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Abstract

Ground state alkali-metal dimers provide interesting experimental systems to study as the
polarity of the molecule allows the presence of the long-range and anisotropic dipole-dipole
interaction between the molecules. Such ultracold molecules have been produced and trapped
within an optical trap formed by a high power laser beam. The trapping of these molecules
however, is predicted to be severely limited by a chemical reaction loss induced by inelastic
collisions between molecules. Such a loss could be reduced by a special trap geometry formed
by a beam shaped into a periodic two-dimensional flat-top intensity pattern.

Several schemes are studied in this work to realize a flat-top intensity beam from the Gaus-
sian beam intensity of a commercial laser. Taking into account the available spatial light
modulators (SLM) devices which can be used to shape the beam, we review three beam shap-
ing schemes and we perform numerical simulations for each scheme in order to determine their
feasibility for an experimental realization of the optical trap.

Finally, we present our early experimental results where we adapt one of the simulated
schemes experimentally. We present the characterizations of the laser system, the SLM device
and a first production of a shaped flat-top beam in our lab.
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Chapter 1

Introduction

1.1 Ultracold Molecules in an Optical Trap

The field of ultracold atoms and molecules has developed rapidly over the last two decades. In
late 1990s, Bose-Einstein Condensation of alkali bosons [1] [2] and degenerate fermionic potas-
sium atoms [3] have been achieved by trapping and cooling of a dilute gas of atoms. The system
of a trapped ultracold gas is very popular due to the possibility of controlling various physical
parameters of the system such as the temperature, dimensionality, potential landscape, and
interactions between the particles. For these reasons, ultracold quantum gases have been used
as a simulator to various other quantum systems, notably in condensed matter physics, where
the control over the system is not as clean [4].

In this study, we are interested in ultracold alkali-metal dimer molecule systems, which is
a molecule formed from two different-species alkali atoms. Such molecule is a polar molecule
with a permanent dipole moment in its ground state. This system is interesting because of the
presence of the long range dipole-dipole interaction, whose interaction energy decays as 1/r3

instead of 1/r6 decay of the van-der-Waals interaction in neutral atoms. Such a long-range
interaction is useful in the study of interacting many-body systems, for example in a lattice
configuration where the molecules are placed in periodically-spaced position mimicking a crys-
tal. Here, the long-range and anisotropic dipole-dipole interaction could be implemented to aid
the exploration of various quantum phases [5] or to set up a spin-like interaction which models
the quantum magnetism [6]. In addition, the cold molecules can also be used to study chemical
reactions at low temperatures where the interactions and the states of the molecules play a big
role in a rich dynamics of the system [7] [8].

Figure 1.1: A lattice configuration where the polar molecules sit in a periodic arrangement and
interact with a dipole-dipole interaction. Adapted from [5]
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The choice of an alkali-metal dimer as our polar molecule is based on the feasibility of
trapping and cooling such molecules to ultracold temperature. The strategy used in our ex-
periment in to trap and cool two species of alkali fermions to microKelvin temperature. From
the constituent atoms, the diatomic molecules are then formed using a magnetic-field-assisted
association technique, known as the Feshbach resonance [9]. The magnetic field couples the
state of two colliding cold atoms to a near-zero energy molecular bound state, converting the
atoms into a weakly-bound molecular state. From this state, the molecule can be brought into
the ground state by a stimulated Raman transition [10] where the permanent dipole moment of
the molecules can then be polarized with an external DC electric field. The molecule creation
[11] and its coherent transfer to the ground state [12] as described above has been experimen-
tally demonstrated with the 40K87Rb molecule. However, the permanent dipole moment of this
molecule species is fairly low at 0.61 Debye, according to [13]. In our research group, we are
interested in adopting the above experimental procedure with a 6Li40K mixture which has a
higher dipole moment at 3.56 Debye.

One important aspect in the ultracold gas system is the potential energy landscape. First
of all, the induced external potential needs to trap the cold gas. Two prominent type of trap
that has been utilized experimentally are the magnetic trap [14] [2] and the optical trap [15].
The optical trap is normally used at the later stage of the experiment due to its ability to trap
the atoms regardless of their magnetic state and the ease of modifying the potential landscape.
In fact, the optical potential is formed by the interaction between a laser and the cold gas, and
the potential can be tuned by adjusting the shape of the trapping beam. Several experiments
have explored this aspect, realizing a diversity of physical phenomena with different shapes of
potential such as an optical lattice with a crystal-like periodic potential [16] [17], a box potential
[18] and a vortex beam which carries angular momentum [19].

In this work, we choose a combination of a periodic lattice structure along one dimension
and a uniform potential along the other two as our trap geometry. While the periodic lattice
is a relatively well-known setup, the creation of a uniform potential is a lot more involved. To
form a uniform potential, the intensity of the laser needs to be converted into a flat-top pattern
consisting of a uniform distribution at the center which rapidly decreases to zero at the wing.
Such a process is also considered in several industrial applications such as welding and etching
of metals or plastics [20]. This application is in fact of great relevance for our case since a
main difficulty in both the optical trap and the welding process is to handle a high power laser.
This is an important consideration in choosing the beam shaping scheme to make sure that the
optical elements involved can tolerate a high power beam.

1.2 Scope of This Report

In this project, we address the task of designing an optical trap to hold the ground state ultra-
cold LiK molecules. We begin in chapter 2 by briefly describing the general working mechanism
of an optical trap. We shall see that the main problem in optical trapping of alkali-metal dimers
is the high loss rate due to a chemical reaction. Therefore, we discuss how a tight confinement
with a lattice structure, combined with a flat-top intensity pattern would help to mitigate this
problem while maintaining a strong confinement of the molecules.

In chapter 3 and 4, we address the problem of shaping the beam intensity profile from a
Gaussian mode to a flat-top pattern. We begin both chapters by introducing various spatial
light modulator (SLM) devices which are necessary to perform the beam shaping, with chapter
3 focusing on the phase-modulation type and chapter 4 on the amplitude-modulation type. We
then proceed by introducing the beam shaping scheme with the use of the available SLMs such
as the Mixed-Region Amplitude Freedom (MRAF) in chapter 3, the Fourier Transform Hologra-
phy scheme in chapter 4 and finally the Error Diffusion algorithm in chapter 4. In each scheme,

2



we discuss their advantages and challenges in relation with their experimental implementation.

Finally, in chapter 5, we describe the experimental tests which have been performed to
demonstrate the beam shaping to produce a flat-top beam. We perform several characterizations
on both the laser system and the SLM used in this test, in addition to their alignment methods
according to the chosen shaping scheme. We conclude the chapter with a discussion on our
first observation of the beam shaping attempt, and we summarize several steps which could be
carried on to continue this project.
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Chapter 2

Optical Dipole Trap Design for LiK
Molecules

In this chapter, we present a description of the optical trap that is used to hold the LiK
molecules. We start by briefly discussing the physical mechanism of an optical trap, which in
our case is formed by a far-red detuned, narrowband laser beam. We follow this description by
discussing the dominant loss phenomenon due to the collision-induced chemical reaction that
limits the lifetime of the molecules in the trap. Taking into account this loss phenomenon, we
close this chapter by presenting the choice of the geometry of our trap that we wish to realize
experimentally.

2.1 Optical Potential of a Red-Detuned Light

When a monochromatic light (with field frequency ω) interacts with an atom or a molecule,
the electric field induces a dipole moment that oscillates with the same frequency as the field.
Consequently, it can be shown that this electric dipole-field interaction adds an additional −E·D
term in the Hamiltonian of the molecule-light system, with E and D being the field and the
dipole operator, respectively. This interaction gives rise to two effects: a conservative optical
potential Udip due to the component of the dipole in-phase with the field, and a dissipation rate
~ωΓsc from the component of the dipole out of phase with respect to field [21]. Their expressions
with respect to the light intensity I(r) are given by [22]:

Udip(r) = −3πc2

2ω3
0

(
Γsp

δ̃

)
I(r), (2.1.1)

Γsc(r) =
3πc2

2~ω3
0

(
Γsp

δ̃

)2

I(r). (2.1.2)

The above equations are obtained using a two-level system approach, where ω0 denotes the
transition frequency between the two levels and

Γsp =
e2ω2

0

6πε0mec3
(2.1.3)

symbolizes the spontaneous emission rate calculated using the classical Lorenz model. We also
note that the factor

δ̃ =

(
1

ω0 − ω
+

1

ω0 + ω

)−1

(2.1.4)

is the detuning factor between the transition and the light frequencies. The optical potential
is the effect beneficial to trap the molecules. For a red-detuned light, where the frequency of
the light beam is smaller than the transition frequency, the detuning factor is positive and thus
the optical potential is negatively proportional to the light intensity. In this case, the molecules
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will accumulate near the maximum intensity of the light which is also the minimum of the
dipole-field interaction energy. In addition, we observe that the dissipation rate of the trap due
to spontaneous emission, Γsp, decreases quadratically in function of detuning as compared to
linearly for the potential. Hence a far-detuned optical trap is of interest due to the lower loss rate.

The two-level approximation in the above description does not exactly hold true in reality.
A molecule possesses a large number of levels (electronic, rotational and vibrational) due to
its rich internal structure. Nevertheless, the general conclusion that the optical potential is
proportional to the trapping beam intensity typically still holds with the proportionality factor
now depending on the state of the trapped molecule [23]. For our diatomic molecule, we can
very crudely estimate this proportionality factor by summing the proportionality factors from
Li and K atoms. Such estimation would be rather accurate for the Feshbach state where the
molecules are recently associated from the two atoms, but would be less so for the molecules
who have been brought to the ground rovibrational state.

2.2 Controlling the Reaction Loss in LiK Molecules

Diatomic molecules formed by a mixture of two species of alkali atoms are known to posses an
exothermic reaction by exchange of atoms [24]. For LiK molecule the reaction is in the form
LiK + LiK → Li2 + K2. This reaction is not desirable because the release of energy causes the
molecules to escape the trap, which will be observed as a decrease in the number of trapped
molecules over time. In alkali-metal dimers such as our LiK molecule, this reaction loss is actu-
ally the dominant loss mechanism of molecules from the optical trap.

The chemical reaction happens via inelastic collisions of molecules, when two of them are
brought to a distance where the chemical forces are relevant. A reduction of inelastic collision
by a control of the internal states of the molecules has done in fermionic molecule species such
as the 40K87Rb mixture [7]. This is done by keeping all the molecules in the same state and
therefore forces the collision to occur only in the p-wave channel where a centrifugal barrier pre-
vents the molecules to approach each other [25]. Our 6Li40K molecules however, is of bosonic
species which collide through the barrierless s-wave channel.

Figure 2.1: The dipole-dipole interaction of polarized ground state LiK molecules. The inter-
action is repulsive in the plane perpendicular to the static electric field, and attractive on the
axis of the field.

An alternative approach to suppress the chemical loss is to take advantage of the polarity
of our molecules. The dipole-dipole interaction force between molecules is already prominent
at a distance much longer than the chemical force range [24]. By tuning this interaction to be
repulsive (i.e. creating a potential barrier) the molecules can be kept at a distance where the
chemical force is still insignificant. The interaction force between two dipoles depend both on
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the separation vector and the orientations of the dipoles. A particular configuration of interest
is where the dipole is polarized to a particular direction, say the Z axis, which can be done
by bringing the molecules into the ground state and applying a static electric field along this
direction. Following a classical electrodynamics treatment [?], the interaction potential can be
written as:

Edip(r) = − d2

4πε0

(
3(er · ez)er − ez

r3

)
, (2.2.1)

where d is the dipole moment of the molecules. In this condition, the interaction between two
dipoles is attractive when they are oriented ’head to tail’ (i.e. stacked parallel to the static field)
but they turn to repulsive when the dipoles are oriented side by side on the plane perpendicular
to the static field direction (see figure 2.1). Hence, by keeping all the molecules on the 2D plane,
the inelastic collision may be prevented by the repulsive dipole-dipole interaction.

Figure 2.2: Trapped alkali dimer molecules in the optical lattice configuration, with the polar-
izing static electric field. Figure is taken from [26]

Experimentally, this configuration has been shown for the KRb mixture [26] [27]. The
molecules are trapped in an optical lattice configuration, where they are stacked in several
pancake-like layer. In one layer, the trapping is very tight along the longitudinal direction while
tunneling between different layers are negligible. Thus, the molecules are constrained into a
2-dimensional dynamics where the dipole-dipole interaction is repulsive. As a result, it has
been shown that the chemical loss rate in this configuration is significantly better than the loss
rate in a 3-dimensional trap.

2.3 The Geometry of the Optical Trap

As discussed in the previous subsections, one of the important consideration for designing the
optical trap is to optimize the lifetime of the molecules in trap. First of all, we have discussed
the need of confining the molecules in a 2-dimensional geometry instead of a 3-dimensional one.
The geometry of the trap is determined by how the molecules are distributed in space, which
is dependent on the intensity distribution of the laser used to create the optical trap. To sim-
plify the calculation, we first consider that the molecule cloud is a classical gas which follows a
Boltzmann distribution. This assumption is valid when the temperature of the cloud is not too
cold (above the condensation temperature for bosonic particles).

Suppose that the laser beam induces an optical potential U(r). According to the Boltzmann
distribution and neglecting the interaction energy between the molecules (ideal gas approxima-
tion), their density in space is distributed as:

n(r) = n0 exp(−βU(r)), (2.3.1)
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where β = 1/(kBT ) with the Boltzmann constant kB and molecule temperature T . Adopting
the convention U(0) = 0, the quantity n0 is equal to the density in the center of the cloud. The
central density is calculated by a normalization condition: integrating the density over all space
yields the total number of trapped molecules.

