
i	
	

STOCHASTIC SEARCH FOR

BELL INEQUALITIES

Priscilla Mariani

In partial fulfillment of the requirements for

the degree of Bachelor of Science with Honors

Physics Department

National University of Singapore

2013/2014

ii	
	

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Professor Valerio Scarani for his enthusiastic

encouragement and valuable feedback on this project. I would also like to offer my

special thanks to Dr. Jean-Daniel Bancal for his patient guidance and professional

support throughout the project.

iii	
	

ABSTRACT

This project explores the behavior of the newly proposed method of finding the Bell

inequalities of any 2-parties scenario. Starting from a point inside the set of probability

distributions of a fixed scenario, sampling directions are randomized and the hit facet’s

equation is solved using the dual linear program.

iv	
	

TABLE OF CONTENTS

Page

CHAPTER 1 INTRODUCTION .. 1

 1.1 Bell Experiment ...1
 1.2 Local Variables ..2
 1.3 Bell Inequalities ...3

CHAPTER 2 METHODOLOGY ..5

 2.1 Method Overview ..5
 2.2 Method Implementation ...6
 2.2.1 Generating Extremal Points ..6
 2.2.2 Constructing Directions ..8
 2.2.3 Finding Facet Equation ...10
 2.2.4 Changing Basis ...11
 2.2.5 Sorting Results ..13

CHAPTER 3 RESULTS ..15

CHAPTER 4 CONCLUSION ...19

BIBLIOGRAPHY ..21

APPENDIX MATLAB FILES ..22

1	
	

Chapter 1

INTRODUCTION

1.1 Bell Experiment

Bell experiment studies the correlation between the results of measurements performed

separately at a large distance, as illustrated in the following scheme.

Figure	 1.	 Schematic	 of	 Bell	 Experiment	

The source sends the objects of measurement to the two black boxes in which there will

be choices of possible measurement settings as inputs (x and y for box A and box B

respectively) and results of the measurement (a and b and respectively). If the object of

measurement is photon, examples of inputs could be polarization or spin measurement

settings, while the outputs are the measured polarizations or spins. For future references,

the following notations will be taken.

• Box A’s possible measurement settings: 𝑥 ∈ 𝒳 = {1, 2,… ,𝑀!}

• Box A’s possible outcomes: 𝑎 ∈ 𝒜 = {1, 2,… ,𝑚!}

• Box B’s possible measurement settings: 𝑦 ∈ 𝒴 = {1, 2,… ,𝑀!}

• Box B’s possible outcomes: 𝑏 ∈ ℬ = {1, 2,… ,𝑚!}

After several takes, the joint statistics of the two boxes’ results is then studied.

Box
A

Box
B Source

x

a

y

b

2	
	

1.2 Local Variables

Correlations between the two distant black boxes can be explained by either of these

schemes:

• Signaling: box A’s party informing box B’s party of his inputs/outputs and/or vice

versa

• Pre-established agreement: both parties have set common rules on how to respond

to the inputs

This project focuses on the second scheme, pre-established agreement, in which the

correlation probability can be written as

𝑃!" 𝑎, 𝑏 𝑥,𝑦 = 𝑑𝜆 𝜌 𝜆 𝑃 𝑎 𝑥, 𝜆 𝑃 𝑏 𝑦, 𝜆 (1)

where 𝜆 is the possible mathematical descriptions that could have been invoked in the

process of getting the observed statistics and 𝜌 is its weight. “LV” stands for local

variables, an expression corresponding to the pre-established agreement scheme.

 While 𝑃 𝑎 𝑥, 𝜆 and 𝑃 𝑏 𝑦, 𝜆 can be any valid probability distributions, they can

also be set to be deterministic, i.e.

𝑃 𝑎 𝑥, 𝜆 = 𝛿!!!(!,!) , 𝑃 𝑏 𝑦, 𝜆 = 𝛿!!!(!,!) (2)

which creates a special case of LV called deterministic local variables case (it is also

equivalent to providing the list of outputs for all possible inputs). With this setting, it can

be found that there are 𝑚!
!!𝑚!

!! amount of deterministic local points.

It has been proven that a family of probability distributions 𝒫𝒳,𝒴 can be explained

with pre-established agreement if and only if it can be explained with deterministic local

variables. In other words, expression (1) can also be written as

𝑃!" 𝑎, 𝑏 𝑥,𝑦 = 𝜌!" 𝛿!!!!(!) 𝛿!!!!(!)

!!
!!

!!!

!!
!!

!!!

(3)

in which 𝜆 ≡ (𝑗, 𝑘) and 𝜌!" = 1!,! .

3	
	

1.3 Bell Inequalities

It has been observed that, for any fixed set of inputs and outputs (𝒳,𝒜;𝒴,ℬ), the set ℒ

of all probability distributions obtainable by LV is convex, i.e. for every pair of 𝒫! ∈ ℒ

and 𝒫! ∈ ℒ , the points 𝑞𝒫! + 1− 𝑞 𝒫! for all 0 ≤ 𝑞 ≤ 1 are also elements of ℒ. Since

every 𝒫 ∈ ℒ is also obtainable by deterministic LV, it can be seen that the 𝑚!
!!𝑚!

!!

deterministic local points serve as the extremal points of this set.

 Geometrically, set ℒ can be seen as a polytope embedded in ℝ! and bounded by

(𝐷 − 1)-dimensional facets. Below is a simple illustration of it.

Figure	 2.	 2-‐dimensional	 illustration	 of	 polytope	 L	

As can be seen, the illustrated convex polytope (shaded region) has 5 extremal points

(black dots) and 5 facets (bolded lines). Line 1 is a trivial facet, coming from the

restriction 𝑃 𝑏! 𝑦! ≤ 1, while line 2 is an example of the non-trivial facets and is

associated with one out of 4 Bell inequalities of this illustrated set.

