.5 Observational Hubble Data 
The observational Hubble data (OHD) is based on the differential ages of passively 

evolving galaxies.29 The measure of differential ages is more reliable than the measure 

of the absolute ages of galaxies itself, since it is not vulnerable to systematic 

uncertainties.30 Consider a cluster of galaxies, by using equation (49) and the fact that 

     
 

    

     

  
, we get 

      
 

   

  

  
(66) 

 

Here 
  

  
 is the differential age of the galaxy. Thus if we have a value for 

  

  
, we are able to 

find an expression for the Hubble parameter. 
  

  
 is obtained by taking a data pool of 

galaxies and calculate their relative changes in redshifts    and then divided by their 

relative ages   .  

 

The finding of differential ages of galaxies involves the binning of groups of 

galaxies together, and sophisticated statistical methods are used to interpolate their 

relative redshifts and ages. The Hubble data obtained by Stern et. al for example, is 

through the analysis of high-quality spectra with the Keck-LRIS spectrograph of red-

envelope galaxies in 24 galaxy clusters in the redshift range           from the 
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Spectroscopic, Photometric, Infrared-Chosen Extragalactic Survey (SPICES) and the 

VIMOS VLT Deep Survey (VVDS).31 After the analysis, they tabulate an output of several 

  values with their corresponding   and uncertainties. These      values obtained will 

be used for model fitting. 

 

The advantage of using OHD to constrain cosmological models over constraints 

like SNE, CMB and BAO is that it does not involve integration. In fact, SNE, CMB and BAO 

tests depend on studying the integral of the expansion history, rather than the 

expansion history itself, and OHD is able to circumvent this limitation.31 The OHD 

constraint is a relatively new concept, and researches are ongoing to improve the 

current data set. 

 

 

3.6 Gamma Ray Bursts 
Gamma-ray bursts (GRBs) are flashes of gamma-rays associated with explosions that 

are extremely energetic. Cosmic gamma-rays were accidentally discovered during the 

1960s, when the United States sent two satellites into space to detect nuclear weapon 

experiment activities.32 Gamma-ray flashes can be detected by densely packed crystal 

blocks as they have wavelengths with magnitudes of atomic distances.33 Gamma rays 

possess energies greater than 100keV, and they are classified as the brightest 

electromagnetic waves observed in the universe. The flashes range from 10ms to a few 

minutes, and they usually have an afterglow at longer wavelengths. The shorter GRBs 

tend to appear far from active regions of galaxies, while the longer ones appear in star-

forming galaxies where core-collapse of massive young stars are common.34 

 

 Although discovered 50 years ago, vigorous researches on gamma-ray sources 

have only started in 1991 due to the limitation of instrumentation.32 The progenitor of 

GRB is currently still unknown, but some suggested that they originated from 

supernovae, hypernovae, neutron stars, pulsars and black holes.33 Physicists have tried 

to identify candidate objects from the direction of GRBs, but usually end up not seeing 

anything, thus making them suggest that GRBs are originated from the very distant 

galaxy about billions of lightyears away, too faint to be seen. 

 

 Currently it is impossible to conduct a one-on-one GRB to theoretical value    fit, 

because the physics of GRBs is not well understood, furthermore the dataset of GRB 

with low redshifts are insufficient. The only way to use GRBs as an observational 

constraint currently is to use statistical methods of correlation. There are various 

correlation methods used, but the most popular one would be the Amati’s correlation. 

Amati uses the            correlation, where       is the cosmological rest-frame 
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spectral peak energy of the GRB, and      is the isotropic energy of the GRB.      can be 

related with the luminosity distance through the following relation:34 

 

     
    

    

   
  (67) 

 

Here   is the flux of the GRB measured. It is important to note that equation (67) is 

model dependent: it is derived based on the ΛCDM model. This equation tells us that 

with the measured  ,   and   from the GRBs, we are able to map it to      , which is 

something that we can compare and study. 

 

Wang proposed a method to use GRB to conduct the observational constraint on 

cosmological models.35 Based on Amati’s correlation, Wang defined a model 

independent distance measurement       , 

 

       
     

      
(68) 

 

where       is defined to be 

      
    

 
 

  
     

   
 

 

  (69) 

 

The integral in equation (69) is the same integral seen in the luminosity distance 

relation. Here    is a reference smallest redshift of the GRBs, and the fraction quantity     

is taken so that the value of    is cancelled out.        is not something measured directly 

from the GRB dataset, it is calibrated through a set of equations relating many variables 

(luminosity, total energy, time lag etc)35 and later correlated with SNE, CMB and BAO 

data. Wang himself turned the data of 69 GRBs, into 6 sets of                         data 

that could be used to fit cosmological models. Thus, to fit a modeled equation          

with        , a    test can be conducted, with the value of    expressed as follows: 

 

                     
 
                     (70) 

 

Here   is the normalized covariance matrix,           , and      is the correlation 

matrix computed from the statistical analysis, and   is the error for the observed values. 

 

Currently the GRB test is not a reliable observational constraint for cosmological 

models, and the reasons are as follows. Firstly, its physics is still unknown, and thus the 
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validity of GRB as a standard candle is still debatable. Secondly, the test is model 

dependent, Amati’s correlation yields a circularity problem, whereby we have already 

assumed a cosmology before we fit it.36 Besides, Wang’s 6 sets of data yields results that 

are    away from the results of Schaefer and also Xu37, which both use similar methods 

but having different bins, showing inconsistencies in results. Lastly, the GRB test is a 

very weak test: it produces a very wide    contour, it does not affect the results 

obtained significantly,29 and it constrains data very weakly.  

 

Therefore, the GRB test although thoroughly studied and discussed in this thesis, 

it will not be used to constrain the      models proposed in the next chapter. However, 

the GRB test was still conducted, and its results are included in Appendix B3 for the 

interest of the reader. 

 

Although the GRB test has many disadvantages, it still has some advantages over 

other tests, and might be a very promising observational constraint in the future. Firstly, 

GRBs have redshifts of      , which are in between the redshifts of the SNE       

and the CMB         . Once well understood, it could act as a bridge between both 

tests, marking a possibility of a general relation between    and  . Secondly, while SNE 

requires the need to subtract dust extinction36 (in which a model needs to be setup), 

GRB does not need to, as its radiation is highly penetrative. Lastly, the data of GRBs 

recorded is currently very low, but is constantly increasing. With more GRBs with lower 

redshifts detected,    could be better calibrated. But due to the long afterglow of the 

GRBs, data collection might progress quite slowly, and it might be a decade before GRBs 

become good observational constraints. 
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Chapter 4 

 

METHODOLOGY 

 

4.1 Objectives 
In Chapter 2, the theory of teleparallel gravity was discussed, and it was explained how 

this theory could be modified into      gravity to explain the accelerating universe. In 

Chapter 3, the various observational constraints on the proposed      functions have 

been discussed too. With sufficient knowledge at hand, this is an appropriate time to 

explain the objectives of this project, and the methodologies used.  

