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Abstract

The discovery of Jarzynski Equality relates the work statistics during a non-

equilibrium process to the equilibrium free energy difference. Its application is,

however, greatly limited by the poor convergence. We adopt the method of fast-

forward adiabatic driving which is firstly raised by S. A Rice to improve the con-

vergence. We follow Berry’s approach of transitionless quantum driving and study

on the convergence of quantum systems by comparing the convergence of Jarzyn-

ski equality under non-adiabatic and fast-forward adiabatic process. We illustrate

our method on a two-level system and 1-D harmonic oscillator at different temper-

atures and discuss how temperature and negative work due to transitions between

instantaneous eigenstates affect the convergence. We also study the relation be-

tween the degree of adiabaticity of a process and the convergence of Jarzynski

equality.
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Chapter 1

Introduction

Since the discovery of fluctuation theorems [1] which are also known as Jarzynski

equality [2] and Crooks relation [3], lots of attention has been paid to the field of

nonequilibrium statistical mechanics and thermodynamics. They characterize and

restrict the form of work function for a driven system initialized in thermal equi-

librium. When first discovered, the relations were formulated for closed classical

system. Researcher subsequently generalized them to open classical systems [4],

quantum systems [5] and systems where generalized measurements interrupt the

force protocol [6, 7]. Experimentalists also tested the validity of these relations in

the laboratory in both classical regime and quantum regime [8–10].

The discovery of Jarzynski equality signifies that people have a much deeper un-

derstanding on nonequilibrium statistical mechanics and thermodynamics. Its

application is, however, often limited by its poor convergence. To resolve the

problem, physicists have made a lot of efforts [11, 12] and have made significant

progress. Reference [11] pointed out the importance of dissipated work which is

defined as the difference between expected work and Helmholtz free energy differ-

ence and suggested that a reduction in the dissipated work would greatly improve

the convergence.

The nature of Jarzynski convergence is simply the expectation of a probability

distribution of one exponential form of work. From our knowledge of statistics,

some factors which might affect the convergence would be variance and the exis-

tence of extreme values. A smaller variance, in other words, a more concentrated

probability distribution is expected to lead to a faster convergence. Also, when

there exist extreme values, the convergence is likely to be delayed. With a more
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Chapter 1. Introduction 2

concentrated work distribution for adiabatic process [13], we hope that adiabatic

process would produce a better result. As the conventional adiabatic process takes

a long time to accomplish, based on recent work on transitionless quantum driving

[14], we accelerate the adiabatic process by adding a control Hamiltonian to the

original Hamiltonian. We study the convergence of Jarzynski equality under this

fast-forward adiabatic process and a normal non-adiabatic process to see how the

method of fast-forward adiabatic process improves the convergence. Meanwhile,

we discuss the importance of temperature and negative work due to transitions

between instantaneous eigenstates (In the rest of the report, “work due to transi-

tions between instantaneous eigenstates” is simply referred as “negative work” for

convenience.) during the convergence by comparing the rate of convergence un-

der different temperatures and analysing the negative-work realizations. We also

study the relation between the degree of adiabaticity of a process and the conver-

gence of Jarzynski equality. The essential objective of this project is to enhance

the fundamental understanding of Jarzynski equality and improve its convergence

by suppressing work fluctuations with fast-forward adiabatic process.

The rest of this report is arranged in the following manner. We will first review

Jarzynski’s equality in the second chapter, followed by the quantum adiabatic

theorem and transitionless quantum driving in the third chapter. After that, we

will show our study on the improvement of the convergence of Jarzynski equality

with the adoption of fast-forward adiabatic process. In this part, we study on a

two-level system and 1-D quantum harmonic oscillator. The convergence under

non-adiabatic and fast-forward adiabatic process is studied and the effect of tem-

perature and negative work is discussed and the relation between the degree of

adiabaticity and the convergence of Jarzynski equality is obtained. The report is

ended with a short conclusion.



Chapter 2

Jarzynski Equality

Jarzynski equality was first discovered in 1997 by Christopher Jarzynski [2]. It is

described by the equation 〈e−βW 〉 = e−∆F . The equation says the expected expo-

nential of work done to a system during a force protocol equals the exponential of

Helmholtz free energy difference between two equilibrium thermal states. This is a

very significant and powerful property as it relates the non-equilibrium quantity W

with the equilibrium quantity ∆F . Theoretically, it suggests a deeper understand-

ing of non-equilibrium statistical mechanics and thermodynamics. Practically, it

could be applied in the free energy estimation and this is of great importance in

biomolecular system studies where the free energy difference is a vital property,

for instance, the measurement of free energy increase of a protein when its length

is changed.

In this chapter, we will review the original Jarzynski equality in classical systems

and its quantum version. Particularly, we will give a detailed work of how Jarzynski

equality is derived in quantum systems.

2.1 Jarzynski Equality in classical system

The Jarzynski equality relates work statistics with the Helmholtz free energy dif-

ference. The first thing to make clear is the definition of work in the classical

system considered. Here we follow the approach of inclusive work [15] and con-

sider a classical system which is not in contact with the heat reservoir. Thus, the

3
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work is given by the energy difference between the initial and final state of the

system.

We look at a system described by the Hamiltonian H(λ(t), z(t)) and evolving from

time 0 to τ , where

z(t) = [p(t), q(t)] (2.1)

represents the evolution trajectory of the system and λ(t) is a time dependent

parameter specifying the time dependence of the Hamiltonian. During the process,

the work W done to the system could be given by

Wτ = H(λ(τ), z(τ))−H(λ(0), z(0)). (2.2)

To review the Jarzynski equality in classical system, we consider a Gibbs canon-

ical ensemble and assume the initial state of the system is in equilibrium. With

(λ(0), z(0) being the initial condition, the probability distribution at time 0 would

be

ρ(λ(0), z(0)) =
e−βH(λ(0),z(0))

Z0

, (2.3)

where

Zt =

∫
Γ

e−βH(λ(t),z(t))dz(t), (2.4)

is the partition function of the system at time t. The expected exponential of work

done to the system during the process is then

〈e−βW 〉 =

∫
Γ

ρ(λ(0), z(0))e−βWτdz(0)

=

∫
Γ

e−βH(λ(0),z(0))

Z0

e−β[H(λ(τ),z(z(0),τ))−H(λ(0),z(0))]dz(0)

=
Zτ
Z0

. (2.5)

In the last step, we have performed a canonical transformation z(0) → z(z(0), τ)

where the Jacobian is 1. The Helmholtz free energy expressed by partition function

is F = − 1
β

lnZ. Plugging this expression into equation (2.5), we obtained the

Jarzynski equality in classical system:

〈e−βW 〉 =
e−βFτ

e−βF0
= e−β∆F . (2.6)
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Soon after the discovery of Jarzynski equality in classical systems, the validity of

the equation is verified in quantum systems theoretically.

2.2 Jarzynski equality in quantum system

In quantum systems, the work would be a bit different. One general defini-

tion of work which is based on the two-time projective energy measurement is

Wmn = Eτ
m − E0

n. E0
n is the eigenenergy of the system when the initial state is

|nλ(0)〉 and Eτ
m is eigenenergy of the system at time τ when the final state is |mλ(τ)〉

with |nλ(t)〉 being the instantaneous eigenstate of the system which is described by

the Hamiltonian Ĥ0(λ(t)). Again, the time-dependent parameter λ(t) specifies the

time dependence of the Hamiltonian. The major difference between classical and

quantum systems when we derive Jarzynski equality is that in quantum systems,

e−βĤ0(λ(0)) does not annihilate with the βĤ0(λ(0)) part in e−β(Ĥ0(λ(τ))−Ĥ0(λ(0))) be-

cause they do not commute for a time-dependent Hamiltonian Ĥ0(λ(t)).

To see the quantum Jarzynski equality, we consider a quantum system which is

in thermal contact with a heat bath with inverse temperature β before time 0 so

that the system is prepared in the equilibrium thermal state:

ρ(0) = Z−1
0 exp{−βĤ0(λ(0))}, (2.7)

with Z0 = Tr exp{−βĤ0(λ(0))} being the partition function of the quantum sys-

tem at time 0. At time 0, the contact between the system and the heat bath is

turned off or kept at a negligible level and the system evolves during time interval

[0, τ ] according to the force protocol λ(t). Here the work done to the system would

be a random quantity. Let

pτ,0(W ) =
∑
m,n

Z−1
0 e−βE

0
npm|nδ(W − (Eτ

m − E0
n)) (2.8)

represent the probability density of work distribution when the system evolves

from time 0 to τ . In equation (2.8), pm|n is the probability that the instantaneous

eigenstate |nλ(0)〉 at time 0 transits to the instantaneous eigenstate |mλ(τ)〉 after

the evolution. An explicit expression for the transition probability is

pm|n = |〈mλ(τ)|Ûτ,0|nλ(0)〉|2, (2.9)
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where Ûτ,0 is a unitary operator which characterizes the evolution of the system.

