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Abstract

When making estimates of a quantum state, point estimators express

one’s best guess of the true state, but estimator regions are important to ex-

press the uncertainty associated with the estimate. Employing the Bayesian

approach, we discuss the use of smallest credible regions (SCRs), the smallest

possible regions for given credibilities, as optimal estimator regions. How-

ever, constructing the SCRs involves evaluating multidimensional integrals,

which can be done by Monte Carlo integration. Therefore, we explore several

methods that can be exploited to obtain the sample points required for the

Monte Carlo integration.
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Chapter 1

Introduction

Quantum state tomography is a process where one attempts to reconstruct

a quantum state, using data from measurements performed on identically

prepared copies of the state. Typically, this is used to characterize a source

of quantum information carriers.

In the typical scenario, an unknown quantum state ρ is sent through a

probability-operator measurement (POM), which will result in a click in one

of K detectors. A K-outcome POM is characterized by K positive operators

{Π1,Π2, . . . ,ΠK} which satisfy

K∑
k=1

Πk = 1 . (1.1)

Upon sending the state ρ through the POM, the probability of the kth de-

tector clicking, pk, is given by

pk = tr {Πkρ} = 〈Πk〉 . (1.2)

The fact that ρ is positive semi-definite and has unit trace, together with

(1.1), ensures that we have

K∑
k=1

pk = 1, pk ≥ 0 . (1.3)
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Data is obtained by performing multiple measurements of identically pre-

pared copies of the state ρ, and counting the number of times each detector

clicks.

In statistics, the most popular estimator is the maximum-likelihood es-

timator (MLE) [1]. This is true in quantum tomography as well, where the

MLE is the state that gives the highest likelihood of observing the data

obtained [2, 3, 4]. However, such point estimators are of very limited util-

ity when it comes to making inferences. Afterall, all estimates have some

associated uncertainty (otherwise they would not be called estimates), and

these uncertainties must be expressed in some way. In problems of single-

dimensional parameter space, these uncertainties are expressed as error bars.

For higher dimensional problems, error regions will be required. In this the-

sis, we discuss how estimator regions can be uniquely characterized, and also

how such regions can be constructed.

2



Chapter 2

Optimal Estimator Regions

When making estimates, a good estimator region should have the following

properties:

1. The region should be small, narrowing the possibilities of where the

true value of the parameter being estimated could be.

2. The region should contain the true value of the parameter being esti-

mated with a high probability.

An optimal estimator region should therefore be as small as possible, yet as

likely as possible to contain the true value of the parameter being estimated.

In this chapter, we discuss how to characterize and construct optimal error

regions.

2.1 Confidence regions

In the frequentists’ view of statistics, the parameters being estimated are

fixed. Confidence regions are regions chosen such that if the experiments are

repeated multiple times, each time giving a different set of data, at least a

certain proportion of the confidence regions will contain the true value of

the parameter being estimated, this proportion being the level of confidence.

This is demonstrated in Fig. 2.1 on page 5. In the figure, 100 sets of random

data are generated based on a parameter x, which has value 2.0. From each
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set of data, a 95% confidence region of x is constructed. These regions take

the form of intervals, since x is a single-dimensional parameter. With a level

of confidence being 95%, we expect that in the long run, at least 95% of these

intervals will contain the true value of parameter x.

It should be noted that there is no unique way of constructing the con-

fidence regions. For an experiment that consists of certain measurements,

there may be an infinite number of ways to construct regions for any level

of confidence. Furthermore, there is no meaningful way to define the size of

the confidence regions. Without a measure of size, there is no way to decide

which set of confidence regions are optimal. As such, we look to another

alternative, the credible regions.

2.2 Credible regions

Before moving on to define optimal credible regions in the Bayesian frame-

work of statistics, we first introduce the concepts of prior distribution, size,

and confidence.

2.2.1 Prior and size

In Bayesian statistics, the underlying state of the system being studied is

assumed to be probabilistic, drawn from a distribution whose probability

density function is called the prior density. We denote (dρ) to represent the

probability of the system being in the infinitesimal vicinity of state ρ before

any data is observed. The state can be parameterized by a set of parameters.

Here, we use θ = {θ1, θ2, . . . , θK}. In this parametrization, we have

(dρ) = w (θ) (dθ) , (2.1)

where (dθ) is the infinitesimal volume element in the parameter space, given

by

(dθ) = dθ1dθ2 · · · dθK , (2.2)

4
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Figure 2.1: Visualisation of confidence intervals. Here, the true value of the
parameter x is 2.0. 100 sets of random data are generated, and for each set, a
95% confidence interval is constructed. Intervals that contain the true value
of x are colored green, while those that do not contain the true value are
colored red. In the long run, 95% of these regions are expected to contain
the true value of the parameter x.

and w (θ) is the prior density of θ. Generally, the permissible values of θ may

not cover the entire RK . As a result, w (θ) should contain a constraint factor

wcstr (θ), which assigns a prior value of 0 for nonpermissible θ, and takes the

form

wcstr (θ) =

1 if θ is permissible

0 otherwise
. (2.3)
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Under reparameterization θ → θ′, the prior transforms according to

w (θ′) = w (θ)

∣∣∣∣ ∂θ∂θ′
∣∣∣∣ , (2.4)

where
∣∣ ∂θ
∂θ′

∣∣ is the determinant of the Jacobian matrix.