Polytope ℒ can be represented in several choices of axis. For example, the Bell

inequalities of the case 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 (named the CHSH inequalities) can

be represented in a Collins-Gisin format (explained further in the later part of the report)

as

0 1

𝑃 𝑎! 𝑥!

𝑃 𝑏! 𝑦!

Convex polytope	 ℒ	

(1)

(2)

1

4	
	 	

𝑃! 1 1 + 𝑃! 1 1 − 𝑃!" 1,1 1,1 − 𝑃!" 1,1 1,2 − 𝑃!" 1,1 2,1 + 𝑃!" 1,1 2,2 ≤ 1

and its 3 other permutations, or in the correlators format as

𝐸!! + 𝐸!" + 𝐸!" − 𝐸!! ≤ 2

and its 3 other permutations where 𝐸!" = 𝑃 𝑎 = 𝑏 𝑥,𝑦 − 𝑃 𝑎 ≠ 𝑏 𝑥,𝑦 are the

correlators. The minimum amount of numbers (hence axis and dimension) needed to

represent a full set of ℒ is 𝑀! 𝑚! − 1 +𝑀! 𝑚! − 1 +𝑀!𝑀! 𝑚! − 1 (𝑚! − 1).

This will be demonstrated in the later part of the report.

 For any outcomes found within the polytope, there exist pre-established

agreements that can be invoked in order to achieve those outcomes. Hence, these

outcomes do not have true intrinsic randomness. Meanwhile, points which are outside the

polytope (violating the Bell inequalities) do have true intrinsic randomness.

As can be seen from the expressions of the number of extremal points and

minimum number of dimension, the complexity of the calculation increases exponentially

with every additional input or output. Hence, new methods of finding the facets need to

be explored in order to increase the efficiency of the process. The purpose of this project

is to explore the behavior of a newly proposed “shooting” method.

5	
	

Chapter 2

METHODOLOGY

2.1 Method Overview

This method takes advantage of the convexity characteristic of the probability polytope.

Figure	 3.	 Illustration	 of	 the	 method	

First, all the extremal points, 𝑣! , need to be found. Due to convexity, every point 𝑝 in the

polytope can be written in the form of the extremal points, i.e.

𝑝 = 𝑐!𝑣!

!

!!!

 , 𝑐! = 1
!

 , 𝑐! ≥ 0

where N is the total number of extremal points and 𝑐! is the coefficient associated with 𝑣! .

The point 𝑝! is chosen as a starting point of the “shooting” and a random vector 𝑑 is

chosen as the direction. Then, 𝑑 is multiplied with the factor 𝛼 which is maximized until

the limit of

𝑣!	
𝑣!	

𝑣!	 𝑣!	

𝑣!	

𝑝!	

𝛼𝑑	

𝑝	

6	
	

𝑝! + 𝛼𝑑 = 𝑐!𝑣!

!

!!!

 , 𝑐! = 1
!

 , 𝑐! ≥ 0 (4)

is hit, i.e. the point 𝑝! + 𝛼𝑑 can no longer be written as a convex sum of the extremal

points. Once a limit is hit, the equation of the hit facet can then be found. Afterwards, 𝑑 is

randomized again to continue the “shooting” and find more facets of the polytope.

2.2 Method Implementation

2.2.1 Generating Extremal Points

To generate all the extremal points of a set ℒ, all possible deterministic rules 𝜆 need to be

exhausted. Below is an example for the case 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 .

Box A settings: 𝑥 = 1,2 , 𝑎 = (+,−)

Box B settings: 𝑦 = 1,2 , 𝑏 = (+,−)

For each box, there are 4 possible sets of local rules:

Table	 1.	 Local	 determistic	 rules	 of	 Box	 A	 and	 Box	 B	 each	 with	 2	 inputs	 and	 2	 outputs	

Box B
Input

1 2

Rule 1 Output + +

Rule 2 Output + -

Rule 3 Output - +

Rule 4 Output - -

 Combining all possible pair of local rules of the 2 boxes, Table 2 is obtained. Each row

represents an extremal point.

Box A
Input

1 2

Rule 1 Output + +

Rule 2 Output + -

Rule 3 Output - +

Rule 4 Output - -

7	
	 	

Table	 2.	 Combined	 outcomes	 for	 Box	 A	 and	 Box	 B	

Box 1 + Box 2
(x, y)

(1, 1) (1, 2) (2, 1) (2, 2)

(a, b)

Rule 1 & Rule 1 (+, +) (+, +) (+, +) (+, +)

Rule 1 & Rule 2 (+, +) (+, -) (+, +) (+, -)

Rule 1 & Rule 3 (+, -) (+, +) (+, -) (+, +)

Rule 1 & Rule 4 (+, -) (+, -) (+, -) (+, -)

Rule 2 & Rule 1 (+, +) (+, +) (-, +) (-, +)

Rule 2 & Rule 2 (+, +) (+, -) (-, +) (-, -)

Rule 2 & Rule 3 (+, -) (+, +) (-, -) (-, +)

Rule 2 & Rule 4 (+, -) (+, -) (-, -) (-, -)

Rule 3 & Rule 1 (-, +) (-, +) (+, +) (+, +)

Rule 3 & Rule 2 (-, +) (-, -) (+, +) (+, -)

Rule 3 & Rule 3 (-, -) (-, +) (+, -) (+, +)

Rule 3 & Rule 4 (-, -) (-, -) (+, -) (+, -)

Rule 4 & Rule 1 (-, +) (-, +) (-, +) (-, +)

Rule 4 & Rule 2 (-, +) (-, -) (-, +) (-, -)

Rule 4 & Rule 3 (-, -) (-, +) (-, -) (-, +)

Rule 4 & Rule 4 (-, -) (-, -) (-, -) (-, -)