To derive the quantum version of Jarzynski equality, we introduce the character-

istic function [16] established by Talkner et al :

Gτ,0(u) =

∫
dWeiuWpτ,0(W ), (2.10)

which is simply the Fourier transform of the probability density. Starting from

this characteristic function, we could write it as a quantum correlation function of

eiuĤ0(λ(τ)) and e−iuĤ0(λ(0)). It works in the following way:

Gτ,0(u) =
∑
m,n

eiuWpτ,0(W )

=
∑
m,n

Z−1
0 eiu(Eτm−E0

n)〈mλ(τ)|Ûτ,0|nλ(0)〉〈nλ(0)|Û †τ,0|mλ(τ)〉e−βE
0
n

=
∑
m,n,k

Z−1
0 〈kλ(0)|Û †τ,0|mλ(τ)〉eiuE

τ
m〈mλ(τ)|Ûτ,0|nλ(0)〉e−iuE

0
n〈nλ(0)|kλ(0)〉e−βE

0
n

= Tr{Û †τ,0
∑
m

|mλ(τ)〉eiuE
τ
m〈mλ(τ)|Ûτ,0

∑
n

|nλ(0)〉e−iuE
0
n〈nλ(0)|

e−βE
0
n

Z0

}.

The summation over “m” and “n” can be written as the exponential of the Hamil-

tonian at time τ and time 0. Thus the result above could be expressed as

Gτ,0(u) = Z−1
0 Tr{Û †τ,0eiuĤ0(λ(τ))Ûτ,0e

−iuĤ0(λ(0))e−βĤ0(λ(0))}. (2.11)

We emerge e−iuĤ0(λ(0)) and e−βĤ0(λ(0)) into one factor and introduce the parameter

v = −u+ iβ. By expressing u as −v + iβ, equation (2.11) becomes

Z0Gτ,0(u) = Tr{Ûτ,0eivĤ0(λ(0))Û †τ,0e
−ivĤ0(λ(τ))e−βĤ0(λ(τ))}, (2.12)

where we have used the property Tr(AB) = Tr(BA). If we look at the time

reversed process, the evolution operator would be Û0,τ . It is easy to see that

Û †τ,0 = Û−1
τ,0 = Û0,τ because of the unitary property of the time evolution operator.

The equation also hold for Ûτ,0 and Û †0,τ . Replacing the time evolution operators
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in equation (2.12) with time reversed evolution operators, we obtain

Gτ,0(u) = Z−1
0 Tr{Û †0,τeivĤ0(λ(0))Û0,τe

−ivĤ0(λ(τ))e−βĤ0(λ(τ))}

= Z−1
0 ZτG0,τ (v)

=
Zτ
Z0

G0,τ (−u+ iβ). (2.13)

From the work in section 2.1, the ratio of the canonical partition functions could be

expressed as Zτ/Z0 = exp(−β∆F ) where ∆F is the free energy difference between

the two systems at thermal equilibrium. We notice that G0,τ (−u+ iβ) is exactly a

characteristic function of work. Here, the initial state of the system is the equilib-

rium thermal state ρ(τ) = e−βĤ0(λ(τ))/Zτ and undergoes the evolution described by

the time reversed operator Û0,τ . Knowing G0,τ (−u+iβ) =
∫
dWeiuW eβWp0,τ (−W )

where p0,τ (−W ) is the probability density of work done to the system during the

time reversed process, we could easily obtain the relation

pτ,0(W ) = e−β∆F eβWp0,τ (−W ), (2.14)

by taking the inverse Fourier transform on both sides. Equation (2.14) is know as

fluctuation theorem or Crooks relation [3]. If we multiply both side of equation

(2.14) by e−βW and take the summation over all possible work, we would obtain

the quantum Jarzynski equality:

〈e−βW 〉 = e−β∆F . (2.15)

From the work above, the validity of Jarzynski equality is theoretically verified in

quantum systems under unitary evolution. In a recent work [10], experimentalists

realized the experimental verification of fluctuation relations at the full quantum

level.



Chapter 3

Fast-forward Adiabatic Theorem

In a time dependent system, an initial instantaneous eigenstate can make transi-

tions to other instantaneous eigenstates during the evolution process. That is, for

an initial state prepared in the instantaneous eigenstate state |nλ(0)〉 of the system

at time 0, after the process, the state may fall on the instantaneous eigenstate

|mλ(τ)〉(m 6= n) of the system at time τ . Such kind of processes are called non-

adiabatic process. In many cases, non-adiabatic process complicates the problem

because of the transitions and we want to avoid these transitions. Fortunately,

adiabatic process could eliminate such kind of transitions and make things easier.

The adiabatic theorem says a physical system remains in its instantaneous eigen-

state if a given perturbation is acting on it slowly enough and if there is a gap

between the eigenenergy and the rest spectrum of the Hamiltonian [17]. Such

kind of process is called adiabatic approximation because the transitions between

instantaneous eigenstates is not strictly forbidden. One disadvantage of adiabatic

approximation is that it takes a long time to realize. To accelerate the process

and maintain adiabatic result at the same time, physicists raised the idea of fast-

forward adiabatic process or short-cuts to adiabaticity [18–20]. In our work, we

follow Berry’s approach of transitionless quantum driving.

In this chapter, we will review the adiabatic approximation and the idea of fast-

forward process in quantum systems.

8
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3.1 Adiabatic Approximation

We consider a quantum system whose Hamiltonian is described Ĥ0(λ(t)) where

λ(t) specifies the time dependence of the Hamiltonian. The instantaneous eigen-

state at time t is given by

Ĥ0(λ(t))|nλ(t)〉 = En(λ(t))|nλ(t)〉, (3.1)

with En(λ(t)) being the eigenenergy. Let |Ψ(t)〉 be the evolving state at time t

and it can be expressed in the basis of the instantaneous eigenstates as

|Ψ(t)〉 =
∑
n

|nλ(t)〉〈nλ(t)|Ψ(t)〉 =
∑
n

Cn(t)|nλ(t)〉. (3.2)

The evolution of the state is described by the Schrödinger equation

i}
∂|Ψ(t)〉
∂t

= Ĥ0(λ(t))|Ψ(t)〉. (3.3)

To solve the Schrödinger equation and obtain the explicit expression for |Ψ(t)〉, we

plug (3.2) into euqation (3.3). The equation becomes

i}
∂
∑

nCn(t)|nλ(t)〉
∂t

= Ĥ0(λ(t))
∑
n

Cn(t)|nλ(t)〉;

i}
∑
n

(
∂Cn(t)

∂t
|nλ(t)〉+ Cn(t)|∂tnλ(t)〉) =

∑
n

En(λ(t))Cn(t)|nλ(t)〉. (3.4)

In equation (3.4) and subsequent equations, ∂t represents the derivative with re-

spect to time t for short. If we multiply both sides of equation (3.4) by an arbitrary

eigenstate 〈mλ(t)|, the equation becomes

i}
∂Cm(t)

∂t
+ i}

∑
n

Cn(t)〈mλ(t)|∂tnλ(t)〉 = Em(λ(t))Cm(t). (3.5)

To re-express 〈mλ(t)|∂tnλ(t)〉, we differentiate equation (3.1) on both sides and

obtains

∂tĤ0(λ(t))|nλ(t)〉+ Ĥ0(λ(t))|∂tnλ(t)〉 = ∂tEn(λ(t))|nλ(t)〉+En(λ(t))|∂tnλ(t)〉. (3.6)
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Multiplying equation (3.6) by 〈mλ(t)| with the restriction m 6= n gives us

〈mλ(t)|∂tnλ(t)〉 =
〈mλ(t)|∂tĤ0(λ(t))|nλ(t)〉
En(λ(t))− Em(λ(t))

. (3.7)

For non-degenerate system, m 6= n guarantees the denominator En(λ(t))−Em(λ(t)) 6=
0. With equation (3.7), the expression

∑
nCn(t)〈mλ(t)|∂tnλ(t)〉 could be split into

two parts, Cm(t)〈mλ(t)|∂tmλ(t)〉 and
∑

m6=nCn(t)〈mλ(t)|∂tnλ(t)〉. Plugging equation

(3.7) into equation (3.5)

Ċm(t) = −Cm(t)〈mλ(t)|∂tmλ(t)〉−
∑
m6=n

Cn(t)
〈mλ(t)|∂tĤ0(λ(t))|nλ(t)〉
En(λ(t))− Em(λ(t))

− i
}
Em(λ(t))Cm(t).

(3.8)

In adiabatic approximation, the time derivative of the time dependent parameter λ̇

approaches 0 compared with the energy gap En(λ(t))−Em(λ(t)) and ∂tĤ0(λ(t)) =

λ̇∂λĤ(λ), hence the second term on the right hand side of equation (3.8) reduces

to 0. Solve for Cm(t) gives

Cm(t) = Cm(0)e−
i
}
∫ t
0 Em(λ(t′))dt′−

∫ t
0 〈mλ(t′)|∂t′mλ(t′)〉dt

′
, (3.9)

where 〈mλ(t)|∂tmλ(t)〉 is pure imaginary. Thus |Cm(t)|2 = |Cm(0)|2. As |Cm(t)|
does not change over time, probability distribution of the eigenstates would not

change hence there is no transition from an instantaneous eigenstate |nλ(0)〉 to

another instantaneous eigenstate |mλ(t)〉 if m 6= n. In equation (3.9), the first part

in the exponential which contains Em(λ(t)) is the dynamic phase and the second

part is called geometric phase and when the evolution is cyclic, we obtain the

famous Berry phase.

