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ABSTRACT 

 
This project explores the behavior of the newly proposed method of finding the Bell 

inequalities of any 2-parties scenario. Starting from a point inside the set of probability 

distributions of a fixed scenario, sampling directions are randomized and the hit facet’s 

equation is solved using the dual linear program.  
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Chapter 1 

 

INTRODUCTION 

 

1.1 Bell Experiment 

Bell experiment studies the correlation between the results of measurements performed 

separately at a large distance, as illustrated in the following scheme. 

 

 
 
 
 
 
 
 
 
 
 

Figure	  1.	  Schematic	  of	  Bell	  Experiment	  
 

The source sends the objects of measurement to the two black boxes in which there will 

be choices of possible measurement settings as inputs (x and y for box A and box B 

respectively) and results of the measurement (a and b and respectively). If the object of 

measurement is photon, examples of inputs could be polarization or spin measurement 

settings, while the outputs are the measured polarizations or spins. For future references, 

the following notations will be taken. 

• Box A’s possible measurement settings: 𝑥 ∈ 𝒳 = {1, 2,… ,𝑀!} 

• Box A’s possible outcomes: 𝑎 ∈ 𝒜 = {1, 2,… ,𝑚!} 

• Box B’s possible measurement settings: 𝑦 ∈ 𝒴 = {1, 2,… ,𝑀!} 

• Box B’s possible outcomes: 𝑏 ∈ ℬ = {1, 2,… ,𝑚!} 

After several takes, the joint statistics of the two boxes’ results is then studied.

Box 
A 

Box 
B Source 

x 

a 

y 

b 
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1.2 Local Variables 

Correlations between the two distant black boxes can be explained by either of these 

schemes: 

• Signaling: box A’s party informing box B’s party of his inputs/outputs and/or vice 

versa 

• Pre-established agreement: both parties have set common rules on how to respond 

to the inputs 

This project focuses on the second scheme, pre-established agreement, in which the 

correlation probability can be written as 

𝑃!" 𝑎, 𝑏 𝑥,𝑦 = 𝑑𝜆   𝜌 𝜆   𝑃 𝑎 𝑥, 𝜆   𝑃 𝑏 𝑦, 𝜆  (1) 

where 𝜆 is the possible mathematical descriptions that could have been invoked in the 

process of getting the observed statistics and 𝜌 is its weight. “LV” stands for local 

variables, an expression corresponding to the pre-established agreement scheme. 

 While 𝑃 𝑎 𝑥, 𝜆  and 𝑃 𝑏 𝑦, 𝜆  can be any valid probability distributions, they can 

also be set to be deterministic, i.e. 

𝑃 𝑎 𝑥, 𝜆 = 𝛿!!!(!,!)  , 𝑃 𝑏 𝑦, 𝜆 = 𝛿!!!(!,!) (2) 

which creates a special case of LV called deterministic local variables case (it is also 

equivalent to providing the list of outputs for all possible inputs). With this setting, it can 

be found that there are 𝑚!
!!𝑚!

!! amount of deterministic local points. 

It has been proven that a family of probability distributions 𝒫𝒳,𝒴 can be explained 

with pre-established agreement if and only if it can be explained with deterministic local 

variables. In other words, expression (1) can also be written as 

𝑃!" 𝑎, 𝑏 𝑥,𝑦 = 𝜌!"   𝛿!!!!(!)  𝛿!!!!(!)

!!
!!

!!!

!!
!!

!!!

 

 

(3) 

in which 𝜆 ≡ (𝑗, 𝑘) and 𝜌!" = 1!,!  .
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1.3 Bell Inequalities 

It has been observed that, for any fixed set of inputs and outputs (𝒳,𝒜;𝒴,ℬ), the set ℒ 

of all probability distributions obtainable by LV is convex, i.e. for every pair of 𝒫! ∈ ℒ 

and 𝒫! ∈ ℒ , the points 𝑞𝒫! + 1− 𝑞 𝒫! for all 0 ≤ 𝑞 ≤ 1 are also elements of ℒ. Since 

every 𝒫 ∈ ℒ is also obtainable by deterministic LV, it can be seen that the 𝑚!
!!𝑚!

!! 

deterministic local points serve as the extremal points of this set. 

 Geometrically, set ℒ can be seen as a polytope embedded in ℝ! and bounded by 

(𝐷 − 1)-dimensional facets. Below is a simple illustration of it. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure	  2.	  2-‐dimensional	  illustration	  of	  polytope	  L	  

As can be seen, the illustrated convex polytope (shaded region) has 5 extremal points 

(black dots) and 5 facets (bolded lines). Line 1 is a trivial facet, coming from the 

restriction 𝑃 𝑏! 𝑦! ≤ 1, while line 2 is an example of the non-trivial facets and is 

associated with one out of 4 Bell inequalities of this illustrated set. 

Polytope ℒ can be represented in several choices of axis. For example, the Bell 

inequalities of the case 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 (named the CHSH inequalities) can 

be represented in a Collins-Gisin format (explained further in the later part of the report) 

as 

0 1 

𝑃 𝑎! 𝑥!  

𝑃 𝑏! 𝑦!  

Convex polytope	  ℒ	  

(1) 

(2) 

1 
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𝑃! 1 1 + 𝑃! 1 1 − 𝑃!" 1,1 1,1 − 𝑃!" 1,1 1,2 − 𝑃!" 1,1 2,1 + 𝑃!" 1,1 2,2 ≤ 1 

and its 3 other permutations, or in the correlators format as 

𝐸!! + 𝐸!" + 𝐸!" − 𝐸!! ≤ 2  

and its 3 other permutations where 𝐸!" = 𝑃 𝑎 = 𝑏 𝑥,𝑦 − 𝑃 𝑎 ≠ 𝑏 𝑥,𝑦  are the 

correlators. The minimum amount of numbers (hence axis and dimension) needed to 

represent a full set of ℒ is 𝑀! 𝑚! − 1 +𝑀! 𝑚! − 1 +𝑀!𝑀! 𝑚! − 1 (𝑚! − 1). 