 

 The aim of this project is to formulate 3 different forms of      functions with 2 

free parameters (  and  ) using the various constraints and rules required, obtain a 

modified Friedman equation from each of them, find      (Hubble parameter as a 

function of redshift), and then test them with 3 observational tests (SNE, Combined 

CMB/BAO and OHD test) by using a    contour plot. The best fit values of      (the 

current matter density parameter of our universe) and   (one of the free parameters) 

will be taken at the point with the lowest    value. These best fit values, the shape of the 

contour plot produced, and the different results from the different observational 

constraints will be compared to the ΛCDM model. Discussion on the viability and 

validity of the      functions will be brought forward too. 

 

 In the following sections, the discussion will focus on the 3      functions that 

will be proposed: the equations involved, the construction method, and the      

equation that will be derived from it. Sections 4.3 to 4.5 will be a discussion of the 

mathematics behind the    tests for the 3 observational constraints, the bisection 

method and the Gauss-Legendre Quadrature.  

 
 

4.2      Functions 

 

4.2.1 Constraints on      Functions 

We recall the action for      gravity, 

 

   
   

    
       (71) 
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If general relativity is correct, we have to assume that the      function proposed has to 

revert back to   at early times, since we suspect a late time accelerating expansion. In 

Chapter 2 we have also shown that in an isotropic, homogeneous FLRW universe 

      , and at early times   
  

 
   since      will be very small. So we conclude 

that        when             and the extra term that causes the acceleration 

should dominate when   is very small. 

 

The next condition is that we want to make the      function easily related to 

the ΛCDM model at current times, because the ΛCDM model explains our observable 

universe reasonably well at present time. Thus we expect           at    , or at 

     (where   is a constant). As there are 2 free parameters in the proposed 

    functions, we should also expect that the function should revert to ΛCDM at a 

specific combination of parameters in order for easy comparison between models. Since 

it is arbitrary, it is decided to be set such that when    , the      function should 

resemble the equation for cosmological constant.  

 

So to summarize, the conditions to set the      functions are 

 

1.        when      

2.           at      

3.           when    . 

 

To ensure that these 3 constraints are easily satisfied, functions of the form of 

               are proposed, where   is a constant, and        is a function of   

and   respectively, and   will act as our free varying parameter. Now that the 

constraints of the proposed      functions are defined, we shall proceed to obtain a 

general solution for these      functions.  

 

4.2.2 General Solution for                

Before we proceed to define our      function, we need to modify equation (44). We let 

  be 

       (72) 

 

where    and    are the densities of matter and radiation of our universe. The 

expressions for    and    can be derived from the continuity equation (which is from 

the conservation of energy,    
    ), 
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         (73) 

 

From Chapter 2, we learned that     for matter, and   
 

 
 for radiation. So solving 

equation (73) for matter and radiation, we get 

 

        
  
 
 
 

         
  
 
 
 

 (74) 

 

Here the subscript 0 represents the value of that parameter at present time. Using 

equation (49), we substitute   with  : 

 

            
              

  (75) 

 

We further define    and   , the mass and radiation density parameters, where 

 

   
   

     
    (76) 

 

Plugging in equation (75) and (76), equation (44) becomes 

 

                  
           

           
   (77) 

 

Now setting                and       , we get 

 

                             
      (78) 

 

Here the short hand notation               
           

 , and therefore 

              . We can solve for   by using the fact that when    ,     . So   

takes the form 

   
   

         

    
                 

 (79) 

 

Equation (78) and (79) will be the starting point to turn all three of the following 

     functions into      equations that will be used to fit our observational constraints. 

Three      functions have been proposed here, and the terms        take the form of 

reciprocal power, exponential and hyperbolic tangent respectively. In all functions we 

have assumed an isotropic, homogeneous FLRW universe, and thus       . 
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4.2.3      Function 1: Reciprocal Power 

          
  
 
 
 

 (80) 

 

Here a function with an additional term proportional to 
 

  
, with        

  is suggested. 

This function resembles the function proposed by Bengochea and team,14 but is 

formulated with different notation. It is used as a consistency check for the coding of    

plots, so that the results can be compared. It can be easily shown that conditions 1 to 3 

are satisfied by inducing the conditions in section 4.2.1.  

 

Now we abstract information from equation (80), 

 

         
  
 
 
 

   
  
 

  
 

 

(81) 

        
 

  
 
  
 
 
   

  
 

   
  
  
 

  
 

   

 (82) 

 

we fit equations (81) and (82) into equation (78), we get 

 

      
  
 

  
 

 

          
   (83) 

 

We proceed to get rid of   by using equation (79), 

 

   
   

 

    
              (84) 

 

we then substitute   back to equation (81) to get 

 

        
               

  
 

  
 

 

    
   (85) 

 

Finally, rearranging the terms, we get 

 

 
 

  
 
    

  
 

  
 
  

              (86) 

 

We have successfully derived our      function for      . Here we note that an 

expression of      cannot be found explicitly, and thus root finding methods need to be 
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used to numerically find the value of   given values of      and  . It is also important to 

note that from equation (72), condition 1 will not be satisfied if     , since        

as    . Thus, this      model is only valid for     . It is expected that the results 

of constraining this model should agree with Bengochea’s results if the same tests were 

used. 

 

 

4.2.4      Function 2: Exponential 

          
  

 
   (87) 

 

Here we have a function with an additional term which gives a negative exponential. 

This equation was proposed as a modification to Linder’s model,        

      
  

 

   , which he got the motivation from his      model in a previous work.38 

Note that in Linder’s model, his function does not revert to the ΛCDM model, and Linder 

did not conduct an observational constraint on his model. Doing our usual calculations 

just like section 4.2.3, 

        
  

 
    

  
  

  
 (88) 

         
  

  
 
  

 
   

 

   
  

  
  

  
 (89) 

   
   

         

         
 (90) 

 

With these information, equation (78) gives us 

 

 
 

  
 
 

 
   

 
  
 
 

  

    
 
     

 
  
 
 
 
                

(91) 

 

Once again      cannot be found explicitly, and numerical methods are required to get 

the value of  . In this model, we see that there is a singularity when    
 

 
. Technically, 

this      model is only valid when    , since a negative   value will not satisfy 

condition (1). As per usual, it can be easily proven that conditions 2 and 3 are satisfied. 
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4.2.5      Function 3: Hyperbolic Tangent 

                  
 

  
   (92) 

 

This function has an additional term of a hyperbolic tangent function. This function may 

look similar to Wu’s model,                  
  

 
, but Wu’s model had a different 

motivation: he suggested a model that fits the phantom divide line crossing (the 

crossing of     ).3 Once again the usual mathematics similar to the previous sections 

are done, 
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 (95) 

 

Substituting these slightly more complicated-looking equations into equation (78), we 

get 

 
 

  
 
 

 
     

 
  
 
 

       
 
  
 
 

       
 
  
 
 

                
                

(96) 

 

This model does not have a singularity, and due to the nature of the hyperbolic tangent 

function, it is valid at all  .  

 

 There are many other possible      functions that could be proposed, however 

due to the limitations of time, only 3 functions here could be tested. In the following 

section, the    tests for the 3 observational constraints used will be explained in detail. 

 
 

4.3    Tests 
A    test is used to fit a particular equation to a set of data, and the smaller the value of 

the   , the better the fit. Given a set of observed data   , the errors of the observed data 

  , and a theoretical value           for every   , where                 are a set of 

parameters that both    and   depend on, and              are a set of free 

parameters that we can vary in the particular model, a    value can be represented by 

the following equation, 

        
              

 

  
 

    

(97) 
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A    test minimizes the error in the least squares sense. Here we assume that 

there are only statistical errors and thus any systematic error terms have been 

neglected. In this project we have two free parameters from each model, they are   and 

    , and the parameter that both the observed and theoretical value depend on is  . 