We now look at the special case when the initial state is prepared in an instan-

taneous eigenstate of the system at time 0, |Ψ(0)〉 = |nλ(0)〉. After time t, the

state remains in the instantaneous eigenstate |nλ(t)〉 and it will be dressed with a

dynamic phase and a geometric phase. An explicit expression reads

|Ψ(t)〉 = e−
i
}
∫ t
0 dt

′En(λ(t′))−
∫ t
0 dt

′〈nλ(t′)|∂t′nλ(t′)〉|nλ(t)〉. (3.10)

Equation (3.10) is an important result and it will be used in the next section to

deduce the fast-forward process.
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3.2 Fast-forward Adiabatic process

As the name of fast-forward adiabatic process suggests, it enables us to maintain

the adiabatic output for fast changing driven Hamiltonian Ĥ0(λ(t)), even when

the system experiences a fast switch. There are two kinds of fast-forward adiabatic

process. For a state initialized in the eigenstate |nλ(0)〉, one guarantees that the

system stays in |nλ(t)〉 during the whole driving process and the other only ensures

the system is in |nλ(t)〉 at the end of the process while in between, transitions be-

tween instantaneous eigenstates can happen. The fast-forward method introduced

in this article would be the first kind and we follow the approach of transitionless

quantum driving where a control Hamiltonian is added to suppress the transitions.

We will consider an arbitrary time-dependent Hamiltonian Ĥ0(λ(t)) whose in-

stantaneous eigenstate is |nλ(t)〉 with energy En(λ(t)) and the state driven by

Hamiltonian Ĥ0(λ(t)) is initially prepared in an eigenstate, |Ψ(t)〉 = |nλ(0)〉. From

adiabatic approximation, we know the state driven by slowly changing Ĥ0(λ(t))

at time t is given by equation (3.10). In the fast-forward adiabatic process, we

obtain the same result when the state is driven by Ĥ(λ(t)) = Ĥ0(λ(t)) + Ĥ1(λ(t))

with Ĥ1(λ(t)) being the control Hamiltonian we wish to find. Here, the restriction

that Ĥ0(λ(t)) is changing slowly is removed. |Ψ(t) and Ĥ(λ(t)) should satisfy the

Schrödinger equation:

i}∂t|Ψ(t)〉 = Ĥ(λ(t))|Ψ(t)〉. (3.11)

Let Û(t) be the unitary time evolution operator. With the state initialized in

eigenstate |n(0)〉, we have

|Ψ(t)〉 = Û(t)|nλ(0)〉

= e−
i
}
∫ t
0 dt

′En(λ(t′))−
∫ t
0 dt

′〈nλ(t′)|∂t′nλ(t′)〉|nλ(t)〉, (3.12)

where “n” is arbitrarily chosen. This means, for any specified state |nλ(0)〉 and

|nλ(t)〉, equation (3.12) should hold. Hence, the evolution operator would be

Û(t) =
∑
n

exp

{
− i
}

∫ t

0

dt′En(λ(t′))−
∫ t

0

dt′〈nλ(t′)|∂t′nλ(t′)〉
}
|nλ(t)〉〈nλ(0)|.

(3.13)

Substituting |Ψ(t)〉 = Û(t)|nλ(0)〉 into equation (3.11), the |nλ(0)〉 on both sides

can be emitted as it is arbitrary. What is left is an equation relating Û(t) and
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Ĥ(t) and it reads

i}∂tÛ(t) = Ĥ(λ(t))Û(t). (3.14)

Thus the total Hamiltonian is expressed as

Ĥ(λ) = i}(∂tÛ(t))Û †(t). (3.15)

From equation (3.13) and equation (3.15), Ĥ(λ(t)) is calculated to be

Ĥ(λ(t)) = i}∂t
∑
n

exp

{
− i
}

∫ t

0

dt′En(λ(t′))−
∫ t

0

dt′〈nλ(t′)|∂t′nλ(t′)〉
}
|nλ(t)〉〈nλ(0)|

∑
m

exp

{
i

}

∫ t

0

dt′Em(λ(t′)) +

∫ t

0

dt′〈mλ(t′)|∂t′mλ(t′)〉
}
|mλ(0)〉〈mλ(t)|

=
∑
n

i}
[(
− i
}
En(λ(t))− 〈nλ(t)|∂tnλ(t)〉

)
|nλ(t)〉+ |∂tnλ(t)〉

]
〈nλ(t)|

= i}
∑
n

(|∂tnλ(t)〉〈nλ(t)| − 〈nλ(t)|∂tnλ(t)〉|nλ(t)〉〈nλ(t)|)

+
∑
n

|nλ(t)〉En(λ(t))〈nλ(t)|. (3.16)

It should be noticed that
∫ t

0
dt′〈nλ(t′)|∂t′nλ(t′)〉 is a pure imaginary number so that

the exponential terms cancel out. As Ĥ(λ(t)) ≡ Ĥ0(λ(t))+ Ĥ1(λ(t)) and it is easy

to see
∑

n |nλ(t)〉En(λ(t))〈nλ(t)| = Ĥ0(λ), the control Hamiltonian we are looking

is exactly:

Ĥ1(λ(t)) = i}
∑
n

(|∂tnλ(t)〉〈nλ(t)| − 〈nλ(t)|∂tnλ(t)〉|nλ(t)〉〈nλ(t)|)

= i}
∑
n

(∑
m

〈mλ(t)|∂tnλ(t)〉|mλ(t)〉〈nλ(t)| − 〈nλ(t)|∂tnλ(t)〉|nλ(t)〉〈nλ(t)|

)
= i}

∑
n

∑
m6=n

|mλ(t)〉〈mλ(t)|∂tnλ(t)〉〈nλ(t)|. (3.17)

For non-degenerate system, 〈mλ(t)|∂tnλ(t)〉 is given by equation (3.7). The control

Hamiltonian can thus be written in the form

Ĥ1(λ) = i}
∑
n

∑
m6=n

|mλ(t)〉〈mλ(t)|∂tĤ0(λ(t))|nλ(t)〉〈nλ(t)|
En(λ(t))− Em(λ(t))

. (3.18)

An immediate check on the expression is that when the Hamiltonian Ĥ0(λ(t))

is time independent or is changing slowly enough compared with the energy gap
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En(λ(t)) − Em(λ(t))(m 6= n) (this is exactly the condition for adiabatic approxi-

mation to be valid), the control Hamiltonian takes the value 0 or approaches 0 as

expected.

By adding an appropriate external Hamiltonian to the original driving Hamilto-

nian, we eliminate the transitions between instantaneous eigenstates (quantum

number does not change) when the system undergoes fast evolution, hence realize

the idea of fast-forward adiabatic process. The fast-forward adiabatic process will

be applied to two-level system and quantum harmonic oscillator for detailed study

on the convergence of Jarzynski equality.



Chapter 4

Two-Level System

Two-level system is the most fundamental and simple quantum system. It can

be used to describe the polarization of photons and spin - 1
2

particles. Because of

its simplicity, two-level systems are frequently used by physicists. Theoreticians

often use two-level systems for theory development and experimentalists often use

it for verification of the theories developed by theoreticians. The most famous

experiment on a two-level system would be the Stern-Gerlach Experiment in 1922.

It is an important experiment in quantum mechanics on the deflection of particles

and can be used to demonstrate that electrons and atoms have intrinsic quantum

properties and how measurement in quantum mechanics affects the system being

measured.

To investigate the Jarzynski equality, we also take two-level system as our work

frame. In our research, the fast-forward adiabatic process is applied to an evolving

two-level system to see the impact of fast-forward process on the convergence of

Jarzynski equality and to study the details of Jarzynski equality including how

changes of temperature and negative works affect the convergence.

This chapter shows our investigation on two-level system. It starts with a de-

scription of a two-level system considered and followed by the results of simulated

evolutions under non-adiabatic and fast-forward adiabatic process at different tem-

peratures. Comparisons and analysis are made to illustrate how fast-forward adi-

abatic process make a difference in the convergence of Jarzynski equality and the

roles that temperature and negative works play during the convergence.

14
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4.1 Fast-forward Adiabatic Process on Two-Level

System

4.1.1 Description of a Two-Level System

We consider the Landau-Zener transition model with the following Hamiltonian:

Ĥ0(λ(t)) =

(
λ(t) M

M −λ(t)

)
= λ(t)σz+ M σx, (4.1)

where λ(t) is the time dependent parameter specifying the time dependence of

Ĥ0(λ(t)), M is a constant and σx,y,z are the usual Pauli Matrices. We use the

eigenstates of σz as our orthogonal basis so that

|+〉 =

(
1

0

)
; |−〉 =

(
0

1

)
.

For a general
−→
S = sin θ cosφσx + sin θ sinφσy + cos θσz, its eigenvector is given by

|+ n〉 = cos
θ

2
|+〉+ sin

θ

2
eiφ|−〉;

| − n〉 = sin
θ

2
|+〉+ cos

θ

2
ei(φ+π)|−〉.

In our Landau-Zener transition model, the y component is missing so that φ = 0.