Since the prior represents the probability density of the state before any

data is observed, the prior should express indifference, namely, assigning

equal probability to all possible states. At first glance, a seemingly obvious

choice of prior would therefore be the primitive prior, which is constant over

all permissible θ. Written explicitly, the primitive prior is given by

w (θ) ∝ wcstr (θ) . (2.5)

However, it must be noted that the form of the prior depends on the

parametrization used. In other words, the primitive prior density will gen-

erally not remain flat under re-parametrization, and demanding the prior

to be constant results in a prior that depends on the parametrisation used.

In order to have a parameter-independent prior, a popular non-informative

prior is the Jeffreys prior [5, 6, 7], which takes the form

w (θ) ∝
√

det I (θ) , (2.6)

where I (θ) is the Fisher information matrix. It can be verified that such a

prior preserves its form under reparametrisation. For the rest of this thesis,

we will be using the primitive prior and Jeffreys prior, although the methods

discussed later can be applied to any other choice of prior.

Finally, for a region R, we define the size of the region sR to be the prior

content of the region, that is, the probability that the state of the system lies

within the region, prior to observing any data. The size is therefore given by

sR =

ˆ
R

(dρ) =

ˆ
R
w (θ) (dθ) . (2.7)
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Following this definition, the size of the entire state space R0 is

sR0 =

ˆ
R0

(dρ) = 1 . (2.8)

By defining the size in this manner, we ensure that the size of a region is

independent of the parametrization used to describe the state space.

2.2.2 Posterior and credibility

The posterior density of a state ρ is defined to be the probability density that

the system is in state ρ, given that data D were observed. Mathematically,

the posterior density is given by

g (ρ|D) =
L (D | ρ)

L (D)
∝ L (D | ρ) , (2.9)

or in terms of parameterization θ,

g (θ|D) =
L (D | θ)w (θ)

L (D)
∝ L (D | θ)w (θ) . (2.10)

Here, L (D|ρ) is the likelihood of observing data D given the system is in

state ρ, and L (D) is the prior likelihood of observing the data D, given by

L (D) =

ˆ
R0

L (D | ρ) (dρ) =

ˆ
R0

L (D | θ)w (θ) (dθ) . (2.11)

For a region R, we define the credibility of the region cR to be the poste-

rior content of the region, that is, the probability that the state of the system

lies within the region, given the observed data. The credibility is therefore

given by

cR =
1

L (D)

ˆ
R
L (D | ρ) (dρ) =

1

L (D)

ˆ
R
L (D | θ)w (θ) (dθ) . (2.12)
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2.2.3 Smallest credible region

The smallest credible region (SCR) is defined as the smallest possible region

that gives a desired level of credibility. In order to find such a region, it

is convenient to first introduce the concept of a bounded-likelihood region

(BLR) [8].

A BLR Rλ is a region that contains all states in the state space R0 with

likelihood L (D | ρ) exceeding a certain threshold value. We specify this

threshold value as a fraction λ of the maximum value L (D | ρ̂mle), where

ρ̂mle is the maximum likelihood estimator for the state. Such a region can

therefore be described by

χλ (ρ) = η (L (D | ρ)− λL (D | ρ̂mle)) , (2.13)

where η () is the Heaviside unit step function. The size of such a region is

given by

sλ =

ˆ
R0

(dρ)χλ (ρ) =

ˆ
Rλ

(dρ) , (2.14)

and its credibility is

cλ =
1

L (D)

ˆ
R0

(dρ)χλ (ρ)L (D | ρ) =
1

L (D)

ˆ
Rλ

(dρ)L (D | ρ) . (2.15)

The size and credibility of a BLR are related by

L (D)
∂

∂λ
cλ = L (D | ρ̂mle)λ

∂

∂λ
sλ . (2.16)

As a consequence, if we know sλ is a function of λ, we can obtain cλ using

cλ =
λsλ +

´ 1

λ
dλ′sλ′´ 1

0
dλ′sλ′

. (2.17)

For each BLR, it is impossible to find another region with a smaller

size but the same credibility – each BLR is also a SCR, with credibility cλ.

Therefore, the problem of finding a SCR with credibility c is equivalent to

finding a BLR with cλ = c.