Let us now consider the characteristics of the density distribution along the longitudinal
(Z) direction for the case of a single-Gaussian beam trap and an optical-lattice configuration.
For the first case, the trap is formed by one Gaussian-mode (which is a typical lasing mode
of commercial lasers) beam focused at the center of the trap (labeled as z = 0). Referring to
appendix B, if we assume the beam to have a 1/e2 waist of w0 located at z = 0, the beam
intensity in cylindrical coordinate can be written as:

Ig(r, z) = I0

(
1 +

(
z

zR

)2
)−1

exp

(
− 2r2

w2
0(1 + (z/zR)2)

)
,

where zR = πw2
0/λ is known as the Rayleigh length of the beam and I0 is the peak intensity of

the beam. Near the origin of the coordinate, and along the Z axis, we can develop the intensity
in the Taylor series:

Ig(0, z) ≈ I0

(
1−

(
z

zR

)2
)
. (2.3.3)

In the first section, we have established that the optical potential is proportional to the beam
intensity. Let us denote the proportionality constant as κ, such that U(r) = −κI(r). Hence,
the optical potential near the origin varies as:

Ug(0, z) ≈ −U0

(
1−

(
z

zR

)2
)

= −U0 +
1

2
mω2

zz
2, (2.3.4)

where U0 = κI0. As we can see from equation 2.3.4 above, the optical potential is a harmonic
potential near the origin with the characteristic oscillation frequency of

ωz =

√
2U0

mz2
R

, (2.3.5)

along the Z direction. Referring back to equation 2.3.1, we obtain a Gaussian density distribu-
tion of the molecules near the origin:

n(0, z) = n0 exp

(
−mω

2
zz

2

2kBT

)
. (2.3.6)

The characteristic length in this density distribution is the 1/e width of the Gaussian distribution
which we call lc. In this case, it is related to the trap frequency:

lc =

√
2kBT

mω2
z

. (2.3.7)

We can compare the situation with the second form of the trap which is the lattice configu-
ration. This configuration is realized by creating an interference pattern between a propagating
beam and its retro-reflection off a mirror. Denoting the axis of the propagation of the laser as
the Z axis, the intensity pattern along this axis follows a sinusoidal pattern:

Iol(0, z) = |
√
I0e

ikz +
√
I0e
−ikz|2 = 4I0 cos (kz)2, (2.3.8)
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Figure 2.3: (Left) The setup for an optical lattice configuration and (Right) LiK molecules
trapped in the periodic potential valleys formed by the interference pattern.

where k = 2π/λ is the wavenumber. In this configuration, we remark that the intensity varies
periodically in function of the longitudinal position. As the laser is red-detuned, the molecules
will be trapped around numerous intensity peaks, separated by the distance λ/2 = 532 nm
(refer to figure 2.3). In addition, the peak intensity is enhanced by a factor of 4 due to the
constructive interference from the two copies of the beam. Let us concentrate on one particular
intensity peak (e.g. at the origin), where again the intensity of the beam can be developed in a
Taylor series:

I(z) ≈ 4I0(1− (kz)2). (2.3.9)

Therefore, the potential near each intensity peak is again a harmonic potential:

Uol(0, z) ≈ −γ(4I0(1− (kz)2)) = −4U0 +
1

2
mωzz

2, (2.3.10)

with a trap frequency of:

ωz = 2π

√
8U0

mλ2
. (2.3.11)

From the description of the two traps, we can compare how the optical lattice configuration
produces a much tighter confinement along the Z axis. Firstly, we can compare the width of
the gaussian distribution of the molecular cloud which is described by the length lc. Taking the
ratio of lc for the single beam and the optical lattice, we obtain:

lc,g
lc,ol

=
ωz,ol
ωz,g

=
2π
√

8U0
mλ2√

2U0

mz2R

= 4π
zR
λ

=
4π2w2

0

λ2
. (2.3.12)

The typical waist size of the beam used in an optical trap is of the order of 100 µm. Compared
to the wavelength which is of the order of 1 µm, the width of the cloud in a single beam setup
is therefore up to 5 order of magnitudes greater than in the lattice setup. We conclude that the
molecular cloud layers are extermely flat along the Z direction in the lattice setup, and therefore
the ’pancake layers’ picture is often used to describe the trapped molecules in this configura-
tion. Furthermore, we can assert that the dynamics of the cloud along the longitudinal direction
is inactive due to this tight confinement. Treating the optical potential as a simple quantum
harmonic oscillator, we remark that the energy separation between the ground state and the
excited state is of the order of ~ωz. If the thermal energy is largely inferior to this energy gap,
the thermal fluctuation will not be able to lift the states of the molecules from the ground state
thus the dynamics is not activated [24]. To calculate the trap frequency according to equation
2.3.11, we need to estimate U0. We take an example of a 10 W laser, propagating in a Gaussian
mode with a waist of 100 µm. Here, the peak intensity is given by I0 = 2P/(πw2

0) ≈ 6 · 108

9



W/m2. The κ factor is estimated using the sum of the κ factors from Li and K atoms, and is
approximately equal to 2.7 · 10−36 J/(W/m2). With these assumptions, the trap frequency is
2π·400 kHz. With the cloud temperature of 500 nK which is typically achieved in experiment,
the energy level separation is of the order of 40 times the thermal energy, justifying our assump-
tion of 2-dimensional dynamics.

Figure 2.4: Chemical reaction loss rate of several alkali dimers in the optical lattice trap, in
function of the induced electric dipole moment [24].

Due to the longer lifetime in an optical trap setting, a lot of theoretical efforts have been
dedicated to calculate the chemical reaction loss rate in this trap. In figure 2.4, we show a
theoretical calculation from reference [24] which calculates the chemical reaction loss coefficient
of the trapped LiK molecules in the 2D dynamics of the optical lattice. The loss rate due to the
reaction is the product of this coefficient and the 2D density of the trapped molecule cloud. For
the calculation of this density factor, we need to describe the transverse pattern of the beam
intensity. First of all, let us consider a conventional Gaussian beam pattern, with a 100 µm
waist. The Taylor expansion of the intensity distribution near one intensity peak (chosen to be
the origin), in function of the transverse coordinate r is given by (c.f. equation ??):

I(r, 0) ≈ 4I0

(
1− 2r2

w2
0

)
, (2.3.13)

where the factor of 4 is inserted to take into account the constructive interference effect. Pro-
ceeding with the similar calculation method as we have done, the density distribution of one
pancake layer is given by:

n(r) ≈ n0 exp

(
−mω

2
rr

2

2kBT

)
, (2.3.14)

where the radial frequency is given by:

ωr =

√
16U0

mw2
0

. (2.3.15)

In equation 2.3.14, notice that 0 is the peak 2-dimensional density where the longitudinal degree
of freedom is integrated out. The highest loss occur at the center of the coordinate where the
density is at its peak. Normalizing the peak density to the number of molecules N , we find:∫

n(r, z)2πrdrdz = N ⇒ n0 =
2N

πw2
0

(
4U0

kBT

)
. (2.3.16)

The typical number of molecules found in the central pancake layer is of the order of 2000
molecules [26]. Hence, keeping the other parameters the same as in the previous discussion,
the central density of the molecule is n0 ≈ 2.5 · 1010 cm−2. Referring back to figure 2.4, the
loss coefficient can be brought as low as 10−7 cm2/s provided that the static electric field is
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strong enough to induce the dipole moment of around 2 Debye. Even then, the loss rate will
still be at 2.5 ·103 s−1, implying a 0.4 ms molecule lifetime in the trap. The typical value needed
to complete all the experimental sequences are usually on the order of one to several seconds.
Thus, we need to increase the lifetime to the order of seconds.

The way to increase the lifetime in this case is to reduce the 2D density of the molecule.
One way to achieve this is to enlarge the waist of the trap beam. With a larger beam, the
beam intensity is reduced as it is distributed over a larger area. However, in doing this, we
also weaken the trap depth which is proportional to the beam intensity, inducing a loss by
thermal excitation. Looking at equation 2.3.16, the peak density has an extra 1/w2

0 dependence
on top of a proportionality to the trap depth 4U0. Therefore, in principle we can reduce the
peak density and keeping the same trap depth with a large beam waist. However, to keep a
constant intensity, we need to supply an increasingly higher beam power that is not available
experimentally.

Instead, we propose to alter the transverse intensity distribution of the beam to a uni-
form (flat-top) distribution. The trapping potential with this beam shape will have a shape
of a square-well potential, with the width given by the beam size and the depth given by the
beam intensity. According to equation 2.3.1, a uniform trapping potential also implies a uni-
form molecule density distribution, which gives the lowest peak density for a fixed number of
molecules. If instead of a Gaussian beam of 100 µm waist, a 100 µm radius flat-top beam is
set as the trap beam, the 2000 molecules are distributed over a circle of 100 µm radius. Hence
the peak molecule cloud density is n0 = 6.4 · 106 cm−2, which is three order of magnitudes
lower than in the Gaussian trap and will give a lifetime of the order of 1 second. Moreover,
the density is now independent of the trap depth. With a 10 W power, 100 µm radius flat-top
beam, the trap depth is 4U0 ≈ kB ·250µK, which is a lot higher compared to the thermal energy.

In conclusion, we have presented the design of our optical trap in this chapter. The two main
characteristics of the trap we are mostly interested in are the chemical reaction loss rate and the
trap depth. Our geometry of choice is the combination of a quasi 2-dimensional molecule cloud
through an optical lattice configuration and a uniform transverse beam intensity distribution.
The combination of these two ingredients are shown to produce a deep trap with a lifetime of
the order of one second.
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Chapter 3

Beam Shaping with a
Phase-Modulation SLM

This chapter is dedicated to a discussion on how to transform the intensity pattern of a laser,
from the input Gaussian pattern, using a phase-modulation Spatial Light Modulator (SLM).
We start the discussion with a description of commercially available phase-modulation SLMs.
Afterward, we describe a beam shaping method in the form of an iterative algorithm which is
compatible with the use of a phase-modulation SLM. Finally, we discuss our analysis of such
scheme in view of its implementation for our optical trap.

3.1 Examples of Commercially Available Phase-Modulation
SLM

In this manuscript, we narrow down our scope to focus on two classes of SLM devices. One
class is the devices which are capable of producing a phase-only modulation of the input beam,
while the other is a type which does a binary amplitude modulation. Even under the category
of phase-modulation SLM, there are many different types of devices, each offering an advantage
in specific quality such as the pixel size, the active area size, the response time, the dynamic
range and the resolution of the modulation, the damage threshold, etc. [28]. In this section,
we present a brief overview of some popular selections of the phase-only modulation devices,
focusing on their modulation mechanism and typical parameters pertinent to our beam shaping
scheme.

Liquid Crystal on Silicon SLM

The most popular phase-modulation type SLM device is the Liquid Crystal on Silicon (LCoS)
SLM. This type of SLM consists of a nematic liquid crystal (LC) medium, which is sandwiched
between a transparent electrode attached to the entry window and a dielectric mirror layer
covering a CMOS backplane (see figure 3.1). The backplane consists of pixelated electrodes
which are controllable individually. A change in the applied voltage on the electrode rotates
the orientation of the LC molecules which modifies the refractive index of the medium.

In this kind of device, the input light enters the LC medium and is reflected out . A
light beam propagating through a medium of length l with an index of refraction n acquires
a phase shift of exp (2πinl/λ). Therefore, LCoS SLMs can give a position-dependent phase
shift by specifying the voltage in each pixel. By the calibration of the applied voltage and an
appropriate design of the thickness of the liquid crystal layer, the SLM is usually designed to
provide a phase shift from 0 to 2π, with a usual resolution of 256 levels. The active area of
these SLM usually contains 1000 to 2000 pixels, with the interpixel distance (also called the
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Figure 3.1: Schematic of a typical LCoS type SLM. Figure is taken from [29]

pixel pitch) of the order of 10 µm. The reflectivity from these devices are typically above 80%,
limited by the losses from the medium and the presence of gaps between the pixels.

Piston-Type MEMS

This type of SLM falls under the category of a microelectromechanical systems (MEMS). It
consists of an array of micrometer-sized mirrors, each controlled by an electrostatic actuator
which displaces each mirror in the vertical direction. The reflected beam from this mirror array
acquires a relative phase factor due to the optical path difference depending on the height of
the mirror pixel at each position of the beam (refer to figure 3.2).

Figure 3.2: Schematic of the piston-type MEMS SLM. Taken and edited from [30]

The main advantage of this type of device is the higher fill factor (smaller interpixel gap)
and possibly a high damage threshold while maintaining a dynamic modulation capability (as
opposed to a static modulation pattern from a phase plate). The device offers a comparable
dynamic range, capable of 1.5 µm vertical displacement (more than 2π phase modulation for
1064 nm beam) with a higher modulation resolution of up to 14 bits [30]. One of the weakness
of this device is the slower response time due to the mechanical movement involved which does
not pose a problem for our application because we wish to form a static pattern. However,
these devices feature a very small number of pixels and is relatively very costly compared to
the LCoS SLM.
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Static Phase-Modulation Plate

Owing to microfabrication technique, it is possible to create a chrome (reflective) or glass (trans-
mittive) plate providing a phase modulation to the input beam. Similar to the piston-type
MEMS, the phase modulation is provided by a optical path difference from holes created by
the etching process of the mask. The main advantage of the static plate is the very high dam-
age threshold, reflectivity, and the possibility of having more pixels with larger active area.
However, there are two weaknesses of this mask system compared to the SLM. First of all, the
discretization level of the phase modulation is usually very limited. Some applications reported
the use of a phase mask with only binary level ([31]) or four levels ([20]). Secondly, the static
plate option loses in terms of versatility to the dynamic SLM option. The beam shaping meth-
ods are usually sensitive on the input beam profile, thus, the static plate is not very reliable in
situations where the input profile is modified or fluctuates.

3.2 Beam Shaping with the Iterative Fourier Transform
Algorithm

The modulation over the phase degree of freedom essentially affects the spreading of the beam
in its propagation after being reflected by the SLM. Based on the interference from different
parts of the beam, the intensity profiles after various distances of propagation will vary. Nev-
ertheless, it is not directly evident how a certain target intensity pattern can be achieved with
this modulation at some point after the SLM. The main idea of this algorithm is to make use of
the Fourier Transform relation that is found when the modulated beam is focused by a positive
focal-length lens. With this special arrangement, the problem is simplified as the output profile
of the beam can be calculated exactly but we shall see that a phase-modulation alone is not
enough to attain an exact beam shaping. As such, this algorithm takes advantage of the inverse
Fourier Transform relation to iteratively find the best phase-modulation at the SLM based on
the current output profile.

Optical Setup and Algorithm Description

To start the discussion, we consider the optical setup which is depicted in figure 3.3. The SLM is
placed at a distance equal to the focal length f of a lens away in front of the lens, defined as the
input plane. The plane where the molecules will be trapped by the output beam is located at
the back focal plane of the lens. We call this plane the Fourier plane since by this arrangement,
the electric field at this plane is given by the exact Fourier Transform (FT) of the electric field
at the input plane: ([32], refer to appendix A)

EFP (x, y) =
1

iλf

∫ ∞
−∞

∫ ∞
−∞

EIP (X,Y )e
−2πixX

λf e
−2πi yY

λf dXdY . (3.2.1)

We set a Gaussian beam with its waist located at the input plane as the beam pattern before
it is modulated by the SLM. The electric field of this beam is given by a Gaussian intensity
distribution and a flat phase:

Egauss(x, y) =

√
2P

πw2
exp

(
−x

2 + y2

w2

)
, (3.2.2)

where P denotes the power of the beam and w its waist (which is assumed to be symmetric
in both vertical and horizontal directions). For a beam modulated by an LCoS SLM, our
modulation capability is limited to the phase of the beam. Therefore, the modulated field at
the input plane EIP has a restricted shape where the amplitude is given by the initial gaussian
distribution of the laser and the phase modulation of the SLM:

EIP (x, y) = Egauss(x, y) exp (iΦSLM (x, y)). (3.2.3)
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For our purpose, we want the Fourier plane beam intensity IFP to have a flat-top distribution.
In principle, this can be exactly achieved only if the input plane intensity EIP is the inverse
Fourier Transform of a flat-top beam. However, this situation is clearly impossible in our case
since the SLM lacks the ability to modulate the amplitude of the input beam.