Write the Hamiltonian as

Ĥ0(λ(t)) =
√
λ2(t)+ M2(sin 2θσx + cos 2θσz),

with θ obeying

sin 2θ =
M√

λ2(t)+ M2
; cos 2θ =

λ(t)√
λ2(t)+ M2

. (4.2)

Hence it is easy to obtain the instantaneous eigenstates of the Hamiltonian as

|1λ(t)〉 = sin θ|+〉 − cos θ|−〉
|2λ(t)〉 = cos θ|+〉+ sin θ|−〉,

(4.3)
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and the energy for |1λ(t)〉 is E1(λ(t)) = −
√

M2 +λ2(t); energy for |2λ(t)〉 is E2(λ(t)) =√
M2 +λ2(t)

4.1.2 The Control Hamiltonian Ĥ1(λ(t))

We perform fast-forward adiabatic driving on a two-level system. With all the

details of the two-level system described in section 4.1.1 and the general expres-

sion of control Hamiltonian in equation (3.18) derived in section 3.2, the control

Hamiltonian Ĥ1(λ(t)) is solved as follows:

Ĥ1(λ(t)) = i}
∑
n

∑
m6=n

|mλ(t)〉〈mλ(t)|∂tĤ0(λ(t))|nλ(t)〉〈nλ(t)|
En(λ(t))− Em(λ(t))

= i}
|1λ(t)〉〈1λ(t)|∂tĤ0(λ(t))|2λ(t)〉〈2λ(t)|

E2(λ(t))− E1(λ(t))
+

i}
|2λ(t)〉〈2λ(t)|∂tĤ0(λ(t))|1λ(t)〉〈1λ(t)|

E1(λ(t))− E2(λ(t))

= i}

(
|1λ(t)〉〈1λ(t)|λ̇(t)σz|2λ(t)〉〈2λ(t)|

2
√

M2 +λ2(t)
−
|2λ(t)〉〈2λ(t)|λ̇(t)σz|1λ(t)〉〈1λ(t)|

2
√

M2 +λ2(t)

)

= i}
λ̇(t)

2
√

M2 +λ2(t)

(
sin θ

− cos θ

)
(sin θ − cos θ)

(
cos θ

− sin θ

)
(cos θ sin θ)

−

(
cos θ

sin θ

)
(cos θ sin θ)

(
sin θ

cos θ

)
(sin θ − cos θ)

=
i}λ̇(t) sin 2θ

2
√

M2 +λ2(t)

[(
sin θ cos θ sin2 θ

− cos2 θ sin θ cos θ

)
−

(
sin θ cos θ − cos2 θ

sin2 θ sin θ cos θ

)]

= i}λ̇(t)
1

2

M
M2 +λ2(t)

(
0 1

−1 0

)

≡ −}λ̇(t)
1

2

M
M2 +λ2(t)

σy. (4.4)

Note that the control Hamiltonian is proportional to the time derivative of the

time-dependent parameter λ(t). Hence, it reduces to 0 when λ(t) changes slowly

which recovers the adiabatic approximation.
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4.1.3 Thermal Ensemble

As mentioned, the initial state is prepared in equilibrium thermal state which

could be achieved by keeping the system in contact with a heat bath with inverse

temperature β till time t = 0. Hence the initial state is given by equation (2.7)

ρ(0) ≡ 1

Z0

e−βĤ0(λ(0)) =
∑
n

e−βEn(λ(0))

Z0

|nλ(0)〉〈nλ(0)|, (4.5)

where Z0 is the partition function of the ensemble at time 0 and is given by

Z0 = Tr
{
e−βĤ0(λ(0))

}
=
∑
n

e−βEn(λ(0)). (4.6)

Equation (4.5) and (4.6) is a general expression of the equilibrium thermal state

and it will also be applied to the Harmonic Oscillator systems latter in Chapter 5.

Here explicit for the two-level system with energy ±
√
M2 +λ2(t), the initial state

would be

ρ(0) =
e−
√

M2+λ2(t)

Z0

|1λ(0)〉〈1λ(0)|+
e
√

M2+λ2(t)

Z0

|2λ(0)〉〈2λ(0)|,

Z0 = e−
√

M2+λ2(t) + e
√

M2+λ2(t).

For evolution from time 0→ τ , work function is given by equation (2.8). In fast-

forward adiabatic process, transitions between energy levels are suppressed such

that pm|n = δmn and

P (W ) =
∑
n

e−βEn(0)/Z(0)δ(W − [En(τ)− En(0)]). (4.7)

4.2 Numerical Simulations on Two-Level System

We design the protocol so that the control Hamiltonian Ĥ1(λ(t)) vanishes both

at the beginning and the end of the fast-forward process which requires λ̇(0) =

λ̇(τ) = 0. Hence, the work done to the system by the control Hamiltonian Ĥ1(λ(t))

and the original Hamiltonian Ĥ0(λ(t)) is still given by [Em(λ(τ)) − En(λ(0))] in

a particular two-time projective measurement. The expression of work does not

change when the control Hamiltonian is added to the Original Hamiltonian. An
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appropriate scheme is

λ(t) = λ0

√
a2 + 1

2
− a2 − 1

2
cos(nπ

t

τ
). (4.8)

Parameters are fixed to be: λ0 = 1, a = 3,∆ = 2, n = 1 and } = 1 and simulations

are done under non-adiabatic process and fast-forward adiabatic process.

4.2.1 Transitions between Instantaneous Eigenstates

To obtain the probability distribution of work done to the system, we need to

know the transition probabilities between instantaneous eigenstates, pm|n and the

initial distribution of the state Pn =
e−βEn(λ(0))

Z0

. For a known system, Pn will be

immediately known when temperature β is specified. In two-level system, there

are 4 possible transitions p1|1, p2|1, p1|2 and p2|2.

To calculate these transition probabilities, the eigenstate |1λ(0)〉 and state |2λ(0)〉 of

the system at time 0 are chosen as initial state respectively. For each initial state,

we simulate the time evolution of the state driven by Ĥ0(λ(t)) for non-adiabatic

process and Ĥ(λ(t)) = Ĥ0(λ(t)) + Ĥ1(λ(t)) for fast-forward adiabatic process and

obtain the corresponding final state |ψ(τ)〉. pm|n is given by the probability that

state |ψ(τ)〉 falls into eigenstate |mλ(τ)〉 of Ĥ0(λ(τ)). The worked-out transition

probabilities for non-aidabatic process are shown in the table below:

Table 4.1: Transition probabilities for two-level system

final state |1λ(τ)〉 final state |2λ(τ)〉
initial state |1λ(0)〉 0.9341 0.0659
initial state |2λ(0)〉 0.0659 0.9341

The transition probabilities do not depend on the temperature as temperature

only affects the equilibrium thermal state and does not involve in the evolution.

In the simulation, we choose one specific eigenstate as the initial state and pm|n is

fully determined by the evolution operator. From table 4.1, we find that under the

condition considered for the two-level system, the state will remain in the same

energy level with a high probability. It is also noticed that p1|2 = p2|1, meaning

the probability for eigenstate |1λ(0)〉 to transit into eigenstate |2λ(τ)〉 equals the

probability for eigenstate |2λ(0)〉 to transit into eigenstate |1λ(τ)〉. We call this
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transition symmetry. This symmetry is also observed in the study on quantum

harmonic oscillators in the latter part of the report.

4.2.2 Convergence of Jarzynski Equality in Two-Level Sys-

tem

We simulate the convergence of Jarzynski equality under non-adiabatic and fast-

forward adiabatic process. This time the initial state is prepared in the equilibrium

thermal state described by equation (4.5) which is a mixture of instantaneous

eigenstates of Ĥ0(λ(0)). The simulation is done in the following manner. At

time t = 0, an energy measurement is performed to the two-level system so that

En(λ(0)) is obtained. The system then evolves according to driving Hamiltonian

Ĥ0(λ(t)) for non-adiabatic case and Ĥ(λ(t)) = Ĥ0(λ(t))+Ĥ1(λ(t)) for fast-forward

adiabatic case during time interval [0, τ ]. At the end of the process, another energy

measurement is performed such that Em(λ(τ)) is also obtained. Hence, the work

done to the two-level system is given by W = Em(λ(τ)) − En(λ(0)). The whole

procedure is repeated and we call each repeat one independent trajectory. For the

ith (i = 1, 2, 3 · · · ) trajectory, we take the exponential of the work measured to

be e−βWi and average e−βW over the “N” trajectories completed. In this way, we

could view how the averaged exponential of work 〈e−βW 〉 converges to its expected

value e−β∆F .

To make clear the effect of a temperature change on the convergence, the sim-

ulation is done under different temperatures from high to low for comparison.

The averaged exponential work 〈e−βW 〉 is plotted against the number of trajecto-

ries. Figure 4.1 presents the plot when the temperature is set to be very high at

β = 0.01.

For the plot in Figure 4.1 and also for subsequent plots of the convergence of

Jarzynski equality in two-level system, we plot one dot for every 10 trajectories.

From Figure 4.1, we find that at the extremely high temperature β = 0.01, no

difference is exhibited in the convergence of 〈e−βW 〉 between the non-adiabatic and

fast-forward adiabatic process. We also notice that in this simulation, the value

of 〈e−βW 〉 converges to the theoretical value very fast. When we look into the

details of the simulation, the values of the exponential of work e−βWij (i, j = 1, 2)

are found to be very close to the value of e−β∆F , thus e−βW has a very narrow
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Figure 4.1: Simulation of the convergence of 〈e−βW 〉 for two-level system at
temperature β = 0.01. The blue dots represent the non-adiabatic process and
the red ones represent the fast-forward adiabatic process. The green line is the
theoretical value e−β∆F = 1.0004. In the label of the x axis, “/10” means we
plot one dot for every 10 trajectories.

probability distribution around its expectation e−β∆F . From our knowledge of

statistics, we know such distribution would converge to its expectation very fast.

When the temperature is lowered to β = 0.1, the convergence tendency of the two

processes is plotted in Figure 4.2.

Figure 4.2: Simulation of convergence of 〈e−βW 〉 at temperature β = 0.1. The
blue dots represent the non-adiabatic process and the red ones represent the
fast-forward adiabatic process. The green line is the theoretical value e−β∆F =
1.0396.
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At a lower temperature, the result from fast-forward adiabatic process begins to

distinguish from the non-adiabatic process. Figure 4.2 shows that under fast-

forward adiabatic process, 〈e−βW 〉 converges to its expectation around the scale

200 while under non-adiabatic process, 〈e−βW 〉 is still slightly different from its

expectation when the scale goes to 1000. The convergence of Jarzynski equality is

accelerated. It is also noticed that after 2500 (250× 10) trajectories, the averaged

exponential of work 〈e−βW 〉 under non-adiabatic process is very close to the expec-

tation e−β∆F . In this sense, at temperature β = 0.1, there is some improvement

from fast-forward adiabatic process, but not very significant.

