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Abstract

In order to find an effective force Feff that approximates 〈F (X)〉 in the quantum regime, as well as

F (x) in the classical regime, the concept of the effective potential is introduced. In the context of this

thesis, the effective potential is defined as the minimum of the expectation value of the Hamiltonian

operator H under the constraint that the expectation value of the position operator X is fixed.

Some methods to find the effective potential for various one dimensional systems are developed. By

using the Liouville equation, the classical trajectory of a collection of particles confined in a linear

potential well, i.e. V (x) = F |x|, is obtained. The semiclassical trajectory of the same system is

also obtained by first replacing V (x) with the corresponding Veff(x), and then solving the Liouville

equation. In order to get the quantum trajectory, the Wigner-Moyal equation is considered and

solved. Both the Liouville and the Wigner-Moyal equations are solved numerically by using the

finite difference method. The three trajectories for various initial conditions are then compared by

measuring the overlap in the density and/or the Wigner function as a function of time.
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Chapter 1

Introduction

In many areas of physics, one is usually interested in knowing how a system of particles evolves with

time when subjected to a certain potential energy V . In classical mechanics, the time evolution of

a system of point particles is governed by the Hamilton equations of motion,

q̇i =
∂H

∂pi
, (1.1)

ṗi = −∂H
∂qi

, (1.2)

where H is the classical Hamiltonian,

H =
∑
i

p2
i

2m
+ V. (1.3)

More generally, if A is a quantity that depends on all qi’s and pi’s, the time evolution of A can be

written as,

Ȧ =
∑
i

(
∂A

∂qi
q̇i +

∂A

∂pi
ṗi

)
+
∂A

∂t

= {A,H}+
∂A

∂t
, (1.4)

where {·, ·} is called the poisson bracket.

In the Schrodinger picture of quantum mechanics, there is an analogue expression for equation
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(1.4),

d

dt
〈A〉 =

1

ih̄
〈[A,H]〉+ 〈∂A

∂t
〉. (1.5)

The above equation is called the Ehrenfest equation. [·, ·] is the commutator between two operators,

and it plays a similar role to the poisson bracket.

Let’s now consider a one particle system. By setting A = P , i.e. the momentum operator,

equation (1.5) becomes

d

dt
〈P 〉 = −〈∂V

∂X
〉

= 〈F (X)〉. (1.6)

Equation (1.6) is similar to equation (1.2) in some sense but not exactly the same. Even if one

tries to carry equation (1.2) forward to quantum mechanics by setting x→ 〈X〉 and p→ 〈P 〉, the

resulting equation is

d

dt
〈P 〉 = F (〈X〉). (1.7)

In general, F (〈X〉) 6= 〈F (X)〉, and therefore equation (1.7) is not the same as equation (1.6). The

purpose of this project is therefore to find an effective force Feff , satisfying Feff(〈X〉) ' 〈F (X)〉.

1.1 The Effective Potential

The concept of the effective potential in the context of field theory was introduced by Coleman and

Weinberg [1] in their paper in 1973. In this thesis, the idea of the effective potential is somewhat

similar to that introduced in [1], with a slight modification in the sense that the expectation value

of the position operator is used instead of the expectation value of some scalar field. Furthermore,

since quantum field theory is beyond the scope of this thesis, a more suggestive argument will be

used to introduce the concept of the effective potential rather than a formal treatment which makes

use of the effective action and Feynman diagram as elucidated in [1].
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In classical mechanics, the effective potential is defined to be the minimum energy of a system

when its position is fixed. In order to carry this forward to quantum mechanics, a slight modification

must be made. Since position and energy defined in the classical case are analogous to position and

Hamiltonian operator respectively in quantum mechanics, it is instructive to define the effective

potential Veff as the minimum of the expectation value of the Hamiltonian operator H, under the

constraint that the expectation value of the position operator X is fixed. That is, it is written

Veff(x) = min|ψ〉〈H〉 given 〈X〉 = x.

1.2 Wigner-Weyl Transform

In classical statistical mechanics, the time evolution of a density ρ describing a collection of points

in phase space is governed by the Liouville equation

∂ρ

∂t
=

∂ρ

∂p
V ′(x)− p

m

∂ρ

∂x
, (1.8)

where x and p are position and momentum respectively, and V (x) is the potential energy. The

equation above describes a system with only one degree of freedom, but it is easy to generalize it

to the case with more than one degree of freedom.

In quantum mechanics, X and P operators, which correspond to x and p in classical mechanics,

are not independent of each other, but are connected by the commutation relation [X,P ] = ih̄. As

such, it makes no sense to draw a phase space diagram involving X and P directly. In order to be

able to describe a trajectory in quantum mechanical system, it is therefore required to introduce

new quantities which are analogues to X and P operators, but have equal footing, in the sense that

these new quantities are merely numbers. It turns out that such quantities can be obtained from

X and P by performing the Wigner transform [2],

Xw =

∫
dx′〈x− 1

2
x′|X|x+

1

2
x′〉e

ipx′
h̄ , (1.9)

Pw =

∫
dx′〈x− 1

2
x′|P |x+

1

2
x′〉e

ipx′
h̄ . (1.10)
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The integral in equation (1.9) and (1.10) can be simplified to get Xw = x and Pw = p, i.e. Xw and

Pw are not operators. In general, the Wigner transform can be performed on any operator via the

above equations to get a non-operator version, which describes the same physical meaning as the

corresponding operator version, as a function of Xw and Pw (x and p). It is also possible to write

the Wigner transform of an operator A as

Aw = Tr

{
A

∫
dx′|x+

1

2
x′〉〈x− 1

2
x′|e

ipx′
h̄

}
= Tr {AW (x, p)} , (1.11)

where W (x, p) =
∫
dx′|x + 1

2
x′〉〈x − 1

2
x′| exp( ipx′

h̄
) = 2 exp(−2i(X − x); (P − p)). The semicolon in

the previous expression indicates that appearing products of X and P are written so that X stands

left and P stands right.

These transformed quantities can also be converted back to their corresponding operator version

by performing the Weyl transform [3, 4]

A =
1

2πh̄

∫
dx

∫
dpAwW (x, p). (1.12)

1.3 Wigner Function and Its Properties

There is an important lemma relating the Wigner transform of a product of two operators and the

Wigner transform of each operator.

Lemma 1. Let F and G be two operators. The Wigner transform of the product of the two operators

is given by

(FG)w = Fw exp(
ih̄

2
Λ)Gw

= Gw exp(− ih̄

2
Λ)Fw,

where Λ =
←−
∂
∂x

−→
∂
∂p
−
←−
∂
∂p

−→
∂
∂x

. Left arrow means that the operator is acting on the left, while right arrow

means that the operator is acting on the right.
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The proof of the above lemma was presented in a paper by İmre in 1967 [5]. The detail of the

proof will be provided in the appendix and it will mainly follow the proof presented in [5]. The

Wigner transform of the product of two operators F and G is often denoted as Fw ? Gw [6].

In order to construct an expression which is similar to the classical Liouville equation, i.e.

equation (1.8), it is instructive to perform the Wigner Transform on the equation of motion for

density matrix (Heisenberg equation of motion). That is,

∂

∂t
ρw = − 1

ih̄
[ρ,H]w

= − 1

ih̄
ρw

(
exp(

ih̄

2
Λ)− exp(− ih̄

2
Λ)

)
Hw

=
2

h̄
Hw sin(

h̄

2
Λ)ρw. (1.13)

It can be shown that Hw(x, p) = p2

2m
+ V (x), and equation (1.13) can therefore be expanded to get,

∂

∂t
ρw =

2ρw
h̄

sin(
h̄

2

←−
∂

∂p

−→
∂

∂x
)V (x)− p

m

∂ρw
∂x

=
1

ih̄

[
V (x+

ih̄

2

∂

∂p
)− V (x− ih̄

2

∂

∂p
)

]
ρw −

p

m

∂ρw
∂x

. (1.14)

The above equation is called the Wigner-Moyal equation [7], and is analogous to the classical

Liouville equation, i.e. equation (1.8). In fact, in the correspondence limit, equation (1.14) reduces

to (1.8). This can be shown by Taylor expanding equation (1.14) up to first order in h̄,

∂

∂t
ρw =

1

ih̄

[
V (x) +

dV

dx

ih̄

2

∂

∂p
− V (x) +

dV

dx

ih̄

2

∂

∂p
+O

[
h̄2
]]
ρw −

p

m

∂ρw
∂x

∂

∂t
ρw =

dV

dx

∂ρw
∂p
− p

m

∂ρw
∂x

+O [h̄] ,

which is precisely equation (1.8) if h̄→ 0.

The quantity ρw is called the Wigner function, and it can be shown to have the following

properties [7]:

1. The Wigner function is real and normalized to unity, i.e.
∫

ρw
2πh̄

dxdp = 1.

5



2.
∫

ρw
2πh̄

dp = 〈x|ρ|x〉.

3.
∫

ρw
2πh̄

dx = 〈p|ρ|p〉

4. The Wigner function can take negative values. It therefore does not satisfy one of the proba-

bility axioms and cannot represent a probability density. It is usually referred to as a quasi-

probability distribution function.

5. Hudson Theorem: [8] A necessary and sufficient condition for the Wigner function to be

a true probability density (no negative value) is that the corresponding Schrödinger state

function be the exponential of a quadratic polynomial.

6



Chapter 2

Obtaining the Effective Potential

In this chapter, some methods to obtain the effective potential for some one-dimensional systems are

developed. Since obtaining an effective potential as defined in the first chapter is an optimization

problem with constraint, it is instructive to introduce a Lagrange multiplier f . In terms of f , the

optimization problem reduces to a single equation to solve, that is,

δ〈H〉 − fδ〈X〉 = 0,

δ〈Hmodified〉 = 0, (2.1)

where it is defined for convenience that Hmodified = H − fX. There are two cases to be discussed

in this chapter. For the first case, which is the easiest case, one dimensional systems with infinitely

many bound states are considered. Furthermore, it is assumed that the potential energy of the

system is symmetric and increasing to infinity faster than or at the same rate as k|x| for some

constant k. Under these assumptions, the modified Hamiltonian will have a bound state. In this

case, a useful lemma [9] can be introduced as follows:

Lemma 2. Let H be a Hamiltonian that has at least a bound state. If |ψ〉 is any state and Eg is

the ground state of H, then 〈ψ|H|ψ〉 ≥ Eg.

The proof of this lemma is provided in the appendix A1. According to this lemma, in order to

minimize the expectation value of the modified Hamiltonian, it is sufficient to find the ground state

7



of the modified Hamiltonian. The effective potential can thus be obtained as

Veff(x) = Eg(x) + f(x)x, (2.2)

where x = 〈X〉 is given and Eg(x) is the ground state of the modified Hamiltonian.1 Some examples

are illustrated in the first two sections below before moving to the second case, which is a more

general case.

2.1 Example 1: Simple Harmonic Oscillator

As a simple example to illustrate the method previously explained, let’s consider a one dimensional

simple harmonic oscillator. The potential for one dimensional simple harmonic oscillator is given

by V (x) = 1
2
mω2x2, where m is the mass of the particle, and ω is the natural frequency of the

oscillator.

The modified Hamiltonian in this case is

Hmodified =
P 2

2m
+

1

2
mω2X2 − fX

=
P 2

2m
+

1

2
mω2(X − f

mω2
)2 − f 2

2mω2
.