Figure 3.3: The schematic of the optical setup used in the Fourier Transform-based beam
shaping algorithm.

It is interesting, however, to find out if it is still possible to produce a beam with a flat-top
(or more generally, any arbitrary) intensity pattern in the Fourier plane with only a phase-
modulation SLM. To tackle this problem, several solutions have been proposed which are based
on finding the best approximate phase-modulation by a form of iterative Fourier Transform
algorithm (IFTA). For any guess phase modulation given by the SLM, the field at the Fourier
plane EFP can be computed via equation 3.2.1. The concept behind the IFTA is to improve
the initial modulation guess by comparing EFP with the desired pattern, and perform sucessive
Fourier Transforms with updated guess pattern in each step. In this report, we present a par-
ticular algorithm of this class which is called the Mixed Region Amplitude Freedom (MRAF)
algorithm [33].

The first step of this algorithm is to produce the initial guess for the SLM phase modulation

Φ
(0)
SLM (x, y). This quantity is set to be the argument of the phase part of the inverse Fourier

Transform of the flat-top beam Eflat =
√
Iflat:

Φ
(0)
SLM = arg(F−1(Eflat)). (3.2.4)

With this choice of initial phase, we recover the flat-top profile at the Fourier Plane exactly
if the amplitude profile of the input beam matches the amplitude profile of the inverse FT
of the flat-top beam. However, for our case, the amplitude profile of the input beam is
always given by Egauss. Therefore, our initial beam profile at the input plane is given by

E
(0)
IP = Egauss exp(iΦ

(0)
SLM ).

According to equation 3.2.1, the initial input beam E
(0)
IP will produce the diffraction pattern

E
(0)
FP = F(E

(0)
IP ) at the Fourier plane. Since this algorithm is recursive, consider the case where

we have arrived at the nth iteration, with the field E
(n)
FP . To produce the next phase modulation

guess, we divide the Fourier plane into two areas. We define an area of a certain size from the
center of the Fourier plane which we call the signal region (SR), and we define the region outside
this area as the noise region (NR). Furthermore, we define a new electric field called the mixed
field as the following:

E
(n)
mix =

{
m|Eflat|SR + (1−m)|E(n)

FP |NR
}
ei arg(E

(n)
FP ), (3.2.5)
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where m is a constant called the mixing parameter, which regulates the relative power distri-
bution between the two terms in the signal and noise region. The distinction between the two
degrees of freedom (amplitude and phase) in the Fourier plane is the particularity of the MRAF
algorithm. The decrease in terms of pattern restriction from both amplitude and phase through-
out the Fourier plane to only the amplitude pattern in the signal region of the Fourier plane
improves the chance of finding an appropriate SLM phase modulation. In addition, the insertion
of the target amplitude pattern in the mixed field is the key step to bring the diffracted field
intensity closer to the desired pattern in each iteration. The phase guess in the next iteration
step is defined as the phase component of the inverse FT of the mixed field:

Φ
(n+1)
SLM = arg(F−1(E

(n)
mix)), (3.2.6)

which completes the iteration procedure of the algorithm.

We adopt two quantities as a measure of the quality of the output beam in each step of the

iteration. First of all, the output intensity produced at the nth step, I
(n)
FP = |E(n)

FP |2, is fitted
against a flat top intensity pattern with three fit parameters: the peak intensity, the center
position, and the width of this flat-top profile. Note that the fitting is restricted inside the

signal region and let the fitted intensity at this nth step be I
(n)
fit . The diffraction efficiency ξ(n)

is calculated by taking the ratio of the power between the output and input beam:

ξ(n) =

∑
I

(n)
fit∑

|EIP |2
. (3.2.7)

Furthermore, we define the fractional error η(n) of the ouput beam as the averaged root mean
square difference between the actual and fitted output beam profile, normalized by the amplitude
of the fitted flat-top profile:

η(n) =
1

NSR

√√√√√∑
SR

I(n)
FP − I

(n)
fit

I
(n)
fit

2

. (3.2.8)

Here, NSR denotes the number of summation points i.e. the number of pixels contained in
the signal region. In principle, the algorithm will continue to improve the output beam profile
as long as the fractional error decreases with each step of the iteration. Thus, we can use this
criterion as a condition to stop the algorithm. The summary of the complete algorithm is shown
in the flowchart in figure 3.4.

Numerical Simulation Test of the IFTA Algorithm

Simulation Methods and Parameters

To test the effectiveness of this algorithm for our application, we conduct a numerical simu-
lation. We choose the relevant parameters to follow the experimental condition as closely as
possible. First of all, we model the SLM as a 1024x1024 pixel grid with an interpixel distance
of 8 µm. These parameters are found, for example, in the PLUTO SLM from Holoeye [34].
We model our input beam as an ideal collimated Gaussian beam, with its waist located at the
SLM. We have the liberty to choose the size of the beam waist since it can be adjusted by
placing a lens before the SLM. With a bigger beam waist, we can reduce the peak intensity
of the beam incident at the SLM, which is important since we are working with a high power
beam. Therefore, we choose the input beam waist to be 3 mm in this simulation.

Our next step is to define the flat-top pattern at the Fourier plane. In general, there are
several functions which can be used to describe a flat-topped beam, ranging from the super-
Gaussian, flattened-Gaussian, the window/tapering function, and the super-Lorentzian pattern

17



Figure 3.4: Flowchart diagram illustrating the IFTA Algorithm.

[35] [36]. In all these functions, the essential feature that gives the flat-top profile is the higher
leading power in the Taylor development of the functions near their central maximum. For a
Gaussian profile e−x

2
, the leading power is quadratic. For our simulation, we choose to describe

the flat-top as a super-Lorentzian (SL) function:

SLn(r) = A

[
1 +

∣∣∣∣ r

wSL

∣∣∣∣n]−1

. (3.2.9)

With this choice, the radius of the flat-top beam is given by wSL while the leading power in
the expansion is now given by the integer n. The profile of higher order SL function falls more
sharply in the wing, as we can see in figure 3.5 below. Finally, the current experimental setup
uses a 300 mm lens to focus the trapping beam in the experiment chamber. Thus, we adopt
the same value for our simulation.

Figure 3.5: Comparison between the Gaussian and higher order Super-Lorentz functions.

This simulation is performed in Mathematica. The only nontrivial computation step is to
model the Fourier Transform between the input plane and the Fourier plane. For this, we use a
built-in Fast Fourier Transform (FFT) method which is essentially a Riemann sum approxima-
tion of the Fourier Transform integration. The 1024 by 1024 pixels are chose to optimize the
computation speed based on the particularity of the FFT algorithm.
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Simulation Results and Discussion

By the Fourier Transform relation, the pixel size at the Fourier plane depends on the size of
the pixel at the input plane. If we discretize the input plane with N pixels with the interpixel
distance of ∆, the diffraction-limited pixel size at the Fourier plane is given by ∆̃ = λf

N∆ , where
λ is the beam wavelength (1064 nm) and f is the focal length of the lens (300 mm). Therefore,
∆̃ ≈ 39µm. To have a sufficient amount of pixels, we start with an order 20 Super-Lorentz
beam with 400 µm radius as the target pattern. The signal region is defined as a square box of
side equals to 1200 µm surrounding the intended flat-top pattern, which is sufficiently large for
this target pattern. We take the mixing parameter m in equation 3.2.5 to be constant at 0.4 in
each step, as suggested by the original author of this algorithm[33].

We run 200 steps of iterations for this particular choice of beam input and output, and we
present the final output intensity in the Fourier plane in figure 3.6. This output profile matches
very well with the target flat-top pattern, as can be seen by the comparison with the fitted
profile (the solid line in the right hand side of figure 3.6). The fit result is a flat-top pattern
with the same radius as the intended target (400 µm), however with a lower maximum ampli-
tude. We can see from the diffraction efficiency plot (figure 3.7) that the power contained in
the flat-top beam in the signal region approaches 44.44%, with the rest of the power dispersed
out in the error region. The power loss to the noise region is a tradeoff to achieve a smoother
profile in the signal region, marked by a very small final fractional error of less than 1%. In
fact, other variants of IFTA algorithm can achieve a higher diffraction efficiency albeit with a
significantly noisier output profile [33].

Figure 3.6: Intensity profile of the output beam in the Fourier plane after 200 iterations for the
400 µm target profile: the full 2D profile (Left) and the cut across the Y axis (Right). Note the
boundary between the signal region (SR) and the noise region (NR).
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Figure 3.7: Evolution of the Fractional Error η(n) (Left) and the Diffraction Efficiency ξ(n)

(Right) over the 200 iterations of the MRAF algorithm.

Figure 3.8: Initial (Left) and final (Right) SLM phase guess with 200 iterations for the 400 µm
target profile.

Figure 3.9: Intensity profile of the output beam in the Fourier plane after 200 iteration steps
for the 200 µm target profile: the full 2D profile (Left) and the cut across the Y axis (Right).
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Figure 3.10: Evolution of the Fractional Error η(n) (Left) and the Diffraction Efficiency ξ(n)

(Right) over the 200 iterations of the MRAF algorithm for the 200 µm target profile.

Since the flat-top beam size which is relevant for our trap should be of the order of 100 µm,
it is of interest to try this MRAF algorithm with a smaller target pattern. We first tried the
algorithm with a flat-top target of 200 µm radius (approximately 5 times the diffraction-limited
pixel size) and the corresponding mask of 600 µm in side. We find that even for this small
target, the MRAF algorithm is still able to converge with a similar diffraction efficiency (44 %)
and fractional error (1%) after 200 iterations. However, the algorithm finally stalls for a very
small target. We tried the MRAF algorithm with a flat-top beam target of 120 µm radius (ap-
proximately 3 times the diffraction-limited pixel size) and with the corresponding resize of the
mask to 400 µm. For this very small target, as we can see from figure 3.12, the fractional error
is stalled at a relatively high 50% and we can observe the roughness of the output profile from
its intensity profile (figure 3.11). This observation shows that the algorithm becomes less and
less reliable when the target size approaches the resolution limit set by the Fourier Transform
relation.

Figure 3.11: Intensity profile of the output beam in the Fourier plane after 200 iteration steps
for the 120 µm target profile: the full 2D profile (Left) and the cut across the Y axis (Right).
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Figure 3.12: Evolution of the Fractional Error η(n) (Left) and the Diffraction Efficiency ξ(n)

(Right) over the 200 iteration steps of the MRAF algorithm for the 120 µm target profile.

Figure 3.13: The Fractional Error (Left) and the Diffraction Efficiency (Right) in function of
the mixing parameter m after 100 iteration steps.

Finally, we investigate the optimal choice of the mixing parameter m by performing this
algorithm for 100 iteration steps, each with a different values of m. Note that the value of m is
still constant in each iteration step. The diffraction efficiency and the fractional error achieved
at the final stage of the iteration are plotted against the choice of m and are displayed in figure
3.13. We observe that the diffraction efficiency is always smaller for a smaller value of the mixing
parameter. This phenomenon is a direct consequence of the structure of the mixed field (refer
to equation 3.2.5), where the amplitude of the signal region component is proportional to m.
However, the fractional error displays a minimum around the mixing parameter value of 0.35.
This shows that if we opt for higher efficiency with a larger mixing parameter, the convergence
to the desired pattern requires more iteration steps. The initial choice of the mixing parameter
value of 0.4 is justified as a good compromise between a smooth output pattern and a reasonable
efficiency.

Viability for the Realization of the Optical Trap

We dedicate this section to comment on the advantages and the disadvantages of performing
the beam shaping with a phase-modulation SLM and this MRAF algorithm, particularly our
optical trap application. From a favorable point view, we have seen that the MRAF algorithm
produces a very smooth reproduction of the target intensity (shown by a very small fractional
error) within a reasonable number of iterations. It has been show that a slight modification
of this algorithm could generate a faster convergence with an even sharper target profile [37].
Secondly, the MRAF algorithm offers the advantage of having a natural extension to a feedback
loop algorithm that is more practical in the real experimental situation. The feedback loop
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algorithm can be constructed for example by using the measured field amplitude at the Fourier
plane in the expression of the mixed field in equation 3.2.5 instead of the calculated amplitude
by FFT. We expect this modification to improve the stability of the output profile against fluc-
tuations present in the input profile. Finally, the optical setup involved is very simple, with
only one lens involved in front of the SLM.

Several issues are to be taken note for the application of this scheme to construct our optical
trap. First of all, we note that this MRAF algorithm (and for other beam shaping algorithms in
general) is very dependent on the knowledge of the input profile. In experiment, this situation
is rather inconvenient because it requires a stringent measurement of the beam profile at the
SLM plane. This can be performed, for example by inserting a flip mirror which redirect the
input beam into a CCD camera, placed at an equivalent plane to the SLM, which measures the
intensity of this input beam at the SLM plane (refer to figure 3.14).

Figure 3.14: The measurement setup for the beam intensity profile at the SLM plane.

One drawback of this scheme is the resolution of the flat-top beam that can be achieved.
We have seen that the MRAF scheme is limited by the diffraction-limited pixel size of 40 µm,
which is comparable to the intended size of the flat-top. There are several ways to reduce this
diffraction limit. First of all, we can use an SLM with a larger active surface. Our simula-
tion assumes an SLM with 1024 pixels of 8 µm wide, hence a surface area of 8 mm by 8 mm.
Unfortunately, to our knowledge, none of the commercially available SLM has an active area
exceeding 10-20 mm. A second method we can try is to change the imaging lens to one with a
shorter focal length. This solution, however, is not very practical due to the constraint of our
experimental chamber which restricts the placement of the lens to be a certain distance away
from the molecules. Lastly, we can place a telescope which relays the Fourier plane after the
initial imaging lens to the plane of the molecules while demagnifying the flat-top beam. The
disadvantage of this solution are the increased optical path length of the setup, and a possible
degradation of the output beam profile.