When we compare Figure 4.1 and 4.2, it is found that the convergence speed at

temperature β = 0.01 is much faster than the speed at temperature β = 0.1

under both processes. This is because the value of e−βWi,j(i, j = 1, 2) get largely

differed from its expectation and the difference between themselves also becomes

larger. The spread of the distribution of e−βW gets wider, thus resulting in a

slower convergence speed. A more detailed analysis on the effect of temperature

on the convergence of Jarzynski equality will be carried out when we have more

simulation results with different temperatures.

When the temperature is decreased further to β = 0.5, the simulation of the

convergence of Jarzynski equality is presented in Figure 4.3.

Figure 4.3: Simulation of convergence of 〈e−βW 〉 at temperature β = 0.5. The
blue dots represent the non-adiabatic process and the red ones represent the
fast-forward adiabatic process. The green line is the theoretical value e−β∆F =
1.8404.
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When the temperature decreases further, a more distinct result is observed be-

tween the convergence under fast-forward adiabatic and non-adiabatic process in

Figure 4.3. At β = 0.5 which we consider to be a moderate temperature, the

improvement from fast-forward adiabatic process on the convergence of Jarzynski

equality becomes significant. After 3000 (300 × 10) trajectories, we have a very

good convergence for the fast-forward adiabatic process and when the process is

non-adiabatic, the estimated 〈e−βW 〉 is still far from the expectation. It is noticed

that in the plot, the convergence for the non-adiabatic process is not observed,

but this does not mean that 〈e−βW 〉 does not follow Jarzynski equality in this

case. The reason is simply we do not have enough trajectories. With more tra-

jectories, 〈e−βW 〉 will eventually converge to its expected value and a verification

is done with the plot presented in Appendix A for reference. In our subsequent

simulations, the same phenomenon may occur due to the same reason.

Another observation from Figure 4.3 is that the convergence for both processes is

again slowed down compared with the result presented in Figure 4.2. It seems that

at high temperature, 〈e−βW 〉 converges very fast and as temperature decreases (β

gets larger), the convergence of Jarzynski equality becomes poorer. To see whether

this statement holds, we did two more simulations for our two-level system at

temperature β = 1.0 and β = 1.5.

Figure 4.4: Simulation of convergence of 〈e−βW 〉 at temperature β = 1.0. The
blue dots represent the non-adiabatic process and the red ones represent the
fast-forward adiabatic process. The green line is the theoretical value e−β∆F =
3.8918.
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Figure 4.5: Simulation of convergence of 〈e−βW 〉 at temperature β = 1.5. The
blue dots represent the non-adiabatic process and the red ones represent the
fast-forward adiabatic process. The green line is the theoretical value e−β∆F =
7.7914.

In Figure 4.4 and 4.5 when β = 1.0, 1, 5, the scale of x axis is increased to 104. It

is noticed that the difference on the converge speed for two-level system between

the two processes gets even larger. When β = 1.0, 〈e−βW 〉 converges after 1500

(150× 10) trajectories and when β = 1.5, 〈e−βW 〉 converges to its expected value

at the very beginning under fast-forward process. For non-adiabatic process, the

convergence is delayed further at a lower temperature (Refer to Appendix A to

see the converge speed at β = 0.5, 1.0, 1.5). Here the effect of temperature on

Jarzynski convergence differs for the two different processes.

Another important finding is that under non-adiabatic process, there are some

jumps in the plot. Each jump in the plot indicates an extreme value caused by

transition from high energy level to low energy level. In our two-level system,

when the state transits from hihg energy level to low energy level, it gives us a

large negative work and this negative work, after taking the exponential, e−βW

becomes a huge number compared with other values of e−βW . The effect of these

negative work are reflected in the plot as big jumps.
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4.2.3 Analysis

From subsection 4.2.2, it is shown that when temperature is high, the conver-

gence of Jarzynski equality in our two-level system under fast-forward adiabatic

process is the same with the convergence under a normal non-adiabatic process.

As temperature decreases, the results for the two processes become different and

the improvement from fast-forward adiabatic process is enlarged when tempera-

ture is lowered down. We compare the variance of e−βW and the dissipated work

〈Wdis〉 = 〈W 〉 −∆F which is defined as the difference between the expected work

done to the system and the Helmholtz free energy difference and find:

Table 4.2: Variance of e−βW and Dissipated work 〈Wdis〉

Variance [σ2(e−βW )] Dissipated work [〈Wdis〉]

β1 = 0.01
Non-Adiabatic 3.8156× 10−4 0.0200

Adiabatic 1.8754× 10−4 0.0094

β2 = 0.1
Non-Adiabatic 0.0412 0.1917

Adiabatic 0.0179 0.0872

β3 = 0.5
Non-Adiabatic 2.5142 0.4983

Adiabatic 0.1906 0.1150

β4 = 1.0
Non-Adiabatic 74.1494 0.4896

Adiabatic 0.1491 0.0203

β5 = 1.5
Non-Adiabatic 285.50 0.4764

Adiabatic 0.0805 0.0025

In the table, “adiabatic” refers to the fast-forward adiabatic process. It is noticed

that when the process is adiabatic, the variance σ2(e−βW ) and the dissipated work

〈Wdis〉 are smaller compared with that in non-adiabatic case. The smaller variance

explains the convergence improvement from fast-forward adiabatic process and

the smaller dissipated agrees with the idea in [11] that reduced dissipated work

leads to faster convergence of 〈e−βW 〉. A more fundamental reason is that non-

adiabatic transitions between energy levels are eliminated in adiabatic process.

The explanation for larger improvement at lower temperature goes to the effect

of temperature and negative works (Remember that we use “negative work” to

denote the negative work due to transitions between instantaneous eigenstates for

convenience) on the convergence.

We first look at adiabatic case. In the adiabatic case, there is no transition

between instantaneous eigenstates so that the probability distribution of e−βW

is simply the probability distribution of the initial state. For a two-level sys-

tem, we have only two values of work done to the system in adiabatic process,
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Figure 4.6: Change of probability distribution of e−βW when β increases

W11 = −1.3695,W2|2 = 1.3695. At high temperature, the probability that the ini-

tial state is in eigenstate |1λ(0)〉 and |2λ(0)〉 is close. Hence in the simulation, there

would be many initial state in both |1λ(0)〉 (gives work W11 after the trajectory)

and |2λ(0)〉 (gives work W22 after the trajectory) after the energy measurement at

t = 0. For small β, e−βW11 and e−βW22 are close to each other. When tempera-

ture decreases, probability weight is shifted to e−βW11 , and the difference between

e−βW11 and e−βW22 becomes large. The simple diagram in Figure 4.6 describes the

situation. Thus an decrease in temperature has two opposite effects. The shift

of probability weight makes the convergence faster (effect 1) and the separation

of e−βW11 and e−βW22 makes the convergence slower (effect 2). When temperature

is kept at a relatively high level, effect 2 is the dominant effect which causes a

slow-down in the convergence when temperature decreases. When temperature

decreases further, effect 1 becomes dominant and the convergence is speeded up.

When the process is non-adiabatic, transitions between instantaneous eigenstates

comes into action. Transitions from low energy level to high energy level do not

have much effect on the convergence, so we will look at transitions from high

energy level to low energy level only which produce negative works. The number

of negative work realizations in simulations is 30 out of 1000 for β = 0.01, 254 out of

104 for β = 0.1, 57 out of 104 for β = 0.5, 69 out of 105 for β = 1.0 and 7 out of 105

for β = 1.5. From Table 4.2 and the number listed above, we could see the variance

of e−βW increases rapidly with decreased temperature and the ratio of negative

work realization is reduced with lowered temperature. Similar with the situation in

fast-forward adiabatic process, the effect of temperature in non-adiabatic process

for two-level system also consists of two opposite parts. One is a positive effect

due to a more concentrated distribution of initial state and the other is a negative

effect due to a wider spread of e−βW , or to be more exact, the extreme values

of e−βW caused by the negative work realizations. At high temperatures, these

negative work do not cause big trouble as the e−βW for negative work realizations
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is not very much different from other trajectories. At low temperatures, they

increase wildly and become extreme values in the distribution. Although the ratio

of negative work realizations decreases and the probability weight is shifted to

e−βW11 with decreased temperature, the variance σ2(e−βW ) is still largely increased

and the convergence of Jarzynski equality becomes poorer (To see the convergence

at β = 0.5, β = 1.0 and β = 1.5, please refer to Appendix A).

From the above analysis on the simulations, for fast-forward adiabatic process,

the convergence of Jarzynski equality is the same with the case in non-adiabatic

process at high temperature and is greatly improved at low temperature. The effect

of temperature on the convergence is largely reduced in fast-forward adiabatic

situation. In the case of fast-forward adiabatic process, the convergence is slowed

down with decreased temperature when the temperature is kept at a high level and

accelerated with decreased temperature when the temperature is lowered further.

In non-adiabatic process, the effect of temperature and the effect of negative work

on the convergence of Jarzynski equality come together. At high temperature,

negative work do not affect the convergence very much while at low temperature,

they lead to a wild increase in the variance of the exponential work, thus greatly

slowing down the convergence. Hence the convergence becomes poorer at lower

temperature. These results are further checked on quantum harmonics oscillators

where the system has infinite energy levels.