The first two terms are just the Hamiltonian of another simple harmonic oscillator with the same

natural frequency centered around f
mω2 . Meanwhile, the third term is just a constant term. The

ground state of the modified Hamiltonian is then Eg = 1
2
h̄ω− f2

2mω2 . As a function of the expectation

value x = 〈X〉, it can be observed from the modified Hamiltonian that f
mω2 = x, or f = mω2x.

Therefore,

1The ground state of the modified Hamiltonian is a function of the Lagrange multiplier f , which depends on the
expectation value x. It is also noticed that the effective potential is a Legendre transform of the modified Hamiltonian
ground state with respect to variable f .

8



Veff(x) = Eg(x) + fx

=
1

2
h̄ω +

1

2
mω2x2. (2.3)

This result shows that the effective potential for a simple harmonic oscillator is simply the classical

potential energy, but is shifted by the amount of the zero point energy of the system. By using

MATLAB, the effective potential can be plotted and compared to the classical potential in the

figure below (ω = 2a.u.):

Figure 2.1: The effective and classical potential for simple harmonic oscillator

If x is close to 0, the value of the effective potential will tend to get closer to the zero point

energy of the system. Meanwhile, for large |x|, the effective potential will approximately be the

same as the classical potential, as the 1
2
h̄ω term will be relatively small compared to x2. Also, in

fully classical case, as h̄→ 0, the effective potential reduces to the classical potential.

2.2 Example 2: Linear Potential Well

As a second example, consider a system in a linear potential well, i.e. V (x) = F |x| for some positive

constant F . By limiting the values of f to |f | < F , the modified Hamiltonian will still have bound

states, the previous procedure can therefore be applied.
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The modified Hamiltonian for linear potential well can be written as Hmodified = P 2

2m
+F |X|−fX.

In order to find the ground state of the modified Hamiltonian, it suffices to solve the eigenvalue

equation2

Hmodifiedψ(x) = Egψ(x),

− h̄2

2m

d2

dx2
ψ(x) + (F |x| − fx− Eg)ψ(x) = 0.

The general solution to this kind of equation can be guessed to be in the form of ψ(x > 0) =

a1Ai(k1x− c1) and ψ(x < 0) = a2Ai(k2x− c2) where Ai(x) is the Airy function of the first kind, a1

and a2 are the normalization constants.3 By differentiating ψ(x > 0) with respect to x two times,

dψ(x)

dx
= a1k1Ai′(k1x− c1),

d2ψ(x)

dx2
= a1k

2
1Ai′′(k1x− c1)

= a1k
2
1(k1x− c1)Ai(k1x− c1).

Substituting this to the eigenvalue equation for x > 0 gives

− h̄2

2m
a1k

2
1(k1x− c1)Ai(k1x− c1)

+a1((F − f)x− Eg)Ai(k1x− c1) = 0,

k1 = (
2m(F − f)

h̄2 )
1
3 , (2.4)

c1 =
2mEg

k2
1h̄

2 . (2.5)

In a similar fashion, by evaluating the second derivative of ψ(x < 0) and substituting it into the

eigenvalue equation,

2In the following, the variable x is understood to be the coordinate variable, not the expectation value 〈X〉.
3There is actually another term which involves the Airy function of the second kind, i.e. bBi(kx − c) for some

constant b. However, unless b = 0, this term blows up at x→ ±∞, which is not allowed for a normalizable solution.
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− h̄2

2m
a2k

2
2(k2x− c2)Ai(k2x+ c2)

+a2(−(F + f)x− Eg)Ai(k2x+ c2) = 0,

k2 = −(
2m(F + f)

h̄2 )
1
3 , (2.6)

c2 =
2mEg

k2
2h̄

2 . (2.7)

It now remains to determine the ground state energy Eg. Before doing so, it is required that

the wave function and its derivative are continuous everywhere. In particular, the condition that

they are continuous at x = 0 gives

aAi(−c1) = bAi(−c2),

ak1Ai′(−c1) = bk2,Ai′(−c2),

k1Ai′(−c1)

Ai(−c1)
=

k2Ai′(−c2)

Ai(−c2)
,

Ai′(−c1)
√
c1Ai(−c1)

+
Ai′(−c2)
√
c2Ai(−c2)

= 0, (2.8)

where the last line is obtained by moving the right hand side to the left hand side, and then

substituting equation (2.4) - (2.7). Equation (2.8) can, in principle, be solved for Eg(f).

This is still not the end of the story, as the effective potential is a function of the given expectation

value x = 〈X〉, not the Lagrange multiplier. In this case, a relationship between f and x must be

found. This can be done by making use of the Feynman-Hellmann theorem [9]:

Feynman-Hellmann Theorem. Let E be the energy eigenvalue to the Hamiltonian H with (nor-

malized) eigenstate |ψ〉. Suppose H is a function of a parameter λ. It follows that 〈ψ|∂H
∂λ
|ψ〉 =

〈∂H
∂λ
〉 = ∂E

∂λ
.

The proof of the Feynman-Hellmann theorem is provided in the appendix. By letting f as the

λ parameter in the Feynman-Hellmann theorem,

11



〈∂H
∂f
〉 =

∂Eg
∂f

,

−〈X〉 =
∂Eg
∂f

,

∂Eg
∂f

= −x. (2.9)

In principle, equation (2.9) can be inverted to give f(x). Therefore, solving equations (2.8) and

(2.9) together will give the effective potential Veff(x). It is not difficult to do this numerically. By

using MATLAB, equation (2.8) can be solved for Eg some values of fixed f . After storing the values

of Eg(f) evaluated previously, numerical differentiation can be performed to give the left hand side

of equation (2.9). Lastly, given the expectation value 〈X〉 = x, the value of Eg and f satisfying

equation (2.9) can be determined. For further details, a MATLAB code to solve this problem is

provided in the appendix A2. The effective potential associated with this system can be plotted as

follows (where F = 1a.u.):

Figure 2.2: The effective and classical potential of a linear potential well

In the above figure, the blue curve shows the classical potential, while the magenta curve shows

the corresponding effective potential. The green curves show the asymptotic behaviour of the

effective potential for small and large |x|, which are going to be explained in a more detail in the

next two subsections.
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2.2.1 Asymptotic Behaviour for Small |x|

In addition to the numerical solution, it is also interesting to consider the analytical approximation

of the effective potential for small and large values of |x|. First thing to note is that x = 0 when

f = 0, as the modified Hamiltonian will be just the Hamiltonian, and the expectation value of X

is 0 by the symmetry of the potential. Another thing to note is that as |f | → F , the magnitude of

the expectation value of X will become very large. In order to understand this, first recall that the

wave function decays in the classically forbidden region, while oscillates in the classically allowed

region. Without loss of generality, assume that f > 0. In this case, the potential energy part

of the modified Hamiltonian for the region x < 0 will have steeper slope than the region x > 0.

Therefore, given the value of Eg, the wave function should decay faster in the region x < 0 than

in the region x > 0. Because of this, it can be deduced that the peak of the wave function, and

hence the expectation value, should be somewhere in the region x > 0. If f → F , the slope of the

potential energy part of the modified Hamiltonian in the region x > 0 will be very small, and thus

the wave function will start decaying at very large x. Furthermore, in the region x < 0, the slope

of the potential energy part of the modified Hamiltonian tends to get steeper as f is increasing.

This implies the wave function to start decaying even faster in this region. By the same argument

as before, it is deduced that the expectation value will be at very large x > 0.

Having understood how x and f are related qualitatively, it is now easy to find the expression

for Veff(x) for small and large |x|, i.e. by letting |f | → 0 and |f | → F . In this subsection, the

expression of Veff(x) for small |x| is derived. The derivation for the case of large |x| is explained

in the next subsection. For convenience, define L(c) = Ai′(−c)√
cAi(−c) . In this notation, equation (2.8)

becomes L(c1) + L(c2) = 0. If |f | → 0, up to first order, c1 ∓ ε1 ≈ c2 ± ε2 ≈ y0 for some (small)

positive numbers ε1 and ε2, where −y0 is the first zero of the first derivative of the Airy function

Ai′(x).4 In particular, assuming f > 0, equation (2.4) - (2.7) show that c1 > c2 and by Taylor

expanding L(c) in equation (2.8),

4In this paper, the first zero of Ai(x) and Ai′(x) refer to the zeros that are closest to the origin.
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L(c1) + L(c2) = L(y0 + ε1) + L(y0 − ε2)

= L′(y0)ε1 − L′(y0)ε2

= 0,

where L(y0) = 0, as a result of L(y0) ∝ Ai′(−y0), is used in the above equation. The second and

the third line in the above equation implies ε1 = ε2 = ε.5 By dividing c1 by c2,

c1

c2

=
k2

2

k2
1

= (
F + f

F − f
)

2
3

=
y0 + ε

y0 − ε
,

f

F
=

(y0 + ε)
3
2 − (y0 − ε)

3
2

(y0 + ε)
3
2 + (y0 − ε)

3
2

≈
(y

3
2
0 + 3

2
εy

1
2
0 )− (y

3
2
0 − 3

2
εy

1
2
0 )

(y
3
2
0 + 3

2
εy

1
2
0 ) + (y

3
2
0 − 3

2
εy

1
2
0 )

=
3

2

ε

y0

. (2.10)

Equation (2.10) shows how f scales with ε, the small positive parameter corresponding to the

difference between y0 and c1 or c2, valid for small values of |f |. It is also possible to find the

relationship between Eg and ε by looking at equation (2.4) and (2.5),

5This is true provided L′(y0) 6= 0. In fact, it is easy to show that L′(y0) is indeed non-zero by using product
rule. The only non-zero term comes by differentiating Ai′(−c) in the numerator and using the fact that Ai′′(−y0) =
−y0Ai(−y0). [10]
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c1 =
2mEg

k2
1h̄

2

= (
2m

F 2h̄2 )
1
3

Eg

(1− f
F

)
2
3

≈ (
2m

F 2h̄2 )
1
3

Eg

(1− 3ε
2y0

)
2
3

,

Eg = (
F 2h̄2

2m
)

1
3 (1− 3ε

2y0

)
2
3 )c1

= (
F 2h̄2

2m
)

1
3 (1− 3ε

2y0

)
2
3 (y0 + ε)

≈ (
F 2h̄2

2m
)

1
3 (y0 −

5ε2

4y0

)

= E0y0 −
5E0ε

2

4y0

. (2.11)

In the last line above, E0 = (F
2h̄2

2m
)

1
3 . Equation (2.11) and (2.10) can be combined to obtain Eg as

a function of f .

Eg ≈ E0y0 −
5f 2y0

9F 2
. (2.12)

Equation (2.9) can then be applied to get

x = −∂Eg
∂f

≈ 10fy0E0

9F 2
,

f ≈ 9F 2x

10y0E0

. (2.13)

Equation (2.13) can be substituted back into equation (2.12) to find

Eg ≈ E0y0 −
9F 2x2

20y0E0

. (2.14)
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Finally, the effective potential, valid for small |x|, is obtained by using equation (2.2),

Veff(x) = Eg(x) + fx

≈ E0y0 +
9F 2x2

20y0E0

. (2.15)

One can identify that the first term of equation (2.15) is just the ground state energy of the

linear potential well. The second term is, however, quadratic, in contrast to the classical potential

V (x) = F |x| which is linear. Because of this quadratic form, the angular frequency associated

with the motion near the equilibrium point can be calculated. This will be discussed further in

subsection (2.2.3).