This will be demonstrated in the later part of the report. 

 For any outcomes found within the polytope, there exist pre-established 

agreements that can be invoked in order to achieve those outcomes. Hence, these 

outcomes do not have true intrinsic randomness. Meanwhile, points which are outside the 

polytope (violating the Bell inequalities) do have true intrinsic randomness. 

As can be seen from the expressions of the number of extremal points and 

minimum number of dimension, the complexity of the calculation increases exponentially 

with every additional input or output. Hence, new methods of finding the facets need to 

be explored in order to increase the efficiency of the process. The purpose of this project 

is to explore the behavior of a newly proposed “shooting” method.
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Chapter 2 

 

METHODOLOGY 

 

2.1 Method Overview 

This method takes advantage of the convexity characteristic of the probability polytope. 

 

 

 

 

  

 

 

 

 

 
Figure	  3.	  Illustration	  of	  the	  method	  

First, all the extremal points, 𝑣! , need to be found. Due to convexity, every point 𝑝 in the 

polytope can be written in the form of the extremal points, i.e. 

𝑝 = 𝑐!𝑣!

!

!!!

   , 𝑐! = 1
!

  ,      𝑐! ≥ 0  

where N is the total number of extremal points and 𝑐! is the coefficient associated with 𝑣! . 

The point 𝑝! is chosen as a starting point of the “shooting” and a random vector 𝑑 is 

chosen as the direction. Then, 𝑑 is multiplied with the factor 𝛼 which is maximized until 

the limit of 

𝑣!	  
𝑣!	  

𝑣!	   𝑣!	  

𝑣!	  

𝑝!	  

𝛼𝑑	  

𝑝	  



6	  
	  

𝑝! + 𝛼𝑑 = 𝑐!𝑣!

!

!!!

   , 𝑐! = 1
!

  ,      𝑐! ≥ 0 (4) 

is hit, i.e. the point 𝑝! + 𝛼𝑑 can no longer be written as a convex sum of the extremal 

points. Once a limit is hit, the equation of the hit facet can then be found. Afterwards, 𝑑 is 

randomized again to continue the “shooting” and find more facets of the polytope. 

 

2.2 Method Implementation 

 

2.2.1 Generating Extremal Points  

To generate all the extremal points of a set ℒ, all possible deterministic rules 𝜆 need to be 

exhausted. Below is an example for the case 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 . 

Box A settings: 𝑥 = 1,2 , 𝑎 = (+,−) 

Box B settings: 𝑦 = 1,2 , 𝑏 = (+,−) 

For each box, there are 4 possible sets of local rules: 

Table	  1.	  Local	  determistic	  rules	  of	  Box	  A	  and	  Box	  B	  each	  with	  2	  inputs	  and	  2	  outputs	  

Box B 
Input 

1 2 

Rule 1 Output + + 

Rule 2 Output + - 

Rule 3 Output - + 

Rule 4 Output - - 

 

 Combining all possible pair of local rules of the 2 boxes, Table 2 is obtained. Each row 

represents an extremal point. 

  

Box A 
Input 

1 2 

Rule 1 Output + + 

Rule 2 Output + - 

Rule 3 Output - + 

Rule 4 Output - - 



7	  
	  	  

 
Table	  2.	  Combined	  outcomes	  for	  Box	  A	  and	  Box	  B	  

Box 1 + Box 2 
(x, y) 

(1, 1) (1, 2) (2, 1) (2, 2) 

(a, b) 

Rule 1 & Rule 1 (+, +) (+, +) (+, +) (+, +) 

Rule 1 & Rule 2 (+, +) (+, -) (+, +) (+, -) 

Rule 1 & Rule 3 (+, -) (+, +) (+, -) (+, +) 

Rule 1 & Rule 4 (+, -) (+, -) (+, -) (+, -) 

Rule 2 & Rule 1 (+, +) (+, +) (-, +) (-, +) 

Rule 2 & Rule 2 (+, +) (+, -) (-, +) (-, -) 

Rule 2 & Rule 3 (+, -) (+, +) (-, -) (-, +) 

Rule 2 & Rule 4 (+, -) (+, -) (-, -) (-, -) 

Rule 3 & Rule 1 (-, +) (-, +) (+, +) (+, +) 

Rule 3 & Rule 2 (-, +) (-, -) (+, +) (+, -) 

Rule 3 & Rule 3 (-, -) (-, +) (+, -) (+, +) 

Rule 3 & Rule 4 (-, -) (-, -) (+, -) (+, -) 

Rule 4 & Rule 1 (-, +) (-, +) (-, +) (-, +) 

Rule 4 & Rule 2 (-, +) (-, -) (-, +) (-, -) 

Rule 4 & Rule 3 (-, -) (-, +) (-, -) (-, +) 

Rule 4 & Rule 4 (-, -) (-, -) (-, -) (-, -) 

There are 16 combined probabilities (shaded cells in Table 2) that can be chosen to be a 

set of axis. Ordering the variables by row, coordinates of the extremal points would then 

be expressed in terms of the values of (𝑃!" +,+ 1,1 ,𝑃!" +,− 1,1 ,𝑃!" +,+ 1,2 ,   

𝑃!" +,− 1,2 ,𝑃!" −,+ 1,1 ,𝑃!" −,− 1,1 ,𝑃!" −,+ 1,2 ,𝑃!" −,− 1,2 , 

𝑃!" +,+ 2,1 ,𝑃!" +,− 2,1 ,𝑃!" +,+ 2,2 ,𝑃!" +,− 2,2 ,𝑃!" −,+ 2,1 , 

𝑃!" −,− 2,1 ,𝑃!" −,+ 2,2 ,𝑃!"(−,−|2,2)). For example, coordinates of the first 

extremal point (first row) would be (1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0), 

corresponding to the 4 possible combined outcomes of 

𝑃!" +,+ 1,1 ,𝑃!" +,+ 1,2 ,𝑃!" +,+ 2,1 ,𝑃!"(+,+|2,2). The second row would be 

(1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0), and so on for all 16 extremal points. 
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Table	  3.	  Combined	  probability	  variables	  