There are 16 combined probabilities (shaded cells in Table 2) that can be chosen to be a

set of axis. Ordering the variables by row, coordinates of the extremal points would then

be expressed in terms of the values of (𝑃!" +,+ 1,1 ,𝑃!" +,− 1,1 ,𝑃!" +,+ 1,2 ,

𝑃!" +,− 1,2 ,𝑃!" −,+ 1,1 ,𝑃!" −,− 1,1 ,𝑃!" −,+ 1,2 ,𝑃!" −,− 1,2 ,

𝑃!" +,+ 2,1 ,𝑃!" +,− 2,1 ,𝑃!" +,+ 2,2 ,𝑃!" +,− 2,2 ,𝑃!" −,+ 2,1 ,

𝑃!" −,− 2,1 ,𝑃!" −,+ 2,2 ,𝑃!"(−,−|2,2)). For example, coordinates of the first

extremal point (first row) would be (1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0),

corresponding to the 4 possible combined outcomes of

𝑃!" +,+ 1,1 ,𝑃!" +,+ 1,2 ,𝑃!" +,+ 2,1 ,𝑃!"(+,+|2,2). The second row would be

(1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0), and so on for all 16 extremal points.

8	
	 	

Table	 3.	 Combined	 probability	 variables	

 PB(+|1) PB(-|1) PB(+|2) PB(-|2)

PA(+|1) PAB(+,+|1,1) PAB(+,-|1,1) PAB(+,+|1,2) PAB(+,-|1,2)

PA(-|1) PAB(-,+|1,1) PAB(-,-|1,1) PAB(-,+|1,2) PAB(-,-|1,2)

PA(+|2) PAB(+,+|2,1) PAB(+,-|2,1) PAB(+,+|2,2) PAB(+,-|2,2)

PA(-|2) PAB(-,+|2,1) PAB(-,-|2,1) PAB(-,+|2,2) PAB(-,-|2,2)

Choosing to express the points in this set of axis is also called the non-signaling

probability format, which is indeed the format used to express the extremal points in this

project. This is done so in order to avoid any biasness in randomizing the “shooting”

direction in the later part of the project.

2.2.2 Constructing Directions

The first step taken after finding all the extremal points is choosing the starting point 𝑝!.

In this project, 𝑝! is chosen to be the average of all the extremal points so that it is

guaranteed to be inside the polytope (note that the polytope is convex). Then, a random

direction 𝑑 is taken by generating a vector consisted of 𝑀!𝑀!𝑚!𝑚! random numbers.

Constraints

Merely randomizing elements of vector 𝑑 might put the point 𝑝! + 𝛼𝑑 out of the

normalized no-signaling space, i.e. it does not fulfill the following 2 conditions:

• For all quadrants of input (examples are the bolded boxes in Table 3), the total

probability must add up to 1. That is, for a 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 case,

𝑃!" +,+ 1,1 + 𝑃!" +,− 1,1 + 𝑃!" −,+ 1,1 + 𝑃!" −,− 1,1 = 1 and so on

for the three other quadrants. This is a probability normalization constraint for

each pair of inputs of the two boxes. Since 𝑝! already fulfills this condition, the

constraint for the elements of 𝑑 is

𝑃!" +,+ 1,1 + 𝑃!" +,− 1,1 + 𝑃!" −,+ 1,1 + 𝑃!" −,− 1,1 = 0 instead.

9	
	 	

• For each row and each column, the combined probabilities coming from every

pair of the other box’s inputs must subtract to zero. For example, for the first row

in Table 3 (which corresponds to Box A’s 𝑃!(+|1)),

 𝑃!" +,+ 1,1 + 𝑃!" +,− 1,1 − { 𝑃!" +,+ 1,2 + 𝑃!" +,− 1,2 = 0

which is indeed true because, due to no-signaling constraint,

 𝑃!" +,+ 1,1 + 𝑃!" +,− 1,1 = 𝑃!" +,+ 1,2 + 𝑃!" +,− 1,2 = 𝑃!(+|1).

Another example is

 𝑃!" +,+ 1,1 + 𝑃!" −,+ 1,1 − { 𝑃!" +,+ 2,1 + 𝑃!" −,+ 2,1 = 0

for the first column which corresponds to Box B’s 𝑃!(+|1).

Note that this must be applied to every pair of the other box’s inputs, which

means for the case 𝑀! = 𝑀! = 2, 𝑚! = 𝑚! = 3 the first row (corresponding to

Box A’s 𝑃!(+|1) must cover the pairs of Box B’s first and second inputs, first

and third inputs, as well as second and third inputs, and so on for all rows and

columns. Such case would then have a total of 36 no-signaling constraints which

also apply to 𝑑.

Hence, for any scenario, there are 𝑚!𝑚! normalization constraints and

 𝑚!𝑀! C!!! +𝑚!𝑀! C!!! no-signaling constraints. However, these constraints are

interrelated and they can be reduced to just 1 normalization constraint and

 𝑚!𝑀! 𝑚! − 1 +𝑚!𝑀!(𝑚! − 1) no-signaling constraints. These truncated constraints

for 𝑑 are then translated into a matrix by taking the coefficients of the variables.

For a 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 case, an example constraint matrix would be
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1
1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0
0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1

where each row corresponds to one constraint and the 16 columns correspond to the 16

axis chosen to express the extremal points in Section 2.2.1.

10	
	

Null Space and Projector

All direction vectors 𝑑′ that fulfill all the constraints would satisfy the equation

𝐶𝑑′ = 0 (5)

where C is the constraint matrix. These vectors form a subspace of ℝ! called the null

space which is the normalized no-signaling subspace. To find the basis of this null space,

the MATLAB function null() is used.

basis = null(constraints)

A projector of this subspace is formulated as

 projector = basis*basis’

which is then applied on every randomized direction 𝑑.