A point to take note when applying the MRAF algorithm with a real SLM device is the
discretization of the phase modulation provided by the SLM. Typical SLM devices are able
to provide the full 0 to 2π phase modulation with an 8-bit (256 levels) discretrization. Con-
sequently, it is more relevant to look at the diffraction from the discretized version of the
modulation pattern. We investigate this effect by taking the final phase profile obtained for
the 400 µm radius flat-top target after 200 iteration steps and discretizing it to 256 levels. The
output diffraction pattern from the discretized phase modulation shows only a small error (see
figure 3.15), keeping the same 44% diffraction efficiency and an increased of the fractional error
from around 1% to 7%.
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Figure 3.15: The intensity profile comparison of the diffraction pattern with a discretized phase
modulation. (Left) A cut across the Y axis profile of the discretized-modulation diffraction inten-
sity and (Right) the difference between the discretized-modulation and continuous-modulation
diffraction intensity.

Another problem with the original MRAF scheme is the lack of control over the phase of the
beam in the entire Fourier plane. For applications which are solely interested in the intensity
profile at the output plane, the phase of the beam is of course of no importance. Yet, our optical
trap is of the form of a lattice where it is desirable to keep the flat-top intensity profile over at
least several lattice sites. If the phase of the beam is uncontrolled, the beam profile might rapidly
change over a very short propagation distance. This is contrary to the case where the beam
phase is kept flat in the output plane, where we expect the flat-top profile to be maintained
over a distance of the order of the Rayleigh range of the beam [36]. We attempt to modify
the MRAF algorithm by imposing a flat phase pattern in the signal region, i.e. modifying the
expression of the mixed field into:

E
(n)
mix = (Eflat)|SR + (1−m)

(
E

(n)
FP

)
|NR. (3.2.10)

This modified algorithm shows a very poor result, as can be seen from figure 3.16 where we
show the final output profile after 200 iterations, taking the 400 µm radius flat-top profile as
target. We can see that even though we manage to keep a zero phase throughout the signal
region, the amplitude pattern does not converge to a flat-top pattern. Hence, we are forced
to abandon the control over the phase degree of freedom, which is a serious limitation of this
algorithm for our application.

Figure 3.16: The intensity profile of the output beam in the Fourier plane with the modified
MRAF algorithm after 200 iteration steps: the full 2D profile (Left) and the cut across the Y
axis (Right). Note the boundary between the signal region (SR) and the noise region (NR).

From the SLM device point of view, the main concern with our application is the high power
that we intend to employ for our trap. The liquid crystal type of SLM is especially prone to
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Figure 3.17: The phase profile of the output beam at the Fourier plane with the modified MRAF
algorithm after 200 iteration steps.

damage when used with a high power beam as the liquid crystal molecules in the SLM may
absorb the energy from the beam and boil, irreversibly damaging the device. In addition, both
the LC and piston-type SLM are very costly compared to the amplitude-modulation type SLM
which will be described in the next chapter.

To conclude this chapter, we have described the MRAF algorithm that is capable of gen-
erating a phase-only modulation to a Gaussian beam to produce a relatively smooth flat-top
diffraction pattern. The iteration form of the algorithm is beneficial to be used as a feedback
loop in the actual experimental implementation. However, as this algorithm is not capable of
both the amplitude shaping to the desired target pattern and a flat-phase output pattern, it is
not very suitable for the production of an optical lattice-type of trap geometry.
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Chapter 4

Beam Shaping with an
Amplitude-Modulation SLM

In this chapter, we explore a different beam shaping scheme which utilizes an amplitude-
modulation type SLM instead of the phase-modulation type. As we have explained in previous
chapter, an exact beam shaping requires both the phase and amplitude modulation simulta-
neously. In this section, we describe two possible beam shaping schemes that are applicable
to optical setups with a binary amplitude-modulation SLM: the holography scheme and the
Error Diffusion algorithm. These two schemes complete our overview of various beam shaping
strategies, and thus we aim to provide some comparisons between them to motivate our choice
of implementation, detailed in the next chapter.

4.1 Examples of Commercially Available
Amplitude-Modulation SLM

As we have done in the previous chapter, we give a brief description of the amplitude-modulation
type SLM devices. In this work, we focus only on two specific examples of devices, the Digital
Micromirror Device (DMD) from Texas Instrument and the static amplitude modulation plate.
Both are capable only of binary (on or off) amplitude modulation by design.

The Digital Micromirror Device (DMD)

This device was initially developed by Texas Instrument as a component for a projector. It
consists of a 2D array of micromirrors, each mounted on a torsion hinge that can be tilted by
an electrostatic actuator. In its active state, the device supports a command to tilt each indi-
vidual mirror either to the left or to the right (see the right side of figure 4.1). Consequently,
an incident input beam will be split into two components which are reflection from the pixels
in the two different tilt states. These two components are separated in angle of propagation.
By blocking off one component with a beam block, we effectively define one tilt state to be the
’ON’ state which reflects the incoming input beam, and other to be the ’OFF’ state which does
not reflect the input beam. In this manner, the SLM acts as a binary amplitude modulation
device.

This DMD device is packaged in different sizes, ranging from the small DLP3000 chip
(608x684 pixels of 7.6 µm pitch) to the large DLP9500 chip (1920x1080 pixels of 10.8 µm
pitch). The tilt angle of the pixels are + or -120 with respect to the substrate plane. The
reflectivity of the device is specified to be around 67%, resulting from various factor such as the
window transmission, micromirrors reflection factor, and the reduction from stray diffraction
due to the pixelated structure and the interpixel gap [38]. Unfortunately, this device is not
tested for applications with a high power laser as the input. The larger version of the chip
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Figure 4.1: The cross section view of the DMD device. (Left) The top view and (Right) the
side view.

supports a higher damage threshold due to the larger active area and a better heat dissipation
system.

Static Binary-Amplitude-Modulation Plate

Just like the phase-modulation plate, a binary-amplitude-modulation plate is also realizable. In
fact, we can fabricate this plate by a modified concept of a photomask. In the normal usage,
a photomask is a fused silica glass plate (a very high damage threshold material) covered with
an absorbing chrome metal layer. The photomask, as the name suggests, is used to block
a lithography light such that the chrome pattern in the photomask is imprinted to the wafer.
With current semiconductor lithography techniques, it is possible to imprint a 10-20 µm chrome
pattern into the photomask, which will serve as the ’OFF’ state pixels. By having a reflective
chrome-metal layer instead, the photomask should be suitable for a very high power application.

4.2 Beam Shaping with the Holography Method

In this section, we will explore the first of the two beam shaping methods using an amplitude-
modulation SLM that are covered in this chapter. The optical setup for this first scheme is
identical to the one used in MRAF algorithm (see figure 3.3 in previous chapter), but with an
amplitude-modulation SLM replacing the phase-modulation SLM in the input plane. This setup
is well-known as a variation of the holography scheme, normally called the Fourier-Transform
Holography [39] [40].

To understand how the conversion from a phase-modulation to amplitude modulation is
done, we observe the following reflectance pattern:

rholo ∝ |Egauss + Eobj |2 = Iobj + Iflat + EgaussE
∗
obj + E∗gaussEobj , (4.2.1)

called the hologram pattern. In the above expression, the reflectance pattern is in the form of
an interference between the input electric field Egauss and a new electric field Eobj which will be
determined later by our analysis. By modulating the input beam Egauss with this reflectance
pattern, we obtain the following field at the input plane:

Ein = Egauss · rholo ∝ (Iobj + Iflat)Egauss︸ ︷︷ ︸
unmodulated field

+ (Igauss)Eobj︸ ︷︷ ︸
object field

+ (E2
gauss)E

∗
obj︸ ︷︷ ︸

conjugate field

. (4.2.2)
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In equation 4.2.2 above, we can distinguish three components of the field in the input plane.
Firstly, there is a component proportional to Egauss, called the unmodulated field because it is
indeed a copy of the original Gaussian beam transmitted with a certain transmission percentage.
However, we are mostly interested in the two fields which carry our imposed intensity pattern:
the object field proportional to Eobj and the conjugate field that is proportional to the complex
conjugate of the object field E∗obj . In fact, we can exactly obtain a flat-top intensity pattern at
the Fourier plane from this object beam, by equating its field to the inverse Fourier Transform
of the flat-top beam field: Eobj = F−1 (Eflat). A technical difficulty at this point is to separate
the object beam from the unmodulated beam and the conjugate beam in the Fourier plane.
One way to achieve this is to add an angle in the propagation of the object beam such that it
is spatially separated from the unmodulated beam after a certain distance of propagation. In
a similar manner to a plane wave, we can define a beam propagating in the direction given by
its wavenumber k by adding a phase factor eik·r to the field expression. Thus, by defining the
object beam as

Eobj = F−1 (Eflat) e
ik·r, (4.2.3)

we will see that the input Gaussian beam is split into three beams: the unmodulated beam
propagating in the same direction as the input beam, the object beam deflected to an angle θ
and its conjugate beam deflected in the opposite direction at angle −θ. This separation allows
us to collect only the object beam with the imaging lens, as depicted in figure ??.

Figure 4.2: The schematic diagram of the Fourier-Transform Holography scheme. The modu-
lated input beam is split into three beams, and the object beam is imaged by an imaging lens
to form the desired pattern [39].

We perform a brief numerical study of this scheme. We take a 1024x1024 pixels discretiza-
tion of the input and Fourier plane to optimize the Fast-Fourier Transform computation speed,
but still taking the same pixel size as the DLP3000 SLM (7.637 µm). The input Gaussian beam
waist is set to 3 mm, the same as the previous simulation. Similarly, the flat-top beam intensity
is modeled as an order 20 Super Lorentz function of 400 µm radius. The focal length of the
imaging lens is 300 mm. With this input and output definition, we calculate rholo according to
equation 4.2.1, normalizing the maximum reflectance to one. We then observe the beam profile
at the Fourier plane, assuming that all three parts of the reflected modulated input beam are
captured and imaged by the 300 mm lens.

In figure 4.3, we show our numerical simulation result of this holography scheme. In the left
figure, we plot the log of the beam intensity profile in the Fourier plane. In the right part of
the figure, we zoom in at the object beam which is diffracted to the side as expected from its
propagation angle. Here we can see that the flat-top intensity pattern is exactly reproduced in
this part of the beam.
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Figure 4.3: Numerical Simulation result of the Fourier-Transform Holography scheme. (Left)
Log scale beam intensity profile at the Fourier plane and (Right) intensity profile of the object
beam at the Fourier plane.

At this point however, we decided not to further pursue with this scheme due to several
disadvantages that we found with this initial study. A major problem that we find in this sim-
ulation is the extremely low portion of the beam power that is distributed to the object beam.
In figure 4.3, the intensity map is plotted in log scale due to the fact that the unmodulated
beam contains more than 99.9% of the input power. Our several attempts in modifying the
parameters of the simulation (input beam size, target beam size and order, adding a certain
weight coefficient in the object beam part in equation 4.2.1) fails to appreciably increase the
object beam power. Unfortunately, even if we manage to lower the power in the unmodulated
beam, the power will still be at least split into two parts in the object and conjugate beam.
This 50% efficiency in the perfect case is already comparable to the efficiency in the MRAF
scheme (44%). Secondly, we find that a simple discretization procedure into a binary hologram
reflectance pattern significantly degrades the beam shaping quality. In figure 4.4, we compare
the object beam intensity profile with the ideal reflectance pattern rholo and the binary approx-
imation to this pattern by setting the reflectance to one at the positions where they are greater
than 0.5, and 0 otherwise. As we can see, the binary reflectance hologram performs poorly and
this is a big issue for our binary reflectance SLM.

Figure 4.4: Comparison between the object beam intensity profile in the Fourier plane with the
ideal (Left) and binary (Right) hologram.

In conclusion, this section describes our brief study of the Fourier Transform Holography
scheme for the beam shaping purpose. The chief strength of this scheme is its ability to perfectly
replicate any target pattern in form of the object beam, with only an amplitude modulation
SLM as a requirement. Nevertheless, the efficiency and binary discretization issues remain a
clear hindrance for an experimental adaptation of this scheme.
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4.3 Beam Shaping with the Error Diffusion Algorithm

In the previous two beam shaping methods, we focus on controlling the spread of the beam
in its propagation, then using a lens to control the diffraction pattern of the beam. A very
straightforward method, however, can be implemented by setting a reflectance pattern provided
by the SLM as the ratio between the target and the input field pattern (refer to figure 4.5). With
this simple idea, the only technical difficulty to surmount is to provide a method to approximate
the aforementioned reflectance pattern with a binary one. This is precisely the problem which
the Error Diffusion algorithm tries to address.

Figure 4.5: Beam shaping from a gaussian intensity pattern to a flat-top intensity pattern with
a space-varying reflectivity pattern.

Optical Setup and Algorithm Description

The optical setup we consider with this algorithm is different from the previous one, since our
goal is to exactly map the profile of the beam at the input plane (i.e. the SLM plane). To
achieve this goal, we have to use an even number of lenses to form the so-called relay telescope
arrangement. We start our analysis with the simplest setup involving a pair of lenses in figure
4.6 below:

Figure 4.6: The schematic of the optical setup used in the error diffusion beam shaping algo-
rithm.

There are four optical components involved in this scheme as we ca see from figure 4.6. The
first one is the SLM, represented by the DLP3000 which we actually use in the experiment
described in the next chapter. We mark the SLM plane as the input plane in this configuration.
The SLM is placed at distance f1 away from the first positive lens (of focal length f1). The first
lens is followed by the second lens (of focal length f2) where they are separated by a distance
f1 + f2. Finally, an iris or a pinhole is placed at the Fourier plane, which is located at distance
f1 behind the first lens. The output plane where the we impose the target pattern is located at
distance f2 away from the second lens. We place a camera icon at this location in spirit of our
test setup. In the real experiment, this will of course be replaced by the trapped molecules.
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The input beam at the SLM plane is assumed to be the Gaussian beam at its waist, as the
case in previous two systems. The reflected beam from the SLM carries a binary amplitude
modulation s(x, y), where s(x, y) is either 0 (if the pixel at (x, y) is turned off) or 1 (if the pixel
at (x, y) is turned on). Hence, the electric field at the input plane is given by:

EIP (x, y) = Egauss(x, y) · s(x, y). (4.3.1)

Neglecting the iris for the moment, the electric field of beam at the output beam is proportional
to the field at the input plane, due to the relay telescope arrangement ([32], refer to appendix
A):

EOP (x, y) = −f1

f2
EIP

(
−f1

f2
x,−f1

f2
y

)
. (4.3.2)

We recognize the usual magnification factor of a telescope which is just the ratio of the second
and the first lens focal lengths. For our application, our goal is to set the output beam pattern
to a flat-top pattern, preferably with a flat phase: EOP = Eflat(x, y). Let us first suppose that
we were equipped with an SLM capable of producing an arbitrary reflectance pattern r(x, y),
where r can vary between 0 and 1. Considering the following reflectivity pattern:

rflat(x, y) := Eflat(x, y)/Egauss(x, y), (4.3.3)

we will exactly obtain the flat-top beam as desired. Since our SLM is limited to binary modu-
lation, the most natural approximation of rflat is to set a pixel to be ’on’ whenever the required
reflectance is more than 0.5, and 0 otherwise:

sflat(x, y) := 1r(x,y)≥0.5 (4.3.4)

Equation 4.3.2 implies that if our telescope has an infinite numerical aperture (i.e. it captures
all ray bundles diffracted from the SLM), the intensity we expect that the output plane with
sflat modulation is our Gaussian profile with dark spots at places where the pixels of the SLM
are set to 0. An interesting situation takes place if we limit the numerical aperture of the
lens system by installing an iris at the Fourier plane. Due to the Fourier Transform relation,
a rapidly-varying spatial modulation (e.g. an ’off’ and ’on’ pixel beside one another) mostly
contributes to the far-wing part of the beam intensity at the Fourier plane. The iris placed at
the Fourier plane will therefore act as a low pass filter (LPF), filtering out high spatial-frequency
modulation while leaving the slowly-varying component. As a result, the rapid-modulations are
averaged out in the output beam profile.