 PB(+|1) PB(-|1) PB(+|2) PB(-|2) 

PA(+|1) PAB(+,+|1,1) PAB(+,-|1,1) PAB(+,+|1,2) PAB(+,-|1,2) 

PA(-|1) PAB(-,+|1,1) PAB(-,-|1,1) PAB(-,+|1,2) PAB(-,-|1,2) 

PA(+|2) PAB(+,+|2,1) PAB(+,-|2,1) PAB(+,+|2,2) PAB(+,-|2,2) 

PA(-|2) PAB(-,+|2,1) PAB(-,-|2,1) PAB(-,+|2,2) PAB(-,-|2,2) 

Choosing to express the points in this set of axis is also called the non-signaling 

probability format, which is indeed the format used to express the extremal points in this 

project. This is done so in order to avoid any biasness in randomizing the “shooting” 

direction in the later part of the project. 

 

2.2.2 Constructing Directions 

The first step taken after finding all the extremal points is choosing the starting point 𝑝!. 

In this project, 𝑝! is chosen to be the average of all the extremal points so that it is 

guaranteed to be inside the polytope (note that the polytope is convex). Then, a random 

direction 𝑑 is taken by generating a vector consisted of 𝑀!𝑀!𝑚!𝑚! random numbers. 

Constraints 

Merely randomizing elements of vector 𝑑 might put the point 𝑝! + 𝛼𝑑 out of the 

normalized no-signaling space, i.e. it does not fulfill the following 2 conditions: 

• For all quadrants of input (examples are the bolded boxes in Table 3), the total 

probability must add up to 1. That is, for a 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 case, 

𝑃!" +,+ 1,1 + 𝑃!" +,− 1,1 + 𝑃!" −,+ 1,1 + 𝑃!" −,− 1,1 = 1 and so on 

for the three other quadrants. This is a probability normalization constraint for 

each pair of inputs of the two boxes. Since 𝑝! already fulfills this condition, the 

constraint for the elements of 𝑑 is  

𝑃!" +,+ 1,1 + 𝑃!" +,− 1,1 + 𝑃!" −,+ 1,1 + 𝑃!" −,− 1,1 = 0 instead. 
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• For each row and each column, the combined probabilities coming from every 

pair of the other box’s inputs must subtract to zero. For example, for the first row 

in Table 3 (which corresponds to Box A’s 𝑃!(+|1)), 

 𝑃!" +,+ 1,1 + 𝑃!" +,− 1,1 − { 𝑃!" +,+ 1,2 + 𝑃!" +,− 1,2 = 0 

which is indeed true because, due to no-signaling constraint, 

 𝑃!" +,+ 1,1 + 𝑃!" +,− 1,1 = 𝑃!" +,+ 1,2 + 𝑃!" +,− 1,2 = 𝑃!(+|1). 

Another example is 

 𝑃!" +,+ 1,1 + 𝑃!" −,+ 1,1 − { 𝑃!" +,+ 2,1 + 𝑃!" −,+ 2,1 = 0 

for the first column which corresponds to Box B’s 𝑃!(+|1). 

Note that this must be applied to every pair of the other box’s inputs, which 

means for the case 𝑀! = 𝑀! = 2, 𝑚! = 𝑚! = 3 the first row (corresponding to 

Box A’s 𝑃!(+|1) must cover the pairs of Box B’s first and second inputs, first 

and third inputs, as well as second and third inputs, and so on for all rows and 

columns. Such case would then have a total of 36 no-signaling constraints which 

also apply to 𝑑. 

Hence, for any scenario, there are 𝑚!𝑚! normalization constraints and 

 𝑚!𝑀!   C!!! +𝑚!𝑀!    C!!!  no-signaling constraints. However, these constraints are 

interrelated and they can be reduced to just 1 normalization constraint and 

 𝑚!𝑀! 𝑚! − 1 +𝑚!𝑀!(𝑚! − 1) no-signaling constraints. These truncated constraints 

for 𝑑 are then translated into a matrix by taking the coefficients of the variables. 

For a 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 case, an example constraint matrix would be 
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1
1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0
0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1

 

where each row corresponds to one constraint and the 16 columns correspond to the 16 

axis chosen to express the extremal points in Section 2.2.1. 
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Null Space and Projector 

All direction vectors 𝑑′ that fulfill all the constraints would satisfy the equation 

𝐶𝑑′ = 0 (5) 

where C is the constraint matrix. These vectors form a subspace of ℝ! called the null 

space which is the normalized no-signaling subspace. To find the basis of this null space, 

the MATLAB function null() is used. 

basis = null(constraints) 

A projector of this subspace is formulated as 

 projector = basis*basis’ 

which is then applied on every randomized direction 𝑑. 

 

2.2.3 Finding Facet Equation 

The linear program applied to find the facet equation for each “shooting” direction is 

 Maximize 𝛼 

such that 𝛼𝑑!! − 𝑐!𝑣!!! ≤ −𝑝!!              (6) 

 𝑐!! = 1                (7) 

 𝛼 ≥ 0,      𝑐! ≥ 0 

where 𝑑′ is the projected direction, 𝑣! is the extremal point, 𝑝! is the starting point of the 

“shooting”, and the index k corresponds to the k-th component of a vector. The upper 

limit of 𝛼 can be expressed as 

𝛼 ≤ 𝑦!(
!