2.2.3 Finding Facet Equation

The linear program applied to find the facet equation for each “shooting” direction is

 Maximize 𝛼

such that 𝛼𝑑!! − 𝑐!𝑣!!! ≤ −𝑝!! (6)

 𝑐!! = 1 (7)

 𝛼 ≥ 0, 𝑐! ≥ 0

where 𝑑′ is the projected direction, 𝑣! is the extremal point, 𝑝! is the starting point of the

“shooting”, and the index k corresponds to the k-th component of a vector. The upper

limit of 𝛼 can be expressed as

𝛼 ≤ 𝑦!(
!

𝛼𝑑!! − 𝑐!𝑣!!
!

)+ 𝑦! 𝑐!
!

 (8)

where 𝑦! is a variable corresponding to k-th equation of expression (6) and 𝑦! to equation

(7). By comparing the coefficients of variables 𝛼 and 𝑐!, new constraints can be obtained.

Also, by substituting equations (6) and (7) into equation (8), we get

𝛼 ≤ − 𝑦!𝑝!!
!

+ 𝑦! (9)

With these, the dual linear program is obtained, i.e.

11	
	

 Minimize – 𝑦!𝑝!!! + 𝑦!

 such that 𝑦!𝑑!!! ≥ 1

 − 𝑦!𝑣!!! + 𝑦! ≥ 0

 𝑦! is free

By solving this linear program, the equation of the hit facet can be calculated, that is

𝑦!𝑃!!!
!

= 𝑦! (10)

with 𝑃!!! being the k-th basis of the chosen set of basis as illustrated in Section 2.2.1.

For this part, the MATLAB toolbox and solver YALMIP and SeDuMi are used.

2.2.4 Changing Basis

After getting the coefficients of the facet equation, a change of basis needs to be taken.

This step is taken due to possible redundancy, i.e. two different sets of coefficients could

actually correspond to the same facet. For example, in the set of basis for the case

𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 illustrated in the shaded cells of Table 3, the following two

sets of coefficients

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2 1 -1 -1

1 1 -1 -1

0 0 0 0

0 0 0 0

with 𝑦! = 0 both refer to trivial positivity facet equation 𝑃!" +,+ 1,1 ≥ 0.

 Taking a look at the complete table of probabilities for the case of

𝑀! = 𝑀! = 𝑚! = 𝑚! = 2 again, some patterns can be noted:

12	
	

Table	 4,	 Reduced	 variables	

 PB(+|1) PB(-|1) PB(+|2) PB(-|2)

PA(+|1) PAB(+,+|1,1) PAB(+,-|1,1) PAB(+,+|1,2) PAB(+,-|1,2)

PA(-|1) PAB(-,+|1,1) PAB(-,-|1,1) PAB(-,+|1,2) PAB(-,-|1,2)

PA(+|2) PAB(+,+|2,1) PAB(+,-|2,1) PAB(+,+|2,2) PAB(+,-|2,2)

PA(-|2) PAB(-,+|2,1) PAB(-,-|2,1) PAB(-,+|2,2) PAB(-,-|2,2)

• In the local probabilities cells, for every set of outputs coming from one input, one

probability value is dependent on the rests. For example, 𝑃! − 1 = 1− 𝑃!(+|1)

and 𝑃! − 1 = 1− 𝑃!(+|1). Hence, if the value of 𝑃!(+|1) is known, the value

of 𝑃!(−|1) can be derived from it, and similarly for all other local inputs.

• For every row/column, due to the no-signaling condition, the sum of the

combined probabilities in one quadrant is equal to the local probability

corresponding to that row/column. In other words,

𝑃!" 𝑎, 𝑏 𝑥, 1! = 𝑃!"(𝑎, 𝑏|𝑥, 2)! = 𝑃!(𝑎|𝑥) and

 𝑃!" 𝑎, 𝑏 1,𝑦 = 𝑃!"(𝑎, 𝑏|2,𝑦)!! = 𝑃!(𝑏|𝑦). Hence, for every row and

every column of each quadrant, one of the combined probabilities is dependent on

the others.

With these properties observed, the variables shaded in red can be dropped and the

remaining 8 variables (𝑃! + 1 ,𝑃! + 2 ,𝑃! + 2 ,𝑃! + 2 ,𝑃!" +,+ 1,1 ,

𝑃!" +,+ 1,2 ,𝑃!" +,+ 2,1 ,𝑃!" +,+ 2,2) can be used to represent the full polytope

of the case 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2. Applying the same concept to other scenarios,

the expression 𝑀! 𝑚! − 1 +𝑀! 𝑚! − 1 +𝑀!𝑀! 𝑚! − 1 (𝑚! − 1) as the minimum

number of variables needed to represent the full set of ℒ is obtained. This set of basis is

called the Collins-Gisin format, which is the format chosen to convert the previously

found facet coefficients into.

13	
	

 To convert the basis, the dropped variables in the facet equation must be

substituted by the new variables, while the rests remain. The substitutions happen

following the same normalization and no-signaling constraints mentioned in Section 2.2.2.

For example, in the case of Table 4, 𝑃!"(+,−|1,1) would be replaced by

 𝑃! + 1 − 𝑃!" +,+ 1.1 , 𝑃!"(−,+|1,1) by 𝑃! + 1 − 𝑃!" +,+ 1,1 , and

𝑃!"(−,−|1,1) by 1− 𝑃!" +,+ 1,1 − 𝑃!" +,− 1,1 − 𝑃!" −,+ 1,1 in which

𝑃!"(+,−|1,1) and 𝑃!" −,+ 1,1 would be re-substituted further, and similarly for all

the other quadrants.