Thus our    equation can be written as 

 

            
                 

 

  
 

    

(98) 

 

The    statistics can be numerically obtained through some simple MATLAB 

programming. As there are two varying parameters, a two-dimensional grid of    

statistics with   against      will be plotted, such that for every point          on the 

graph, there would be a    value. The minimum    value will be obtained, and a contour 

plot on confidence intervals based on this value will be plotted. The three contour lines 

plotted will be of confidence intervals of 68.3%, 95.4% and 99.73% respectively, which 

are the 1σ, 2σ and 3σ lines. Since there are two varying parameters, these lines 

correspond to      
          

           
        respectively.39 The    statistic 

formulas for each of the 3 distinct tests would be shown in the following sections. 

 

 

4.3.1 SNE Test 

We refer to equation (54) which gives us a theoretical value of   , the distance modulus 

between the observers on earth and the supernova. Equation (98) now becomes 

 

            
                    

 
     

   
  
 

  
 

  
 

       

(99) 

 

The Union2.1 data of 580 SNEs from the Supernova Cosmology Project will be used. 

 

 The equation for the SNE test may look pretty straightforward, but there is a 

minor problem here. As said earlier, there are only 2 free parameters that we are 

varying, being   and     . However, a close look at the      equations showed that 

there are actually other parameters involved as well, namely    and     . Theoretically 

     should be negligibly small, since we currently have a matter dominated universe, 

fixing a small value of             will solve the problem.14 However,    is not 

negligible, and is neither an important parameter needed to be determined explicitly. 
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The easiest way out is to set a particular value of    (say, 68.5 km s-1 Mpc-1), and 

continue with the fit. One could also fit a few values of   , and compare the different 

contour plots yielded (this method was conducted on       for the interest of the reader, 

see Appendix B1). However, there are better ways of solving the problem. In the 

following sections, two methods will be proposed: analytical marginalization and the 

minimized    method. 

 

Analytical Marginalization 

Marginalization of parameters is one way to get rid of free parameters that we do need 

by summing up the entire likelihood of that parameter in the function. The probability 

function of    is proportion to    according to the formula39 
 

       
 
  

  (100) 

 

Since we do not know the exact value of    and that we want it to be 

independent of the model, we can conduct an integration over all probabilities of   , so 

that the results include the likelihood of all possible    values taken into account. We 

define   
  to be the analytically marginalized    value over the likelihood of  , where 

       . We then have 

  
  
 

     
  

 

 

 

  

  
         

  

 

 

 

   (101) 

 

In order to simplify the integral, we first set      
    

  
, and equation (54) gives 

 

        
       

 
 

 

     
   

  

 

 

              
 

     
   

  

 

       

     
        (102) 

 

Plugging this relation back into equation (99), it now becomes 
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   (103) 

 

Using a change of variable                   
 

    
, we get 

 

  
       

 
 
 
 
      

  
 

  
 

  
 

  
        

 
 

  
  

    
 

     
 
     

 

  
  

 
 
    

  

   (104) 

 

Finally, using the integral formula      
       

 

  
  

 

 
 
  

 , we get its final form: 

 

  
   

      
   

  
  

  
     

 

  
  

    
 
 
 

 
 
  
 

    
         

   
 
  
 

  (105) 

 

The term  
 

  
  is independent of      and  , and therefore is treated as a constant. 

Equations (86), (91) and (96) have been conveniently expressed in the form of 
 

  
 so 

that this calculation can be conducted easily. This is the    statistic marginalized over  . 

 

Minimum    

Another method to solve this problem is to use calculus to minimize the    with respect 

to  . We start from equation (99), plugging in equation (102), we get 

 

            
      

         

  
 

       

 

    
      

   

  
     

     
 

  
         

 

  
 
       (106) 

 

Now to minimize   , we let 
   

       
   (since minimizing with respect to   is the same 

as to     ), so we get 

      

 
     

 

  
 

  
 
  
 

 (107) 
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Substituting this result back to equation (106), we get 

 

    
      

   

  
  

  
     

 

  
  

 

 
 
  
 

 (108) 

 

This is the minimized    statistic which is independent of   . This method yields 

an equation which differs from the one from the analytical marginalization method by 2 

constants. It was tested that both these tests yield the same best fit values, but they 

differ by the value of    (this is verified in Appendix B2). This method was used by 

Bengochea, and will be the default method used for this SNE test. The MATLAB code for 

this test is shown in Appendix A1. 

 

 

4.3.2 CMB/BAO Combined Test 

The common method to conduct a CMB and a BAO test is to constrain them separately 

using   (equation (61)) and      (equation (64)), 

 

    
  

             
 

     
   

    
 

 
 

  
 

(109) 

    
   

        
      
     

 
 

  
 

 

 

(110) 

 

where the observed values are              ,                         and 

                        . However, a more independent constraint can be 

achieved by combining these two tests into one. It is done by multiplying equations (59) 

and (64) to get a quantity  ,  

 

          
  
         

        

      

     
  

  
         

     

      

        
 (111) 

 

This quantity could be simplified by cancelling the dependence on the sound 

horizon scale. We implement the correction for the difference between the sound 

horizon at the end of the drag epoch and the sound horizon at last scattering by setting 

the ratio 
      

        
             (as calculated by Komatsu)40. Using the values of   and 

     above, we arrive at two observed quantities, 
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            (113) 

 

The theoretical value of   is 

       
  
         

     
 

 
 
     

   
    
 

 
 

    
  

   
     

 

 
 
 

 

 
 

(114) 

 

where   
 

  
, and the    is cancelled out from the numerator and denominator. Thus 

our combined CMB/BAO    test would have the equation: 

 

    
   

                   
 

  
  

 

 

(115) 

 

The MATLAB code for this test can be found in Appendix A2. 

 

 

4.3.3 OHD Test 

The OHD    test is relatively simple. As the observed values of    and    have been 

measured by several groups, one only needs to calculate the values of      without any 

integration involved. In other words, 

 

    
   

                 
 

  
  

  

 

(116) 

 

The data source of the 15    values chosen to be used in this test (as used by 

Bengochea)29 is summarized in the Table 2. The MATLAB code for this test can be 

found in Appendix A3. 

 

With these 3 distinct    tests, we can find the total    value by simply adding 

them up,        
      

      
 . The minimum    and best fit          values for 

each test will be recorded, contour plots will be plotted for every single tests, and the 

combined test results will also be analyzed and discussed. 
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(km s-1 Mpc-1) 
   Source 

0.00 74.20 3.60 Riess et al.41 

0.10 69.00 12.00 

Stern et al.31 

0.17 83.00 8.00 

0.27 77.00 14.00 

0.40 95.00 17.00 

0.48 97.00 62.00 

0.88 90.00 40.00 

0.90 117.00 23.00 

1.30 168.00 17.00 

1.43 177.00 18.00 

1.53 140.00 14.00 

1.75 202.00 40.00 

0.24 79.69 2.32 

Gaztanaga et al.42 0.34 83.80 2.96 

0.43 86.45 3.27 

Table 2: Data used for the OHD Test 

 

 

4.4 Root Finding: The Bisection Method 
To conduct the SNE    test for      , we need equations (86) and (108), rewritten as 

follows: 
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(118) 

 

Since      is not explicitly defined, the integration cannot be done analytically. To solve 

the integration, we need to use root finding methods to obtain the value of  , and then 

use numerical integration methods to solve for the integral. Rewriting the      

equation of       as 

 

                         
            

               (119) 

 

Given values of   ,     ,      and  , we can find   by letting       , and   would be the 

root of the equation. In order to do this numerically, the bisection method is used, and it 

works as follows. 