2.2.2 Asymptotic Behaviour for Large |x|

After looking at the case when |x| is small, let’s now turn to the case when |x| is very large. Without

loss of generality, it is assumed that x > 0, and hence f > 0 from the argument in the first paragraph

of this subsection. Recall also that if x is very large, f → F . According to equation (2.4), k1 → 0.

However, since c1 is finite, it follows that Eg → 0. As a consequence, equation (2.7) tells that

c2 → 0. By defining L(y) as in the previous subsection, it then follows that L(c2) → −∞, where

there is an overall minus sign since Ai(0) > 0 while Ai′(0) < 0. On the other hand, it is required

that equation (2.8) holds. This implies L(c1) → +∞. This can be achieved only if −c1 is close to

the zero of the Airy function Ai(x).

From this observation, it is safe to assume that c2 = ε and c1 = α− ε1, where ε and ε1 are small

positive numbers, and −α is the first zero of Airy function Ai(x). By expanding equation (2.8) up

to first order,

Ai′(0)√
εAi(0)

+
Ai′(−α)√

αAi′(−α)(ε1)
=

Ai′(0)√
εAi(0)

+
1√
α(ε1)

,

ε1 =

√
ε√
αu0

, (2.16)
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where u0 = −Ai′(0)
Ai(0)

> 0. As in the case for small |x| by dividing c1 by c2,

c1

c2

= (
F + f

F − f
)

2
3

=
α−

√
ε√
αu0

ε
,

f

F
≈ 1− 2ε

3
2

α
3
2

. (2.17)

By considering the expression for c1, it is possible to obtain the relationship between Eg and ε as

well. That is,

c1 =
Eg

E0(1− f
F

)
2
3

≈ Egα

2
2
3E0ε

,

Eg ≈ 2
2
3 εE0. (2.18)

By combining equation (2.17) and (2.18),

Eg ≈ α(1− f

F
)

2
3 . (2.19)

As Eg(f) has been obtained, direct application of equation (2.9) can be performed to get

x = −∂Eg
∂f

≈ 2αE0

3F
(a− f

F
)−

1
3 ,

f ≈ F − (
2αE0

3F
2
3x

)3, (2.20)

Eg ≈ (
2α

3
2E0

3Fx
)2. (2.21)

With equations (2.20) and (2.21) ready, equation (2.2) can be used to finally get the approximation

of the effective potential for large |x|, which is
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Veff(x) ≈ F |x|+ 4α3E3
0

27F 2x2
. (2.22)

In the correspondence limit h̄ → 0, E0 → 0 and the expression above reduces to that of the

classical potential.

2.2.3 Further Observations

In general, a Lagrange multiplier is not merely a number, rather it represents a certain physical

meaning. It is therefore instructive to understand the physical meaning of the Lagrange Multiplier

introduced earlier, i.e. f . To do this, let’s look at the expression for the effective potential as a

functional of f and x, i.e. Veff = Eg + fx. By taking the functional derivative of this expression,

δVeff

δx
=

δEg
δx

+
δfx

δx

=
∂Eg
∂f

δf

δx
+ x

δf

δx
+ f

= −xδf
δx

+ x
δf

δx
+ f

= f. (2.23)

Equation (2.9) had been used to get the third line from the second line. According to equation

(2.23), −f represents the physical force acting on the system due to the effective potential. This can

also be verified by looking at some values of x. For example, if x = 0, f = 0 and therefore no force

is acting on the system. If x > 0, f > 0 and therefore the force is directing to the left, i.e. toward

x = 0. Finally, if x is positively large, f → F and the magnitude of the force is approximating that

due to the classical potential. These descriptions agree with figure (2.2).

In subsection (2.2.1), the effective potential expression for small values of |x| was derived. Equa-

tion (2.15) shows that the effective potential is approximately quadratic for small |x|. As a result, a

particle weakly disturbed from the equilibrium position will undergo a simple harmonic motion. By

noting that equation (2.15) takes the form Veff(x) = a+ 1
2
mω2x2, it is easy to see that ω =

√
9F 2

10my0E0
.
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In this expression, ω represents the angular frequency of the system under the influence of the effec-

tive potential. This angular frequency can be compared with the angular frequency corresponding

to the energy transition from the first excited state to the ground state for linear potential well.

The angular frequency that corresponds to this energy transition is given by ωtrans = E1−Eg
h̄

.6 By

modifying equation (2.8) to the case f = 0, it is easy to see that E1 = E0α and Eg = E0y0, where

E0, α, and y0 are as defined previously. Therefore, ωtrans = E0(α−y0)
h̄

. Upon comparing ω with ωtrans,

all the system dependent parameters such as m and F nicely cancel, leaving only a fixed number

ωtrans

ω
≈ 0.9926 that is independent of any parameters.

This result is useful. In general, any given state can be expressed as a linear combination of all

the eigenstates. For small values of 〈H〉, which classically corresponds to small energy values, this

linear combination is dominated by the ground state and the first excited. Furthermore, the time

evolution of the probability density corresponding to a state that consists of the ground state and

the first excited state will be periodic with angular frequency ωtrans. The above results therefore

shows that for small energy values, the effective potential gives a nice description of the quantum

behaviour. This will also be verified more clearly in chapter 3, when the semiclassical and the

quantum trajectory are compared.

2.3 More General Methods

The method developed previously will not work in general. As an illustration, consider a finite square

potential V (x) = V0 when |x| < a and 0 otherwise. The modified Hamiltonian that corresponds to

this potential is Hmodified = P 2

2m
− fX + V0(η(X + a) − η(X − a)), where η(x) is the step function.

The potential part of this modified Hamiltonian can be plotted in the following figure:

6In this subsection, Eg refers to the ground state of the linear potential well Hamiltonian, not that of the modified
Hamiltonian as used in the previous subsections, e.g. in the first line of equation (2.3).
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Figure 2.3: Plot of Vmodified(x) with f = 1a.u. and V0 = 1Hartree

According to the figure above, the modified Hamiltonian is quantum mechanically unbounded.

In other words, it does not have a bound state. Equation (2.2) cannot be applied here because

there is no Eg. In order to solve equation (2.1), all possible forms of wave functions must therefore

be considered. This is clearly not an easy work and not very effective either. In this section, more

general methods to solve this minimization problem will be elucidated.

2.3.1 Method 1

If introducing one Lagrange Multiplier causes a trouble, it is natural to think that introducing

another Lagrange Multiplier might solve the problem. This is actually the main idea of the more

general methods.

In order to be able to introduce the second Lagrange Multiplier, a second constraint must be

added to the system. Suppose that in addition to fixing 〈X〉 = x, the expectation value of X2 is

also fixed to a value 〈X2〉 = χ > x2. It is now possible to introduce two Lagrange Multipliers f1

and f2 and write the modified Hamiltonian as Hmodified = H − f1X + f2X
2, where f2 > 0. 7 By

considering a certain range of values for f2, the modified Hamiltonian will have a bound state, and

the procedure used in the previous sections can be applied, with a slight modification that equation

7The sign in front of f1 and f2 are arbitrary. However, the unboundedness problem when only one Lagrange
Multiplier is used leads to the conclusion that the term multiplying X2 must be a positive real number. It is of
course also possible to write Hmodified = H − f1X − f2X

2, where f2 < 0.
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(2.2) now takes the form

〈H〉min(x, χ) = Eg(x, χ) + f1(x, χ)x− f2(x, χ)χ. (2.24)

In the expression above, Eg is the ground state energy of the modified Hamiltonian. Equation (2.24)

is not the end of the story yet, as the original problem only involves one constraint, i.e. 〈X〉 = x,

and the second constraint is completely artificial. In order to find the correct effective potential,

the minimum of equation (2.24) over all values of χ must first be found, and the final expression

for the effective potential will then take the form

Veff(x) = min
χ
〈H〉min(x, χ). (2.25)

To understand how this method works, consider the following reasoning. Suppose that there are two

particles in a one dimensional line. One of the particle is fixed in a certain position, and the other

particle is allowed to move freely along that line. If one is asked to find the minimum interaction

energy between the two particles (Suppose that the interaction energy depends only on the relative

distance between the two particles), one obvious way is to measure the interaction energy between

the two particles at some particular position of particle 2, and then compare it with that obtained

when particle 2 is at another fixed position. In the end, all these values are compared, and the

minimum over all is taken.

An example to illustrate the use of this method will be presented in the next section. In the

remainder of this subsection, a drawback to this method will be elucidated. In most systems, an

analytic expression for equation (2.24) is very difficult to obtain. As such, numerical method must be

used to compute 〈H〉min(x, χ) as an array of numbers representing the values of 〈H〉min given x and χ.

In that case, applying (2.25) will be very difficult, since it is impossible to construct an infinite array

of numbers containing the values of 〈H〉min for all possible values of χ. Nevertheless, this method

has simplified the original minimization problem, as now the problem reduces to finding a number,

rather than a function, that minimizes the Hamiltonian. There are of course some approximation

methods to solve this kind of problems numerically, for example the simulated annealing method [11].
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2.3.2 Method 2

The second method has the same basic idea as the first method, i.e. by introducing additional

constraints. By writing 〈X〉 = x in coordinate representation,

∫ ∞
−∞

dx′|ψ(x′)|2x′ = x,∫ 0

−∞
dx′|ψ(x′)|2x′ +

∫ ∞
0

dx′|ψ(x′)|2x′ = x,

where ψ(x) = 〈x|ψ〉 is the wavefunction in coordinate representation. By fixing
∫ 0

−∞ dx
′|ψ(x′)|2x′ =

〈Xη(−X)〉 = x1 and
∫∞

0
dx′|ψ(x′)|2x′ = 〈Xη(X)〉 = x2, where η(x) is the Heaviside step function,

the equation above reads

x1 + x2 = x. (2.26)

By treating x1 and x2 as fixed values, two additional constraints are introduced into the system,

which are related to the original constraint by equation (2.26). As before, two Lagrange Multipliers

can then be introduced, and the modified Hamiltonian becomes

Hmodified = H − f1Xη(−X) + f2Xη(X). (2.27)

By choosing appropriate values for f1 and f2, bound state for Hmodified exists, and again the proce-

dure used in the previous section follows. In this case, equation (2.2) also needs a slight modification

to become

〈H〉min(x1, x2) = Eg(x1, x2) + f1(x1, x2)x1 − f2(x1, x2)x2. (2.28)

In order to get the correct effective potential, all possible values of x1 and x2 = x − x1 must be

considered, and the minimum over all is taken as the value of Veff(x).

As in the first method, the difficulty of applying this method is in minimizing equation (2.28)
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over all x1 and x2. For symmetric potential, however, we have developed a method to obtain the

correct effective potential without having to consider all possible values of x1 and x2. To understand

this method, let’s first refer to the figure below:

Figure 2.4: The potential part of the modified Hamiltonian for free particle motion

Figure (2.4) shows the plot of the potential part of equation (2.27) for the case of free particle

motion. In that figure, f1 and f2 correspond to the left and right slopes respectively. Since the

modified Hamiltonian is required to have a bound state, both f1 and f2 must be non-negative. By

looking at the figure above, there are some useful facts, which are listed as follows:

1. As f1 get larger or f2 get smaller, the expectation value of the position operator X will be

shifted to the right.