Chapter 5

Quantum Harmonic Oscillator

Quantum harmonic oscillator is a very important system in quantum mechanics.

It can be used to model various situations. For example, the trapped ions are

perfectly modelled by oscillators; the quantum heat engine (Quantum Otto cycle)

[21] can also be described by harmonics oscillators and in the quantization of elec-

tromagnetic field, harmonic oscillator works as the Hamiltonian of the quantized

field. To further verify that our idea of fast-forward adiabatic process accelerates

the convergence of Jarzynski equality and check the effect of temperature and neg-

ative works on the convergence, an investigation on quantum harmonic oscillator

system is carried out.

In this chapter, we present our studies on the harmonic oscillator system. We first

review how the fast-forward adiabatic could be achieved on a quantum harmonic

oscillator and then do a series of simulations for non-adiabatic process and fast-

forward adiabatic process at various temperatures. By analysing and comparing

these results from the simulations, we verify the efficiency of the fast-forward adia-

batic method and the effect of temperature and negative works on the convergence

of Jarzynski equality

27
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5.1 Fast-forward Adiabatic Process on Quantum

Harmonic Oscillator

5.1.1 Description of The Harmonic Oscillator

We use Berry’s transitionless quantum driving to achieve our fast-forward adia-

batic process. As it requires the system to be non-degenerate, we consider a 1-D

harmonic oscillator with time-dependent frequency ω(t). Here ω(t) acts as the

time-dependent parameter λ(t). The Hamiltonian is given by:

Ĥ0(ω(t)) =
p̂2

2m
+
mω2(t)q̂2

2
. (5.1)

The eigenstates and energy obey the relation:

Ĥ0(ω(t))|nω(t)〉 ≡ En(ω(t))|nω(t)〉 = (n+
1

2
)}ω(t)|nω(t), (5.2)

with the following instantaneous wave function

ψ(x, t) = 〈x|nω(t)〉 =

(
mω(t)

π}

)1/4
1

(2nn!)
exp

{
−mω(t)

2}
x2

}
Hn

(√
mω(t)

}
x

)
,

(5.3)

where Hn is the Hermit polynomial to the nth order. We introduce the annihilation

operator â and creation operator â†

â =

√
mω

2}

(
q̂ +

i

mω
p̂

)
; (5.4)

â† =

√
mω

2}

(
q̂ − i

mω
p̂

)
. (5.5)

From equation (5.4) and (5.5), it is easy to express p̂ and q̂ as function of the

ladder operators â and â†. Hence an alternative expression for the Hamiltonian

Ĥ0(ω(t)) would be

Ĥ0(ω(t)) = }ω(t)

(
â†t ât +

1

2

)
. (5.6)

An important relation between the ladder operators and the instantaneous eigen-

state is that â lower the eigenstate down by one level and â† lift it up by one level
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through

â|n〉 =
√
n+ 1|n+ 1〉, (5.7)

â†|n〉 =
√
n|n− 1〉. (5.8)

5.1.2 The control Hamiltonian Ĥ1(ω(t))

The control Hamiltonian to achieve the fast-forward adiabatic process on the time

evolution of a system is given by equation (3.18). Here explicitly for the 1-D har-

monic oscillator, the time derivative of the Hamiltonian Ĥ0(ω(t)) is ∂tĤ0(ω(t)) =

mω̇ωq̂2 with q̂ expressed as the ladder operators by

q̂ =

√
}

2mω
(â+ â†). (5.9)

To distinguish mass from the quantum number m, we use M to represent mass in

the following calculation. Hence the control Hamiltonian is calculated to be:

Ĥ1(ω(t)) = i}
∑
n

∑
m6=n

|mω(t)〉〈mω(t)|∂tĤ0(ω(t))|nω(t)〉〈nω(t)|
En(ω(t))− Em(ω(t))

= i}
∑
n

∑
m6=n

|mω(t)〉〈mω(t)|Mω̇ω

[√
}

2Mω
(â+ â†)

]2

|nω(t)〉〈nω(t)|

}ω(n−m)

=
i}ω̇
2ω

∑
n

∑
m6=n

|mω(t)〉〈mω(t)|(â2 + â†2 + ââ† + â†â)|nω(t)〉〈nω(t)|
n−m

=
i}ω̇
2ω

∑
n

∑
m6=n

|mω(t)〉〈nω(t)|
n−m

(
√
n(n− 1)δm,n−2 +

√
(n+ 1)(n+ 2)δm,n+2

+ (n+ 1)δm,n + nδm,n)

=
i}ω̇
4ω

∑
n

(√
n(n− 1)|(n− 2)ω(t)〉〈nω(t)| −

√
(n+ 1)(n+ 2)|(n+ 2)ω(t)〉〈nω(t)|

)
=
i}ω̇
4ω

∑
n

(â2|nω(t)〉〈nω(t)| − â†2|nω(t)〉〈nω(t)|)

=
i}ω̇
4ω

(â2 − â†2)

= − ω̇

4ω
(q̂p̂+ p̂q̂). (5.10)
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By adding the Hamiltonian Ĥ1(ω(t)) specified by equation (5.10) to the original

Hamiltonian Ĥ0(ω(t)) with time dependent frequency ω(t), we realize the fast-

forward adiabatic process on the 1-D quantum harmonic oscillator system.

5.1.3 The Thermal Ensemble

Same as in our study of two-level system, the initial state is prepared in the

equilibrium thermal state at time t = 0 which forms a canonical ensemble

ρ(0) ≡ 1

Z0

e−βĤ0(ω(0)) =
∞∑
n=0

e−β}ω0(n+ 1
2

)

Z0

|nω(0)〉〈nω(0)|. (5.11)

In the equation, ω0 is the angular frequency of the harmonic oscillator at time

t = 0. Unlike the two-level system with only two energy levels, there are infinite

energy levels in the harmonic oscillator system. Another important property is

that the energy gap between adjacent levels is a constant value }ω. The partition

function is thus

Z0 ≡ Tre−βĤ0(0) =
∞∑
n=0

e−β}ω0(n+ 1
2

) =
e−

1
2
β}ω0

1− e−β}ω0
. (5.12)

For an evolution from time 0 to τ , the work function for non-adiabatic process is

given by equation (2.8). With the existence of the control field Ĥ1(t), there is no

transitions between instantaneous eigenstates (|nω(0)〉 → |mω(τ)〉 for m 6= n is not

allowed). Thus the work function is modified to

P (W ) =
∞∑
n=0

Pnδ (W − (En(ω(τ))− En(ω(0))))

=
∞∑
n=0

e−nβ}ω0(1− e−β}ω0)δ

(
W − }(ωτ − ω0)(n+

1

2
)

)
. (5.13)
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5.2 Numerical Simulation on 1-D Quantum Har-

monic Oscillator

To study the convergence of Jarzynski equality in quantum harmonic oscillators,

we set the control field Ĥ1(ω(t)) to vanish at the beginning and end of the fast-

forward process so that the work done to the system is still given by the same

expression W = Em(ω(τ)) − En(ω(0)). This requires ω̇(0) = ω̇(τ) = 0. An

appropriate choice of ω(t) would be

ω(t) = ω0

√
a2 + 1

2
− a2 − 1

2
cos(nπ

t

τ
). (5.14)

with ω0 = 10, a =
√

3, n = 1, mass m = 1, evolution time τ = 10−4 and } = 1/2π.

It should be noticed that the parameters used in the simulation are dimensionless

numbers. The final frequency ω(τ) is greater than the initial frequency ω(0) = ω0.

Hence, in the fast-forward adiabatic process, the work done to the system would

always be positive.

5.2.1 Transitions between Instantaneous Eigenstates

In non-adiabatic process, there are transitions between the instantaneous eigen-

states during the evolution. It is essential for us to know the transition probabilities

pm|n to investigate the work statistics of the process. To calculate pm|n, we simu-

late the evolution of the eigenstate under Ĥ0(ω(t)). The initial state is prepared

in |nω(0)〉 with n = 1, 2, 3 · · · so that we obtain the information about the transi-

tions when the evolving state starts with different eigenstates. The after-evolution

wave function ψn(x, τ) is found using the split operator method. We use φm(x, τ)

to represent the wave function of instantaneous eigenstate |mω(τ)〉 of Ĥ0(ω(τ)).

φm(x, τ) could be calculated using equation (5.3). With the knowledge of both

wave functions, the transition probability pm|n is simply given by the probability

that the final state falls into eigenstate |mω(τ)〉 through

pm|n =

∣∣∣∣∫ dxφ∗m(x, τ)ψn(x, τ)

∣∣∣∣2 (5.15)
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The process is repeated for n = 0 to 99 and m = 0 to 199 which is more than

enough to ensure that we do not miss any trajectories with a reasonable probability.

The table below shows the transition probability for the first few energy levels

Table 5.1: Transition probabilities for quantum harmonic oscillator with a
time-dependent frequency

states |0ω(τ)〉 |1ω(τ)〉 |2ω(τ)〉 |3ω(τ)〉 |4ω(τ)〉 |5ω(τ)〉 |6ω(τ)〉 · · ·
|0ω(0)〉 0.9634 0 0.0346 0 0.0019 0 0.0001 · · ·
|1ω(0)〉 0 0.8943 0 0.0963 0 0.0086 0 · · ·
|2ω(0)〉 0.0346 0 0.7671 0 0.1719 0 0.0235 · · ·
|3ω(0)〉 0 0.0963 0 0.6020 0 0.2454 0 · · ·
|4ω(0)〉 0.0019 0 0.1719 0 0.4242 0 0.3014 · · ·

: : : : : : : :
. . .