𝛼𝑑!! − 𝑐!𝑣!!
!

)+ 𝑦! 𝑐!
!

 (8) 

where 𝑦! is a variable corresponding to k-th equation of expression (6) and 𝑦! to equation 

(7). By comparing the coefficients of variables 𝛼 and 𝑐!, new constraints can be obtained. 

Also, by substituting equations (6) and (7) into equation (8), we get 

𝛼 ≤ − 𝑦!𝑝!!
!

+ 𝑦! (9) 

With these, the dual linear program is obtained, i.e. 
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 Minimize – 𝑦!𝑝!!! + 𝑦! 

 such that 𝑦!𝑑!!! ≥ 1 

  − 𝑦!𝑣!!! + 𝑦! ≥ 0 

 𝑦! is free 

By solving this linear program, the equation of the hit facet can be calculated, that is 

𝑦!𝑃!!!
!

= 𝑦! (10) 

with 𝑃!!! being the k-th basis of the chosen set of basis as illustrated in Section 2.2.1. 

For this part, the MATLAB toolbox and solver YALMIP and SeDuMi are used. 

 

2.2.4 Changing Basis 

After getting the coefficients of the facet equation, a change of basis needs to be taken. 

This step is taken due to possible redundancy, i.e. two different sets of coefficients could 

actually correspond to the same facet. For example, in the set of basis for the case 

𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 illustrated in the shaded cells of Table 3, the following two 

sets of coefficients 

1 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
 

2 1 -1 -1 

1 1 -1 -1 

0 0 0 0 

0 0 0 0 
 

with 𝑦! = 0 both refer to trivial positivity facet equation 𝑃!" +,+ 1,1 ≥ 0. 

 Taking a look at the complete table of probabilities for the case of  

𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 again, some patterns can be noted: 

 

 

 

 



12	  
	  

Table	  4,	  Reduced	  variables	  

 PB(+|1) PB(-|1) PB(+|2) PB(-|2) 

PA(+|1) PAB(+,+|1,1) PAB(+,-|1,1) PAB(+,+|1,2) PAB(+,-|1,2) 

PA(-|1) PAB(-,+|1,1) PAB(-,-|1,1) PAB(-,+|1,2) PAB(-,-|1,2) 

PA(+|2) PAB(+,+|2,1) PAB(+,-|2,1) PAB(+,+|2,2) PAB(+,-|2,2) 

PA(-|2) PAB(-,+|2,1) PAB(-,-|2,1) PAB(-,+|2,2) PAB(-,-|2,2) 

 

• In the local probabilities cells, for every set of outputs coming from one input, one 

probability value is dependent on the rests. For example, 𝑃! − 1 = 1− 𝑃!(+|1)  

and 𝑃! − 1 = 1− 𝑃!(+|1). Hence, if the value of 𝑃!(+|1) is known, the value 

of 𝑃!(−|1) can be derived from it, and similarly for all other local inputs. 

• For every row/column, due to the no-signaling condition, the sum of the 

combined probabilities in one quadrant is equal to the local probability 

corresponding to that row/column. In other words,  

𝑃!" 𝑎, 𝑏 𝑥, 1! = 𝑃!"(𝑎, 𝑏|𝑥, 2)! = 𝑃!(𝑎|𝑥) and 

 𝑃!" 𝑎, 𝑏 1,𝑦 = 𝑃!"(𝑎, 𝑏|2,𝑦)!! = 𝑃!(𝑏|𝑦). Hence, for every row and 

every column of each quadrant, one of the combined probabilities is dependent on 

the others. 

With these properties observed, the variables shaded in red can be dropped and the 

remaining 8 variables (𝑃! + 1 ,𝑃! + 2 ,𝑃! + 2 ,𝑃! + 2 ,𝑃!" +,+ 1,1 ,   

𝑃!" +,+ 1,2 ,𝑃!" +,+ 2,1 ,𝑃!" +,+ 2,2 ) can be used to represent the full polytope 

of the case 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2. Applying the same concept to other scenarios, 

the expression 𝑀! 𝑚! − 1 +𝑀! 𝑚! − 1 +𝑀!𝑀! 𝑚! − 1 (𝑚! − 1) as the minimum 

number of variables needed to represent the full set of ℒ is obtained. This set of basis is 

called the Collins-Gisin format, which is the format chosen to convert the previously 

found facet coefficients into. 
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 To convert the basis, the dropped variables in the facet equation must be 

substituted by the new variables, while the rests remain. The substitutions happen 

following the same normalization and no-signaling constraints mentioned in Section 2.2.2. 

For example, in the case of Table 4, 𝑃!"(+,−|1,1) would be replaced by 

 𝑃! + 1 − 𝑃!" +,+ 1.1 , 𝑃!"(−,+|1,1) by 𝑃! + 1 − 𝑃!" +,+ 1,1 , and 

𝑃!"(−,−|1,1) by 1− 𝑃!" +,+ 1,1 − 𝑃!" +,− 1,1 − 𝑃!" −,+ 1,1  in which 

𝑃!"(+,−|1,1) and 𝑃!" −,+ 1,1  would be re-substituted further, and similarly for all 

the other quadrants.  