8



2.2.4 Construction of SCRs

We now present a systematic approach for constructing SCRs [9].

1. Vary λ from 0 to 1, and for each value of λ, find the size sλ of the

corresponding BLR using (2.14).

2. Create a subroutine that takes in λ and returns cλ, making use of (2.17)

to evaluate cλ. The integrals of sλ are to be evaluated using the values

of sλ obtained in step 1.

3. Using a suitable root-finding algorithm, vary λ to find a λ∗ such that

cλ∗ = c. The subroutine from step 2 is used to provide the required

values of sλ.

4. The SCR with credibility c is the BLR with threshold λ∗, or the set of

points where the likelihood exceeds λ∗L (D | ρ̂mle).

It is straightforward to evaluate the integrals of sλ in step 2. Being single-

dimensional integrals, they can be done using quadratures such as Simpson’s

rule. It is advisable, however, to use adaptive quadratures instead [10], as

sλ tends not to be very smooth, especially the area near λ = 0. Typically,

the most computationally expensive part in this algorithm is step 1, which is

in general a multidimensional integral over the prior. In Chapter 5, we will

explore various methods to deal with such integrals.

9
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Chapter 3

Coin Flip

3.1 Overview

Before moving to quantum systems, we will first look at a classical analog

of a two-outcome POM – a coin which lands heads with probability p and

tails with probability (1− p) when flipped. The data will be in the form of

D = {n1, n2}, with n1 and n2 being the number of heads and tails obtained

respectively. Given p, the likelihood of obtaining data D is given by

L (D | p) = pn1 (1− p)n2 . (3.1)

As for the prior, since p must be within the range [0, 1], the constraint factor

is given by

wcstr = η (p) η (1− p) . (3.2)

The primitive prior on p then takes on the form

wprimitive (p) = η (p) η (1− p) . (3.3)

As for the Jeffreys prior, the Fisher information for a binomial distribution

is given by

I (p) =
n

p (1− p)
. (3.4)

11



Hence, the normalised Jeffreys prior is given by

wJeffreys (p) =
1

π
√
p (1− p)

η (p) η (1− p) . (3.5)

Figure 3.1: An illustration of a BLR. In this plot, L (D | p) /L (D | p̂mle) is
plotted against p for a coin that landed heads four times out of nine flips.
Rλ is the BLR obtained for the given λ.

3.2 Constructing SCRs

In order to find a SCR with a given credibility c, we use the method described

in 2.2.4.

3.2.1 Obtaining the size

The first thing we need to do is to find the size of BLRs sλ for the range

λ ∈ [0, 1]. This is relatively simple for the coin flip, since the state space

12



has dimension 1. Since the likelihood function is unimodal, the BLR

Rλ takes the form {p|a ≤ p ≤ b}, where a and b are the two solutions

{x|L (D | x) = λL (D | p̂mle)}, which can be found numerically with any suit-

able root-finding algorithm. The size is then given by the integral

sλ =

ˆ b

a

w (p) (dp) . (3.6)

This results in the size being (b− a) for the primitive prior, and
2
π

[
arcsin

(√
b
)
− arcsin

(√
a
)]

for the Jeffreys prior.

(a) (b)

(c) (d)

Figure 3.2: Size and credibility varying with λ. In plots (a) and (b), the
data used was 4 heads and 5 tails, with the primitive and Jeffreys priors
respectively. For plots (c) and (d), the data used was 40 heads and 50 tails,
with the primitive and Jeffreys priors respectively.

The credibility of each BLR is computed using (2.17), with the integrals

13



being done numerically. However, as can be seen in Fig. 3.2 on page 13, sλ is

in general not a very smooth function of λ, especially when λ is close to 0. As

a result, quadratures with evenly spaced intervals are likely to perform very

poorly, and adaptive quadratures should be used [10]. Next, it should be

noted that the integral in the denominator of (2.17) is independent of λ. If

cλ is to be determined repeatedly for varying values of λ, this integral should

be evaluated just once and its value stored in the memory, and recalled each

time cλ is calculated. In order to evaluate the integral in the denominator of

(2.17), it may be useful to consider the relation

ˆ 1

0

dλ′sλ′ =

ˆ 1

0

λ (p)w (p) (dp) , (3.7)

where λ (p) defined to be

λ (p) =
L (D | p)
L (D | p̂mle)

. (3.8)

This is useful as the integrand only contains terms that are known analyt-

ically, as opposed to the original integral where the integrand contains sλ′ ,

which must be found numerically, hence improving the speed and accuracy

when performing this integral.

Now that we are able to find the credibility cλ of a BLR with thresh-

old λ, we find the value λ∗ where cλ∗ is equal to our target credibility

c. With this value of λ∗, we proceed to find the two solutions {a∗, b∗} =

{x|L (D | x) = λ∗L (D | p̂MLE)}. These can all be done numerically using

suitable root-finding algorithms. The SCR is then the region bounded by a∗

and b∗.