2. As f2 get larger or f1 get smaller, the expectation value of the position operator X will be

shifted to the left.

3. If 〈X〉 = x is fixed, and 〈H〉min(x1, x2) is minimized, Eg will have to be minimized8, and

therefore the two slopes must be as small as possible.

While figure (2.4) only illustrates the case of free particle motion, the three facts above still hold

for any symmetric potential. For various systems with symmetric potentials, there are two cases

in which one can predetermine the relationship between f1 and f2 by using the three facts above.

8One property of the Legendre transform is the reverse ordering property. Since equation (2.28) is in the form of
the negative Legendre transform of 〈H〉min, it preserves the order, i.e. Eg(f1, f2) > 0 implies 〈H〉min(x1, x2) > 0 and
vice versa. Therefore, the minimum of Eg(f1, f2) will also give the minimum of 〈H〉min(x1, x2).
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In the first case, the potential part of the Hamiltonian goes to ∞ as x → ∞ faster than or at the

same rate as k|x| for some positive constant k. This is the case where the method in the previous

section works. The method introduced in this subsection can of course be used instead to solve

such problems. In this case, f1 and f2 are allowed to take negative values as long as |f1| > k and

|f2| > k. Suppose now that, without loss of generality, x > 0 is fixed. According to fact 1 and 2

above, f1 > f2. Meanwhile, according to fact 3, f1 and f2 must be as small as possible. As such, as

f1 and f2 keep decreasing, they will eventually reach the values in which f1 = −f2. Equation (2.27)

then becomes Hmodified = H − f1X, which leads to equation (2.2), i.e. reduces to the method used

in the previous section.

Now, let’s consider the case where the method used in the previous section fails, i.e. when the

potential part of the Hamiltonian does not go to ∞ as x → ∞ or it goes to infinity very slowly.

In this case, both f1 and f2 must be non-negative in order for Hmodified to have bound states.

Following the previous reasoning, if x > 0 is fixed, f1 and f2 will have to be as small as possible,

while preserving f1 > f2. However, since f2 cannot be negative, the smallest possible value for f2 is

0. As such, equation (2.27) becomes Hmodified = H − f1Xη(−X), where f1 > 0. Since Hmodified now

only depends on unknown parameter f1, it is easier to solve to get f1(x1, x2). Furthermore, since

x1 and x2 have one-to-one correspondence to f1 and f2, these x1 and x2 are values that correspond

to the minimum of equation (2.28). Therefore, the next step is to find x1(x) and x2(x) = x−x1(x).

After it is done, the effective potential Veff(x) will be obtained. Some examples to illustrate this

method are given in section (2.5) and (2.6).

2.4 Example 3: Free Motion System

Without the presence of any potential energy, V = 0 and H = P 2

2m
. With only one Lagrange

Multiplier introduced, the modified Hamiltonian clearly does not have a bound state. By following

the first method introduced in the previous section, let 〈X2〉 = χ be fixed. The modified Hamiltonian

for this case is Hmodified = P 2

2m
− f1X + f2X

2, which is similar in form to the modified Hamiltonian

for simple harmonic oscillator, cf. section (2.1). By following the procedure presented in section
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(2.1),

Hmodified =
P 2

2m
+ f2(X − f1

2f2

)2 − f 2
1

4f2

,

x =
f1

2f2

,

Eg = h̄

√
f2

2m
− f 2

1

4f2

.

χ as a function of f1 and f2 can be found by applying the Feynman-Hellmann theorem,

χ(f1, f2) =
∂Eg
∂f2

=
1

2
h̄

√
1

2mf2

+
f 2

1

4f 2
2

.

By substituting f1 into the above equation,

χ =
1

2
h̄

√
1

2mf2

+ x2,

f2 =
h̄2

8m(χ− x2)2
,

f1 = 2x
h̄2

8m(χ− x2)2
.

By substituting these f1(x, χ), f2(x, χ), and Eg(x, χ) into equation (2.24),

〈H〉min(x, χ) =
h̄2

8m(χ− x2)
. (2.29)

The remaining task is now to minimize equation (2.29) over all χ while x is fixed. By looking at

equation (2.29), χ appears at the denominator, and therefore the whole expression will become

smaller as χ is set larger. In particular, by setting χ→∞, 〈H〉min(x, χ)→ 0.9 Therefore, Veff(x) =

9In this particular case, the minimum of 〈H〉min(x, χ) does not exist in the mathematical sense. Instead, it has
an infimum. Therefore, it is reasonable to take the effective potential Veff(x) as the infimum of 〈H〉min(x, χ) over all
χ, which is 0 for all values of x.
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0.

2.5 Example 4: Dirac Delta Potential

Consider a Dirac delta potential energy, where V (x) = −αδ(x), where α is a positive constant and

δ(x) is the Dirac delta function. Modified Hamiltonian with only one Lagrange Multiplier clearly

does not have a bound state. The procedure introduced in the beginning of this chapter will not

be applicable for this particular problem. In fact, this potential energy is symmetric by definition,

and the second method introduced in section (2.3) can be applied.

Let 〈Xη(−X)〉 = x1 and 〈Xη(X)〉 = x2 be fixed, where x1 + x2 = x = 〈X〉. Equation (2.27)

becomes

Hmodified =
P 2

2m
− αδ(X)− f1Xη(−X) + f2Xη(X). (2.30)

The case where x = 0 is easy, since the effective potential is merely given by the ground state energy

of the Dirac delta potential. The task is therefore to find the effective potential at x 6= 0. Without

loss of generality, assume x < 0. The argument presented in section (2.3.2) shows that f1 = 0, while

f2 > 0. The next step is then to find the ground state energy for Hmodified, which can be done by

solving the eigenvalue equation

− h̄2

2m

d2ψ(y)

dy2
− αδ(y)ψ(y) + f2yη(y)ψ(y) = Egψ(y),

where Eg < 0. In order to solve this equation, divide the region into two, y > 0 and y < 0. For

y < 0, the last term in the left hand side vanishes, and the normalizable solution to the differential

equation is well-known, which is ψ(y < 0) = a exp(ky), where k =

√
−2mEg

h̄
and a is a constant. For

y > 0, η(y) = 1 in the last term, and the normalizable solution to this kind of differential equation

has been obtained in section (2.2). By making some slight changes, the solution to the differential

equation is ψ(y > 0) = bAi(k1y + c1), where k1 = (2mf2

h̄2 )
1
3 and c1 = −2mEg

k2
1h̄

2 .

For a Dirac delta potential, while the wave function is continuous everywhere, the derivative of

the wave function has a discontinuity at y = 0 by ∆ψ′(0) = −2mα
h̄2 ψ(0) [9]. By imposing the wave
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function to be continuous at y = 0,

lim
y→0+

ψ(y) = lim
y→0−

ψ(y),

bAi(c1) = a,

a

b
= Ai(c1). (2.31)

Furthermore, the discontinuity of the first derivative of the wave function at y = 0 gives

lim
y→0+

ψ′(y)− lim
y→0−

ψ′(y) = −2mα

h̄2 ψ(0),

bk1Ai′(c1)− ka = −2mα

h̄2 a,

2mα

h̄2 − k = −k1Ai′(c1)
b

a
,

2mα

h̄2 − k = −k1
Ai′(c1)

Ai(c1)
. (2.32)

For a given f2, equation (2.32) can be solved numerically for Eg. In order to get Eg(x), a relationship

between f2 and x must be found. In particular, this can be done by using the constraint equation∫∞
−∞ y|ψ(y)|2dy = x. A MATLAB code that solves this problem will be provided in the appendix

A2. The effective potential corresponding to this system is shown in the following figure:

Figure 2.5: The effective potential of an attractive Dirac delta system

In the above, the purple line shows the numerical solution, whereas green and blue lines show
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the asymptotic approximation for small and large |x| respectively. The small and large |x| approx-

imation will be explained in the following subsections.

2.5.1 Small |x| Approximation

As before, assume without loss of generality that x < 0 so that f1 = 0. If x→ 0, f2 → 0 and c1 in

equation (2.32) will be very large. As such, Ai′(c1) and Ai(c1) can be approximated by [10]

Ai′(c1) ≈ −1

2
π−

1
2 c

1
4
1 exp(−2

3
c

3
2
1 )(1− b1(

2

3
c

3
2
1 )−1 + b2(

2

3
c

3
2
1 )−2), (2.33)

Ai(c1) ≈ 1

2
π−

1
2 c
− 1

4
1 exp(−2

3
c

3
2
1 )(1− a1(

2

3
c

3
2
1 )−1 + a2(

2

3
c

3
2
1 )−2), (2.34)

where ak =
Γ(3k+ 1

2
)

54kk!Γ(k+ 1
2

)
and bk = −6k+1

6k−1
ak. By using this approximation, equation (2.32) can be

simplified to:

α =
h̄2k1

m
+

3

4k2
1

f2 −
5m

16h̄2k5
1

f 2
2 . (2.35)

Before proceeding any further, let’s find a normalized wave function in the small |x| approximation.

Before entering this subsection, the form of the wave function in the region y < 0 and y > 0 has

been deduced, which is

ψ(y) =

 a exp(ky) for y < 0

bAi(k1y + c1) for y > 0
. (2.36)

The normalization constant a and b are connected by equation (2.31). Furthermore, normalized

wave function requires that

∫ ∞
−∞
|ψ(y)|2dy = 1. (2.37)

The left hand side of equation (2.37) consists of two terms, the first term is

∫ 0

−∞
a2 exp(2ky)dy =

a2

2k
. (2.38)
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The second term involves the integration of ψ(y) from 0 to ∞,

∫ ∞
0

b2Ai(k1y + c1)2dy =
a2

Ai(c1)2

∫ ∞
0

Ai(k1y + c1)2dy

=
a2

Ai(c1)2

[
yAi(k1y + c1)2|∞0 − 2

∫ ∞
0

(k1y + c1)Ai(k1y + c1)Ai′(k1y + c1)dy

+ 2c1

∫ ∞
0

Ai(k1y + c1)Ai′(k1y + c1)dy

]
=

a2

Ai(c1)2

[
yAi(k1y + c1)2|∞0 − 2

∫ ∞
0

Ai′′(k1y + c1)Ai′(k1y + c1)dy

+ 2c1

∫ ∞
0

Ai(k1y + c1)Ai′(k1y + c1)dy

]
=

a2

Ai(c1)2

[
yAi(k1y + c1)2 − 1

k1

Ai′(k1y + c1)2 +
c1

k1

Ai(k1y + c1)2

]∞
0

= a2

[
1

k1

(
Ai′(c1)

Ai(c1)

)2

− c1

k1

]

≈ a2

[
c1

k1

(1 +
1

2
c
− 3

2
1 − 1

4
c−3

1 +
25

64
c
− 9

2
1 )− c1

k1

]
=

a2

2k
− ma2

2h̄2k4
f2 +

25

64

m2a2

h̄4k6
f 2

2 . (2.39)

In the third line above, Ai′′(y) = yAi(y) is used. In the second last line above, small |x| approxi-

mation is used to approximate
(

Ai′(c1)
Ai(c1)

)2

. By substituting these results into equation (2.37),

a2 =
k

(1− mf2

2h̄2k3 +
25m2f2

2

16h̄4k6 )
. (2.40)

The relationship between f2 and x can now be determined by calculating the expectation value

〈X〉 = x explicitly. Since x = x1 + x2, let’s calculate x1 and x2 separately. x1 is easy to calculate,

x1 =

∫ 0

−∞
a2y exp(2ky)dy

= − a2

4k2
. (2.41)
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In order to calculate x2, which involves Airy function, integration by parts will be used repeatedly,

along with the property of the Airy function Ai′′(y) = yAi(y).

x2 = b2

∫ ∞
0

xAi(k1y + c1)2dy

=
b2

k1

[∫ ∞
0

(k1y + c1)Ai(k1y + c1)2dy −
∫ ∞

0

c1Ai(k1y + c1)2dy

]
=

b2

k1

[∫ ∞
0

Ai(k1y + c1)Ai′′(k1y + c1)dy −
∫ ∞

0

c1Ai(k1y + c1)2dy

]
.