With these substitutions, it can be seen that the coefficient of the new variable

𝑃!(+|1) would be

𝑐𝑜𝑒𝑓 𝑃!" +,− 1,1 − 𝑐𝑜𝑒𝑓 𝑃!" −,− 1,1 +

𝑐𝑜𝑒𝑓 𝑃!" +,− 1,2 − 𝑐𝑜𝑒𝑓 𝑃!" −,− 1,2 where 𝑐𝑜𝑒𝑓(𝑋) stands for the

coefficient of variable X, and similarly for 𝑃!(+|2). The coefficient of 𝑃!(+|1) would

be

𝑐𝑜𝑒𝑓 𝑃!" −,+ 1,1 − 𝑐𝑜𝑒𝑓 𝑃!" −,− 1,1 +

𝑐𝑜𝑒𝑓 𝑃!" −,+ 2,1 − 𝑐𝑜𝑒𝑓 𝑃!" −,− 2,1 , and similarly for 𝑃!(+|2), while the

new coefficient of 𝑃!"(+,+|1,1) would be

𝑐𝑜𝑒𝑓 𝑃!" +,+ 1,1 − 𝑐𝑜𝑒𝑓 𝑃!" +,− 1,1 − 𝑐𝑜𝑒𝑓 𝑃!" −,+ 1,1 +

𝑐𝑜𝑒𝑓 𝑃!" −,− 1,1 , and similarly for other 𝑃!"(𝑎, 𝑏|𝑥,𝑦).

The same method is applied to all other scenarios.

2.2.5 Sorting Results

The n times of “shooting” would result in n sets of coefficients. To filter these sets of

coefficients, four steps are taken.

1. Each set is normalized by dividing it with the largest element.

2. The elements are rounded to a certain decimal.

3. The rounded elements are made rational by using the MATLAB function rat().

4. Unique sets are selected using the MATLAB function unique() and the

14	
	

amount of sets compiled to each unique set is noted.

After the unique sets of facet coefficients are obtained, they are further transformed into

their non-signaling probability canonical forms using Faacets software in order to

compile together inequalities which are equivalent under relabeling of inputs and/or

outputs. The final results are then compared with existing data.

15	
	

Chapter 3

RESULTS

The canonical coefficients found are compared with known inequalities i.e. CHSH (from

the case 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2), I3322 (from the case 𝑀! = 𝑀! = 3 and

 𝑚! = 𝑚! = 2) and CGLMP (from the case 𝑀! = 𝑀! = 2 and 𝑚! = 𝑚! = 3).

Case 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2

The canonical form of CHSH in the full no-signaling probability format is

−1 1 −1 1
1 −1 1 −1
−1 1 1 −1
1 −1 −1 1

≤ 2

This inequality is found 466 times out of 10,000 times of sampling. The positivity

inequality (with a canonical form of 1− 1) is found 9532 times, while invalid sets of

coefficients are found 2 times. For comparison with the other 2 cases, this is equivalent to

finding these inequalities 46.6 times, 953.2 times and 0.2 times respectively out of a 1000

times of sampling.

Case 𝑀! = 𝑀! = 3, 𝑚! = 𝑚! = 2

The Bell inequalities of this scenario include CHSH and I3322. The canonical form of the

latter is
−5 3 −5 3 −4 2
3 −1 3 −1 4 −2
−5 3 −5 3 2 −4
3 −1 3 −1 −2 4
−4 4 2 −2 0 0
2 −2 −4 4 0 0

≤ 12

16	
	

Out of 10 runs each with 1000 times of sampling, these inequalities are found with these

frequencies.

Take Positivity CHSH I3322 Invalid

1 814 177 4 5

2 816 181 2 1

3 799 196 5 0

4 820 176 1 3

5 817 175 6 2

6 801 188 8 3

7 806 189 2 3

8 832 160 8 0

9 789 204 4 3

10 799 193 5 3

This results in an average of (809±4) times of finding positivity inequalities, (184±4)

times of finding CHSH inequalities, (4.5±0.8) times of finding I3322 inequalities and

(2.3±0.5) times of finding invalid inequalities per 1000 times of sampling.

A straight 10,000 times of sampling is also taken, resulting in 8084 times of finding

positivity inequalities, 1834 of finding CHSH inequalities, 69 times of finding I3322 and

13 times of finding invalid inequalities. These results are closely comparable with the

data of per 1000 times of sampling.

17	
	

Case 𝑀! = 𝑀! = 2, 𝑚! = 𝑚! = 3

The Bell inequalities of this scenario includes CHSH and CGLMP which has a canonical

form of
−1 0 1 −1 0 1
0 1 −1 1 −1 0
1 −1 0 0 1 −1
−1 1 0 −1 1 0
0 −1 1 1 0 −1
1 0 −1 0 −1 1

≤ 2

Out of 10 runs each with 1000 times of sampling, they are found with the following

frequencies.

Take Positivity CHSH CGLMP Invalid

1 990 0 0 10

2 985 3 0 12

3 984 0 0 16

4 986 1 0 13

5 985 1 0 14

6 989 1 0 10

7 991 1 0 8

8 989 0 0 11

9 982 2 0 16

10 989 2 0 9

This results in an average of (987±1) times of finding positivity inequalities, (1.1±0.3)

times of finding CHSH inequalities, 0 times of finding CGLMP inequalities, and

(11.9±0.9) times of finding invalid inequalities out of each 1000 times of sampling.

Like the previous case, a straight 10,000 times of sampling is also taken, resulting in

9912 times of finding positivity inequalities, 10 times of finding CHSH inequalities, 0

times of finding CGLMP inequalities and 78 times of finding invalid inequalities. These

results are also closely comparable with the data of per 1000 times of sampling.

18	
	

 The source of error of the invalid sets of coefficients most likely lies in the

accuracy limit of the SeDuMi solver. Instead of the theoretical idea that the “shooting”

direction must be exactly pointing at a vertex between facets in order to obtain a

combined inequalities, SeDuMi’s accuracy limit creates a range of in which more than

one set of facet coefficients could merge together. This would result in an invalid set of

coefficients.