 



46 
 

Suppose the root of      is between the interval      . We find values of     , 

     and   
   

 
 . The strategy is to halve the given interval, then select the subinterval 

where there is a sign change in      between the two ends. This process is repeated by 

improving the brackets, halving the intervals and retaining the interval containing the 

root, until the upper and lower limit approaches the root,         where   is the 

desired precision required. Thus the root will have the precision of   , and it will be the 

output of the code. A simple bisection method MATLAB code will look like the following: 

 

 

function root = bisection(f, left, right) 

% f          = the function involved 

% left/right = lower/upper boundary of the bracketed root 

tolerance    = 1e-10; 

error        = 1e8; 

fLeft        = f(left); 

fRight       = f(right); 

 

while(error > tolerance) 

    middle  = (left + right)/2; 

    fMiddle = f(middle); 

    if (fLeft*fMiddle <= 0) 

        right  = middle; 

        fRight = fMiddle; 

    else 

        left  = middle; 

        fLeft = fMiddle; 

    end 

     

    error = abs(right - left); 

    root  =  middle; 

end 

 

Fig. 3: MATLAB Code for the Bisection Method 

  

In actual fact, there are many other root finding methods, like the Newton-

Raphson method, Secant Method, Brent’s Method and etc. The bisection method is said 

to be the slowest method, as the number of iterations taken to get the root is of the 

order 
  
       

 

   
.43 However, there are 2 reasons why the bisection method was chosen for 

this project. Firstly, although other methods have lesser steps to get to the root, the 

process requires differentiation, which in fact slows down the computer processing 

speed when the root finding method is repeated multiple times. The SNE test for 

example, requires the root finding code to repeat about 3600 times in order to get one 

single    value, and the bisection method turned out to be a faster solution. The second 
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reason is that while other methods suffer the possibility of deviations from the root 

bracket, the bisection method doesn’t, and it is considered the safest method among all. 

Thus in all cases, the bisection method will be used to find the root of     . 

 

 

4.5 Numerical Integration: The Gauss-Legendre Quadrature 
As it can be seen in equations (117) and (118), the integration cannot be done 

analytically, and thus we need to rely on numerical methods to get the integration done. 

There are many numerical integration methods available, like the trapezoidal rule, 

Romberg integration and Monte Carlo Integration,43 but in this project, the Gauss-

Legendre quadrature will be used. 

 

Any integral can be approximated by a quadrature, with the form 

 

     
 

 

           

 

   

(120) 

 

where    are the weights, and    are the abscissas (the values of   where the integral 

is evaluated at).    and    are unknowns, and can be found by expecting      to be 

exact polynomials, such that                    . This method works something 

like the trapezoidal rule, except that instead of   panels of fixed widths, this method 

uses   weighted panels with different widths. This method works best within a limit of 

      , so by changing the integration limits in equation (120), we get 

 

     
 

 

   
   

 
   

   

 
 
   

 
  

 

  

  

 
   

 
     

   

 
 
   

 
   

 

   

 (121) 

 

We further set    , and setting the integral range             (which 

happens to be the integral range for all the integrations involved in this project), 

equation (121) now turns into 

 

      
 

 

    
 

 
     

 

 
        

 

   

(122) 

 

The values                and    can be calculated using the Gram-Schmidt 

orthogonalization of functions, which results in the formation of Legendre 
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polynomials.43 In simple terms, the values of    are the roots of the n-th Legendre 

polynomial      , while the values of    are obtained using Gaussian integration of the 

Legendre polynomials. While the higher the value of   the more accurate the results, the 

side effect would be that the expression of the integration would have many terms, and 

thus an optimum     is used. The values of    and    are well known and can be 

obtained online.44 For    , we have 
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So with these information, equation (122) now becomes 

 

      
 

 

    
 

 
 
 

 
  
 

 
  

 

 
  

 

 
    

 

 
   

 

 
  

 

 
    

 

 
    (126) 

 

Therefore given a function     , we can use Gauss-Legendre quadrature to solve 

the integration by working with      itself without any integration involved. The 

accuracy of the integration results can be further improved by dividing the integration 

into   equal parts, 
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The integration gets more and more accurate with higher values of   (the number of 

panels), but however, will slow down the integration process in MATLAB. Thus different 

optimum values of   will be assigned to each test depending on the integration limits. 

The MATLAB code for Gauss-Legendre integration is shown in Fig. 4. 

 

 With the necessary bisection and integration numerical methods, we can 

proceed to solve the    values for each distinct    test for the three different      

functions, and plot their contour plots. The results of this project will be shown in the 

next chapter. 
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function integral = gauss_legendre_quadrature(f,a,b,n) 

% a, b = limits of integration 

% n    = the number of subintervals the integration is to be divided 

 

h2   = (b-a)/(2*n); 

sq35 = sqrt(0.6); % abscissa 

w1   = 5/9;       % weights, x = +-sqrt(0.6) 

w2   = 8/9;       % weights, x = 0 

x    = linspace(a,b,n+1); 

sum  = 0; 

 

for (i = 1:n) 

    sum = sum + w1*f(x(i) + h2 - sq35*h2); 

    sum = sum + w2*f(x(i) + h2); 

    sum = sum + w1*f(x(i) + h2 + sq35*h2); 

end 

 

integral = h2*sum; 

 

Fig. 4: MATLAB Code for the Gauss-Legendre Quadrature 
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Chapter 5 

 

RESULTS 

 
In the following pages, the individual    contour plots of the SNE, CMB/BAO and OHD 

tests for each      function will be shown, and the best fit values of     ,   and their 

respective     
  values will be tabulated. The    values obtained for each constraint test 

will be added together to get a total    value, and the overall best fit values from the 

combined SNE+CMB/BAO and SNE+CMB/BAO+OHD tests for the three      functions 

will be compared with one another and to the ΛCDM model. 

 

5.1 Function 1:         
 

    
  

  

The 3 graphs in the following page shows the contour plots of the 2-dimensional    

tests with   plotted against     , and their respective confidence intervals at 68.3%, 

95.4% and 99.73% respectively. The small black crosses indicate the point          

which yields the     
  respectively. Data from all three plots showed that the       

model favors a non-zero   value (with the SNE test having a best fit very close to    ), 

although the      model (   ) still lies within the 1σ region of the best fit. The 

CMB/BAO test yields a significantly higher value of   compared to the other two tests 

(comments in Chapter 6). The data obtained from the    tests are summarized in the 

following table: 

   Test            
  

SNE          
               

      562.2265 

CMB/BAO          
               

    
 0.0574 

OHD          
               

      8.1854 

Table 3: Best Fit Values of      and   for       obtained from the 3    Tests Conducted 

 

Bengochea et al had also conducted a test with this same      model, and we 

find that his CMB/BAO test results gives                    
               

    
 , in which the 

value of   is consistent within 4.1% percentage difference. Bengochea did conduct tests 

for SNE and OHD too, however the data he used for the SNE test was the older version 

(Union2), and he did not state explicitly his results of the OHD test. Thus it is not 

possible to compare these results obtained with the results of his work. 
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For      , the SNE test was also done using analytical marginalization and the 

fixed    method for values between 68 to 72 km s-1 Mpc-1. The results of the analysis 

will be tabulated in Appendix B1 and B2. 