The integral in the second term has been calculated previously, which leads to equation (2.39). The

result is

−
∫ ∞

0

c1Ai(k1y + c1)2dy =
c2

1

k1

Ai(c1)2 − c1

k1

Ai′(c1)2. (2.42)

The remaining task is therefore to solve the integral in the first term. Let’s focus on calculating

∫ ∞
0

Ai′′(k1y + c1)Ai(k1y + c1)dy = − 1

k1

Ai′(c1)Ai(c1)−
∫ ∞

0

Ai′(k1y + c1)2dy

= − 1

k1

Ai′(c1)Ai(c1)− 0 +

∫ ∞
0

2k1yAi′(k1y + c1)Ai′′(k1y + c1)dy

= − 1

k1

Ai′(c1)Ai(c1) + 2

∫ ∞
0

(k1y + c1)Ai′(k1y + c1)Ai′′(k1y + c1)dy

−2c

∫ ∞
0

Ai′(k1y + c1)Ai′′(k1y + c1)dy

= − 1

k1

Ai′(c1)Ai(c1)− 2c

∫ ∞
0

Ai′(k1y + c1)Ai′′(k1y + c1)dy

+2

∫ ∞
0

(Ai′′′(k1y + c1)− Ai(k1x+ c1)) Ai′′(k1y + c1)dy

= − 1

k1

Ai′(c1)Ai(c1) +
c1

k1

Ai′(c1)2

− 1

k1

Ai′′(c1)2 +
2

k1

Ai′(c1)Ai(c1) + 2

∫ ∞
0

Ai′(k1y + c1)2dy.
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The last term in the last line has the same form as the last term in the first line. Since the first

and the last line are equal,

− 1

k1

Ai′(c1)Ai(c1)−
∫ ∞

0

Ai′(k1y + c1)2dy = − 1

k1

Ai′(c1)Ai(c1) +
c1

k1

Ai′(c1)2

− 1

k1

Ai′′(c1)2 +
2

k1

Ai′(c1)Ai(c1) + 2

∫ ∞
0

Ai′(k1y + c1)2dy,∫ ∞
0

Ai′(k1y + c1)2dy = − c1

3k1

Ai′(c1)2 +
c2

1

3k2
1

Ai(c1)2 − 2

3k
Ai′(c1)Ai(c1). (2.43)

By substituting this result back into the computation of
∫∞

0
Ai′′(k1y + c1)Ai(k1y + c1)dy,

∫ ∞
0

Ai′′(k1y + c1)Ai(k1y + c1)dy = − 1

3k1

Ai′(c1)Ai(c1) +
c1

3k1

Ai′(c1)2 − c2
1

3k1

Ai(c1)2. (2.44)

Equation (2.44) can be combined with equation (2.42) to get the expression for x2, along with the

small |x| approximation for Airy function and the relationship b = a
Ai(c1)

,

x2 =
a2

k2
1

[
2

3
c2

1 −
2c1

3

(
Ai′(c1)

Ai(c1)

)2

− 1

3

Ai′(c1)

Ai(c1)

]

≈ a2

k2
1

[
2

3
c2

1 −
2

3
c2

1(1 +
1

2
c
− 3

2
1 − 1

4
c−3

1 +
25

64
c
− 9

2
1 ) +

c
1
2
1

3
(1 +

1

4
c
− 3

2
1 − 5

32
c−3)

]

=
a2

k2

[
1

4
− 5

16
c
− 3

2
1 +

45

64
c−3

1

]
=

a2

k2

[
1

4
− 5

8

m

h̄2k3
f2 +

45m2

16h̄4k6
f 2

2

]
. (2.45)

Denote m
h̄2k4 = q. By requiring that x1 + x2 = x, substituting equation (2.40) and expanding the

result up to second order,

−5q

8
f2 +

45

16
q2kf 2

2 = x

(
1− q

2
kf2 +

25

16
q2k2f 2

2

)
,

45

16
q2k

(
1− 5

9
kx

)
f 2

2 +
5

8
q

(
4

5
kx− 1

)
f2 − x = 0. (2.46)
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Equation (2.46) is a quadratic equation, and therefore f2 can be expressed in terms of x as

f2 =

5
8
q
(
1− 4

5
kx
)
−
√

1
64
q2 (25 + 680kx− 384k2x2)

45
8
q2k
(
1− 5

9
kx
)

≈ −8

5

x

q
+

256

25

kx2

q
. (2.47)

In the above, only the negative solution in the quadratic equation is considered. The reason for this

is because the positive solution contains a term that goes ∝ 1
x
, which is not physical as x→ 0.

This result can be substituted back into equation (2.35), while keeping x up to second order,

h̄2k

m
− 2h̄2k2x

5m
+

44h̄2k3x2

25m
− α = 0. (2.48)

This is a qubic equation in k. It is possible to obtain an approximate solution for k up to second

order in x by writing k ≈ k0 + ε, where ε ∝ x2 is a small quantity and k0 is a solution to equation

(2.48) with k3 term is neglected. That is,

k0 =
5

4x
− 1

x

√(
5

4

)2

− 5xαm

2h̄2

≈ mα

h̄2 +
m2α2x

5h̄4 +
8m3α3x2

25h̄6 . (2.49)

In terms of k0 and ε, and by still maintaining x up to second order, equation (2.48) becomes

h̄2

m
ε+

44

25

h̄2k3
0x

2

m
= 0,

ε = −44

25

(
mα

h̄2

)3

x2. (2.50)
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This gives k = mα
h̄2 + 2

5

(
mα
h̄2

)2 − 36
25

(
mα
h̄2

)3
x2 +O [x3]. As a result,

f2 ≈ −8

5

m3α4

h̄6 x+
192

25

m4α5

h̄8 x2, (2.51)

x2 ≈
h̄2

4mα
+

7x

10
+

21mαx2

25h̄2 , (2.52)

Eg = − h̄
2k2

2m

≈ −mα
2

2h̄2 −
2m2α3

5h̄4 x+
34

25

m3α4

h̄6 x2. (2.53)

Now, all the ingredients are complete, and the effective potential can be approximated up to second

order in x as

Veff(x) = Eg(x)− f2(x)x2(x)

≈ −mα
2

2h̄2 +
14

25

m3α4x2

h̄6 . (2.54)

The first term of equation (2.54), which corresponds to x→ 0, is just the bound state energy of the

Dirac delta potential. Furthermore, there is also no linear term, because the lowest order correction

is quadratic. These facts show that the effective potential is a smooth continuous function in the

approximation of small x, in contrast to the classical potential which is discontinuous at the origin.

Similar to the linear potential well case, this small |x| approximation of Veff contains a quadratic

term. The angular frequency associated with this quadratic term is ω =
√

28
25
mα2

h̄3 ≈ 1.05mα
2

h̄3 . This is

about two times the frequency corresponding to the minimum energy required to excite one particle

in the ground state to the unbounded state. Since the Dirac delta potential only has one bound

state, the interpretation of this result is not obvious. However, as in the linear potential well case,

this may correspond to the frequency of the probability density when 〈H〉 is small.

2.5.2 Large |x| Approximation

Let’s now consider the case when |x| → ∞. In particular, f2 →∞, c1 → 0, and k → 0.

Let a1 = Ai(0) = 1

3
2
3 Γ( 2

3
)

and a2 = −Ai′(0) = 1

3
1
3 Γ( 1

3
)
. Furthermore, let b = a2

a1
.10 Equation (2.32)

10This b is not to be confused with the normalization constant b of the wave function in equation (2.36).
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can then be approximated as

−k +
2mα

h̄2 ≈ − k
√
c1

Ai′(0)

Ai(0) + Ai′(0)c1

=
kb
√
c1

1

1− bc1

≈ kb
√
c1

(1 + bc1). (2.55)

The normalization constant a of the wave function in equation (2.36) can be found by again recalling

equation (2.38) and (2.39), and then substituting them into equation (2.37),

a2

k2

(
1

2
+ b2√c1

)
= 1,

a2 =
k

1
2

+ b2
√
c1

. (2.56)

In the large |x| approximation, the first line of equation (2.45) can be approximated by

x2 ≈
a2

3k2
1

b

=
a2

3k2
bc1.

Furthermore, the requirement x1 + x2 = x gives

a2

3k2
bc1 −

a2

4k2
= x,

1

3
bc1 − kxb2√c1 −

(
1

4
+

1

2
kx

)
= 0, (2.57)

where the value of a has been substituted and expanded up to second order in
√
c1.

Let
√
c1 ≈ c0 + ε where ε is a small correction, and c0 = − 1

2b2
− 1

4kxb2
is a solution to equation

(2.57) with its first term is neglected. Since c1 → 0, c0 → 0 as well. In order for this to be true,

k ≈ − 1
2x

+ ε2 where ε2 is another small quantity. In terms of ε2, c0 = xε2
b2

. This can be plugged back

into equation (2.57) to get ε = −2x2ε22
3b5

. Since ε2 is a second order in 1
x
, ε is very small and can be

ignored, leaving
√
c1 ≈ c0 = xε2

b2
.
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This result can be substituted back into equation (2.55), which yields

2mα

h̄2 ε2 −
b3

2x2
= 0. (2.58)

Equation (2.58) can be easily solved to get ε2 ≈ − b3h̄2

4mαx2 . This is sufficient to get all x2, f2, and Eg

via

k ≈ − 1

2x
− b3h̄2

4mαx2
,

√
c1 =

(
h̄2k3

2mf2

) 1
3

≈ − bh̄2

4mαx
,

f2 ≈
4mα3

b3h̄4 , (2.59)

x2 ≈ − b3h̄4

12m2α2x
, (2.60)

Eg = − h̄
2k2

2m

≈ − h̄2

8m2x2
(2.61)

The effective potential in large |x| approximation is therefore

Veff(x) ≈ − α

3|x|
− h̄2

8m2x2
(2.62)

This effective potential will go to 0 as x go larger and larger, as it should.

2.6 Example 5: Finite Square Well Revisited

In the beginning of section 2.3, a finite square well potential is used to illustrate how the method

introduced in the beginning of this chapter may fail.

Since a finite square well potential can be oriented to be an even function, the method used to

find the effective potential of an attractive Dirac delta potential can also be applied for this case.

Let’s now consider the finite square well potential as described in the beginning of section (2.3). As
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before, let x1 = 〈Xη(−X)〉, x2 = 〈Xη(X)〉, and x1 + x2 = x = 〈X〉 be fixed. The next step is to

write equation (2.27) as

Hmodified =
P 2

2m
+ V0 (η(X + a)− η(X − a))− f1Xη(−X) + f2Xη(X). (2.63)

For x = 0, the effective potential is just the ground state energy of the finite square well. Without

loss of generality, suppose x < 0. As in the previous section, f1 can then be set to 0.