With these substitutions, it can be seen that the coefficient of the new variable 

𝑃!(+|1) would be 

𝑐𝑜𝑒𝑓 𝑃!" +,− 1,1 − 𝑐𝑜𝑒𝑓 𝑃!" −,− 1,1 +

𝑐𝑜𝑒𝑓 𝑃!" +,− 1,2 − 𝑐𝑜𝑒𝑓 𝑃!" −,− 1,2  where 𝑐𝑜𝑒𝑓(𝑋) stands for the 

coefficient of variable X, and similarly for 𝑃!(+|2). The coefficient of 𝑃!(+|1) would 

be 

𝑐𝑜𝑒𝑓 𝑃!" −,+ 1,1 − 𝑐𝑜𝑒𝑓 𝑃!" −,− 1,1 +

𝑐𝑜𝑒𝑓 𝑃!" −,+ 2,1 − 𝑐𝑜𝑒𝑓 𝑃!" −,− 2,1  , and similarly for 𝑃!(+|2), while the 

new coefficient of 𝑃!"(+,+|1,1) would be 

𝑐𝑜𝑒𝑓 𝑃!" +,+ 1,1 − 𝑐𝑜𝑒𝑓 𝑃!" +,− 1,1 − 𝑐𝑜𝑒𝑓 𝑃!" −,+ 1,1 +

𝑐𝑜𝑒𝑓 𝑃!" −,− 1,1  , and similarly for other 𝑃!"(𝑎, 𝑏|𝑥,𝑦). 

The same method is applied to all other scenarios. 

 

2.2.5 Sorting Results 

The n times of “shooting” would result in n sets of coefficients. To filter these sets of 

coefficients, four steps are taken. 

1. Each set is normalized by dividing it with the largest element. 

2. The elements are rounded to a certain decimal. 

3. The rounded elements are made rational by using the MATLAB function rat(). 

4. Unique sets are selected using the MATLAB function unique() and the 
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amount of sets compiled to each unique set is noted. 

After the unique sets of facet coefficients are obtained, they are further transformed into 

their non-signaling probability canonical forms using Faacets software in order to 

compile together inequalities which are equivalent under relabeling of inputs and/or 

outputs. The final results are then compared with existing data. 
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Chapter 3 

 

RESULTS 

 

The canonical coefficients found are compared with known inequalities i.e. CHSH (from 

the case 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2), I3322 (from the case 𝑀! = 𝑀! = 3 and 

 𝑚! = 𝑚! = 2) and CGLMP (from the case 𝑀! = 𝑀! = 2 and 𝑚! = 𝑚! = 3). 

 

Case 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 

The canonical form of CHSH in the full no-signaling probability format is 

−1 1 −1 1
1 −1 1 −1
−1 1 1 −1
1 −1 −1 1

≤ 2 

This inequality is found 466 times out of 10,000 times of sampling. The positivity 

inequality (with a canonical form of 1− 1 ) is found 9532 times, while invalid sets of 

coefficients are found 2 times. For comparison with the other 2 cases, this is equivalent to 

finding these inequalities 46.6 times, 953.2 times and 0.2 times respectively out of a 1000 

times of sampling. 

 

Case 𝑀! = 𝑀! = 3, 𝑚! = 𝑚! = 2 

The Bell inequalities of this scenario include CHSH and I3322. The canonical form of the 

latter is 
−5 3 −5 3 −4 2
3 −1 3 −1 4 −2
−5 3 −5 3 2 −4
3 −1 3 −1 −2 4
−4 4 2 −2 0 0
2 −2 −4 4 0 0

≤ 12 
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Out of 10 runs each with 1000 times of sampling, these inequalities are found with these 

frequencies. 

Take Positivity CHSH I3322 Invalid 

1 814 177 4 5 

2 816 181 2 1 

3 799 196 5 0 

4 820 176 1 3 

5 817 175 6 2 

6 801 188 8 3 

7 806 189 2 3 

8 832 160 8 0 

9 789 204 4 3 

10 799 193 5 3 

This results in an average of (809±4) times of finding positivity inequalities, (184±4) 

times of finding CHSH inequalities, (4.5±0.8) times of finding I3322 inequalities and 

(2.3±0.5) times of finding invalid inequalities per 1000 times of sampling. 

A straight 10,000 times of sampling is also taken, resulting in 8084 times of finding 

positivity inequalities, 1834 of finding CHSH inequalities, 69 times of finding I3322 and 

13 times of finding invalid inequalities. These results are closely comparable with the 

data of per 1000 times of sampling. 
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Case 𝑀! = 𝑀! = 2, 𝑚! = 𝑚! = 3 

The Bell inequalities of this scenario includes CHSH and CGLMP which has a canonical 

form of 
−1 0 1 −1 0 1
0 1 −1 1 −1 0
1 −1 0 0 1 −1
−1 1 0 −1 1 0
0 −1 1 1 0 −1
1 0 −1 0 −1 1

≤ 2 

Out of 10 runs each with 1000 times of sampling, they are found with the following 

frequencies. 

Take Positivity CHSH CGLMP Invalid 

1 990 0 0 10 

2 985 3 0 12 

3 984 0 0 16 

4 986 1 0 13 

5 985 1 0 14 

6 989 1 0 10 

7 991 1 0 8 

8 989 0 0 11 

9 982 2 0 16 

10 989 2 0 9 

This results in an average of (987±1) times of finding positivity inequalities, (1.1±0.3) 

times of finding CHSH inequalities, 0 times of finding CGLMP inequalities, and 

(11.9±0.9) times of finding invalid inequalities out of each 1000 times of sampling. 

Like the previous case, a straight 10,000 times of sampling is also taken, resulting in 

9912 times of finding positivity inequalities, 10 times of finding CHSH inequalities, 0 

times of finding CGLMP inequalities and 78 times of finding invalid inequalities. These 

results are also closely comparable with the data of per 1000 times of sampling. 
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 The source of error of the invalid sets of coefficients most likely lies in the 

accuracy limit of the SeDuMi solver. Instead of the theoretical idea that the “shooting” 

direction must be exactly pointing at a vertex between facets in order to obtain a 

combined inequalities, SeDuMi’s accuracy limit creates a range of in which more than 

one set of facet coefficients could merge together. This would result in an invalid set of 

coefficients. 

 

 

 

 

 

 

 

 

 
Figure	  4.	  Illustration	  of	  SeDuMi’s	  accuracy	  limit	  

Other limitations of the program include rounding-up error during the first filtering of the 

sets of coefficients as well as  Faacets software’s limitation in expressing the coefficients 

(they are bound to be rational numbers with a common denominator of maximum 10,000). 