 
Fig. 5a: SNE Test for         Fig. 5b: OHD Test for       

 
Fig. 5c: Combined CMB/BAO Test for       

 

 

5.2 Function 2:           
  

 

   
The 3 graphs in the following page shows the   contour plots of for      . It can be seen 

that contour plot for the OHD test contains two minimum points, in which only one is 

the true minimum. The contour plot for the CMB/BAO test showed there is a drastic cut 

after    , and this weird property will be discussed in Chapter 6. The results once 

again showed that a non-zero   is favored over the ΛCDM model, and the SNE test once 

again showed a best fit very close to    . All the tests have the ΛCDM model included 
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in the 1σ region, but the CMB/BAO test has it at its borderline. The results of these 

individual tests are summarized in Table 4. 

 

   Test            
  

SNE          
                

      562.2252 

CMB/BAO          
               

    
 0.0463 

OHD (upper)          
               

      8.3925 

OHD (lower)          
               

      9.8785 

Table 4: Best Fit Values of      and   for       obtained from the 3    Tests Conducted 

 
Fig. 6a: SNE Test for         Fig. 6b: OHD Test for       

 
Fig. 6c: Combined CMB/BAO Test for       
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5.3 Function 3:                   
 

  
   

The 3 graphs below shows the   contour plots for      . The contours are seen to have 

twists between the region           . In this plot, we see that the SNE test on       

is shown to have greater deviation from the ΛCDM model compared to the previous 2 

models. The OHD test showed that there are two minimum points, in which the absolute 

minimum point is at the lower region. This time, all three tests favored a non-zero value 

of  , but unlike previously, only the OHD test had the ΛCDM results outside of the 1σ 

region. The data obtained are summarized in Table 5. 

 

   Test            
  

SNE          
               

      562.2217 

CMB/BAO          
               

    
 0.0461 

OHD (lower)          
                

      7.3965 

OHD (upper)          
               

      8.4235 

Table 5: Best Fit Values of      and   for       obtained from the 3    Tests Conducted 

 
Fig. 7a: SNE Test for         Fig. 7b: OHD Test for       

 
Fig. 7c: Combined CMB/BAO Test for       
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5.4 Combination and Comparison of Results 
We have seen the individual results of      ,       and      . As not all constraints by 

themselves are strong, we need to combine the results by adding the    values. The 

most reliable combination would be the SNE + CMB/BAO results, while the SNE + 

CMB/BAO + OHD results will be tabulated for comparison. The combined results will be 

summarized in Table 6 below: 

 

     
SNE + CMB/BAO SNE + CMB/BAO + OHD 

           
             

  

               
               

      562.8908          
               

      575.3784 

               
               

      563.0011          
               

      576.1400 

               
                

      562.8907          
                

      575.7724 

     0.28     0.00 563.1666 0.27     0.00 577.1172 

Table 6: Combined Best Fit Values of      and   for All Functions 

 

The    contour plots for the SNE + CMB/BAO and SNE + CMB/BAO + OHD tests 

are shown in Figs. 8 and 9. As it can be seen, the combined tests for       results in a 

sharp lower end, and this is due to the sharp cut seen in the CMB/BAO test. As for      , 

it has two minimum points for both combinations. The other minimum point for SNE + 

CMB/BAO + OHD plot is             with            , while the one for SNE + 

CMB/BAO is             with            . 

 

 From the results in Table 5, we can deduce that       the exponential function 

does not seemed to fit the data as good as       and      , since it has a much higher 

    
  value than the rest. The SNE + CMB/BAO tests for       and       yield results 

which are very close to ΛCDM model, and we can conclude that the ΛCDM model is still a 

very good approximation of our universe at the moment. The SNE + CMB/BAO + OHD 

test seemed to suggest that       is the best fit model. It also showed a deviated value of 

  from the ΛCDM model, which leads to the suggestion that if the OHD observational 

test is reliable, there might be small perturbations from the ΛCDM model, where the 

Lagrangian   might have additional corrected terms. This conclusion is supported by 

the fact that the best fit model using the SNE + CMB/BAO + OHD test is      , and that 

the ΛCDM model is not within its 1σ region. 

 

 The different conclusion drawn from the two different combinations suggest that 

there are some discrepancies between the SNE and OHD test, and this will be discussed 

in the next chapter. Despite the differences in both different combinations, one result is 

certain: the analysis of the three functions consistently suggested          , which 
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means that the acceleration of our universe is caused by an approximate 29:71 ratio of 

matter and dark torsion fluid.  

 
Fig. 8a: SNE + CMB/BAO Test for        Fig. 9a: SNE + CMB/BAO + OHD  Test for        

 

 
Fig. 8b: SNE + CMB/BAO Test for        Fig. 9b: SNE + CMB/BAO + OHD Test for       

 

 
Fig. 8c: SNE + CMB/BAO Test for         Fig. 9c: SNE + CMB/BAO + OHD Test for       
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Chapter 6 
 

DISCUSSION AND SOURCES OF ERROR 

 

6.1 Comments on the CMB/BAO Test 
As it was shown in Chapter 5, the CMB/BAO test seemed to yield a much higher value of 

  compared to the other two tests for all      models. This is because the CMB and BAO 

tests are weak observational constraints on cosmological models (mentioned in 

Chapter 3), and the results lead us to suggest that its dependence on   is weak too. In 

other words, the value of   resulting from the CMB/BAO test should not be taken 

literally, but instead constrained together with other tests. 

  

 For      , we see that there is a drastic cut in the graph of the CMB/BAO    test 

at the line     (Fig. 6c). After careful analysis, it was found that this is due to the 

exponential function in equation (91) and the top integral in equation (114), as shown 

below: 

   
      

    
      

                      (128)  

 
 

     
   

    

 

(129) 

 

 As the integration of the commoving angular diameter involves an integration of 

a significantly large           , the sudden jump in the root of equation (128) would 

be very large as   moves from 0 to -0.01, and thus the numerator in equation (114) will 

undergo a significant change. A simple plot of equation (128) in Fig. 10 will visualize 

the problem. 

 

 Both plots in Fig. 10 are plotted at fixed values of           and       . As 

it is shown, the exponential value changes drastically when   passes from positive to 

negative, making the root for the equation changes drastically from 20843 to 41. This 

drastic change is only for the case when   is large, as it is tested that at       , the 

root only changes from 1.167 to 1.168. Thus, the integration over such a large change 

during the transition from     to         has caused a sudden hike in the    value, 

and thus the drastic cut in the section. The fact that such a drastic cut exists in this 

model also leads us to suggest that such a model might not be a stable      model, as it 

is counter-intuitive to expect a cosmological model to behave in such a manner. The 
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higher     
  value of       has also supported the argument that there are indeed better 

models than this that fits the universe. 