To understand this averaging effect more precisely, let us consider the propagation of the
input field EIP from the SLM to the output plane. Neglecting the finite aperture of the lens,
the field at the Fourier plane is given by the Fourier Transform of the input field multiplied by
the transmission of the pinhole Tph:

EFP (x, y) = Tph(x, y) · 1

iλf1

∫ ∞
−∞

∫ ∞
−∞

EIP (X,Y )e
−2πi xX

λf1 e
−2πi yY

λf1 dXdY . (4.3.5)

Propagating to the output plane, the field there is another Fourier Transform of the field at the
Fourier plane, but with the focal length factor from the second lens:

EOP (x, y) =
1

iλf2

∫ ∞
−∞

∫ ∞
−∞

(
EFP (X,Y )Tph(X,Y )

)
e
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λf2 e
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(
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√
X2 + Y 2

)
dXdY. (4.3.6)
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We note the use of convolution theorem in the second line of the above equation. We assume
the pinhole to be spherical with an opening radius rph. The Fourier Transform of the pinhole
transmission function is the Airy function, which can be written in terms of the Bessel function
of the first kind J1.

Notice the difference in the structure of the output field in case of an ideal telescope (equation
4.3.2) and a telescope with a pinhole in its Fourier plane (equation 4.3.6). In an ideal telescope,
the field at the output plane is a one to one mapping from the input field. The output field at a
certain image position (x, y) only depends on the input field at the object position (−f2

f1
x,−f2

f1
y).

In the presence of a pinhole, the output field at the image position (x, y) is now an integral over
the entire input field, meaning that the field at that position is a weighted sum over contributions
from the neighborhood of the object point (−f2

f1
x,−f2

f1
y) in the input plane. The typical size

of the neighborhood which contributes significantly to the output field is determined by the
convolution kernel K(X,Y ):

K(X,Y ) =
rph

λf1

√
X2 + Y 2

J1

(
2πrph
λf1

√
X2 + Y 2

)
. (4.3.7)

Figure 4.7: Plot of the convolution kernel function of the telescope with a spatial filter.

The plot of the convolution kernel (the Airy function) in figure 4.7 shows that the typical size
of the neighborhood which contributes to the output field is of the order of the first minimum
of this function which occurs at distance

R ≈ 0.61
λf1

rph
. (4.3.8)

If we look back at our system, we can convert this distance in terms of the number SLM pixels.
In this manner, we can think of the output profile as the average of input field from a bunch of
pixels, centered at the pixel containing the object point.

With this concept in mind, an alternative method of approximating a variable reflectivity
with a binary one has been studied by several authors. Since the amplitude of the output beam
is an average over several pixels, one can achieve values between 0 and 1 by turning on the
corresponding fraction of pixels over the averaging area. However, the main difficulty of imple-
menting this idea is to correctly choose whether each pixel should be in the ’on’ or ’off’ state.
According to equation 4.3.8, a smaller pinhole will increase the number of pixels to be averaged
which should lead to a smoother modulation. At the same time however, a pixel contributes to
a larger portion of the output beam. As such, it is not evident how to perform a deconvolution
to directly determine the state of each pixel based on the target amplitude pattern.
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Figure 4.8: The diagrammatic illustration of the error diffusion algorithm. The ideal transmis-
sion matrix (Left) is processed sequentially and the binary transmission matrix is created based
on the ideal transmission modified by the propagated error terms from its neighbors.

The error diffusion algorithm, first developped by Floyd and Steinberg [41] and later by
Dorrer and Zuegel [42], attempts a different approach to this pixel assignment problem. At
the beginning of the algorithm, the pixelated form of the target reflectance pattern r (equation
4.3.3) is calculated. We follow a sequential order of processing starting from the top left to
the bottom right as indicated in figure 4.8 to calculate the binary pattern approximation sf lat.
Let us suppose that we have arrived to process the pixel in the nth row and mth column. The
binary pattern pixel is taken to be 0 if the target reflectance is less than 0.5, and 1 otherwise as
we did previously. However, we notice that our approximation induces an error term e(m,n) =
r(m,n)− s(m,n) which needs to be compensated. This can indeed be done in the system with
the spatial filter due to the pixel-averaging effect. The error diffusion algorithm takes advantage
of this feature by spreading the error term to the neighboring unprocessed pixels, i.e. modifying
their target reflectivity pattern to compensate for this error term. Refering to figure 4.8, there
are four unprocessed nearest neighbors: the right side with coordinate (m,n+1), the lower right
side (n+ 1,m+ 1), the bottom side (n+ 1,m), and the lower left side (n+ 1,m− 1). We adopt
the error diffusion method described in [42], where the error term from the pixel position (n,m)
is distributed to these four unprocessed nearest neighbors with the following weight coefficients:

r(m,n+ 1) → r(m,n+ 1) +
7

16
e(m,n)

r(m+ 1, n+ 1) → r(m+ 1, n+ 1) +
1

16
e(m,n)

r(m+ 1, n) → r(m+ 1, n) +
5

16
e(m,n)

r(m+ 1, n− 1) → r(m+ 1, n− 1) +
3

16
e(m,n). (4.3.9)

It is suggested in some references that changing the distribution of the weight coefficients or in-
volving more neighboring pixels do not significantly improve the result of this algorithm [42] [35].

Numerical Simulation Test of the Error Diffusion Algorithm

Simulation Methods and Parameters

As we did with the previous algorithms, we conduct a numerical simulation to test the algorithm.
We choose the parameters to suit the DLP3000 chip which is in our disposition for the actual
experimental test. The chip consist of 684x608 pixels of 7.637 µm pitch, which is arranged in a
diamond configuration (refer to figure 4.9). In our simulation, we represent this pixel geometry
by rotating the pixels 45 degree to obtain a rectangular tiles and then embedding it in a 950x950
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pixel block as shown in figure 4.10. The area outside the mirror chip is not physical, and their
reflectivity is always set to 0.

Figure 4.9: The pixel structure of the DLP3000 [38].

Figure 4.10: The representation of the DLP3000 pixel geometry for the simulation. The pink
area represents the pixels of the DLP3000 chip, while the blue are not physical.

The active area of the DLP3000 chip is a rectangle, 3.7 mm in height and 6.6 mm in width.
We adjust our input Gaussian beam to the maximum size allowable by the chip aperture. Based
on the argument of Campbell and DeShazer [43], the truncation at the aperture will induce a
fringe at the far-field starting from the beam waist larger than around one-third of the aperture
size. Hence, we choose the input Gaussian beam waist to be 1.2 mm. The waist is again
located at the SLM plane, such that the beam phase at this plane is flat equal to 0. Since
we are dealing with only the beam amplitude, we choose to normalize the beam such that the
maximum intensity of this input beam is equal to 1:

Igauss(x, y) = exp

(
−2(x2 + y2)

w2
Gauss

)
, (4.3.10)

where wGauss denotes the waist of the Gaussian beam.

In this simulation, the flat-top intensity profile is again represented by a Super-Lorentz
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function. We remind that this function takes the form:

SLn(r) = ISL

[
1 +

∣∣∣∣ r

wSL

∣∣∣∣n]−1

. (4.3.11)

Here wSL is the radius of the flat-top beam. A special care has to be exercised in this situation,
as we cannot allow the target reflectivity pattern to be larger than one. At the same time, the
parameters of the flat-top pattern (the maximum intensity and the width) are to be chosen to
maximize the shaping efficiency which in this case is equal to the power of the output profile di-
vided by the power of the input Gaussian profile. By numerically integrating the Super-Lorentz
(SL) function, the power of the flat-top profile and therefore the beam shaping efficiency is
calculated for any height and width parameters. In figure 4.11, we show a sample of our effi-
ciency calculation for order 8 and 20 Super-Lorentz function, intentionally removing the choice
of parameters that leads to a greater than one reflectivity. We observe that the beam shaping
is more efficient for lower order SL functions, as the pattern is less sharp and more similar to
the Gaussian pattern. For the simulation, we choose the value of 0.4 for the maximum intensity
of the flat-top and the width of between 0.67 (800 µm) and 0.75 (900 µm) of the original input
beam waist. We take note that the physical radius of the flat-top beam in the output plane
would be equal to the above set value, multiplied by the magnification of the telescope. For
these values, the beam shaping efficiency is of the order of 40-50%.

Figure 4.11: Beam shaping efficiency for various values of flat-top maximum intensity and width.
(Left) Efficiency for the order 8 Super-Lorentz function and (Right) for the order 20.

Figure 4.12: The normalized input gaussian beam intensity, the target beam intensity and the
reflectance for this set of input and output. The input waist is 1.2 mm, the output beam is an
order 8 SL function with 0.4 maximum intensity and 0.9 mm radius.
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As for the optics, we take the first lens to be a 300 mm lens as is used in the test setup
described in the next chapter. For this simulation, the focal length of the second lens only plays
the role of determining the magnification of the system (i.e. the physical size of the flat-top
beam in the output plane) but does not influence the beam shaping process. The opening
radius of the pinhole is an independent variable in the simulation which will be investigated to
optimize the smoothness of the output profile IOP . This quality is analyzed in similar manner
to the IFTA simulation. We fit the output profile to the SL function of the same order as the
target, with its width and amplitude as the fitting variables. We reuse the same definition of
the fractional error:

η =
1

NSR

√√√√√∑
SR

I(n)
OP − I

(n)
fit

I
(n)
fit

2

(4.3.12)

as previously, but with the measured region defined to be some area big enough to contain the
entire flat-top profile.

The simulation is implemented in Mathematica. We first begin by initializing the input
Gaussian profile centered at the mirror chip in the aforementioned 950x950 pixels represen-
tation. Following this step, we also define the Super-Lorentzian target intensity pattern, and
calculate the target reflectance (refer to figure 4.12 for an example). We then define a subset
area of the mirror chip large enough to contain the whole target pattern, where the binary
pattern is processed according to the error diffusion algorithm. The pixel of the chip is set ot 0
outside this area. To model the effect of the pinhole, we discretize the Airy function (equation
4.3.7) into a matrix which we call the low pass filter (LPF) matrix. The output field is thus
obtained by performing a discrete convolution between the LPF matrix and the matrix of the
input beam multiplied by the binary modulation of the mirror chip. The output field is then
fitted against the SL function and the fractional error is calculated. We repeat this procedure
while varying the output target profile and the opening size of the pinhole.

Simulation Results and Discussion

In figure 4.14, we show the result of this error diffusion algorithm, shaping a 1.2 mm waist
gaussian beam into an 8th order SL beam of radius 0.9 mm. As we can observe by eye, the
resulting output beam is smooth, confirmed by a low fractional error of around 0.25%. While
the opening diameter of the pinhole is varied, a particular trend can be observed in figure 4.15.
For a large pinhole diameter (6 mm), the output profile is rather rough, reminiscent of the con-
trast of the binary reflectivity. As we decrease the pinhole opening, the pattern turns smoother,
with the best output between 2 and 3 mm diameter (compare with the fractional error plot in
figure 4.16). However, as we decrease the opening further, some fringes appear in the output
pattern which could be a sign of over-averaging. Finally, we note that the efficiency of the
scheme (the ratio between the power of the output and the input beam) is approximately 50%
for the best output produced with 2 mm diameter pinhole. The number is consistent with the
one obtained with numerical integration of the SL function, further supporting the success of
the beam shaping procedure.

To get an estimation of the extent of the averaging by the pinhole, we could use a Gaussian
beam propagation as a model. Suppose that we start with a Gaussian beam of waist w at the
input plane. Following the Gaussian beam propagation, (see appendix B), the beam waist at
the Fourier plane of the lens is given by:

wFP =
λf

πw
. (4.3.13)

According to the criterion by Campbell and DeShazer [43], a Gaussian beam is transmitted with
negligible disturbance if the opening radius of an aperture is at least twice the waist of the beam.
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Figure 4.13: Input, output and reflectivity pattern in the numerical simulation of the Error Dif-
fusion Algorithm. Top pictures: (Left) input Gaussian pattern and (Right) output SL pattern.
The intensity is normalized to the peak intensity of the input pattern. Bottom pictures: (Left)
target reflectance pattern r and (Right) binary reflectance pattern s obtained by the algorithm.

Figure 4.14: Output profile of the beam shaped with the Error Diffusion Algorithm. (Left) The
2D profile and (Right) the cut across X axis. Simulation parameters: input waist is 1.2 mm,
output is the 8th order Super-Lorentzian with 0.9 mm radius, pinhole diameter is 3 mm.

Taking the pinhole diameter of 2 mm, the undisturbed transmitted Gaussian beam would be
those with waist equals to 500 µm or less. Refering back to equation 4.3.13, the corresponding
waist of the beam at the SLM plane is 200 µm or larger. Converting to the pixel size of the
SLM, the waist of 200 µm is roughly equal to 27 pixels, which means the optimum averaging
for this algorithm requires an average over a pixel block of 27 pixels radius. This method is
useful as an estimate, especially when considering the effect of the aperture from other optical
elements in the beam path.
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Figure 4.15: Cut across X axis of the output profile from the error diffusion algorithm with
various pinhole opening diameter dph. Orange dots are the simulated beam profile, while the
blue line is the fit. Simulation parameters: input waist is 1.2 mm, output is the 8th order
Super-Lorentzian with 0.9 mm radius.