The next step is to solve the Schrödinger equation corresponding to this Hmodified. In coordinate

representation,

(
− h̄2

2m

∂2

∂y2
+ V0 (η(y + a)− η(y − a)) + f2yη(y)

)
ψ(y) = Egψ(y). (2.64)

Equation (2.64) can be solved by first dividing the region into 4, y < −a, −a < y < 0, 0 < y < a,

and y > a. For each region, equation (2.64) is solved to get ψ(y). ψ(y) and its derivative are then

required to be continuous everywhere, which leads to 6 continuity conditions. These continuity

conditions can be summarized in a 6× 6 matrix,

det



Ai(k1a0 + c1) Bi(k1a0 + c1) −Ai(k1a0 + c2) 0 0 0

k1Ai′(k1a0 + c1) k1Bi′(k1a0 + c1) −k1Ai′(k1a0 + c2) 0 0 0

Ai(c1) Bi(c1) 0 −1 0 0

k1Ai′(c1) k1Bi′(c1) 0 0 −c 0

0 0 0 cos(ca0) − sin(ca0) exp(−ka0)

0 0 0 c sin(ca0) c cos(ca0) −k exp(−ka0)


= 0,

where k1 =
(

2mf2

h̄

) 1
3 , c1 = −2mEg

k2
1h̄

2 , c2 = 2m(V0−Eg)

k2
1h̄

2 , k =

√
2m(V0−Eg)

h̄
, and c =

√
2mEg

h̄
. The first

to the last rows correspond to the continuity of ψ(y) and its derivative at y = a, y = 0, and

y = −a respectively. If a value of f2 is given, the equation above can be solved for Eg, the ground

state energy of the modified Hamiltonian Hmodified. A numerical procedure of solving the effective

potential for this case is similar to that for an attractive Dirac delta potential case. The effective

potential obtained numerically is shown in the following figure

36



Figure 2.6: The effective potential of an attractive finite square well

In the figure above, the red curve shows the finite square well potential considered, while the

magenta curve shows the corresponding effective potential. Since obtaining this effective potential

involves solving the determinant of a 6× 6 matrix, it is difficult to obtain an analytical expression

for the effective potential, even in the small and large |x| approximations. Figure 2.6 therefore does

not show curves for small and large |x| approximations.

2.7 Remarks

Two more methods have been introduced to obtain the effective potential of a more general system

where the method in the first section does not apply. In general, the two methods introduced can be

used to find the effective potential of any one-dimensional system in an attractive potential. There

are of course some remaining questions, for example

1. How to obtain the effective potential of a one-dimensional system in a repulsive potential?

2. How to obtain the effective potential of a system with more than one degree of freedom, i.e.

more than one dimensional?

Quantum mechanically, under a repulsive potential energy, the energy spectrum is continuous. The

Hamiltonian is however still bounded from below by the minimum of the potential. If an arbitrary

wave function is given, it is possible to spread the wave function by making it wider while keeping the
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expectation value 〈X〉 fixed. This corresponds to lowering the expectation value of the Hamiltonian

while keeping the expectation value of the position fixed. As a result, the expectation value of

the Hamiltonian will reach the minimum of the potential, and this will be taken as the effective

potential. Therefore, the effective potential will just be a constant everywhere and is given by the

minimum of the potential.

For a system with more than one degree of freedom, there will be more than one position

operator. By carrying forward the definition of the effective potential of a one-dimensional system,

the effective potential of a three-dimensional system shall be defined as the minimum of 〈H〉 when

〈r〉 is fixed. The effective potential of a system with more than one degree of freedom has not

however been explored in a more detail in this project due to the time constraint and therefore will

be left for future work.
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Chapter 3

Trajectory Dynamics

In chapter 2, the effective potential for various systems has been obtained, either analytically or nu-

merically. The remaining task to do is therefore to verify how good this semiclassical approximation,

when compared to the quantum and classical case.

The cases of the simple harmonic oscillator and free particle motion are trivial. Meanwhile,

there is no classical trajectory for a system in a Dirac delta potential. The best example to consider

is therefore a linear potential well potential. In this chapter, the trajectories for the classical, semi-

classical, and quantum case of linear potential well will be obtained and compared. The trajectories

for the case of simple harmonic oscillator will also be used to verify the numerical implementation.

3.1 Classical and Semiclassical Trajectory

3.1.1 Solving the Hamiltonian Equations of Motion

One way of obtaining the trajectory of a collection of particles for the classical and semiclassical

cases is by solving the Hamilton equations of motion for a collection of point particles. Suppose

there are N particles initially located at points {(x0(0), p0(0)), (x1(0), p1(0)), . . . (xN−1(0), pN−1(0))}.

Under the influence of a certain potential energy V (x), the Hamilton equations of motion for each

particle can be written as (ignore any interaction force between the particles)

η̇ = J
∂H

∂η
, (3.1)
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where H = p2

2m
+ V (x) and

η =

 q

p

 ,

J =

 0 1

−1 0

 ,

∂H

∂η
=

 ∂H
∂q

∂H
∂p

 .

equation (3.1) is exactly the same as equation (1.1) and (1.2), and is called the Hamilton equations

of motion in sympletic notation [12]. The advantage of using the sympletic notation is its compact

form if one intends to solve the Hamilton equations of motion for a system of N particles. Rather

than solving N equations of type (1.1) and another N equations of type (1.2), it is sufficient to just

solve one matrix equation (3.1).

Let’s now set V (x) = |x|. In this case, the Hamiltonian H is separable, and equation (3.1)

becomes a non-coupled ordinary differential equation. Numerically, an ordinary differential equation

can be solved by using the fourth-order Runge-Kutta method [13]. Suppose an initial condition

η(0) is given, η(t) can be obtained by first defining a very small time step ∆t, and then finding

η(n∆t) recursively via

η(n∆t) = η((n− 1)∆t) +
∆t

6
(f0 + 2f1 + 2f2 + f3) , (3.2)

where

f0 = η̇((n− 1)∆t,η((n− 1)∆t)),

f1 = η̇((n− 1

2
)∆t,η((n− 1)∆t) +

∆t

2
f0),

f2 = η̇((n− 1

2
)∆t,η((n− 1)∆t) +

∆t

2
f1),

f3 = η̇(n∆t,η((n− 1)∆t) + ∆tf2).
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By considering a number of points in phase space which are initially equally spaced and contained

in a square −1 < x < 0 and 3 < p < 4 (see figure 3.1 (left)), the distribution of these particles at a

later time can be obtained (see figure 3.1 (right)),

Figure 3.1: The initial distribution of a collection of particles in a phase space

In the figure above, it is shown that initially the two distributions are in the shape of a square.

Since the period of motion depends on the initial location in phase space, after about one and half

cycle, the two distributions have deformed from their original shape. The classical and semiclassical

distributions are quite similar in general. For the classical distribution, there is a cusp at x = 0,

which corresponds to the discontinuity in the first derivative of p with respect to time.

3.1.2 Solving the Liouville Equation

Another way of obtaining a classical and semiclassical description of the time evolution of a contin-

uous system of particles is by solving the Liouville equation, i.e. equation (1.8).

Unlike the Hamilton equations of motion, Liouville equation is a partial differential equation.

One way to solve such equation numerically is by using the finite difference method [13]. The idea

of this method is to discretize phase space and time into grids. Suppose that each point in position

space, momentum space, and time are separated by a distance ∆x, ∆p, and ∆t respectively. Also

suppose that position space, momentum space, and time cover (x0, x0 +ni∆x), (p0, p0 +nj∆p), and
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(t0, t0 + nk∆t) respectively. In this discretized space, The Liouville equation can be written as

ρijk+1 − ρijk−1

2∆t
= V ′(x0 + i∆t)

ρij+1k − ρij−1k

2∆p
− p0 + j∆p

m

ρi+1jk − ρi−1jk

2∆x
,

ρijk+1 = ρijk−1 + 2∆t

(
V ′(x0 + i∆t)

ρij+1k − ρij−1k

2∆p
− p0 + j∆p

m

ρi+1jk − ρi−1jk

2∆x

)
.

(3.3)

By using this method, the values of the density at time t+ ∆t can be determined from the density

at time t and t−∆t. The density as a function of time in (t0, t0 + nk∆t) can therefore be obtained

and plotted.1 The classical and semiclassical trajectories of a system in linear potential well for

various initial conditions will be shown and discussed in section 3.3.

Before moving to the next section, it is instructive to verify that the numerical implementation

of the method introduced above works as expected by applying it to the simple harmonic oscillator

potential. The following figure shows the time evolution of the density of a system under a simple

harmonic potential,

1Since there is no information about the values of the density at time t = t0 −∆t, in order to find the density at
time t = t0 + δt, the time derivative in the Liouville equation is approximated by

ρijk+1−ρijk
∆t instead when k = 0.
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Figure 3.2: The time evolution of the density of a system in simple harmonic oscillator, calculated

numerically using finite difference method.

In the case of simple harmonic oscillator, each point in phase space will be moving periodically

with equal angular frequency ω. Therefore, it is expected that the distribution should maintain its

shape during the motion. It is verified in the above figure.

3.2 Quantum Trajectory

A quantum analogue to the classical Liouville equation is the Wigner-Moyal equation, i.e. equa-

tion (1.14). The Wigner-Moyal equation is also a partial differential equation, and therefore the

procedure in the previous section can be used to solve it. There is actually one problem with the

Wigner-Moyal equation, which makes it not so easy to solve. The first term in the right hand

side of equation (1.14) contains high order partial differentiations. As such, turning each partial
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differentiation into its discretized version will require a lot of effort. One way to overcome this

problem is by writing the first term in the right hand side of equation (1.14) in terms of its Fourier

transform. In that case, equation (1.14) becomes

∂

∂t
ρw =

∫ ∞
−∞

dy√
2πh̄

ρ̃w(t, x, y)e
iyp
h̄

ih̄

[
V (x− y

2
)− V (x+

y

2
)
]
− ∂ρw

∂x

p

m
, (3.4)

where ρ̃w(t, x, y) =
∫∞
−∞

dp√
2πh̄

ρwe
− ipy

h̄ , is the Fourier transform of ρw. In order to be able to apply the

finite difference method on equation (3.4), the Fourier integral in equation (3.4) is approximated

by using a discrete Fourier sum [13]. Instead of infinity, let the integration ranges from −v to v,

where v is a certain large positive number. Before continuing the discussion, consider the following

theorem,

Theorem. Let n and m be integers.