 

 

 
Fig. 10a & b: The plot of      for       at                  and     (top) and         (bottom) 

respectively. 

 

 

6.2 Comments on       and       
As it was shown in section 5, the best fit    values of       and       are very close to 

one another, although the two functions and their best fit values of   differ from one 

another. In order to determine which model is a better one, we have to take into account 

the physical picture of the model itself. There are a few arguments here to suggest that 

      would be a more viable model than      . 

 

If we see      models as small perturbation of the ΛCDM model, it is easier to 

believe that the small perturbation should be in the form of a reciprocal power than a 

hyperbolic tangent function. Besides, the shape of the contours of      , and having 2 

local minimum    values also lead us to suggest that there might be stability issues in 

     . Thus it would be more intuitive to think that       is a better model than      . 

However, these arguments are overshadowed by the fact that the values of   yield from 

the SNE + CMB/BAO tests are close to 0, in which a better conclusion, would still be that 

these models are indistinguishable with the ΛCDM model. It would be safer to conclude 

that a particular      model is better than the ΛCDM model if it has a much lower    
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value, and that it has a tighter constraint which rules out     from its confidence 

interval. 

 

 

6.3 The Tension between SNE and OHD Test 
Careful analysis on the SNE and OHD    contours had yield unexpected results. It is 

found that the 1σ region of the best fit values of          for the SNE and OHD tests do 

not coincide with one another. Fig. 11a, b & c below shows the 1σ region of the best fit 

values for the SNE (red) and OHD (green) tests: 

 
Fig. 11a: 1σ Contour of SNE & OHD Test for       Fig. 11b: 1σ Contour of SNE & OHD Test for       

 
Fig. 11c: 1σ Contour of SNE & OHD Test for       

 

The fact that both tests do not coincide is indeed puzzling. Not only that, it looked as if 

the contours were trying to ‘avoid each other’. This is counter intuitive, since we expect 

observational constraints to be consistent with one another, and should have common 

confidence regions for us to gauge the best fit values. At the moment, it was found that 

no literature published had discussed on this results: most literature only mentioned 

that the values of      yield very similar results to that of the ΛCDM model.30, 31  
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There are a few possible explanations for this result. Firstly, the OHD test, by its 

very own nature, might be the problem itself. As the OHD test highly depends on the 

correct determination of the age of the galaxies, and the statistical differences of the 

redshifts, we expect calculation errors to be involved. Besides, in our case we only used 

15 observed Hubble data, and we could increase the amount of our data to include more 

    values to dilute the errors, like that of Farooq and Ratra, who used 28 data in 

their analysis.45 Thus, due to the propagation of errors involved, the OHD test might not 

be a good stand-alone test at the moment. Another possible explanation is that the OHD 

test might be not sensitive to  , like the case of the CMB/BAO test. We notice that the 

error in   for the OHD test is larger than the SNE test. However, the best fit values are 

consistent at a certain value of     , with the exception of      . This problem can be 

solved by increasing the number of datasets and diluting the error, as mentioned earlier. 

 

To verify whether such behavior occurs in other situations, the SNE and OHD test 

for dark energy was conducted (a plot of      against  , following the work of my 

UROPS26), and the same behavior was found for both tests (Fig. 12c).  

 
Fig. 12a: SNE Test for Dark Energy  Fig. 12b: OHD Test for Dark Energy 

 
Fig. 12c: 1σ Region for SNE & OHD Tests for Dark Energy 
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Once again, they yield the same value of      of 0.28, but different values of  . 

The SNE test showed that source of cosmic acceleration is close to dark energy 

         , while the OHD test favored phantom energy          . 

 

The explanations given above are not solid. In order to further investigate the 

problem, one needs to further understand how the SNE and OHD data were taken and 

measured. The in-depth analysis of the SNE and OHD tests could be a beneficial future 

project, it will test the viability and validity of both tests, and will help to constrain 

models better in the future. 

 

 

6.4 Determination of the Value of    
Following the minimized    method used in the SNE test, it is found that we would be 

able to determine the favored value of    for each      model through minor tweaking 

of equation (107). Rewriting it, we get 

 

     

   

 
     

 

  
 

  
 

  
 
             

(130) 

 

Plugging in the given the best fit values of   and     , we will be able to find the best fit 

value of    to the three models. The best fit values of    obtained are quite consistent, 

they are 69.993, 70.002 and 69.989              respectively. Rounding off to 

              , this results is equal to the results obtained by Reiss 

(                ) within 5.6% percentage difference. 

 

 Although we have assumed that the SNE is test is the most reliable observational 

constraint of all, the determination of    requires many other factors to be taken into 

account, thus this analysis only suggests the best fit values of    for that particular 

model only, and cannot be generalized. Equation (130) merely acts as a quicker 

alternative for the user compared to plotting a 3-parameter (         ) fit on the 

models. 

 
 

6.5 Recent Related Work 
As mentioned earlier in this thesis, various other research groups have proposed many 

other      functions and used various observational constraints to fit their 

cosmological models. The functions       and       proposed here are the author’s 

original work, while       is similar to Bengochea’s proposed function.14 The search for 
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a better      model with various motivations continues, and a summary list of various 

     functions proposed by various research groups is tabulated in Appendix C for the 

reference of the reader. Other recent research work on      gravity include the 

constraint on      models using cosmography46, the study on cosmological 

perturbations2, time-propagation and evolution of      gravity19 and etc. There are also 

research groups which collect      functions from various authors to compare and fit 

with the latest data, like the work of Cardone47 and Nesseris.48  

 

 

6.6 Sources of Error 
Throughout this project, the main sources of error would be the numerical methods of 

root finding and integrations. As the integration involves a reciprocal function, the 

numerical errors will be brought forward from the root finding part into the integral. 

One way to solve this problem would be to increase the accuracy of the bisection and 

the integration by decreasing the tolerance value of the bisection, and increasing the 

panels of integration involved. However, the more accurate the calculations, the more 

time it takes for calculations to complete, and thus optimum values of tolerance and 

integration panels have been set and chosen for each test to ensure a balance in time 

management and accuracy of data collected. Other sources of error would include 

human error in deriving equations, errors in copying data and errors in coding. All these 

errors could be reduced by conducting counter checks and consistency checks. 
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Chapter 7 

 

CONCLUSION AND FUTURE WORK 

 

7.1 Conclusion 
From the SNE + CMB/BAO tests, we conclude that the      models tested are shown to 

be indistinguishable from the ΛCDM model, and that the ΛCDM model is still a 

reasonable best fit model to describe our universe (Nesseris made a similar conclusion 

too48). From the SNE + CMB/BAO + OHD tests, we conclude that there might be a certain 

positive perturbation from the ΛCDM model caused by dark torsion, and that      , the 

reciprocal power model is the best fit model of our universe. In both cases, it is found 

that the mass density parameter           . Thus we conclude that,      gravity 

models are relatively good alternatives to dark energy, but the results are highly 

dependent on the observational constraints used. 

 

 

7.2 Future Work 
As much as how this project has achieved its goal to analyze different      gravity 

models and conclude its viability, there are still many areas where this work can be 

continued on. One could continue to use other different      functions to see whether 

they produce results similar to what was shown in this work. Since in this work 

MATLAB codes for    tests have been setup, it is very easy to continue the analysis by 

substituting other      functions. Fig. 12 below shows just a few other examples of 

     functions that could be tried out. 