An additional approach that can be taken to improve the results of this method is creating 

a better way of setting the sampling direction, e.g. to shoot more at regions that have 

higher probability of finding the intended facets. 

  

𝑝!	  

𝑑	  
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Chapter 4 

 

CONCLUSION 

 

This method starts from a point within the local set’s polytope, generates stochastic 

sampling directions and finds the equations of the hit facets using the dual linear 

programs. It aims to be a faster and more efficient alternative method of finding Bell 

inequalities compared to other existing methods, e.g. PORTA (Fourier-Motzkin 

elimination). 

In this project, the method has managed to find the CHSH inequalities and I3322 

inequalities, but the CGLMP inequalities have not been found in the sampling that has 

been run. 

For the case of 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2, CHSH inequalities have been found 466 

times out of 10,000 times of samplings. 

For the case of 𝑀! = 𝑀! = 3  and    𝑚! = 𝑚! = 2, the CHSH inequalities have been 

found (184±4) times out of 1000 times of sampling, while the I3322 inequalities have been 

found (4.5±0.8) times out of 1000 times of sampling. 

For the case of 𝑀! = 𝑀! = 2  and  𝑚! = 𝑚! = 3, the CHSH inequalities have been 

found (1.1±0.3) times out of 1000 times of sampling, while the CGLMP inequalities have 

not been found. 

One step that can be taken to enhance this method is to improve the choosing of the 

“shooting” directions. 
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Moving Forward 

These facets mark the boundaries of the local set of correlations. There is not true 

randomness within these facets because, for any case of correlations still fulfilling these 

inequalities, a pre-established agreement could be made. However, these facets can be 

used to find the boundaries of the quantum set of correlations, within which (shaded 

region in Figure 5) true randomness can happen. 

 

 

 

 

 

 

 

 
Figure	  5.	  Different	  sets	  of	  correlations	  

One of the most important applications of this true randomness (existing in the shaded 

regions) is in Quantum Key Distribution which will create a safer communication method. 

  

quantum	  set	  
of	  correlations	  

local	  set	  of	  
correlations	  

no-‐signaling	  
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Appendix 

MATLAB FILES 

 

Filename: extremalpoints_2boxes.m 
function extremalpoints_2boxes() 
%To generate the extremal points of any 2-parties scenario 
input1 = {'1', '2', '3'}; 
input2 = {'1', '2', '3'}; 
output1 = {'+', '-'}; 
output2 = {'+', '-'}; 
 
box1rules = get_box_n_rules(input1, output1); 
box2rules = get_box_n_rules(input2, output2); 
 
local_outputlist = multiply_rows(box1rules, box2rules); 
%outputlist = multiply_tensors(box1rules, box2rules) 
 
box1poss_name = multiply_tensors(input1', output1'); 
%input1' and output1' need to be written this way in order to group according 
to input 
for i = 1:length(box1poss_name) 
        box1poss_name_temp = box1poss_name{i, 1}; 
        box1poss_name{i, 1} = [box1poss_name_temp(2) box1poss_name_temp(1)]; 
end 
%to flip the order of input and output in box1poss_name 
 
box2poss_name = multiply_tensors(input2, output2); 
%input2 and output2 need to be written this way in order to group according to 
input 
for i = 1:length(box2poss_name) 
        box2poss_name_temp = box2poss_name{1, i}; 
        box2poss_name{1, i} = [box2poss_name_temp(2) box2poss_name_temp(1)]; 
end 
 
allposs_name = multiply_tensors(box1poss_name, box2poss_name); 
for i = 1:length(box1poss_name) 
    for j = 1:length(box2poss_name) 
        allposs_name_temp = allposs_name{i, j}; 
        allposs_name{i, j} = [allposs_name_temp(1) allposs_name_temp(3)...  
            allposs_name_temp(2) allposs_name_temp(4)]; 
    end 
end 
 
allposs_name_temp = allposs_name'; 
allposs_name_temp = allposs_name_temp(:); 
allposs_result_name = allposs_name_temp'; 
 
size_local_outputlist = size(local_outputlist); 
allposs_result = zeros(size_local_outputlist(1), length(allposs_result_name)); 
 
for i = 1:size_local_outputlist(1) 
    for j = 1:length(allposs_result_name) 
        input1index = getindex(allposs_result_name{j}, 3, input1); 
        input2index = getindex(allposs_result_name{j}, 4, input2); 
        if and(allposs_result_name{j}(1) == local_outputlist{i, 
1}{input1index}, ... 
                alposs_result_name{j}(2) == local_outputlist{i, 2}{input2index}) 
            allposs_result(i, j) = 1; 
        else 



	  

            allposs_result(i, j) = 0; 
        end  
    end 
     
end 
 
save('3322_result.mat', 'allposs_result_name', 'allposs_result', 
'allposs_name', ... 
    'box1poss_name', 'box2poss_name', 'input1', 'input2', 'output1', 'output2') 
 
allposs_result_name 
allposs_result 
 
end 
 
function tensor_product = multiply_tensors(tensor1, tensor2) 
%concatenation tensor product of tensor1 and tensor2 
%tensor1 and tensor2 are cells containing strings 
size1 = size(tensor1); 
size2 = size(tensor2); 
tensor_product = cell(size1(1)*size2(1), size1(2)*size2(2)); 
for i = 1:size1(1)*size2(1) 
    tensor1row = tensor1(ceil(i/size2(1)), :); 
    tensor2row = tensor2(mod(i-1, size2(1))+1, :); 
    for j = 1:size1(2)*size2(2) 
        tensor_product{i, j} = [tensor1row{ceil(j/length(tensor2row))} ... 
            tensor2row{mod(j-1, length(tensor2row))+1}]; 
    end 
end 
end 
 