N−1∑
l=0

e−
2iπnl
N e

2iπml
N =

 N for n = m

0 for n 6= m

The proof of the theorem is straightforward and will be given in the appendix. Therefore, in order

to realize a discrete Fourier transform from ρw(x, p, t) to ρ̃w(x, y, t) which resembles a continuous

Fourier transform, the momentum and y space will be discretized into N equally separated points,

where the distance between two adjacent points in momentum space and y space are ∆p and ∆y = 2π
N

respectively. In this case, the relationship between ρw(x, p, t) and ρ̃w(x, y, t) can be written as

ρ̃w(x,−v + k∆y, t) =
N−1∑
l=0

ρw(x,−p0 + l∆p, t)e−i(−v+ 2πk
N

)(−p0+l∆p), (3.5)

ρw(x,−p0 + l∆p, t) =
1

N

N−1∑
k=0

ρ̃w(x,−v + k∆y, t)ei(−v+ 2πk
N

)(−p0+l∆p). (3.6)

It is easy to check that the two equations above are consistent by substituting equation (3.5) into
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equation (3.6) and using the theorem above,

ρw(x,−p0 + l∆p, t) =
1

N
ΣN−1
k=0

N−1∑
l′=0

ρw(x,−p0 + l′∆p, t)ei
2πk(l−l′)

N eiv(l′−l)

=
1

N

N−1∑
l′=0

ρw(x,−p0 + l′∆p, t)eiv(l′−l)Nδll′

= ρw(x,−p0 + l∆p, t).

Having introduced a discrete Fourier transform, there is still another minor problem. If N is

chosen to be very large, performing a discrete Fourier transform and its inverse may require a lot of

computation, and therefore even a computer will take a long time to compute. Fortunately, there is

a method which can be used to compute a discrete Fourier transform faster. This method is called

the fast Fourier transform method [13]. To get the idea of the fast Fourier transform, consider the

following discrete Fourier transform, where N is assumed to be even,

g(j∆ω) =
N−1∑
i=0

f(i∆t)e
−2iπij
N

=

N
2
−1∑

i=0

f(2i∆t)e
−2iπ(2i)j

N +

N
2
−1∑

i=0

f((2i+ 1)∆t)e
−2iπ(2i+1)j

N

= geven(j∆ω) + e
−2iπj
N godd(j∆ω).

In the above equation geven and godd are just discrete Fourier transforms which use even and odd

points respectively. By using fast Fourier transform, the discrete Fourier transform is computed by

using the result of the discrete Fourier transforms with N
2

number of points via the above equation.

In particular, if N is a multiple of 2, the discrete Fourier transform can be computed by performing

successive fast Fourier transform methods. The original discrete Fourier transform method with N

number of points requires N2 number of operation. By performing a fast Fourier transform, the

number of operations is reduced to 2 × (N
2

)2. If, N is a multiple of 2, performing successive fast

Fourier transforms reduces the number of operation to the order of N log2N .

Let’s now apply the finite difference method on equation (3.4). As in the previous section, the

first step is to discretize position space, momentum space, y space, and time into grids. Suppose
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the position space, momentum space, y space, and time cover (−x0, x0), (−p0, p0), (−v, v), and

(0, t) respectively. In addition, suppose these regions are divided into Nx, Np, Ny, and Nt equally

spaced points respectively. Since momentum space and y space are related by a discrete Fourier

transform, it is necessary to set Np = Ny = N , and therefore v = π(N−1)2

2Np0
. Furthermore, in order to

be able to use successive fast Fourier transform method, N = 2r, where r is a positive integer. In

this discretized space, equation (3.4) becomes

ρw,ijk+1 − ρw,ijk−1

2∆t
=

1

N

N−1∑
l=0

ρ̃w,ilk
ih̄

ei(−v+ 2πl
N

)(−p0+k∆p)

[
V (−x0 + i∆x− h̄

2
(−v + l∆y))

−V (−x0 + i∆x+
h̄

2
(−v + l∆y))

]
− p0 + j∆p

m

ρw,i+1jk − ρw,i−1jk

2∆x
,

ρw,ijk+1 = ρw,ijk−1

+2∆t

{
1

N

N−1∑
l=0

ρ̃w,ilk
ih̄

ei(−v+ 2πl
N

)(−p0+k∆p)

[
V (−x0 + i∆x− h̄

2
(−v + l∆y))

−V (−x0 + i∆x+
h̄

2
(−v + l∆y))

]
− p0 + j∆p

m

ρw,i+1jk − ρw,i−1jk

2∆x

}
,

(3.7)

where ∆t = t
Nt−1

, ∆x = 2x0

Nx
, ∆p = 2p0

N
, and ∆y = 2v

N
. As in the previous method, the Wigner

function at time t+ ∆t can be determined from the Wigner function at time t and t−∆t.

The trajectory of the Wigner function for a system in a linear potential well is shown in the

next section. In the rest of this section, the procedure above is applied to the simple harmonic

oscillator case to verify that the numerical implementation of the procedure above is correct. As

in the previous section, it is expected that the shape of the distribution is preserved during the

motion. This is verified in the following figure,
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Figure 3.3: The time evolution of the density of a system in simple harmonic oscillator, calculated

numerically using finite difference method.

3.3 Comparison of Trajectories

Having obtained the density and Wigner function as a function of time, the classical, semiclassical,

and quantum trajectory can be plotted. As an example, suppose the initial density is given by

ρ(x, p, 0) =
1

π
e−x

2−(p−2)2

. (3.8)

By using the method introduced in the previous two sections, the classical and semiclassical density,

as well as the Wigner function for a system in a linear potential well with V = |x| are plotted in

the following figure,
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Figure 3.4: The initial classical and semiclassical density, as well as the inital Wigner function (top

left). The density and Wigner function after about half period (t = 5.0a.u.) (top right) and after a

period (t = 10a.u.) (bottom)

In figure 3.4, while the classical and semiclassical density are always non-negative, the Wigner

function shows a negative region at time t > 0, as indicated by the blue island. In order to check

the similarity between the two densities and the Wigner function, the overlap between them will be

measured. This can be done by first defining an inner-product in phase space,

〈ρ1(x, p, t), ρ2(x, p, t)〉 =

∫
dxdpρ1(x, p, t)ρ2(x, p, t), (3.9)

where the integration covers the whole phase space. Therefore, the similarity between the quan-

tum and classical trajectory, classical and semiclassical trajectory, and quantum and semiclassical
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trajectory respectively can be measured by

Sq,c =
〈ρw, ρc〉√

〈ρw, ρw〉
√
〈ρc, ρc〉

, (3.10)

Ssc,c =
〈ρsc, ρc〉√

〈ρsc, ρsc〉
√
〈ρc, ρc〉

, (3.11)

Sq,sc =
〈ρw, ρsc〉√

〈ρw, ρw〉
√
〈ρsc, ρsc〉

. (3.12)

As a function of time, these similarities are shown in the following figure,

Figure 3.5: The similarity between the quantum, classical, and semiclassical trajectory as a function

of time

In the above figure, the semiclassical trajectory does not seem to be a very good approximation

to both classical and quantum trajectory. One possible reason for this is that the distribution

contains a range of energies from very low energies (comparable to the ground state energy) to very

large energies (far larger than the ground state energy). In order to get a better understanding

on how good this semiclassical approximation is, two cases are considered. In the first case, the

distribution is chosen such that it covers a range of very low energies. In the second case, the

distribution is chosen to cover a range of large energies.

For the first case, suppose the initial distribution is given by

ρ(x, p, 0) =
1

π
e−3((x−1)2+p2). (3.13)
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The time evolution of the density and the Wigner function for this case is shown in the following

figure,

Figure 3.6: The initial classical and semiclassical density, as well as the inital Wigner function (left).

The density and Wigner function after about 3
4

period (t = 5.0a.u.) (right) and after one and a half

period (t = 10a.u.) (bottom)

As before, the similarity between the trajectories as a function of time can be computed and is

shown in the figure below,
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Figure 3.7: The similarity between the quantum, classical, and semiclassical trajectory as a function

of time

In this second example, the semiclassical trajectory nicely resembles the quantum trajectory.

The reason for this is that for low energies, the ground state and the first few excited states of

the linear potential well will be dominant. In addition, for low energies, the effective potential

will become very close to the ground state energy of the linear potential well. Therefore, it is not

surprising that the two trajectories are very similar. On the other hand, since the ground state

energy is different from the classical lowest allowed energy, it is also expected that the semiclassical

and classical trajectory are not very similar.

For the second case, consider the initial distribution

ρ(x, p, 0) =
1

π
e(x−5)2+p2

. (3.14)

The time evolution of the density and the Wigner function, as well as the similarity between them

are shown in the two following figures,
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Figure 3.8: The initial classical and semiclassical density, as well as the inital Wigner function (left).

The density and Wigner function after about half period (t = 5.0a.u.) (right) and after about 3
4

period (t = 10a.u.) (bottom)
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Figure 3.9: The similarity between the quantum, classical, and semiclassical trajectory as a function

of time

In figure 3.9, all the densities are very similar, i.e. the similarities are all above 0.9. Furthermore,

it is shown that the similarity between the classical and the semiclassical density are the highest.

The similarity is at its best when x is very far from 0. The reason for this is that for x � 0, the

effective potential Veff is almost the same as the classical potential V (x).

3.4 Summary and conclusion

The main purpose of this project is to find an effective force that approximates equation (1.6) and

(1.7). In order to do this, the concept of the effective potential is introduced, which is defined

as the minimum of the expectation value of the Hamiltonian 〈H〉 when the expectation value of

the position operator 〈X〉 is fixed. In chapter 2, some methods have been developed to obtain the

effective potential for various one-dimensional systems. The method is based on the use of Lagrange

multipliers to include the constraints in the modified Hamiltonian. By limiting the values of the

Lagrange Multipliers, the bound state of the modified Hamiltonian exists, and lemma 2 explains

that the minimum of 〈Hmodified〉 is just its ground state energy.

In this chapter, the classical and semiclassical trajectory for a system in a linear potential

well have been obtained by numerically solving the Liouville equation, where V (x) = |x| for the

classical trajectory and V (x) = Veff(x) for the semiclassical trajectory. By numerically solving

the Wigner-Moyal equation, the quantum trajectory has been obtained as well. For various initial
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distributions, the three trajectories are compared by calculating the overlap between the classical

and semiclassical density, as well as the Wigner function. If the initial distribution covers a range of

low energies, the semiclassical trajectory and the quantum trajectory are very similar. If the initial

distribution covers a range of large energies, the semiclassical trajectory nicely approximates the

classical trajectory.
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Appendix

A1. Proof of Lemmas and Theorems

Lemma 1. Let F and G be two operators. The Wigner transform of the product of the two operators

is given by

(FG)w = Fw exp(
ih̄

2
Λ)Gw

= Gw exp(− ih̄

2
Λ)Fw,

where Λ =
←−
∂
∂x

−→
∂
∂p
−
←−
∂
∂p

−→
∂
∂x

. Left arrow means that the operator is acting on the left, while right arrow

means that the operator is acting on the right.

Proof. Denote F̃w = 1
2πh̄

∫∞
−∞ dxdpFw(x, p) exp(− i

h̄
(xy+pq)) and G̃w = 1

2πh̄

∫∞
−∞ dxdpGw(x, p) exp(− i

h̄
(xy+

pq)) as the Fourier transform of Fw and Gw. To start the proof, let’s find the relationship between

〈x|A|x′〉 and Ãw. By using the Weyl transformation expression of A, i.e equation(1.5),

〈x|A|x′〉 =

∫
dx′′dp

2πh̄
Aw(x′′, p)〈x|W (x′′, p)|x′〉

=

∫
dx′′dpdp′

2πh̄
Aw(x′′, p)〈x|p′〉〈p′|W (x′′, p)|x′〉

= 2

∫
dx′′dpdp′

2πh̄
Aw(x′′, p) exp(−2i(x− x′′)(p′ − p)

h̄
)〈x|p′〉〈p′|x′〉

= 2

∫
dx′′dpdp′

(2πh̄)2
Aw(x′′, p) exp(−2i(x− x′′)(p′ − p)

h̄
) exp(

ip′(x− x′)
h̄

)

= 2

∫
dx′′dpdp′

(2πh̄)2
Aw(x′′, p) exp(−

2i(1
2
(x+ x′)− x′′)p′

h̄
) exp(

2ip(x− x′′)
h̄

)
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=

∫
dx′′dp

πh̄
Aw(x′′, p)δ(x′′ − 1

2
(x+ x′)) exp(

2ip(x− x′′)
h̄

)

=

∫
dp

2πh̄
Aw(

1

2
(x+ x′), p) exp(

ip(x− x′)
h̄

)

=

∫
dy

2πh̄
Ãw(y, x′ − x) exp(

iy(x+ x′)

2h̄
).