Figure 4.16: Fractional error of the beam shaped with the error diffusion algorithm in function
of pinhole diameter. Simulation parameters: input waist is 1.2 mm, output is the 8th order
Super-Lorentzian with 0.9 mm radius, pinhole diameter is 3 mm.

Figure 4.17: Cut across the X axis of the output profiles of the beam shaped with the Error
Diffusion Algorithm, and the fractional error plot in function of pinhole diameter dph. Simulation
parameters: input waist is 1.2 mm, output is the 8th order Super-Lorentzian with 0.8 mm radius.
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To further our exploration with this algorithm, we make a comparison with a smaller radius
target profile. The pattern we use is the same 8th order SL function but with a smaller radius
of 800 µm. As we can see from figure 4.18, we found that the output profiles display a similar
trend as observed with the larger target radius: a fringe for 1 mm diameter pinhole, a smooth
pattern for 2 - 3 mm diameter which gradually grows more noisy for larger pinhole diameters.
The fractional error is still of the order of 0.2%, but the efficiency is lower (40% for both simu-
lation and theoretical) due to the smaller target size.

In addition, we also compare the performance of this algorithm with a steeper target profile.
For this, we set the target to be the order 20 SL function of radius 900 mum. We observe
that the error is larger in comparison to the order 8 SL target, and that the optimum pinhole
diameter shifts to a larger value. The best profile is found at 4 mm diameter, with a fractional
error of 0.48%. The efficiency for this steeper target is also smaller at 46%. However, this shows
that a very sharp flat-top shape is theoretically achievable with this scheme.

Figure 4.18: Cut across the X axis of the output profiles of the beam shaped with the Error
Diffusion Algorithm, and the fractional error plot in function of pinhole diameter dph. Simulation
parameters: input waist is 1.2 mm, output is the 20th order Super-Lorentzian with 0.9 mm
radius.

Viability for the Realization of the Optical Trap

As we did with the previous algorithms, we address several comments on the application of
this Error Diffusion Algorithm with the binary amplitude-modulation SLM on our optical trap
setting. To start with the positive notes, the algorithm performs very efficiently to produce a
smooth flat-top profile with only one step processing. The fractional error of the output beam is
of the same order as the one produced by the MRAF algorithm, and we don’t run into trouble
of having to define a very small target of several pixels in size (i.e. higher resolution). The
efficiency of the two schemes (MRAF and Error Diffusion) are comparable, 44% in the case of
MRAF and around 50% for the Error Diffusion algorithm. The optical components involved
(a pair of lenses and a spatial filter) are also still relatively simple. However, caution must be
exercised to ensure that the spatial filter is not damaged when the input power is high.

Unlike the MRAF algorithm, this algorithm does not modulate the phase of the beam.
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Therefore, if the input beam is well placed at the SLM plane and the telescope is well set,
the output beam will have a flat phase front. A deviation from this condition will induce a
quadratic phase curvature to the output profile, which means that the flat-top intensity profile
occurs when the beam is already expanding or shrinking. Barring those misalignment effects,
the flat phase front is exactly what is needed for the optical lattice setup.

Nevertheless, one disadvantage of the Error Diffusion algorithm is its non-iterative form.
As mentioned in the previous chapter, an iterative algorithm is important to adapt the SLM
modulation against fluctuations, misalignment, and imperfection of the input profile since the
beam shaping scheme is always very dependent on the input. A suggestion to circumvent this
problem, for example from [44], is to implement a separate iterative correction method to the
initial binary modulation pattern provided by the algorithm.

Figure 4.19: Optical setup of a relay telescope.

Another point to take note from this algorithm is the size of the output profile. As previously
mentioned, the physical radius of the flat-top beam is equal to the radius set in the simulation,
multiplied by the demagnification of the telescope. This means that if we convert a 1.2 mm
waist Gaussian beam into a 0.9 mm radius flat-top pattern, and we wish to have a 50 µm radius
flat-top beam for the trap, we need to provide a factor of 18 demagnification using the telescope
alignment. The conventional relay telescope setup (figure 4.19) provides a magnification factor
of f2/f1 for a total length of 2f1 + f2. We see that to achieve a demagnification, the first lens
must be of a longer focal length than the second. Due to the constraint of the vacuum chamber
and a possible aberration, the last lens before the atoms should not be smaller than 50 mm in
focal length. Even then, if we only use one telescope to provide the factor 18 demagnification,
the first lens have a focal length of at least 900 mm, and therefore a total telescope length of
1.9 m, which is very space-consuming. To save space, we can employ several strategies. First of
all, we can stack two telescopes instead of only one. For example, taking two pairs of a 200 mm
followed by a 50 mm lenses will give a total demagnification of 16 (output radius of 56.25 µm)
for a total length of 1 m. Secondly, we can use only a single lens to provide a demagnification.
We know from classical optics that placing an object at distance d1 in front of a lens of focal
length f , the image is formed at distance d2 = d1f

d1−f with a magnification factor of |d2/d1| (refer
to figure 4.20). Hence, if the object distance is equal to nf , where n is larger than one, the
image is found at distance nf/(n−1) with a demagnification factor of n−1. For example, with
a single 50 mm lens, we can achieve a factor 16 demagnification with a shorter setup length of
853 mm (object distance is 800 mm, image distance 53 mm). However, there are two drawbacks
of this setup: a much reduced numerical aperture caused by the long object distance and the in-
evitable addition of a quadratic phase factor. In fact, the extra quadratic phase factor can cause
a very severe focusing/expansion of the beam which have to be avoided in the lattice setup. We
found that the additional quadratic phase is less important if the input beam is of smaller size.
Therefore, the single-lens demagnification is more suitable to be used as a second stage of a two-
stage magnification setup (preceded by a relay telescope, e.g. in reference [45]). Thirdly, we can
of course, decrease the input beam waist as necessary. The main disadvantages for this is the
higher peak intensity of the input beam which requires an SLM with a very high damage thresh-
old and the reduced number of pixels which effectively participates in the beam shaping process.
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Figure 4.20: Optical setup of a single-lens demagnification telescope.

Finally, the SLM that we intend to use with this algorithm is the DLP3000 chip. The SLM
still suffers from a low damage threshold, as it has a small active area and no particular heat
dissipation design, in addition to a relatively smaller reflectivity factor (around 67% as described
in previous section). However, the chip is available at an affordable price, and we choose to
proceed with this solution for a proof-of-concept experiment.

In conclusion, we have described the Error Diffusion algorithm that generates a binary
amplitude modulation approximation to an unconstrained amplitude modulation beam shaping.
Used in combination with a low-pass spatial filter, the binary reflectance pattern is able to
perform a smooth and relatively efficient beam shaping from a gaussian to a flat-top intensity
pattern. In particular, the scheme generates a flat phase front flat-top beam, which is suitable
for the optical lattice trap design.
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Chapter 5

First Experimental Results of the
Optical Lattice Setup

We present some early results of the implementation of the beam shaping scheme with the
Error Diffusion algorithm and the DLP3000 mirror chip. We will start by introducing the laser
system which we intend to use to form the actual optical trap, followed by some preliminary
measurements to characterize the system. Finally, we present our early measurement results of
the beam shaping from the laser output to a flat-top beam profile.

5.1 The Laser System

The laser system in our disposition is the Mephisto MOPA series from Coherent Inc. [46]. The
laser features a high power (up to 55 W) output from several MOPA amplification stages of the
laser diode source, and lases at 1064 nm wavelength. In addition, the laser output beam has a
very narrow linewidth of ≈ 1 kHz and is equipped with a noise suppression module (for more
information, refer to the data from the laser manual at [47]).

Our first approach is to control the power output of the laser. The high power output of the
laser needs to be accounted for and excess power dump properly in each step, to prevent the
damage on optical components and the risk of injury to the user. The output power of the laser
depends on the provided current and therefore, we make a measurement of the beam output
power in function of the applied current. The measurement is taken with the S322C thermal
power sensor from Thorlabs, that has a damage threshold of 200 W [48]. The sensor is placed
approximately 55 cm away from the output port of the laser. The measured data is displayed
in figure 5.1.

Figure 5.1: Laser output power in function of the applied current to the laser box.

The lasing threshold is found to be around 10-11 A. We find that the output power grows
to around 50 W at 52 A current but the device can provide even more power at higher current.
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Nonetheless, we decide to stop at 52 A since we don’t really need to use the full power of the
laser. This data is used in subsequent discussions as our means to convert the reading of the
current to the actual laser power.

Figure 5.2: Mounted optical isolator, with safety tubes to house the high power beam.

Our next step is to install an optical isolator directly the laser output. The optical isolator
is an optical element which attenuates any back-reflection which would be directed back to the
laser. The isolator in our setup is the Faraday-type isolator from EOT, designed for high power
beam at 1045 to 1080 nm wavelength [49]. A Faraday isolator typically consists of a big magnet
(Faraday rotator) placed between two polarizing beamsplitter cubes (PBS). For a beam prop-
agating in the forward direction (entering from the input face and exiting through the output
face), the rotator rotates the beam polarization by 45°due to the Faraday effect, and thus it will
be transmitted by the output PBS. In the contrary, for a beam propagating in the backward
direction, the beam polarization is rotated by -45°, and thus the beam will be reflected by the
input face PBS, preventing it from reaching the laser port.

Figure 5.3: Schematic diagram of a Faraday isolator.

We conducted two measurements for the isolator, to determine the transmission and the
isolation figures. For the transmission, the isolator is placed directly in front of the laser output,
and we measure the transmitted power of the beam. We optimize the transmission of the isolator
by rotating the whole isolator body to match the polarization of the beam with the entry PBS.
The transmission of the isolator is calculated as the ratio between the measured transmitted
beam power with and without the isolator, and it is plotted in figure 5.4 in function of the input
beam power. This transmission factor is greater than 95%, and it tends to increase at higher
beam power perhaps due to a better beam mode at higher power. To measure the isolation
factor of the isolator, we mount the isolator in reverse, such that the beam now enters from
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the exit face. The beam therefore simulates the back-reflected light from an optical component,
and the transmission from the input face is the leakage which would go back to the laser port.
We place a half waveplate (HWP) before the isolator to match the beam polarization with this
exit face PBS as to maximize the power of the leakage beam. The isolation of the isolator is
defined as the ratio between the transmitted leakage beam power and the power of the input
beam. As we can see from figure 5.4, the average isolation figure is about 0.1% (30 dB), which
is consistent with the specification from the device datasheet.

Figure 5.4: The transmission (Left) and isolation (Right) of the optical isolator in function of
the power incident to the isolator.

5.2 Beam Profile Measurement Before the SLM

Once we establish the laser output through the optical isolator, our next step is to prepare
and measure the beam profile for the beam shaping scheme. The beam profile measurement is
done with the Beam Master device from Coherent [50]. This device consists of a silicon pho-
todetector preceeded by two main perpendicular knife edges. As a knife edge slides along an
axis, the detector measures the power of the unblocked part of the beam. Hence, the change
of the measured power in a particular position is equal to the beam intensity, integrated along
the transverse direction, at that position. The beam master measures the integrated intensity
profile along the two perpendicular axes of the knife edges. The device has a square aperture
of 9 mm side and it can measure a beam as small as a few micrometer in size with a typical
resolution of 1 µ[51].

Figure 5.5: The principle behind the operation of the Beam Master device [51].

Before feeding the beam into the Beam Master, we need a considerable attenuation of the
high power beam to avoid damaging the device. The Beam Master is equipped with a slot for
an attenuator in front of its sensor. However, even with the thicker attenuator, the maximum
specified input power is 1 W. We have the option of putting additional attenuators in front of
the device, however we prefer not to do so for two reasons. First of all, attenuators usually
introduce unwanted fringes due to some interference or due to some pollutant in either face of
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the attenuator. Secondly, the attenuators in our disposition are absorptive attenuators which
is not suitable for a high power laser. A factor 100 attenuation of a 50 W beam means 49.5 W
absorbed power by the attenuator, a definite cause of damage to this component.

Instead of placing attenuators, we decide to attenuate the power of the beam with several
components, as shown in figure 5.6. Directly after the isolator, we place the pair of a half
waveplate (HWP) and a beam sampler. The beam sampler is in essence an uncoated glass plate
which reflects between approximately 1 to 10% of the beam power, depending on the polariza-
tion of the beam. The remaining of the beam power is transmitted through the beam sampler,
and is dumped to the Thorlabs power meter (for power measurement) or any other beam dump.
We place a negative lens before the dump to enlarge the beam, thus reducing its peak intensity.
To eliminate the further use of attenuators, we place a block containing a polarizing beamsplit-
ter cube (PBS) followed by a HWP and another PBS. The first PBS cleans up the polarization
of the beam, transmitting only the horizontally polarized component of the beam. The HWP
allows a rotation of the beam polarization before the final PBS, hence allowing us to choose the
power transmitted by this PBS. With this arrangement, the final beam output (the one trans-
mitted by the last PBS) can be tuned between ≈ 0.5 mW to 300 mW, for the input power of
50 W (laser current of 52 A). We remark that the majority of the optical components (mirrors,
lenses, PBS, and beam sampler) are made from the UV Fused Silica substrate that has a high
damage threshold.

Figure 5.6: Experimental setup for the beam profile measurement. The red arrow indicates the
path of the main beam, measured by the Beam Master.

Initial Beam Profile Measurement

For the first measurement, we measure the profile of the beam directly after the PBS block.
The purpose of this measurement is two-fold: firstly, to check that the laser output profile is
Gaussian and secondly, to find out where and how big is the beam waist. We record the inte-
grated intensity profile along the horizontal and vertical axis with the Beam Master for several
values of distances between the laser output port and the Beam Master and for different power
of the beam.
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Figure 5.7: Vertical axis intensity profile for some selected beam power. The sensor is 580 mm
after the output port. Yellow line is the measured intensity while the red line is the gaussian fit
to the measured profile.

We start with the comparison of the intensity profile for various beam power. In figure 5.7,
we display the intensity along the vertical axis for different beam powers. As can be seen from
the figure, the intensity profile is a Gaussian peak with some additional background intensity
on the wing. Furthermore, we observe that the background intensity, which can be attributed
to the spontaneous emission from the amplification crystals, contributes to a smaller percentage
of the total power when the beam power is higher. Hence, we decide to keep the laser power at
49.1 W (52 A of applied laser current) for all the subsequent measurements.
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Figure 5.8: Horizontal axis intensity profile of the laser output beam for some selected distances.
Yellow line is the measured intensity while the red line is the gaussian fit to the measured profile.