function row_product = multiply_rows(tensor1, tensor2) 
%concatenation tensor product of tensor1's rows and tensor2's rows 
%tensor1 and tensor2 are cells containing rows (and columns) of strings 
size1 = size(tensor1); 
size2 = size(tensor2); 
row_product = cell(size1(1)*size2(1), 2); 
for i = 1:size1(1)*size2(1) 
    tensor1row = tensor1(ceil(i/size2(1)), :); 
    tensor2row = tensor2(mod(i-1, size2(1))+1, :); 
    row_product{i, 1} = tensor1row; 
    row_product{i, 2} = tensor2row; 
end 
end 
 
function box_n_rules = get_box_n_rules(input, output) 
%box_n_rules = (local output of input 1, local output of input 2, ...) 
box_n_rules = cell(length(output)^length(input), length(input)); 
for i = 1:length(output)^length(input) 
    c = str2num(dec2base(i-1, length(output))); 
    for j = 1:length(input) 
        box_n_rules{i, j} =  output{getdigitn(c, j) + 1}; 
    end 
end 
end 
 
function digitn = getdigitn(num, n) 
%to get the n-th digit of an integer num 
digitn = mod(floor(num/10^(n-1)), 10); 
end 
 
function index = getindex(source, source_index, matching_source) 
source = source(source_index); 



	  

for n = 1: length(matching_source) 
if source == matching_source{n} 
   index = n; 
end 
end 
 
end 

 

Filename : facets_2boxes.m 
function facets_2boxes() 
 
load('3322_result.mat') 
 
expts_size = size(allposs_result); 
P_0 = mean(allposs_result, 1); 
allposs_result; 
 
% To compute an orthonormal basis of the normalized no-signalling space: 
 
constraints = zeros((length(box1poss_name)*(length(input2)-... 
    1)+length(box2poss_name)*... 
    (length(input1)-1)+1), expts_size(2)); 
for i = 1 
    for j = 1:length(output1) 
        for k = 1:length(output2) 
            constraints(i, (j-1)*length(box2poss_name)+k) = 1; 
        end 
    end 
end 
 
for i = 1:length(box1poss_name) 
    for j = 1:length(input2)-1 
        for k = 1:length(output2) 
            constraints(1+(i-1)*(length(input2)-1)+j, ... 
                (i-1)*length(box2poss_name)+k) = 1; 
            constraints(1+(i-1)*(length(input2)-1)+j, ... 
                (i-1)*length(box2poss_name)+j*length(output2)+k) = -1; 
        end 
    end 
end 
 
for i = 1:length(box2poss_name) 
    for j = 1:length(input1)-1 
        for k = 1:length(output1) 
            constraints(1+length(box1poss_name)*(length(input2)-1)+ ... 
                (i-1)*(length(input1)-1)+j, (k-1)*length(box2poss_name)+i) = 1; 
            constraints(1+length(box1poss_name)*(length(input2)-1)+ ... 
                (i-1)*(length(input1)-1)+j, 
j*length(output1)*length(box2poss_name)+ ... 
                (k-1)*length(box2poss_name)+i) = -1; 
        end 
    end 
end 
constraints 
basis=null(constraints); 
projector = basis*basis'; 
 
n = 1000; 
%the number of sampling 
 
facet_coef_old = zeros(n, expts_size(2)+1); 



	  

for i=1:n 
    iyalmip = i 
    d = rand(1, expts_size(2))-0.5; 
 
    % Projceting the direction onto the normalized no-signalling space: 
    d = (projector*d')'; 
     
    LambdaANDqi = sdpvar(expts_size(1)+1, 1); 
    A = [[d' -allposs_result']; [0 ones(1, expts_size(1))]]; 
    b = [-P_0 1]'; 
    F = set(A*LambdaANDqi == b) + set(LambdaANDqi>=0); 
    solvesdp(F, -LambdaANDqi(1), sdpsettings('verbose',0)); 
    facet_coef_old(i, :) = dual(F(1))'; 
end 
%Facet eq.: facet_coef(i,1:expts_size(2)) * allposs_result_name' = 
%   facet_coef(i, expts_size(2)+1) 
 
var_old = [allposs_result_name 'constant']; 
 
allposs_usedname = allposs_name; 
 
local_remove_box1 = 
length(output1):length(output1):(length(input1)*length(output1)); 
box1poss_usedname = box1poss_name; 
box1poss_usedname(local_remove_box1) = []; 
allposs_usedname(local_remove_box1, :) = []; 
 
local_remove_box2 = 
length(output2):length(output2):length(input2)*length(output2); 
box2poss_usedname = box2poss_name; 
box2poss_usedname(local_remove_box2) = []; 
allposs_usedname(:, local_remove_box2) = []; 
 
box1poss_usedname_hor = box1poss_usedname'; 
allposs_usedname_temp = allposs_usedname'; 
allposs_usedname_hor = allposs_usedname_temp(:)'; 
 
var_new = horzcat(box1poss_usedname_hor, box2poss_usedname, 
allposs_usedname_hor, 'constant'); 
 
for i = 1:n 
    isubs = i 
    facet_coef_old_i = facet_coef_old(i, 1:length(allposs_result_name)); 
    coef_old_temp = reshape(facet_coef_old_i, length(box2poss_name), 
length(box1poss_name)); 
    coef_old = coef_old_temp'; 
     
    coef_new_temp = zeros(1, length(var_new)); 
    for j = 1:length(input1) 
        for k = 1:(length(output1)-1 
            temp = 0; 
            for l = 1:length(input2) 
                temp = temp + coef_old(((j-1)*length(output1)+k), 
l*length(output2)) - ... 
                    coef_old(j*length(output1), l*length(output2)); 
            end 
            coef_new_temp((j-1)*(length(output1)-1)+k) = temp; 
        end 
    end 
     
    for j = 1:length(input2) 
        for k = 1:(length(output2)-1) 
            temp = 0; 