By using this result, let’s now calculate (FG)w:

(FG)w =

∫
dx′〈x− 1

2
x′|FG|x+

1

2
x′〉 exp(

ipx′

h̄
)

=

∫
dx′dx′′〈x− 1

2
x′|F |x′〉〈x′|G|x+

1

2
x′〉 exp(

ipx′

h̄
)

=

∫
dx′dx′′dydy′

(2πh̄)2
F̃w(y, x′′ − x+

1

2
x′)G̃w(y′, x+

1

2
x′ − x′′) exp(

ipx′

h̄
) exp(

iy(x′′ + x− 1
2
x′)

2h̄
)

exp(
iy(x′′ + x+ 1

2
x′)

2h̄
).

In the above, let α = x′′−x+ 1
2
x′ and β = x−x′′+ 1

2
x′. In particular, x′ = α+β and x′′ = x+ α−β

2
.

The above equation then becomes:

(FG)w =

∫
dαdβdydy′

(2πh̄)2
F̃w(y, α)G̃w(y′, β) exp(

ip(α + β)

h̄
) exp(

iβy

2h̄
) exp(

ixy

h̄
)

exp(
iαy′

2h̄
) exp(

ixy′

h̄
)

=

∫
dαdβdydy′

(2πh̄)2
(exp(

i(xy + αp)

h̄
)F̃w(y, α)) exp(− i(βy − αy′)

2h̄
)(exp(

i(xy′ + pβ)

h̄
)G̃w(y′, β))

=

∫
dαdβdydy′

(2πh̄)2
(exp(

i(xy + αp)

h̄
)F̃w(y, α)) exp(

ih̄

2
(

←−
∂

∂x

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂x
))

(exp(
i(xy′ + pβ)

h̄
)G̃w(y′, β))

= (

∫
dydα

2πh̄
exp(

i(xy + αp)

h̄
)F̃w(y, α)) exp(

ih̄

2
Λ)(

∫
dy′dβ

2πh̄
exp(

i(xy′ + βp)

h̄
)G̃w(y′, β))

= Fw(x, p) exp(
ih̄

2
Λ)Gw(x, p),

which completes the proof.

Lemma 2. Let H be a Hamiltonian that has at least a bound state. If |ψ〉 is any state and Eg is
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the ground state of H, then 〈ψ|H|ψ〉 ≥ Eg.

Proof. Let’s consider the case where all the eigenvalues are discrete. The case when some are

continuous is similar. Let {|ψm〉} be the set of all eigenstates of H. The Hamiltonian operator can

be expanded in terms of its eigenstates as H =
∑

mEm|ψm〉〈ψm| ≥ Eg
∑

m |ψm〉〈ψm| = Eg. Where

the inequality comes from the fact that Em > Eg for Em 6= Eg

Feynman-Hellmann Theorem. Let E be the energy eigenvalue to the Hamiltonian H with (nor-

malized) eigenstate |ψ〉. Suppose H is a function of a parameter λ. It follows that 〈ψ|∂H
∂λ
|ψ〉 =

〈∂H
∂λ
〉 = ∂E

∂λ

Proof. The eigenvalue equation for H is given by H|ψ〉 = E|ψ〉, where |ψ〉 is the corresponding

eigenvector. In particular:

E = 〈H〉,
∂E

∂λ
=

∂

∂λ
〈H〉

= 〈∂H
∂λ
〉+

∂〈ψ|
∂λ

H|ψ〉+ 〈ψ|H∂|ψ〉
∂λ

= 〈∂H
∂λ
〉+ E

∂〈ψ|ψ〉
∂λ

= 〈∂H
∂λ
〉.

The third line is obtained from the second line by using the fact that H|ψ〉 = E|ψ〉, as well as

〈ψ|H = 〈ψ|E. Using the fact that 〈ψ|ψ〉 = 1, the last line follows.

Theorem. Let n and m be integers.

N−1∑
l=0

e−
2iπnl
N e

2iπml
N =

 N for n = m

0 for n 6= m

Proof. Recall the geometric series,

N−1∑
l=0

xl =
1− xl+1

1− x
.
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By setting x = e
2iπk
N , where k is an integer, it follows that the right hand side of the equation above

is 0 unless k = 0. The case k = 0 corresponds to x = 1, in which the sum is just N . The theorem

then follows as a corollary of this result.

A2. MATLAB Codes

Code 1. The effective potential for a linear potential well

function Lineareff()

% To plot the effective versus classical linear potential well in one graph.

% The plot ranges from −2 to 2

F=1; % Assign the slope to be one

f=−F+0.001:0.001:F−0.001;

e=0; % initialize the ground state energy e

for i=1:length(f)

e(i)=−(F−f(i))ˆ(2/3)*supp1(F,f(i))/2ˆ(1/3);

end

de=diff(e)./diff(f); %numerical differentiation

Veff=0; % initialize the effective potential

x=−2:0.05:2;

for i=1:length(x)

Veff(i)=task1(de,f,e,x(i));

end

V=F*abs(x);

plot(x,Veff,'m',x,V,'b')

function c=supp1( F,f )

% Find c that satisfies continuity conditions (method used: Bisection method).

c=0;

dc=−10ˆ−2;

Tol=10ˆ−8;

w=0;
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while w==0

%define wavefunction at x=0 from the left and the right resp.

h1=airy(0,c*((F−f)/(F+f))ˆ(2/3));

h2=airy(0,c);

%define derivative to wavefunction at x=0 from the left and the right resp.

g1=(f+F)ˆ(1/3)*airy(1,c*((F−f)/(F+f))ˆ(2/3));

g2=−(F−f)ˆ(1/3)*airy(1,c);

r=h1*g2−h2*g1; % define the continuity condition

if abs(r)<Tol

w=1;

else

e=0;

while e==0;

c=c+dc;

h11=airy(0,c*((F−f)/(F+f))ˆ(2/3));

h21=airy(0,c);

g11=(f+F)ˆ(1/3)*airy(1,c*((F−f)/(F+f))ˆ(2/3));

g21=−(F−f)ˆ(1/3)*airy(1,c);

r1=h11*g21−h21*g11;

if real(r1)*real(r)<0

c=c−dc;

dc=dc/2;

else

e=1;

end

end

end

end

function Veff=task1( de,f,e,x )

% To find the effective potential

Tol=10ˆ−3;

q=0;

while q==0
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for i=1:length(f)−1

w=de(i)+x;

if abs(w)<Tol

r=i;

q=1;

break

end

end

if q==0 && Tol<10ˆ−1

Tol=Tol*5;

elseif q==0 && Tol>=10ˆ−1

break

end

end

e1=e(r);

f1=f(r);

Veff=e1+f1*x;

Code 2. The effective potential for an attractive dirac delta potential

function deltaeff()

% To plot the effective potential for delta potential well. Plot ranges

% from −8 to 8.

x=−8:0.1:0;

for i=1:length(x)

Veff(i)=task2(x(i));

end

plot(x,Veff,'b',−x,Veff,'b')

function Veff=task2(x)

% Find the effective potential for delta well with alpha=1 given <x>

Tol=10ˆ−5;
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q=0;

f1=0:0.1:10;

y1=f1−f1; % initiate the expectation value of x

y2=f1−f1; % initiate the energy eigenvalue

y11=f1−f1; % initiate the value of <x eta(x)>

for i=1:length(f1)

[y1(i),y11(i)]=xpec(f1(i));

end

for i=1:length(f1)

y2(i)=supp3(f1(i));

end

f=0:0.001:10;

y=pchip(f1,y1,f);

e=pchip(f1,y2,f);

x1=pchip(f1,y11,f);

r=0;

while q==0

for i=1:length(y)

w=x−y(i);

if abs(w)<Tol

r=i;

q=1;

end

end

if r==0

Tol=Tol*5;

end

if Tol>10ˆ−1

disp('error')

return

end

end

Veff=e(r)−f(r)*x1(r);
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function [ y,y1 ] = xpec( f1 )

% Calculate <x> (y) and <x eta(x)> (y1)

% set parameters

m=1;

hb=1;

[e,rat]=supp3(f1);

if f1˜=0

k1=(2*m*f1/hbˆ2)ˆ(1/3);

c1=−2*m*e/k1ˆ2/hbˆ2;

k2=sqrt(−2*m*e)/hb;

p1=@(x) (airy(0,k1*x+c1)).ˆ2;

p2=@(x) (1/rat*exp(k2*x)).ˆ2;

y1=integral(p1,0,inf);

y2=integral(p2,−inf,0);

norm=1/sqrt(y1+y2);

p1=@(x) x.*(norm*airy(0,k1*x+c1)).ˆ2;

p2=@(x) x.*(norm*1/rat*exp(k2*x)).ˆ2;

y1=integral(p1,0,inf);

y2=integral(p2,−inf,0);

y=y1+y2;

else

k=sqrt(−2*m*e)/hbˆ2;

p1=@(x) (exp(−k*x)).ˆ2;

p2=@(x) (1/rat*exp(k*x)).ˆ2;

y1=integral(p1,0,inf);

y2=integral(p2,−inf,0);

norm=1/sqrt(y1+y2);

p1=@(x) x.*(norm*exp(−k*x)).ˆ2;

p2=@(x) x.*(norm*1/rat*exp(k*x)).ˆ2;

y1=integral(p1,0,inf);

y2=integral(p2,−inf,0);

y=y1+y2;
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end

function [ e,rat ] = supp3(f1)

% Dirac delta potential V=− d(x), rat=coef[psi(r)/psi(l)]

%set parameters

hb=1;

m=1;

alpha=−1;

e=−1; %initial guess for the energy;

de=0.01; % initial increment

Tol=10ˆ−5;

q=0; % For conditional purpose

if f1˜=0

while q==0

k1=(2*m*f1/hbˆ2)ˆ(1/3);

c1=−2*m*e/k1ˆ2/hbˆ2;

k2=sqrt(−2*m*e)/hb;

w=(2*m*alpha/hbˆ2+k2)*airy(0,c1)−k1*airy(1,c1);

if abs(w)<Tol

q=1;

else

r=0;

while r==0

e=e+de;

k1=(2*m*f1/hbˆ2)ˆ(1/3);

c1=−2*m*e/k1ˆ2/hbˆ2;

k2=sqrt(−2*m*e)/hb;

w1=(2*m*alpha/hbˆ2+k2)*airy(0,c1)−k1*airy(1,c1);

if w1*w<0

e=e−de;

de=de/2;

else
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r=1;

end

end

end

rat=1/airy(0,c1);

end

else

e=−m*alphaˆ2/2/hbˆ2;

rat=1;

end
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