Figure	 4.	 Illustration	 of	 SeDuMi’s	 accuracy	 limit	

Other limitations of the program include rounding-up error during the first filtering of the

sets of coefficients as well as Faacets software’s limitation in expressing the coefficients

(they are bound to be rational numbers with a common denominator of maximum 10,000).

An additional approach that can be taken to improve the results of this method is creating

a better way of setting the sampling direction, e.g. to shoot more at regions that have

higher probability of finding the intended facets.

𝑝!	

𝑑	

19	
	

Chapter 4

CONCLUSION

This method starts from a point within the local set’s polytope, generates stochastic

sampling directions and finds the equations of the hit facets using the dual linear

programs. It aims to be a faster and more efficient alternative method of finding Bell

inequalities compared to other existing methods, e.g. PORTA (Fourier-Motzkin

elimination).

In this project, the method has managed to find the CHSH inequalities and I3322

inequalities, but the CGLMP inequalities have not been found in the sampling that has

been run.

For the case of 𝑀! = 𝑀! = 𝑚! = 𝑚! = 2, CHSH inequalities have been found 466

times out of 10,000 times of samplings.

For the case of 𝑀! = 𝑀! = 3 and 𝑚! = 𝑚! = 2, the CHSH inequalities have been

found (184±4) times out of 1000 times of sampling, while the I3322 inequalities have been

found (4.5±0.8) times out of 1000 times of sampling.

For the case of 𝑀! = 𝑀! = 2 and 𝑚! = 𝑚! = 3, the CHSH inequalities have been

found (1.1±0.3) times out of 1000 times of sampling, while the CGLMP inequalities have

not been found.

One step that can be taken to enhance this method is to improve the choosing of the

“shooting” directions.

20	
	

Moving Forward

These facets mark the boundaries of the local set of correlations. There is not true

randomness within these facets because, for any case of correlations still fulfilling these

inequalities, a pre-established agreement could be made. However, these facets can be

used to find the boundaries of the quantum set of correlations, within which (shaded

region in Figure 5) true randomness can happen.

Figure	 5.	 Different	 sets	 of	 correlations	

One of the most important applications of this true randomness (existing in the shaded

regions) is in Quantum Key Distribution which will create a safer communication method.

quantum	 set	
of	 correlations	

local	 set	 of	
correlations	

no-‐signaling	

21	
	

BIBLIOGRAPHY

Browne D, Hoban M. Bell inequalities made simple® [Internet]. University

College London; 2011 [cited 2014 Apr 7]. Available from

http://www.physics.usyd.edu.au/quantum/Coogee2011/Presentations/Browne.pdf.

Faacets [Internet]. [cited 2014 Apr 7]. Available from http://faacets.com/.

Hazewinkel M. Kernel of a matrix [Internet]. Encyclopedia of mathematics; 2011

[cited 2014 Apr 7]. Available from

http://www.encyclopediaofmath.org/index.php?title=Kernel_of_a_matrix&oldid=12040

Linear programming duality [Internet]. Max planck institut informatik; 2011

[cited 2014 Apr 7]. Available from

http://www.mpi-inf.mpg.de/departments/d1/teaching/ss11/OPT/lec8.pdf.

Scarani V. Bell inequalities as an operational notion. In: Acta physica slovaca:

reviews & tutorials. Bratislava (Slovakia): Institute of Physics, Slovak Academy of

Sciences; 2012. p. 353-368.

	 	 	 	

APPENDIX

	 22	

Appendix

MATLAB FILES

Filename: extremalpoints_2boxes.m
function extremalpoints_2boxes()
%To generate the extremal points of any 2-parties scenario
input1 = {'1', '2', '3'};
input2 = {'1', '2', '3'};
output1 = {'+', '-'};
output2 = {'+', '-'};

box1rules = get_box_n_rules(input1, output1);
box2rules = get_box_n_rules(input2, output2);

local_outputlist = multiply_rows(box1rules, box2rules);
%outputlist = multiply_tensors(box1rules, box2rules)

box1poss_name = multiply_tensors(input1', output1');
%input1' and output1' need to be written this way in order to group according
to input
for i = 1:length(box1poss_name)
 box1poss_name_temp = box1poss_name{i, 1};
 box1poss_name{i, 1} = [box1poss_name_temp(2) box1poss_name_temp(1)];
end
%to flip the order of input and output in box1poss_name

box2poss_name = multiply_tensors(input2, output2);
%input2 and output2 need to be written this way in order to group according to
input
for i = 1:length(box2poss_name)
 box2poss_name_temp = box2poss_name{1, i};
 box2poss_name{1, i} = [box2poss_name_temp(2) box2poss_name_temp(1)];
end

allposs_name = multiply_tensors(box1poss_name, box2poss_name);
for i = 1:length(box1poss_name)
 for j = 1:length(box2poss_name)
 allposs_name_temp = allposs_name{i, j};
 allposs_name{i, j} = [allposs_name_temp(1) allposs_name_temp(3)...
 allposs_name_temp(2) allposs_name_temp(4)];
 end
end

allposs_name_temp = allposs_name';
allposs_name_temp = allposs_name_temp(:);
allposs_result_name = allposs_name_temp';

size_local_outputlist = size(local_outputlist);
allposs_result = zeros(size_local_outputlist(1), length(allposs_result_name));

for i = 1:size_local_outputlist(1)
 for j = 1:length(allposs_result_name)
 input1index = getindex(allposs_result_name{j}, 3, input1);
 input2index = getindex(allposs_result_name{j}, 4, input2);
 if and(allposs_result_name{j}(1) == local_outputlist{i,
1}{input1index}, ...
 alposs_result_name{j}(2) == local_outputlist{i, 2}{input2index})
 allposs_result(i, j) = 1;
 else