	  

            for l = 1:length(input1) 
                temp = temp + coef_old(l*length(output1), ((j-
1)*length(output2)+k)) - ... 
                    coef_old(l*length(output1), j*length(output2)); 
            end 
            coef_new_temp(length(box1poss_usedname)+(j-1)*(length(output2)-1)+k) 
= temp; 
        end 
    end 
     
    for j = 1:length(input1) 
        for k = 1:length(input2) 
            for l = 1:(length(output1)-1) 
                for m = 1:(length(output2)-1) 
                    row = (j-1)*length(output1)+l; 
                    col = (k-1)*length(output2)+m; 
                    temp = coef_old(row, col) - coef_old(row, k*length(output2)) 
- ... 
                        coef_old(j*length(output1), col) + 
coef_old(j*length(output1), k*length(output2)); 
coef_new_temp(length(box1poss_usedname)+length(box2poss_usedname)+... 
                        (j-1)*(length(output1)-1)*length(box2poss_usedname)+(l-
1)*length(box2poss_usedname)+... 
                        (k-1)*(length(output2)-1)+m) = temp; 
                end 
            end 
        end 
    end 
 
 
    temp = facet_coef_old(i, (length(allposs_result_name)+1)); 
    for j = 1:length(input1) 
        for k = 1:length(input2) 
            temp = temp - coef_old(j*length(output1), k*length(output2)); 
        end 
    end 
    coef_new_temp(length(var_new)) = temp; 
    coef_new(i, :) = coef_new_temp; 
    coef_new_normalized(i, :) = coef_new(i, :)/max(abs(coef_new(i, :))); 
end 
 
coef_new_normalized = cut(coef_new_normalized, 1e-2); 
[N,D] = rat(coef_new_normalized, 9*10^-5); 
coef_new_rat = N./D; 
[coef_new_filtered,i,j] = unique(coef_new_rat, 'rows'); 
var_new 
coef_new_filtered 
 
for i = 1:size(coef_new_filtered, 1) 
    coef_amount(i) = sum(j==i); 
end 
coef_amount 
 
save('3322_facets_1000.mat', 'n', 'var_old', 'var_new', 'facet_coef_old', 
'coef_new_rat', 'coef_new_filtered', 'coef_amount') 
end 
 
function out = cut(matrix,tol) 
out = round(matrix/tol)*tol; 
end 

 



	  

Filename: identify_family.m 

 
%%function result = identifyFamily(coeffs, input1, input2, output1, output2) 
% Identifies the Bell inequality family of an inequality in Collins-Gisin 
% format, for the 2 parties, 2 inputs, 2 outputs scenario. 
% 
% For faacets library version 0.14 
 
clear 
load('3322_result.mat') 
load('3322_facets_1000_10.mat') 
 
input1_l = length(input1); 
input2_l = length(input2); 
output1_l = length(output1); 
output2_l = length(output2); 
 
% Check format 
if ~isequal(size(coef_new_filtered), [size(coef_new_filtered, 1) 
input1_l*input2_l*... 
        (output1_l-1)*(output2_l-1)+input1_l*(output1_l-1)+input2_l*(output2_l-
1)+1]) 
    disp('Not the good size'); 
    return; 
end 
 
faacets_init; 
 
box1 = num2str(output1_l); 
for i = 1:input1_l-1 
    box1 = [box1 ' ' num2str(output1_l)]; 
end 
 
box2 = num2str(output2_l); 
for i = 1:input2_l-1 
    box2 = [box2 ' ' num2str(output2_l)]; 
end 
 
s = Faacets.scenario(['{[' box1 ']' ' ' '[' box2 ']}']); 
 
canonical_coeffs = {}; 
 
% For every filtered inequality 
for i = 1: size(coef_new_filtered, 1) 
    i 
    coef_new_filtered(i,:); 
    coef_i = coef_new_filtered(i, :); 
    coef_i(end) = -coef_i(end); 
     
    CG_mat = zeros(input1_l*(output1_l-1)+1, input2_l*(output2_l-1)+1); 
    CG_mat(1, 1) = coef_i(end); 
 
    for j = 2:input1_l*(output1_l-1)+1 
        CG_mat(j, 1) = coef_i(j-1); 
    end 
 
    for j = 2:input2_l*(output2_l-1)+1 
        CG_mat(1, j) = coef_i(input1_l*(output1_l-1)+j-1); 
    end 
     



	  

    mid_elements = coef_i(input1_l*(output1_l-1)+input2_l*(output2_l-1)+1 : 
end-1); 
    mid_mat = reshape(mid_elements, input2_l*(output2_l-1), 
input1_l*(output1_l-1)); 
    mid_mat = mid_mat'; 
 
    for j = 1:input1_l*(output1_l-1) 
        for k = 1:input2_l*(output2_l-1) 
            CG_mat(j+1, k+1) = mid_mat(j, k); 
        end 
    end 
     
    CG_coef_i = reshape(CG_mat, 1, (input1_l*(output1_l-
1)+1)*(input2_l*(output2_l-1)+1)); 
   
    ineq = s.inequality('NGRepr', CG_coef_i); 
    tmp = ineq.canonical; 
    tmp = tmp(1); 
    result = tmp.coeffs; 
    result = result'; 
    
    canonical_coef{i} = result; 
end 
 
[canonical_coef_filtered, idx, idx2] = uniquecell(canonical_coef); 
 
for i = 1:size(canonical_coef_filtered, 2) 
    canonical_coef_amount(i) = (idx2==i)*coef_amount' 
end 
 
canonical_coef_filtered 
canonical_coef_amount 
 
save('3322_canonical_1000_10.mat', 'canonical_coef', 'coef_new_filtered', ... 
    'canonical_coef_filtered', 'canonical_coef_amount') 