More transition probabilities are in the table attached in Appendix B for reference.

From Table 5.1, we again observe the transition symmetry for quantum harmonic

oscillator as we do for two-level system. In deed, as long as the system undergoes

unitary evolution, we will have this transition symmetry pm|n = pn|m. The proof

goes as follows.

For any system undergoes unitary evolution during time interval [0, τ ], we use

Ĥ(λ(t)) to represent the Hamiltonian and |mλ(t)〉 to represent the instantaneous

eigenstate of Ĥ(λ(t)) at time t. The transition probability is given by

pm|n = 〈mλ(τ)|Û |nλ(0)〉〈nλ(0)|Û †|mλ(τ)〉; (5.16)

pn|m = 〈nλ(τ)|Û |mλ(0)〉〈mλ(0)|Û †|nλ(τ)〉. (5.17)

For unitary evolution, we can construct a transitionless driving so that ˆ̃U |nλ(0)〉 =

eiφ|nλ(τ)〉 where ˆ̃U is unitary and φ is the phase factor. Replace |nλ(τ)〉 with

e−iφ ˆ̃U |nλ(0)〉 and we get

pm|n = 〈mλ(0)| ˆ̃U †eiφÛ |nλ(0)〉〈nλ(0)|Û †e−iφ ˆ̃U |mλ(0)〉

= 〈mλ(0)| ˆ̃U †Û |nλ(0)〉〈nλ(0)|Û † ˆ̃U |mλ(0)〉; (5.18)

pn|m = 〈nλ(0)| ˆ̃U †eiφÛ |mλ(0)〉〈mλ(0)|Û †e−iφ ˆ̃U |nλ(0)〉

= 〈nλ(0)| ˆ̃U †Û |mλ(0)〉〈mλ(0)|Û † ˆ̃U |nλ(0)〉. (5.19)



Chapter 5. Quantum Harmonic Oscillator 33

with ˆ̃U †Û · Û † ˆ̃U = I. So A = ˆ̃U †Û is unitary. Write B = A|nλ(0)〉〈nλ(0)|A†, we

obtain

pm|n = 〈mλ(0)|B|mλ(0)〉 pn|m = 〈mλ(0)|B†|mλ(0)〉 (5.20)

Equation (5.20) and (5.21) implies that pm|n = p∗n|m. With pm|n and pn|m being real,

the two equal each other. The transition symmetry hold for any unitary evolution.

From this symmetry, we know that for an equilibrium thermal state |ψi〉 of an

arbitrary system undergoing unitary time evolution, the adiabatic process gives

the smallest possible expected work 〈Wad〉. The proof goes as follows. Consider

any unitary process and use |ψf〉 for final state in adiabatic process, |ψ′f〉 for final

state in other processes. And for simplicity, we use Pn for the distribution of the

initial thermal state, Ĥf for the Hamiltonian at the end of the process, and Ef
n

for the eigenenergy of Ĥf .

〈W ′〉 − 〈Wad〉 = 〈ψ′f |Ĥf |ψ′f〉 − 〈ψf |Ĥf |ψf〉

=
∑
m

∑
n

Pnpm|nE
f
m −

∑
n

PnE
f
n

=
1

2

∑
m

∑
n

[
(Pnpm|nE

f
m + Pmpn|mE

f
n)− (Pnpm|nE

f
n + Pmpn|mE

f
m)
]

=
1

2

∑
m

∑
n

pm|n(Pn − Pm)(Ef
m − Ef

n). (5.21)

When Ef
m > Ef

n , energy level m is higher than energy level n, thus Pn > Pm.

Hence, 〈W ′〉 − 〈Wad〉 > 0. When Ef
m < Ef

n , energy level m is lower than energy

level n, thus Pn < Pm. Hence, we also have 〈W ′〉 − 〈Wad〉 > 0. This implies the

minimum limit of dissipated work 〈Wdis〉 = 〈W 〉 −∆F under unitary evolution is

given by the dissipated work of an adiabatic process.

It is also noticed that eigenstate |nω(0)〉 can only transit into eigenstate |(n ±
2m)ω(τ)〉 and is more likely to transit to higher energy level. Also, it is more likely

to see a transition when the initial state is at a higher energy level. The selection

of transition can be explained when we evaluate 〈mω(t)|∂tnω(t)〉 for our harmonic

system. The other two observations are explained by Lutz in [22].
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5.2.2 Convergence of Jarzynski Equality in 1-D Quantum

Harmonic Oscillator

We simulate the convergence of Jarzynski equality under non-adiabatic and fast-

forward adiabatic process at various temperatures to enhance our understanding

on Jarzynski equality and to verify the efficiency of fast-forward adiabatic process

in improving the convergence and the effect of temperature, negative works on

the convergence. The procedure is the same as what we have done on two-level

system. The initial state is prepared in equilibrium thermal state and an energy

measurement is performed at t = 0. The state then evolves according to Ĥ0(ω(t))

for non-adiabatic process and Ĥ(ω(t)) = Ĥ0(ω(t)) + Ĥ1(ω(t)) for fast-forward

process respectively and another energy measurement is performed at the end of

the process. With the process repeated, the averaged exponential work 〈e−βW 〉 is

plotted against the number of trajectories. And when β = 0.05, the plot of the

convergence of Jarzynski equality is shown in Figure 5.1.

Figure 5.1: Simulation of the convergence of 〈e−βW 〉 for 1-D quantum har-
monic oscillator at temperature β = 0.05. The blue dots represent the non-
adiabatic process and the red ones represent the fast-forward adiabatic process.
The green line is the theoretical value e−β∆F = 0.5770 .

In Figure 5.1 and subsequent plots of the convergence of Jarzynski equality in our

1-D harmonic oscillator, we plot one dot for every 100 trajectories. At temperature

β = 0.05, the converge speed under the two processes are the same. The idea

of using fast-forward adiabatic process to accelerate the convergence of Jarzynski
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equality does not work at high temperature on quantum harmonic oscillator, which

is consistent with the result from two-level system.

Figure 5.2: Simulation of the convergence of 〈e−βW 〉 for 1-D quantum har-
monic oscillator at temperature β = 0.5. The blue dots represent the non-
adiabatic process and the red ones represent the fast-forward adiabatic process.
The green line is the theoretical value e−β∆F = 0.5483 .

When the temperature is lowered to β = 0.5, the result from fast-forward adiabatic

process begins to distinguish from that from non-adiabatic process as shown in

Figure 5.2. Under adiabatic process, 〈e−βW 〉 converges to its expectation around

the scale 500 while under non-adiabatic process, the convergence is done around

scale 1000. When temperature decreases, the fast-forward process is more efficient

in taking 〈e−βW 〉 to its expected value.

Just like what we did in the study of two-level system, the convergence of Jarzynski

equality at different temperatures is also compared here. From plots in Figure 5.1

and 5.2, when temperature decreases from β = 0.05 to β = 0.5, the convergence

for fast-forward adiabatic process is not greatly affected while for non-adiabatic

process, it is significantly slowed down. The different effects of temperature on the

two processes help to explain why fast-forward adiabatic process begins to surpass

the non-adiabatic process on the converge speed when temperature decreases.

When temperature decreases further to β = 1.5, the improvement from fast-

forward adiabatic process becomes larger as shown in Figure 5.3. Comparing

Figure 5.3 and 5.2, with reduced temperature, we find that the convergence of
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Figure 5.3: Simulation of the convergence of 〈e−βW 〉 for 1-D quantum har-
monic oscillator at temperature β = 1.5. The blue dots represent the non-
adiabatic process and the red ones represent the fast-forward adiabatic process.
The green line is the theoretical value e−β∆F = 0.3852 .

〈e−βW 〉 under fast-forward adiabatic process becomes faster while for non-adiabatic

process, the convergence speed continues to decrease. It is consistent with the sit-

uation in two-level system where the convergence is slightly slowed down and then

speeded up for adiabatic process and always slowed down for non-adiabatic process

with decreasing temperature.

Figure 5.4: Simulation of the convergence of 〈e−βW 〉 for 1-D quantum har-
monic oscillator at temperature β = 2.0. The blue dots represent the non-
adiabatic process and the red ones represent the fast-forward adiabatic process.
The green line is the theoretical value e−β∆F = 0.3002 .
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At β = 2.0, as shown in Figure 5.4, the improvement from fast-forward adiabatic

process becomes very significant. In addition, we see jumps along the convergence

path in the non-adiabatic case. These jumps are caused by the extreme values of

e−βW . When a negative work is realized, with a large value of β, the corresponding

e−βW will be much greater than that with positive works. In the adiabatic process,

transitions are suppressed. With the expression of work given by W = (n +

1/2)}(ω(τ) − ω(0) and ω(τ) > ω(0), we do not have any negative work under

adiabatic process for the harmonic oscillator system considered.

5.2.3 Analysis and Discussion

The simulation results on the convergence of Jarzynski equality in 1-D quantum

harmonic oscillator shows that applying fast-forward adiabatic process does not

affect the convergence at high temperature. When temperature decreases, the

fast-forward adiabatic process comes into action and accelerates the convergence.

The lower the temperature is, the larger the improvement we could achieve. The

variance of e−βW and the dissipated work in table 5.2 shows the variance is al-

most the same for non-adiabatic and adiabatic process at high temperature and

the difference between non-adiabatic and adiabatic process is getting larger when

temperature decreases. Also, the adiabatic process has a smaller dissipated work.