In figure 5.8 and 5.9, the plot of the integrated intensity profile along the horizontal and
vertical axis respectively, for several distances are displayed. Comparing the beam profile with
the built-in Gaussian beam fit, we observe that the profiles in both directions are very well
Gaussian even for long propagation distances. In distances nearer to the output port, we
observe some fringes at the wing of the profile, while for the long distances, the beam expand
and we can see some noise around the central Gaussian peak.

Subsequently, we analyze the propagation profile of the beam by fitting the intensity profile
both vertical and horizontal directions to a Gaussian distribution. In figure 5.10, we plot both
the beam spot size in horizontal direction and the beam ellipticity, defined as the ratio of the
beam spot size in the horizontal and vertical directions, in function of position (the laser output
port is defined as the origin). The spot size profile shows that the beam waist is located near
the output port of the laser. Fitting the spot size function to the formula given by the gaussian
beam propagation: (refer to appendix B)

w(z) = w0

√
1 +

(
λ(z − z0)

πw0

)2

, (5.2.1)

we determine the beam waist w0 and its position z0. For the vertical direction, the waist is 379
µm, located 142.4 mm behind the output port. For the horizontal direction, the waist is 406
µm, positioned at 75.5 mm behind the output port of the laser. Therefore, the beam features
a minor ellipticity (different waist size in the two directions) and astigmatism (different waist
position in the two directions) but still within the specification from the laser datasheet. In
fact, the ellipticity of approximately 1.1 observed from figure 5.10 is the upper limit mentioned
in the datasheet.
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Figure 5.9: Vertical axis intensity profile of the laser output beam for some selected distances.
Yellow line is the measured intensity while the red line is the Gaussian fit to the measured
profile.

Figure 5.10: Laser output beam spot size in function of position from the laser output port, for
the laser power of 49.1 W. Red dots indicate the data points, while the blue line is the fit to
the Gaussian beam propagation function (equation 5.2.1).

Collimated Beam Profile Measurement

The beam shaping scheme requires the input beam waist at the SLM plane. Experimentally,
this condition is never perfectly achievable and instead, we aim to produce a collimated beam
as the input. Practically, a collimated beam is a Gaussian beam with a large waist of the order
of 1 mm. For a beam with such waist, the Rayleigh length of the beam is of the order of several
meters. Therefore, we would observe that the beam size is nearly constant within several hun-
dreds of milimeters, the typical distances in an optical alignment. This point of view explains
the classical optics picture, where a collimated beam is pictured as beam propagating with a
constant spot size.

As we understand from the classical optics, a collimated beam is produced by placing a lens
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at a distance equals to its focal length away from the source. In our case, the source location is
the position of the waist of the output beam which is of the order of 100 mm behind the output
port. The space constraints due to various optical elements controlling the beam power leads
to our decision to place a 1000 mm lens around 900 mm in front of the output port to collimate
the beam (refer to figure 5.6).

Referring to figure 5.11, we first remark that the beam is reasonably well-collimated, shown
by the width of the beam which doubles approximately after 5-6 m of propagation. We also
report an anomalous propagation profile of this collimated beam. In this horizontal intensity
profile, we first observed a gaussian beam at a distance close to the lens with a fringe pattern in
the wings. With an infrared card, we affirm that the Gaussian peak of the beam is surrounded
by several bright rings. As the beam propagates, the profile starts to firstly show destructive
around the central peak that later evolves into two minimas surrounding the central peak. The
similar evolution is also observed in the vertical intensity profile of the beam. From this ob-
servation, we hypothesize that the strange beam profile results from a substantial interference
between the bright ring pattern and the main Gaussian beam.
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Figure 5.11: Horizontal axis intensity profile of the collimated beam for some selected distances.
Yellow line is the measured intensity while the red line is the gaussian fit to the measured profile.

Collimated Beam Filtered with an Iris Profile Measurement

To test this hypothesis, we aim to block the ring pattern before the lens to prevent it from in-
terfering with the main beam. Thus, we install an iris before the lens to block the ring pattern
outside the main beam. To align the iris, we remove the collimating lens, and we detect the
beam profile just after the iris with the Beam Master (figure 5.12). With the high resolution
profile, we adjust the opening size of the iris until the fringes pattern at the wing is covered
(see figure 5.13). The fine positioning of the iris with respect to the beam is adjusted with
the help of the last mirror before the iris. We measure that the power blocked by the iris is
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Figure 5.12: Experimental setup for the placement of the iris. The red line indicates the beam
propagation path from the laser output port.

approximately 10% of the total beam power. This fact supports our hypothesis that the ring pat-
tern can indeed cause a considerable interference effect, since it contains a fair amount of power.

Figure 5.13: Comparison of the horizontal axis intensity profile with (Right) and without (Left)
the iris.

With the iris filtering the unwanted ring pattern, we reinstall the collimating lens at its
original positon and remeasure the beam profile. The profile for both the horizontal (figure
5.14) and vertical (figure 5.15) axis intensity are relatively good gaussian profiles. We repeat
once again the measurement and gaussian beam fit in function of position, this time taking the
position of the lens as the origin. In figure 5.21, we display the horizontal beam spot size and
the beam ellipticiy in function of position for this collimated and filtered beam. Fitting the
beam propagation to the Gaussian beam propagation, we obtain the vertical beam waist of 919
µm, 116 mm in front of the lens whereas for the horizontal axis, the beam waist is 837 µm, 248
mm in front of the lens. The Rayleigh length for this values of beam waist is around 2 m.
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Figure 5.14: Horizontal axis intensity profile of the collimated, filtered beam for some selected
distances. Yellow line is the measured intensity while the red line is the Gaussian fit to the
measured profile.

Figure 5.15: Vertical axis intensity profile of the collimated, filtered beam for some selected
distances. Yellow line is the measured intensity while the red line is the Gaussian fit to the
measured profile.
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Figure 5.16: Collimated, filtered beam spot size in function of position from the laser output
port. Red dots indicate the data points, while the blue line is the fit to the Gaussian beam
propagation function (equation 5.2.1).

5.3 First Experimental Results of the Flat-Top Beam Shaping

In this section, we will describe our current results in the attempt of producing the flat-top
beam with the DLP3000 mirror chip and the Error Diffusion algorithm. We start by describing
our SLM and the relay telescope setup, focusing on the necessary alignment methods. Finally,
we end this section by presenting our current flat-top beam result.

SLM Description and Testings

The DLP3000 mirror chip which we use as our SLM is packaged as an evaluation module called
the ’DLP Lightcrafter’ [52]. The module is a mini projector device, consists of three colors
LED, the DLP3000 mirror chip with its electronic circuit board, and the projector lens. Since
we only need the mirror chip, the chip and its electronic board is transferred from the module
to a house-made box which also facilitates the mounting process of the DLP chip. The chip is
operated with a 5 V DC power source and the state of the mirrors is addressed with a provided
control software.

Figure 5.17: (Left) The DLP Lightcrafter module and (Right) the extracted DLP3000 with the
electronic control board housed in the metal box.

We begin our tests with the working characteristics of the DLP3000 chip. Firstly, we check
the specified tilting states of the mirror arrays. The datasheet specifies three possible tilting
states of the mirror array: a tilt by +120 and -120, which are assignable to any individual mirror
and a flat state where the mirror array is parallel to the substrate of the chip. This flat state
is only achieved globally when the chip is switched off, where all individual mirrors are set to
this flat state. We set all the micromirrors into each of the three states, and we observe the
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reflection of the collimated beam off the mirror chip. We found that each tilt state deflects the
beam into three different directions as expected. However, we note that the main reflection is
accompanied by numerous other reflection spots that are less bright but are still detectable by
an infrared card or an infrared viewer. These stray reflections are present due to the pixelated
structure of the chip which resembles a diffraction grating (which diffracts light into several
orders).

Figure 5.18: Schematic setup of the reflection off the DLP3000 chip for each of the three tilt
states.

Subsequently, we aim to optimize the reflection factor of the DLP chip. This is especially
important with a high power beam because the unreflected portion of the incoming light is
converted into heat which can damage the device. The datasheet-specified damage threshold of
the DLP3000 chip for a 1064 nm input beam is 10 mW, and thus we set the input power at 3
mW to be conservative. We discovered that the reflectivity of the chip is very angle-sensitive
along the horizontal tilt plane, which is also the tilting plane of the mirrors. we also found
that this is not the case for the vertical tilt plane. Therefore, we mount the DLP3000 chip on
top of a 2” mirror mount that provides a fine-tuning of the horizontal tilt angle and a rotation
platform which provides the coarse angle tuning. We record the optimum reflected power for
several values of the chip rotation angle θ (refer to figure 5.18) and for the case where all the
mirrors are set to either one of the two active states (±120). To find the angle which gives this
optimum condition, we place a lens (of focal length f) at a 2f distance in front of the chip,
followed by the power meter at another 2f distance after the lens (see figure 5.19). This 2f-2f
arrangement minimizes the physical displacement of the beam at the power meter as we fine
tune the reflection angle of the beam with the mirror mount.

From the result displayed in figure 5.20, the maximum reflectivity is obtained when the chip
is tilted by 25-30 0, for the -120 tilt state. The reflectivity factor of 1.95/3 = 65% matches the
specification of the datasheet (refer to the description in the previous chapter). Therefore, we
set the DLP chip at this optimum angle, and we define the −120 tilt as the ’On’ state, the +120

tilt as the ’Off’ state in the beam shaping scheme. We let through the main reflection beam
from this −120 tilt state to the next optical elements, blocking the reflection from the +120 tilt
state and other stray reflections.
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Figure 5.19: The 2f-2f configuration used in the measurement of the angle-dependence of the
DLP3000 chip reflection factor.

Figure 5.20: Measurement result of the angle-dependence of the DLP3000 chip reflection factor.
Note that the input power is 3 mW.

Measurement of the Beam Profile at the SLM plane

Figure 5.21: Experimental setup for the measurement of the beam profile at the SLM plane.
The flip mirror deflects the collimated beam into the Beam Master (path shown in blue arrow).
When the flip mirror is folded, the beam is sent directly to the DLP3000 chip (path shown in
red arrow).
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One requirement for the beam shaping algorithm is to know the profile of the input beam at
the SLM plane. For this measurement, we insert a flip mirror before the DLP chip. When the
mirror is installed, the collimated beam is deflected to the Beam Master which is placed at the
same distance with respect to the flip mirror as the DLP chip. The measured profile shows
that the beam spot size is 930 µm along the vertical direction and 850 µm along the horizontal
direction. In addition, we mount the Beam Master on top of a translation stage which allows a
displacement of approximately ±1 cm in the direction of the propagation of the beam. Within
this distance, we check that the variation of the beam spot size is negligible.

Telescope Alignment and Beam Shaping Result

At this stage, we are ready to proceed with the installation of a relay telescope after the DLP3000
for the beam shaping scheme. For this test setup, we use a pair of 300 mm and 200 mm lenses
for a magnification for of 2/3. The longer focal length of the second lens is chosen to ease the
alignment, as we aim to first demonstrate the experimental realization of the beam shaping and
later modify the lens setting to rescale the flat-top beam as needed. We place the Beam Master
200 mm away from the telescope, approximately around the output plane of the telescope. The
observed beam waist at this position has been shrunk from 930 µm to 620 µm for the vertical
direction and 850 µm to 670 µm for the horizontal direction. The magnification factor is as
expected for the vertical direction, and slightly too large for the horizontal direction. However,
we deem that the deviation is not too significant, and we proceed with the next stage of the
experiment.

Figure 5.22: Relay telescope setup in front of the SLM.

One more alignment step to be done prior to loading the binary reflectance pattern that
converts the Gaussian beam into the flat-top beam is to center the input gaussian beam on the
DLP chip, which is an assumption in the calculation of the reflectance pattern. To do this, we
load a ’hole pattern’ to the DLP chip, where all the pixels are set to ’On’ position, except a
circular region at the center of the chip (refer to figure 5.23). We observe the intensity pattern
with the Beam Master placed after the telescope, but the distance from the telescope is varied to
measure the focused image position of the telescope. The beam transverse position at the DLP
is adjusted differently for the vertical and horizontal direction. For the vertical direction, we
move the beam with the last mirror before the DLP chip. However, for the horizontal direction,
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Figure 5.23: Setup for centering the beam at the DLP chip and the Beam Master at the output
plane of the telescope.

we cannot do this since this will change the angle of incidence and therefore the reflectivity
factor of the DLP chip. Instead, we move the chip along the horizontal direction by mounting
it on top of a translation stage (refer to figure 5.22).

The hole pattern at the center of the SLM does not reflect the beam and will induce a dark
spot in the measured beam profile. We move the beam position at the DLP plane such that
the measured dark spot is found at the center of the beam. Furthermore, while moving the
Beam Master position with respect to the telescope, we observe a change in contrast of the dark
spot (figure 5.24). Indeed, the dip in the beam intensity at the center, due to this hole pattern
initially increases as we move further from the telescope but later decreases after reaching the
maximum contrast. We interpret the position where we found the biggest contrast from the
hole pattern as the position where the image of the telescope is most focused. At this condition,
the sensor is positioned between 220 mm to 245 mm from the telescope, which is only slightly
different from what is predicted from the ideal case (200 mm).

Figure 5.24: Vertical axis intensity profile of the collimated beam diffracted by the hole pattern
and magnified by the relay telescope, in function of the detector position from the telescope.
The profile is displayed on the left while the right image is a magnified view of the central region
of the profile.

Finally, we present our first realization of the beam shaping scheme. We obtain the binary
reflectance pattern with the Error Diffusion algorithm, converting the input beam of 930 µm by
850 µm waist to an order 20 Super Lorentz beam of 700 µm radius. We compare the observed
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diffraction profile with this reflectivity pattern for two situations: the telescope setup without
a spatial filter and the telescope setup with an iris placed approximately at the Fourier plane
(300 mm from the first lens, and 200 mm behind the second lens). The iris is attached to a
telescope mounting tube which is connected to the second lens such that it is well-centered on
the beam. We empirically adjust the opening of the iris based on the observed beam profile.
The comparison between the profiles in the two situations are displayed in figure 5.26 for the
horizontal direction and in figure 5.25 for the vertical direction. As we can observe, the vertical
axis profile does improve in the presence of the iris. The improvement is debatable for the
horizontal axis profile, as the central region becomes slightly flatter but the profile falls less
sharply around the wing, an indication that the profile is degraded into a lower order flat-top
profile.

Figure 5.25: Comparison between the vertical axis flat-top beam profile produced by the setup
with (Right) and without (Left) a spatial filter.

Figure 5.26: Comparison between the vertical axis flat-top beam profile produced by the setup
with (Right) and without (Left) a spatial filter.