 

              
 

  
  

               
 

  
     

               
 

  
  

              
 

  
  

         
 

 
        

 

  
   

                
 

  
  

       
 

    
 
  
    

  

Fig. 13: Other Possible      Functions to be Tested 

 

Other than that, further work could be done to improve the observational 

constraints on cosmological models. One could study their advantages and 

disadvantages, include other extra observational constraints, and further analyze which 
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observational tests are the most stable, suitable and reliable for cosmological model 

fittings. This is a very important aspect, since many new cosmological models and ideas 

are constantly produced, and it is of utmost importance for physicists to be fitting them 

with the best data and constraints available. An example from this work would be to 

study the OHD and SNE test critically, to understand why their best fit plots do not 

overlap within 1σ. Of course, as time goes by, the observational constraint would 

improve as the dataset expands, and thus a future work in the form of testing old 

cosmological models with new data is considered new work as well. 

 

Lastly, it would also be important to study the theory itself, to study the detailed 

physics behind teleparallel gravity and      gravity. Although      gravity models are 

empirically defined, it is crucial that these models make sense: we want to know why 

the universe behaves with a perturbation of a reciprocal power function, and what is its 

physical meaning. It would be beneficial to understand the stability, time evolution of 

     gravity models, and most important of all, to ensure its consistency with the rest of 

the known physics theories available. 

 

 At the moment, humans are still far from fully understanding the vast universe 

that we live in. Researches in these areas are always limited by the precision of 

instrumentation and travelling speed. But as long as physicists continue to put in their 

effort in this research area, I believe that we will be closer and closer to fully 

understanding this mysterious universe that we live in. 
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APPENDIX A: MATLAB CODES 

 

A1 SNE    Test MATLAB Code 

 
 

function torsion_sne() 

global mm nn z muB sigma2 c Omega_r 

M           = dlmread(‘union21data.m’); 

z           = M(:,1); 

muB         = M(:,2); 

sigma2      = M(:,3).^2; 

c           = 299792458; 

Omega_r     = 5e-5; 

chi2min     = 1e9; 

Omega_m_min = 10; 

n_min       = 10; 

 

Omega_m = 0:0.01:0.55; 

n       = -1:0.01:3; 

 

Chi2     = ones(length(n),length(Omega_m)); 

sumerror = 0; 

 

% value of the constant term 

for (k = 1:length(sigma2)) 

sumerror = sumerror + 1./sigma2(k); 

end 

 

% loop for the chi^2 matrix 

for (I = 1:length(Omega_m)) 

mm = Omega_m(i); 

     

for (j = 1:length(n)) 

        nn   = n(j); 

        chistar = 0; 

        64print64 = 0; 

         

        for (l = 1:length(M)) 

            int     = gauss_legendre_quadrature(@inverseY,0,z(l),6); 

            chistar = chistar + (5*log10((1 + z(l)).*int) –  

                      muB(l)).^2./sigma2(l); 

            64 print 64  = 64 print 64  + (5*log10((1+z(l)).*int)-

muB(l))./sigma2(l); 

        end 
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        chi2      = chistar – (65print65)^2/sumerror; 

        Chi2(j,i) = chi2; 

        disp(65print(‘(%g,%g)’,Omega_m(i),n(j))); 

         

        % Finding the minimum chi^2 value in the process of the loop. 

         

        If (chi2min > chi2) 

            chi2min     = chi2; 

            Omega_m_min = Omega_m(i); 

            n_min       = n(j); 

        end 

end 

end 

 

% save the results into a file 

dlmwrite(‘Chi2sne.m’,Chi2,’precision’,’%.7f’); 

 

% display the results 

disp(65print(‘(Omega_M,n) = (%g,%g)’,Omega_m_min, n_min)); 

 

% plot the contour lines. 

V = [chi2min+2.3, chi2min+6.17, chi2min+11.8]; 

contour(Omega_m, n, Chi2, v); 

xlabel(‘Ω_M’);  

ylabel(‘n’); 

 

 

% the H(z) equation of the f(T) model 

function l = f(x) 

global nn mm zz Omega_r 

l = x^2 – (2*nn*x^2 + 1)/(2*nn + 1)*(1 – mm – Omega_r)/exp(nn*(x^2 – 1)) – 

mm*(1 + zz)^3 – Omega_r*(1 + zz)^4; 

 

function k = inverseY(z) 

global zz 

zz = z; 

root = bisection(@f,0,5); 

k = 1./root; 

 

Fig. 14: MATLAB Code for the SNE    Test 
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A2 Combined CMB/BAO    Test MATLAB Code 

 
 

function torsion_cmbbao() 

global mm nn Omega_r 

Omega_r     = 5e-5; 

chi2min     = 1e9; 

Omega_m_min = 10; 

n_min       = 10; 

zstar       = 1090; 

z1          = 0.2; 

z2          = 0.35; 

Chi2        = ones(length(n),length(Omega_m)); 

 

Omega_m = 0:0.01:0.55; 

n       = -1:0.01:3; 

 

% loop for the chi^2 matrix 

for (i = 1:length(Omega_m)) 

    mm = Omega_m(i); 

     

    for (j = 1:length(n)) 

        nn   = n(j); 

        d_A  = gauss_legendre_quadrature(@inverseY,0,zstar,2984); 

        D_v1 = (z1*inverseY(z1)*(gauss_legendre_quadrature(@inverseY,0,z1,  

               13))^2)^(1/3); 

        D_v2 = (z2*inverseY(z2)*(gauss_legendre_quadrature(@inverseY,0,z2,  

               13))^2)^(1/3); 

        chi2 = (d_A/D_v1-17.55)^2/0.65^2 + (d_A/D_v2-10.10)^2/0.38^2; 

         

        Chi2(j,i) = chi2; 

 

        disp(sprintf('(%g,%g)',Omega_m(i),n(j))); 

         

        % Finding the minimum chi^2 value in the process of the loop. 

        if (chi2min > chi2) 

            chi2min     = chi2; 

            Omega_m_min = Omega_m(i); 

            n_min       = n(j); 

        end 

    end 

end 

 

% save the results into a file 

dlmwrite('Chi2cmbbao.m',Chi2,'precision','%.7f'); 

 

% display the results 
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disp(sprintf('(Omega_M,n) = (%g,%g)’,Omega_m_min, n_min)); 

 

% plot the contour lines. 

v = [chi2min+2.3, chi2min+6.17, chi2min+11.8]; 

contour(Omega_m, n, Chi2, v); 

xlabel('\Omega_M');  

ylabel('n'); 

 

 

% the H(z) equation of the f(T) model 

function l = f(x) 

global nn mm zz Omega_r 

l = x^2 - (2*nn*x^2 + 1)/(2*nn + 1)*(1 – mm - Omega_r)/exp(nn*(x^2 - 1)) – 

mm*(1 + zz)^3 - Omega_r*(1 + zz)^4; 

 

function k = inverseY(z) 

global zz 

zz = z; 

root = bisection(@f,0.001,50000); 

k = 1./root; 

 

Fig. 15: MATLAB Code for the Combined CMB/BAO    Test 
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A3 OHD    Test MATLAB Code 