	

 allposs_result(i, j) = 0;
 end
 end

end

save('3322_result.mat', 'allposs_result_name', 'allposs_result',
'allposs_name', ...
 'box1poss_name', 'box2poss_name', 'input1', 'input2', 'output1', 'output2')

allposs_result_name
allposs_result

end

function tensor_product = multiply_tensors(tensor1, tensor2)
%concatenation tensor product of tensor1 and tensor2
%tensor1 and tensor2 are cells containing strings
size1 = size(tensor1);
size2 = size(tensor2);
tensor_product = cell(size1(1)*size2(1), size1(2)*size2(2));
for i = 1:size1(1)*size2(1)
 tensor1row = tensor1(ceil(i/size2(1)), :);
 tensor2row = tensor2(mod(i-1, size2(1))+1, :);
 for j = 1:size1(2)*size2(2)
 tensor_product{i, j} = [tensor1row{ceil(j/length(tensor2row))} ...
 tensor2row{mod(j-1, length(tensor2row))+1}];
 end
end
end

function row_product = multiply_rows(tensor1, tensor2)
%concatenation tensor product of tensor1's rows and tensor2's rows
%tensor1 and tensor2 are cells containing rows (and columns) of strings
size1 = size(tensor1);
size2 = size(tensor2);
row_product = cell(size1(1)*size2(1), 2);
for i = 1:size1(1)*size2(1)
 tensor1row = tensor1(ceil(i/size2(1)), :);
 tensor2row = tensor2(mod(i-1, size2(1))+1, :);
 row_product{i, 1} = tensor1row;
 row_product{i, 2} = tensor2row;
end
end

function box_n_rules = get_box_n_rules(input, output)
%box_n_rules = (local output of input 1, local output of input 2, ...)
box_n_rules = cell(length(output)^length(input), length(input));
for i = 1:length(output)^length(input)
 c = str2num(dec2base(i-1, length(output)));
 for j = 1:length(input)
 box_n_rules{i, j} = output{getdigitn(c, j) + 1};
 end
end
end

function digitn = getdigitn(num, n)
%to get the n-th digit of an integer num
digitn = mod(floor(num/10^(n-1)), 10);
end

function index = getindex(source, source_index, matching_source)
source = source(source_index);

	

for n = 1: length(matching_source)
if source == matching_source{n}
 index = n;
end
end

end

Filename : facets_2boxes.m
function facets_2boxes()

load('3322_result.mat')

expts_size = size(allposs_result);
P_0 = mean(allposs_result, 1);
allposs_result;

% To compute an orthonormal basis of the normalized no-signalling space:

constraints = zeros((length(box1poss_name)*(length(input2)-...
 1)+length(box2poss_name)*...
 (length(input1)-1)+1), expts_size(2));
for i = 1
 for j = 1:length(output1)
 for k = 1:length(output2)
 constraints(i, (j-1)*length(box2poss_name)+k) = 1;
 end
 end
end

for i = 1:length(box1poss_name)
 for j = 1:length(input2)-1
 for k = 1:length(output2)
 constraints(1+(i-1)*(length(input2)-1)+j, ...
 (i-1)*length(box2poss_name)+k) = 1;
 constraints(1+(i-1)*(length(input2)-1)+j, ...
 (i-1)*length(box2poss_name)+j*length(output2)+k) = -1;
 end
 end
end

for i = 1:length(box2poss_name)
 for j = 1:length(input1)-1
 for k = 1:length(output1)
 constraints(1+length(box1poss_name)*(length(input2)-1)+ ...
 (i-1)*(length(input1)-1)+j, (k-1)*length(box2poss_name)+i) = 1;
 constraints(1+length(box1poss_name)*(length(input2)-1)+ ...
 (i-1)*(length(input1)-1)+j,
j*length(output1)*length(box2poss_name)+ ...
 (k-1)*length(box2poss_name)+i) = -1;
 end
 end
end
constraints
basis=null(constraints);
projector = basis*basis';

n = 1000;
%the number of sampling

facet_coef_old = zeros(n, expts_size(2)+1);

	

for i=1:n
 iyalmip = i
 d = rand(1, expts_size(2))-0.5;

 % Projceting the direction onto the normalized no-signalling space:
 d = (projector*d')';

 LambdaANDqi = sdpvar(expts_size(1)+1, 1);
 A = [[d' -allposs_result']; [0 ones(1, expts_size(1))]];
 b = [-P_0 1]';
 F = set(A*LambdaANDqi == b) + set(LambdaANDqi>=0);
 solvesdp(F, -LambdaANDqi(1), sdpsettings('verbose',0));
 facet_coef_old(i, :) = dual(F(1))';
end
%Facet eq.: facet_coef(i,1:expts_size(2)) * allposs_result_name' =
% facet_coef(i, expts_size(2)+1)

var_old = [allposs_result_name 'constant'];

allposs_usedname = allposs_name;

local_remove_box1 =
length(output1):length(output1):(length(input1)*length(output1));
box1poss_usedname = box1poss_name;
box1poss_usedname(local_remove_box1) = [];
allposs_usedname(local_remove_box1, :) = [];

local_remove_box2 =
length(output2):length(output2):length(input2)*length(output2);
box2poss_usedname = box2poss_name;
box2poss_usedname(local_remove_box2) = [];
allposs_usedname(:, local_remove_box2) = [];

box1poss_usedname_hor = box1poss_usedname';
allposs_usedname_temp = allposs_usedname';
allposs_usedname_hor = allposs_usedname_temp(:)';

var_new = horzcat(box1poss_usedname_hor, box2poss_usedname,
allposs_usedname_hor, 'constant');

for i = 1:n
 isubs = i
 facet_coef_old_i = facet_coef_old(i, 1:length(allposs_result_name));
 coef_old_temp = reshape(facet_coef_old_i, length(box2poss_name),
length(box1poss_name));
 coef_old = coef_old_temp';

 coef_new_temp = zeros(1, length(var_new));
 for j = 1:length(input1)
 for k = 1:(length(output1)-1
 temp = 0;
 for l = 1:length(input2)
 temp = temp + coef_old(((j-1)*length(output1)+k),
l*length(output2)) - ...
 coef_old(j*length(output1), l*length(output2));
 end
 coef_new_temp((j-1)*(length(output1)-1)+k) = temp;
 end
 end

 for j = 1:length(input2)
 for k = 1:(length(output2)-1)
 temp = 0;