In figure 5.27, we show the plot of the intensity profile with the iris setup, with the fit to
a Super Lorentz (SL) profile. We try the fitting process with the central position of the beam
and its width as the fitting parameter, leaving the order of the SL function pre-determined. We
found that the best fits that yield the lowest RMS error occur at a lower order as the target pat-
tern. The horizontal profile is best fitted to an order 8 SL function whereas the vertical profile is
best fitted with an order 6 SL function, down from the order 20 target profile. This degradation
in the output beam order might also explain our finding that the shaping process works less
well with a lower order beam target. We observed that using an order 8 SL function instead of
20, the output beam still very much resembles the initial Gaussian profile. We also find that
the output pattern is less flat-top-like when a smaller radius target (600 µm and 650 µm) is used.
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Figure 5.27: Comparison between the actual and fitted intensity profile of the flat-top beam
produced with the telescope with iris setup. The blue dots are the measured profile while the
black lines are the fitted profile.

5.4 Summary and Future Directions

To conclude this initial study, we have set the beam shaping scheme with a relay telescope
imaging the reflection off the binary pattern initiated with the Error Diffusion algorithm. We
admit that our current flat-top beam is not perfect, shown for example by the deviation from
the fit and the observed degradation in the beam order. In addition, we would like to point out
our initial observation of intensity fluctuations present in the output profile which is partially
masked in the data we have presented due to an internal averaging process of the Beam Master
device. A further study to characterize this noise would be our next step in the continuation of
this project. Several measurements that can be tried out are, for example, observing the noise
spectrum before and after the DLP3000 chip with a photodiode, and cross-checking the output
beam profile by measuring it with a CCD camera instead of the Beam Master.

We would like to point at two future directions to take in order to further advance this
study. Firstly, we could concentrate on developing a feedback process in order to ameliorate
the output beam profile. Reference [44] described one such method, where the feedback process
tries to search, isolate, then smoothen parts of beam for which the deviation from a flat-top
profile is the largest. The algorithm locates the pixel correspondence of the part of the beam
and randomly switch off (resp. on) a neighboring pixel if the beam intensity at this part is too
high (resp. low). Afterward, we could characterize and improve the limit of the beam power
which can be used with this scheme. A measurement of the maximum beam power that can be
tolerated by the DLP3000 chip could be done by placing a temperature sensor in contact with
a thermal monitoring point of the chip and recording its temperature as we increase the input
beam power. The rise of temperature above the recommended operational condition would be
a good indication for the limit of the input power. This measurement method carries the risk
of permanently damaging the chip, and would preferably be done after all other measurements
have been completed. If the input power threshold is too low for the trap application, we could
replace the DLP3000 chip with a static chrome photomask described in chapter 4. In this
manner, the DLP3000 chip serves as a test setup to design the mask pattern imprinted in the
chrome photomask.
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Appendix A

Fourier Optics

A.1 Beam Propagation Equation

In this chapter, we summarize some important results of the Fourier Optics treatment, which
treats the propagation of a diffracted beam. Let us consider a monochromatic beam propagating
in a particular direction, for example along the Z axis, and incident to an aperture Σ. Following
Huygens-Fresnel principle, the electric field in a plane perpendicular to Z axis is a summation
of many wavelets emitted from every point of the aperture (refer to figure A.1). Adopting a
paraxial approximation, the electric field at a point on a plane located at distance z away from
the aperture is given by: [32]

E(x, y, z) =
eikz

iλz
e
ik
2z

(x2+y2)
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(
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)
e

2πi
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(xξ+yη) dξdη, (A.1.1)

where k = 2π/λ is the wavenumber and λ the beam wavelength. Notice the linearity of the
structure of equation A.1.1 above. Writing the integration as an operator: E(z) = Pz (E(0)),
we can easily prove that E(z1 + z2) = Pz2 · Pz1 (E(0)). This property validates the fact that
the equation A.1.1 can be interpreted as the propagation equation: it describes the field at a
distance z away from a source by a Fourier Transform integral of the field at the plane of the
source.

Figure A.1: Huygens principle of diffraction. Figure is taken from [32]

A.2 The Effect of a Thin Spherical Lens

A lens is an optical component that is used a lot in the beam shaping schemes we have considered
in this report. It is therefore important to consider how a lens alters the propagation of a beam.
Let us consider a lens which has a position-dependent thickness ∆(x, y). A lens consists of
two spherical faces (with radius of curvature R1 and R2 respectively) separated by a certain
thickness ∆0. Let us consider the thickness of the lens at position (x, y) from the center as
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shown in the right side of figure A.2. The thickness due to the left part of the curved side is
given by:

d1 = ∆01

(
R1 −

√
R2

1 − x2 − y2

)
≈ ∆01 −

1

2R1
(x2 + y2), (A.2.1)

where ∆01 is the central thickness of this curved face. Here, we have used a paraxial approxima-
tion assuming that the size of the lens is small compared to its curvature (x,y R1). The total
thickness of the lens will include a thickness d2 between the two curved face and the thickness
d3 ≈ ∆03 − 1

2R2
2
(x2 + y2) of the second curved face. Thus, the total thickness of the lens is

given by:

d(x, y) = d1 + d2 + d3 = ∆0 −
(
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1

2R2

)
(x2 + y2). (A.2.2)

We remark that in this equation, the radius of curvatures are defined to be positive when the
face is convex, and negative when it is concave. Therefore, we see that a double convex lens is
thickest in the middle, as opposed to a double concave lens which is thinnest in the middle.

Figure A.2: The geometry of a spherical lens

As lenses are usually very thin, a beam is not appreaciably distorted as it passes through a
lens. The most dominant effect is a phase shift due to the lens material. Suppose that the lens
has an index of refraction equals to n. The phase shift acquired as the beam propagates through
a material is equal to exp(iklo), where lo is the optical length which is equal to the physical
length multiplied by the index of refraction of the material. The optical length in function of
position is:

lo(x, y) = n · d(x, y)︸ ︷︷ ︸
lens

+ 1 · (∆0 − d(x, y))︸ ︷︷ ︸
air

= n∆0− (n−1)(
1

2R1
+

1

2R2
(x2+y2) = n∆0−

1

2f
(x2+y2).

(A.2.3)
The last line of the above equation uses the lens maker equation which relates the focal length
f to the lens curvatures:

1

f
= (n− 1)

(
1

R1
+

1

R2

)
(A.2.4)

As we can see, the effect of a lens, aside from a constant phase-shift due to its thickness is a

quadratic phase shift term: exp
(
− ik

2f (x2 + y2)
)

.

A.3 Special Optical Configurations

In this section, we will apply the propagation and lens equation we have derived to explain the
imaging property of the two setups used in the manuscript: the Fourier imaging by a single
positive lens and the relay telescope. For the first, we recall that the setup involves an input
field pattern Ein which is placed at a distance f away behind a lens, and we observe the output
profile at the plane f distance away behind the lens (refer to the right picture of figure A.3).
Therefore, the output field is obtained by first propagating the input beam over a distance f ,
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Figure A.3: Optical setup for (Left) a relay telescope and (Right) a single-lens Fourier imaging.

multiplying the field with the lens quadratic phase factor, and then propagating it over another
f distance.

Let us perform the explicit calculation sequentially. The field at the plane just before the
lens Ebl is the propagated input field Ein over a distance f :

Ebl(x, y) =
eikf

iλf
e
ik
2f

(x2+y2)
∫ ∫ (

Ein(X,Y ) e
ik
2f

(X2+Y 2)
)
e

2πi
λf

(xX+yY )
dXdY . (A.3.1)

We notice that the quadratic phase factor e
− ik

2f
(x2+y2)

of the lens exactly cancels out the
quadratic phase term in the field Ebl. Hence the expression of the field at the plane just
after the lens Eal is given by:

Eal(x, y) =
eikf

iλf

∫ ∫ (
Ein(X,Y ) e

ik
2f

(X2+Y 2)
)
e

2πi
λf

(xX+yY )
dXdY . (A.3.2)

Finally, the output field profile Eout is obtained by propagating Eal over a distance f :

Eout(x, y) =
eikf

iλf
e
ik
2f

(x2+y2)
∫ ∫ (

Eal(X,Y ) e
ik
2f

(X2+Y 2)
)
e

2πi
λf

(xX+yY )
dXdY

= − e
2ikf

(λf)2
e
ik
2f

(x2+y2)
∫ ∫ ∫ ∫

Ein(x̄, ȳ) e
ik
2f

(x̄2+ȳ2)
e
ik
2f

(X2+Y 2)
e

2πi
λf

(Xx̄+Y ȳ)

e
2πi
λf

(xX+yY )
dXdY dx̄dȳ

=
e2ikf

iλf

∫ ∫
Ein(x̄, ȳ) e

2πi
λf

(x̄x+ȳy)
dx̄dȳ. (A.3.3)

Therefore, aside from a constant phase shift term e2ikf , the output field is a Fourier Transform
of the input field, hence the name of Fourier imaging in this case.

For the relay telescope, we notice that the setup can be broken down into two Fourier
imaging setups with lens f1 followed by f2. The field at the Fourier plane of the first lens (i.e. a
plane of distance f1 behind the first lens, f2 in front of the second lens) is given by the Fourier
Transform of the input field Ein:

EFP =
e2ikf1

iλf1

∫ ∫
Ein(X,Y ) e

2πi
λf

(Xx+Y y)
dXdY, (A.3.4)
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and the output field is given by the Fourier Transform of the field at the Fourier plane:

Eout(x, y) =
e2ikf2

iλf2

∫ ∫
EFP (X,Y ) e

2πi
λf2

(Xx+Y y)
dXdY

= −e
2ik(f1+f2)

λ2f1f2

∫ ∫ ∫ ∫
Ein(x̄, ȳ) e

2πi
λf2

(Xx+Y y)
e

2πi
λf1

(Xx̄+Y ȳ)
dXdY dx̄dȳ

= −e
2ik(f1+f2)

λ2f1f2

∫ ∫
Ein(x̄, ȳ) δ

(
x

λf2
+

x̄

λf1

)
δ

(
y

λf2
+

ȳ

λf1

)
dx̄dȳ

= −f1

f2
Ein

(
−f1

f2
x,−f1

f2
y

)
. (A.3.5)

Therefore, the output field of a relay telescope arrangement is proportional to the input field
with a magnification factor of −f2/f1 which we recognize from the classical optics.
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Appendix B

Gaussian Beam Properties

B.1 Gaussian Beam Propagation

In this section, we will give a brief introduction to the important properties of a TEM00 gaussian
mode beam which is the idealized lasing mode of commercial lasers. The gaussian mode is
one of the allowed solution of the Helmholtz equation, which governs the propagation of an
electromagnetic wave in space. The field of a gaussian-mode beam propagating along the positive
Z direction can be described as [53]:

Eg(x, y, z) =

(
2P

πw(z)2

)1/2

exp

(
−x

2 + y2

w(z)2

)
exp

(
−ikx

2 + y2

2R(z)

)
eiψ(z) eikz. (B.1.1)

Figure B.1: Parameters in the propagation of a gaussian beam.

Notice that the field expression can be broken down into four components:

� Amplitude distribution

In any plane perpendicular to the Z axis, the electric field amplitude follows a gaussian

distribution:
(

2P
πw(z)2

)1/2
exp

(
−x2+y2

w(z)2

)
, where P denotes the power of the beam. The

equivalent radius of the beam is traditionally set as the distance where the amplitude falls
to 1/e of the maximum amplitude (which is positioned at the center of the coordinate).
As we can see, this distance is given by w(z), which is called the spot size of the beam.
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The spot size varies as the beam propagates in space, with its evolution given by:

w(z) = w0

√
1 +

(
z

zR

)2

, (B.1.2)

where zR = πw2
0/λ is known as the Rayleigh length of the beam, and w0 is called the

waist of the beam. The beam waist is in fact the smallest spot size of the beam, and it is
positioned at z = 0 in this convention. As we follow the beam propagation starting from
z = −∞, the spot size first shrinked until it is equal to the waist, then reexpands. The
Rayleigh length is the distance along z between the waist and the position where the spot
size has grown to

√
2w0. This range gives an estimation of a range for which the beam

spot size is approximately constant (i.e. collimated beam in the classical optics point of
view).

Figure B.2: Linear expansion of an uncollimated beam. Figure is taken from [54]

As we can observe from the expression of the Rayleigh length, a gaussian beam with a
larger waist has a larger Rayleigh length, meaning that they stay collimated over a longer
distance. In addition, when the beam is very far away from the waist (z � zR), the spot
size grows approximately linearly:

w(z) ≈ λπ

w0
z. (B.1.3)

In this condition, the beam is not collimated; it is either expanding or focusing as it prop-
agates in space.

� Spherical phase curvature

The second part of the field is a phase factor with a spherical phase front: exp
(
−ik x

2+y2

2R(z)

)
.

The radius of curvature of this phase term is:

R(z) = z +
z2
R

z
. (B.1.4)

We notice that the curvature at the plane of the beam waist (z = 0) is infinity, meaning
that the phase front at this plane is flat. Otherwise, the spherical phase front is always
curving outwards with respect to the plane of the waist (see figure B.1).

� Gouy phase and propagation phase
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The last two terms are the extra phase shift called the Gouy phase: eiψ(z) and a customary
phase shift due to the propagation eikz. The Gouy phase shift is given by:

ψ(z) = arctan(z/zR) (B.1.5)

A compact way of describing the gaussian beam is to utilize the complex beam parameter
defined as:

q(z) := z + izR. (B.1.6)

The field (ignoring the constant phase shift and the Gouy phase) can then be described in term
of this single parameter:

Eg(x, y, z) = E0 exp

(
− ik(x2 + y2)

2q(z)

)
(B.1.7)

B.2 Focusing through a Lens

Let us consider the setting where a gaussian beam is incident on a lens with a focal length f . If
we let the position of the waist to be d1 in front of the lens, we could calculate the output field
at any position behind the lens by the Fourier Optics formulation considered in the appendix
A. The resulting beam after the lens is still a gaussian mode, but with a change in the size of
the waist and its position. Denoting the position of the waist of the focused beam as d2 (with
the convention of d2 = 0 at the lens), this position is given an equation only slightly distinct
from a classical lens equation [54]:

1

d1 + z2
R/(d1 − f)

+
1

d2
=

1

f
, (B.2.1)

and the waist of the focused beam w is given by:

w =
w0√

[1− (d1/f)]2 + [zR/f ]2
. (B.2.2)

In particular, in the Fourier imaging setup where d1 = f , the resulting output beam is located
exactly at the back-Fourier plane of the lens (d2 = f) and the focused beam waist is given by:

w =
λf

πw0
. (B.2.3)

Therefore, a larger input beam will be focused as a smaller beam, which is what we expect from
the Fourier Transform relation.
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