 
 

function torsion_ohd() 

global mm nn Omega_r H0 

Omega_r     = 5e-5; 

H0          = 74.2; 

chi2min     = 1e9; 

Omega_m_min = 10; 

Chi2        = ones(length(n),length(Omega_m)); 

 

Omega_m = 0:0.01:0.55; 

n       = -1:0.01:3; 

 

Hdata = [74.2 69 83 77 95 97 90 117 168 177 140 202 79.69 83.8 86.45]'; 

sigma = [3.6 12 8 14 17 62 40 23 17 18 14 40 2.32 2.96 3.27]'; 

z     = [0 0.1 0.17 0.27 0.4 0.48 0.88 0.9 1.3 1.43 1.53 1.75 0.24 0.34  

        0.43]'; 

 

% loop for the chi^2 matrix 

for (i = 1:length(Omega_m)) 

    mm = Omega_m(i); 

     

    for (j = 1:length(n)) 

        nn   = n(j); 

        chi2 = 0; 

         

        for (k = 1:length(z)) 

        chi2 = chi2 + (H(z(k)) - Hdata(k))^2/sigma(k)^2; 

        end 

         

        Chi2(j,i) = chi2; 

 

        disp(sprintf('(%g,%g)',Omega_m(i),n(j))); 

         

        % Finding the minimum chi^2 value in the process of the loop. 

        if (chi2min > chi2) 

            chi2min     = chi2; 

            Omega_m_min = Omega_m(i); 

            n_min       = n(j); 

        end 

    end 

end 

 

% save the results into a file 

dlmwrite('Chi2ohd.m',Chi2,'precision','%.7f'); 
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% display the results 

disp(sprintf('(Omega_M,n) = (%g,%g)’,Omega_m_min, n_min)); 

 

% plot the contour lines. 

v = [chi2min+2.3, chi2min+6.17, chi2min+11.8]; 

contour(Omega_m, n, Chi2, v); 

xlabel('\Omega_M');  

ylabel('n'); 

 

 

% the H(z) equation of the f(T) model 

function l = f(H) 

global nn mm zz Omega_r H0 

x = H/H0; 

l = x^2 - (2*nn*x^2 + 1)/(2*nn + 1)*(1 – mm - Omega_r)/exp(nn*(x^2 - 1)) – 

mm*(1 + zz)^3 - Omega_r*(1 + zz)^4; 

 

function root = H(z) 

global zz 

zz   = z; 

root = bisection(@f,0.1,340); 

 

Fig. 16: MATLAB Code for the OHD    Test 
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APPENDIX B: OTHER RESULTS 

 

B1 Results for SNE Test with Fixed    on       
The SNE Test fixed    test for       was done for         , using the Union1.0, 

which was the first published data from the Supernova Cosmology Project, a 

compilation of only 307 SNEs.23 This test was done as a ‘trial’ test before the proper 

running of codes, but it turned out to be useful results. This test helps us to roughly 

gauge the best fit value of    using the SNE test. The results are summarized in Table 7, 

and Figs. 17a-17e show the resulting    contour plots (in the same scale for 

comparison purposes). 

 

    

               
           

  

68 0.09 -0.86 321.95 

69 0.34 0.10 314.55 

70 0.42 1.34 310.75 

71 0.44 2.74 310.79 

72 0.45 5.14 314.85 

Table 7: Best Fit Values of      and   for       at different    using the SNE Test 

 

The table showed that the       model favored the value of       

             , and a mass density of          
     . This high value compared to the results 

in Chapter 5 is due to the different SNE data used. The contour plots showed that the 

higher the value of   , the higher the uncertainty for  . To improve this result, one 

could attempt to fit the model with the updated Union2.1 dataset. 

 

 
Fig. 17a: SNE Test for        

at                   

 
Fig. 17b: SNE Test for        

at                   
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Fig. 17c: SNE Test for        

at                   

 
Fig. 17e: SNE Test for       

at                   
 

Fig. 17d: SNE Test for        

at                   
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B2 Analytical Marginalization v.s. Minimized    Method 
As mentioned in Chapter 4, the analytical marginalization and minimized    method in 

the SNE test yield equivalent results, as their equations differ by 2 constant terms. The 

graphs below show the two different SNE tests on       using the Union1.0 data. The 

results in Table 8 and the contour plots below both act as proof that both methods 

indeed yield similar results. Once again, the values of      are higher than those 

obtained in section 5, due to the fact that the older Union1.0 data was used. The 

Union1.0 data suggests a non-zero   value, and thus showed a deviation from the ΛCDM 

Model. 

Method            
  

Analytical Marginalization 0.43 1.91 319.71 

Minimized    0.43 1.92 310.28 

Table 8: Best Fit Values of      and   for       at different    using the SNE Test 

 

 
Fig. 18a: SNE Test on       using   Fig. 18b: SNE Test on       using  

Analytical Marginalization   Minimized    Method 
 
 

B3 GRB Test Results 
As mentioned in Chapter 3, the GRB test is a very weak constraint, and does not 

significantly affect the results of combined    tests overall. The graphs in the following 

page show the contour plots of the GRB test. The test is conducted using data of 5 

redshift values and the correlation matrix suggested by Xu.49 It can be seen that the 

constraints are indeed very weak, and their best-fit parameters are very much different 

from those obtained from the SNE, CMB/BAO and OHD test. Thus, the GRB test is not a 

good observational constraint for cosmological models at the moment. The results 

obtained from the GRB tests are tabulated in Table 9. 
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Function            
  

      0.02 -0.97 0.864 

      0.85 -0.27 0.413 

      0.13 -0.64 0.873 

Table 9: Best Fit Values of      and   for the      models using the GRB Test 

 

The common results obtained from the 3 functions, is that the models favor a 

negative   value. The values of      obtained are highly inconsistent, and they have a 

huge range between 0 and 0.9. Indeed, the GRB test is not as reliable as the rest, and 

cannot be used as a stand-alone observational constraint. 

 

 
Fig. 19a: GRB Test for           Fig. 19b: GRB Test for       

 
Fig. 19c: GRB Test for       
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APPENDIX C:      MODELS BY OTHERS 
 

The following table summarizes a few      models proposed by various authors in the 

recent years, tabulated with their best fit values.  

  

Year Author      Function Best Fit Values Remarks 

2010 Bengochea29        
 

     
 

          

    
         

(S2+B/C+G+O)* 

Similar to       

proposed in this work. 

2010 Linder38              
   
   

           

    
          

(S2+B+C) 

Linder merely 

formulated this function 

based on his      model 

in a previous work. 

Fitting conducted by Wu 

& Yu.1 

2011 Bamba et. al50 
         

 

   
   

   
 
  

                      
  
   

           

    
         

(S2+B+C) 

Model motivated to 

realize the crossing of 

the phantom divide line. 

2011 Myrzakulov51                - 

Myrzakulov merely 

constructed the 

solutions for his 

function. 

2011 Wu & Yu3 

               
  
 

 

           

    
          

(S2+B+C) 
Motivated to realize the 

crossing of the phantom 

divide line. 
               

   
   

           

    
          

(S2+B+C) 

Table. 10:      Models in the Work of Others 

 
* S2 = SNE 1a (Union 2.0 data), B = BAO, C = CMB, C/B = CMB/BAO Combined, G = GRB and O = OHD. 
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