	

 for l = 1:length(input1)
 temp = temp + coef_old(l*length(output1), ((j-
1)*length(output2)+k)) - ...
 coef_old(l*length(output1), j*length(output2));
 end
 coef_new_temp(length(box1poss_usedname)+(j-1)*(length(output2)-1)+k)
= temp;
 end
 end

 for j = 1:length(input1)
 for k = 1:length(input2)
 for l = 1:(length(output1)-1)
 for m = 1:(length(output2)-1)
 row = (j-1)*length(output1)+l;
 col = (k-1)*length(output2)+m;
 temp = coef_old(row, col) - coef_old(row, k*length(output2))
- ...
 coef_old(j*length(output1), col) +
coef_old(j*length(output1), k*length(output2));
coef_new_temp(length(box1poss_usedname)+length(box2poss_usedname)+...
 (j-1)*(length(output1)-1)*length(box2poss_usedname)+(l-
1)*length(box2poss_usedname)+...
 (k-1)*(length(output2)-1)+m) = temp;
 end
 end
 end
 end

 temp = facet_coef_old(i, (length(allposs_result_name)+1));
 for j = 1:length(input1)
 for k = 1:length(input2)
 temp = temp - coef_old(j*length(output1), k*length(output2));
 end
 end
 coef_new_temp(length(var_new)) = temp;
 coef_new(i, :) = coef_new_temp;
 coef_new_normalized(i, :) = coef_new(i, :)/max(abs(coef_new(i, :)));
end

coef_new_normalized = cut(coef_new_normalized, 1e-2);
[N,D] = rat(coef_new_normalized, 9*10^-5);
coef_new_rat = N./D;
[coef_new_filtered,i,j] = unique(coef_new_rat, 'rows');
var_new
coef_new_filtered

for i = 1:size(coef_new_filtered, 1)
 coef_amount(i) = sum(j==i);
end
coef_amount

save('3322_facets_1000.mat', 'n', 'var_old', 'var_new', 'facet_coef_old',
'coef_new_rat', 'coef_new_filtered', 'coef_amount')
end

function out = cut(matrix,tol)
out = round(matrix/tol)*tol;
end

	

Filename: identify_family.m

%%function result = identifyFamily(coeffs, input1, input2, output1, output2)
% Identifies the Bell inequality family of an inequality in Collins-Gisin
% format, for the 2 parties, 2 inputs, 2 outputs scenario.
%
% For faacets library version 0.14

clear
load('3322_result.mat')
load('3322_facets_1000_10.mat')

input1_l = length(input1);
input2_l = length(input2);
output1_l = length(output1);
output2_l = length(output2);

% Check format
if ~isequal(size(coef_new_filtered), [size(coef_new_filtered, 1)
input1_l*input2_l*...
 (output1_l-1)*(output2_l-1)+input1_l*(output1_l-1)+input2_l*(output2_l-
1)+1])
 disp('Not the good size');
 return;
end

faacets_init;

box1 = num2str(output1_l);
for i = 1:input1_l-1
 box1 = [box1 ' ' num2str(output1_l)];
end

box2 = num2str(output2_l);
for i = 1:input2_l-1
 box2 = [box2 ' ' num2str(output2_l)];
end

s = Faacets.scenario(['{[' box1 ']' ' ' '[' box2 ']}']);

canonical_coeffs = {};

% For every filtered inequality
for i = 1: size(coef_new_filtered, 1)
 i
 coef_new_filtered(i,:);
 coef_i = coef_new_filtered(i, :);
 coef_i(end) = -coef_i(end);

 CG_mat = zeros(input1_l*(output1_l-1)+1, input2_l*(output2_l-1)+1);
 CG_mat(1, 1) = coef_i(end);

 for j = 2:input1_l*(output1_l-1)+1
 CG_mat(j, 1) = coef_i(j-1);
 end

 for j = 2:input2_l*(output2_l-1)+1
 CG_mat(1, j) = coef_i(input1_l*(output1_l-1)+j-1);
 end

	

 mid_elements = coef_i(input1_l*(output1_l-1)+input2_l*(output2_l-1)+1 :
end-1);
 mid_mat = reshape(mid_elements, input2_l*(output2_l-1),
input1_l*(output1_l-1));
 mid_mat = mid_mat';

 for j = 1:input1_l*(output1_l-1)
 for k = 1:input2_l*(output2_l-1)
 CG_mat(j+1, k+1) = mid_mat(j, k);
 end
 end

 CG_coef_i = reshape(CG_mat, 1, (input1_l*(output1_l-
1)+1)*(input2_l*(output2_l-1)+1));

 ineq = s.inequality('NGRepr', CG_coef_i);
 tmp = ineq.canonical;
 tmp = tmp(1);
 result = tmp.coeffs;
 result = result';

 canonical_coef{i} = result;
end

[canonical_coef_filtered, idx, idx2] = uniquecell(canonical_coef);

for i = 1:size(canonical_coef_filtered, 2)
 canonical_coef_amount(i) = (idx2==i)*coef_amount'
end

canonical_coef_filtered
canonical_coef_amount

save('3322_canonical_1000_10.mat', 'canonical_coef', 'coef_new_filtered', ...
 'canonical_coef_filtered', 'canonical_coef_amount')