Table 5.2: Variance of e−βW and Dissipated work 〈Wdis〉

Variance [σ2(e−βW )] Dissipated work [〈Wdis〉]

β1 = 0.05
Non-Adiabatic 0.4473 8.9512

Adiabatic 0.4057 3.6062

β2 = 0.5
Non-Adiabatic 0.4526 0.7508

Adiabatic 0.3566 0.2817

β3 = 1.5
Non-Adiabatic 0.8730 0.3208

Adiabatic 0.1506 0.0644

β4 = 2.0
Non-Adiabatic 1.6737 0.2629

Adiabatic 0.0933 0.0312

The effect of temperature on non-adiabatic and adiabatic process is different. In

the fast-forward adiabatic process, when temperature decreases, the variance of

e−βW is getting smaller thus the convergence speed of 〈e−βW 〉 becomes faster. It is

also noticed that the change of the convergence speed due to temperature change

is not very large. In the non-adiabatic process, when temperature decreases, the

variance grows, leading to a poorer convergence of Jarzynski equality. Compared
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with the case in fast-forward adiabatic process, the temperature effect is contrary

and is much more significant in the non-adiabatic process. Especially at a low

temperature level, the decrease in temperature results in a big slow down on the

convergence speed because of the negative work. At lower temperature, although

the rate of having negative work for a trajectory gets smaller, once a negative work

is observed, it produces an extreme value and greatly enlarges the variance of e−βW .

Those jumps in Figure 5.4 at β = 2.0 are evidence of the effect of negative work

at low temperature. In general, the results from 1-D quantum harmonic oscillator

are consistent with what we found in two-level system.

5.3 Degree of Adiabaticity and Convergence of

Jarzynski Equality

The degree of adiabaticity measures how adiabatic a process is. For example,

When the system experiences a fast-switch, we say the process is highly non-

adiabatic; and when the system experiences a fast-forward adiabatic evolution, we

say the system is strictly adiabatic. In this section, we study the relation between

the degree of adiabaticity and the convergence of Jarzynksi equality.

We study on the same 1-D harmonic oscillator with time-dependent frequency

described in the previous section of this chapter. The choice of ω(t) is again

described by equation (5.14):

ω(t) = ω0

√
a2 + 1

2
− a2 − 1

2
cos(nπ

t

τ
),

with ω0 = 10, a =
√

3, mass m = 1, } = 1/2π and temperature β = 1.5.

The evolution time τ is varied to achieve different degrees of adiabaticity. We

use the quantity ω0τ , which is the relative length of the evolution time τ to the

natural period of the 1-D harmonic oscillator, as a measurement of the degree of

adiabaticity of a process. We study the cases where τ = 0.01, 0.1, 0.5, 1.0 with

corresponding ω0τ = 0.1, 1, 5, 10. It should be noticed that the quantity ω0τ only

qualitatively measure the degree of adiabaticity. A larger ω0τ means a process is

more adiabatic.

We use the same method as we do in subsection 5.2.2 to do the simulation of the

convergence of Jarzynski equality and plot the convergence of 〈e−βW 〉 at β = 1.5
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for the cases with ω0τ = 0.1, 1, 5, 10. The plot for the convergence is shown in

Figure 5.5.

Figure 5.5: Convergence of 〈e−β〉 in 1-D harmonic oscillator at β = 1.5 with
various degree of adiabaticity. The blue dots are for the case when ω0τ = 0.1;
The green dots are for the case when ω0τ = 1; The red dots are for the case
when ω0τ = 5 and The blue dots are for the case when ω0τ = 10. The black
line indicates the theoretical value e−β∆F = 0.3825.

In Figure 5.5, it is easy to see that the averaged exponential work 〈e−βW 〉 with

ω0τ = 5 and ω0τ = 10 (yellow line and red line respectively) converge to the

expected value e−β∆F first. The convergence of 〈e−βW 〉 with ω0τ = 1 (the green

line) is slower and the convergence of 〈e−βW 〉 with ω0τ = 0.1 (the blue line) is

even slower. It shows that a larger value of ω0τ leads to a quicker convergence of

〈e−βW 〉; in other words, when a process becomes more adiabatic, the convergence

of Jarzynski equality is accelerated. It should be noticed that this statement holds

only when temperature is low. The explanation is the effect of negative works

on the convergence discussed in subsection 5.2.3. When a process becomes more

adiabatic, transitions between instantaneous eigenstates of the varying Hamilto-

nian are reduced, hence negative work realizations are also reduced; and at a low

temperature, a reduction of negative works means a reduction of extreme values

of e−βW , hence a smaller variance of e−βW and hence a quicker convergence of

Jarzynski equality.



Chapter 6

Conclusion

In this report, we discuss the impact on the convergence of Jarzynski equality

when we use fast-adiabatic driving in the evolution of the system and study the

effect of temperature, negative works on the convergence of Jaryznski equality and

the relation between the degree of adiabaticity of a process and the convergence

of Jarzynski equality.

We review Jarzynski equality and the adiabatic theorem. For Jarzynski equality,

we explicitly show how the equation is derived in classical systems and quantum

systems. For the adiabatic theorem, we review the conventional adiabatic approx-

imation where the Hamiltonian must change very slowly and introduce transition-

less quantum driving to achieve fast-forward adiabatic evolution. The restriction

of slowly changing Hamiltonian is removed when we add an appropriate control

field to the original time-dependent Hamiltonian.

The fast-forward adiabatic process is studied for a two-level system and 1-D quan-

tum harmonic oscillator. For both systems, we study the transition probabilities

and verify the transition symmetry and that the minimum limit of dissipated

work 〈Wdis〉 = 〈W 〉−∆F is given by an adiabatic process for an arbitrary system

when the system undergoes unitary time evolution. We compare the convergence

of Jarzynski equality under fast-forward adiabatic and non-adiabatic process for

both systems at various temperatures and find that fast-forward process would

accelerate the convergence of Jarzynski equality only at low temperatures. At

high temperature, the two processes have the same result.
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The effect of temperature and negative works on the convergence is discussed. The

temperature affects the convergence in a different way for fast-forward process

and non-adiabatic process. The convergence of Jarzynski equality under fast-

forward adiabatic process is not largely affected by the change of temperature

while under non-adiabatic process, the convergence is significantly slowed down

when temperature decreases. As for negative works, they play an important role

by producing extreme values of e−βW when temperature is low.

The relation between the degree of adiabaticity of a process and the convergence

of Jarzynski equality is also studied. We compare the convergence of Jarzynski

equality under processes with various degrees of adiabaticity at a low temperature

and find that at low temperatures, when a process becomes more adiabatic, the

convergence of Jarzynski equality is accelerated. This is consistent with the conclu-

sion that fast-forward adiabatic process accelerates the convergence of Jarzynski

equality at low temperatures.

The conclusion in this report is based on our study on a two-level system and

1-D quantum harmonic oscillator. However, we believe they hold in general as we

study systems with both finite and infinite energy levels and more importantly,

some fundamental elements in the argument will not change, and because of that

feature, it is possible to suppress transitions between energy levels and hence

negative works and hence accelerate the convergence. We emphasize that fast-

forward adiabatic process eliminates transitions between instantaneous eigenstates

of a fast-varying Hamiltonian and that at low temperature, negative works due

to transition from high energy level to low energy level produce extreme value of

e−βW hold in general.



Appendix A

The Convergence

Figure A.1: Jarzynski convergence for two level system under non-adiabatic
process at temperature β = 0.5
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Figure A.2: Jarzynski convergence for two level system under non-adiabatic
process at temperature β = 1.0

Figure A.3: Jarzynski convergence for two level system under non-adiabatic
process at temperature β = 1.5



Appendix B

Transition Probabilities

Table B.1: Transition probabilities of 1-D harmonic oscillator with time-
dependent frequency under non-adiabatic process

|1ω(τ)〉 |2ω(τ)〉 |3ω(τ)〉 |4ω(τ)〉 |5ω(τ)〉 |6ω(τ)〉 |7ω(τ)〉 |8ω(τ)〉
|1ω(0)〉 0.9634 0 0.0346 0 0.0019 0 0.0001 0
|2ω(0)〉 0 0.8943 0 0.0963 0 0.0086 0 0.0007
|3ω(0)〉 0.0346 0 0.7671 0 0.1719 0 0.0235 0
|4ω(0)〉 0 0.0963 0 0.6020 0 0.2454 0 0.0482
|5ω(0)〉 0.0019 0 0.1719 0 0.4242 0 0.3014 0
|6ω(0)〉 0 0.0086 0 0.2454 0 0.2589 0 0.3286
|7ω(0)〉 0.0001 0 0.0235 0 0.3014 0 0.1267 0
|8ω(0)〉 0 0.0007 0 0.0482 0 0.3286 0 0.0403

|9ω(τ)〉 |10ω(τ)〉 |11ω(τ)〉 |12ω(τ)〉 |13ω(τ)〉 |14ω(τ)〉 |15ω(τ)〉 |16ω(τ)〉
|10〉 0.0000 0 0.0000 0 0.0000 0 0.0000 0
|20〉 0 0.0000 0 0.0000 0 0.0000 0 0.0000
|30〉 0.0003 0 0.0000 0 0.0000 0 0.0000 0
|40〉 0 0.0009 0 0.0001 0 0.0000 0 0.0000
|50〉 0.0154 0 0.0023 0 0.0003 0 0.0000 0
|60〉 0 0.0290 0 0.0053 0 0.0008 0 0.0001
|70〉 0.1650 0 0.0485 0 0.0106 0 0.0019 0
|80〉 0 0.2010 0 0.0735 0 0.0190 0 0.0039
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