3.3 SCRs as confidence regions

In this section, we use the example of the coin flip to compare the notions of

credibility and confidence. We do so by considering our SCRs as confidence

regions, and finding out how the level of confidence relates to the credibility

of the regions.

14



3.3.1 Covering probability

In order to find the level of confidence we get from our regions, we first

introduce a quantity called the covering probability. Given a scheme S used

to construct estimator regions, we define the covering probability γ (ρ; S) to

be the probability that the constructed region contains the true state, given

the true state is ρ. Here, the data D is the random variable, and the state ρ

is fixed. For SCRs with credibility c, the covering probability takes the form

γ (ρ; c) =
∑
D

L (D|ρ) I (D, c, ρ) , (3.9)

where I (D, c, ρ) is an indicator variable that we define as

I (D, c, ρ) =

1 if the SCR with credibility c and data D contains ρ

0 otherwise
.

(3.10)

We now proceed to see how the covering probability varies with p in our

coin flip model. For each value of p, we use (3.9) to determine γ (p; c). The

sum over D will have N + 1 entries, where N is the number of coin flips

observed. For each D, the likelihood L (D | p) is given by (3.1). In order

to get the value of the indicator variable I (D, c, p), the SCR must first be

constructed as described in Section 3.2, and then checked if it contains p. In

Fig. 3.3 on page 16, we show a few plots of the covering probability against

the probability of heads of a coin.

3.3.2 Confidence level

If we were to use the SCRs as confidence regions, the level of confidence

we obtain is the minimum value of the covering probability. If we look at

Fig. 3.3 on page 16, it is worth noting that there are points where the plot

is discontinuous, and these occur at the edges of the SCRs. It also turns

out that all local minima occur at these points. Additionally, the plot is

symmetrical about p = 0.5. Hence, when looking for the minimum value of

the covering probability, one only has to check the edges of the SCRs within

15



(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Covering probability varying with p for a coin. For these plots,
the primitive prior was used. The number of coinflips observed were 10 and
40, with credibilities 0.5, 0.8 and 0.9. In the plots, the horizontal green line
shows the credibility.
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the range 0 < p < 0.5, rather than sweeping through the entire range of p.

In order to see how the confidence varies with the credibility of our regions,

we vary the credibility and find the level of confidence that we get for each

value of the credibility. This is done for various values of N , for both the

primitive and Jeffreys prior, and the results are shown in Fig. 3.4 on page 18.

From the plots, a few observations can be made. Firstly, we see that given

the same credibility, the confidence level of the SCRs can be very different for

different priors. Additionally, we notice that the level of confidence is always

significantly lower than the credibility of our regions. This emphasizes the

fact that confidence and credibility mean very different things, and one has

to be clear about which it is they are using when talking about estimator

regions.

3.3.3 Expanding SCRs

As we saw in Fig. 3.4 on page 18, our SCRs have significantly levels of confi-

dence compared to their credibilities. In an attempt to see if we can modify

our SCRs to make them useful as confidence regions, we try expanding them

slightly to see if we can raise the level of confidence to match the original

credibility. This is done by first specifying an expansion factor E. Then, we

transform each region’s boundaries {a, b} → {aE, bE} using

aE = a− b− a
2

E , (3.11a)

bE = b+
b− a

2
E . (3.11b)

Using various values of E, we plot the level of confidence against the credi-

bility in Fig. 3.5 on page 19 to see the effect the expansion has on the level

of confidence of our SCRs. We see that the expansion did not help much for

the Jeffreys prior, with the level of confidence consistently below the credi-

bility even when lengths of the intervals were doubled (E = 1). As for the

primitive prior, the expansion did improve the levels of confidence. However,

we see that we have to expand the regions by a significant amount before

17



(a) (b)

(c) (d)

Figure 3.4: Confidence level of SCRs. The number of observed coin flips N
was 10, 50, 100 and 200 for plots (a), (b), (c) and (d) respectively. In the
plots, the red line shows the results for the primitive prior, the blue line shows
the results for the Jeffreys prior, and the green line is where the confidence
is equal to the credibility. We see that for all the plots, the red and blue
lines are always under the green one, indicating that the confidence is always
lower than the credibility for our SCRs.

achieving the corresponding levels of confidence. Therefore, in order to use

our SCRs as confidence regions, we have to either choose a credibility higher

than the desired level of confidence, perform expansions on the SCRs, or a

combination of both.

18



(a) (b)

(c) (d)

Figure 3.5: Effect of expanding SCRs on their confidence level. The number
of coin flips N was fixed at 50, and the expansion factors used were 0.25, 0.5,
0.75 and 1 for plots (a), (b), (c) and (d) respectively. The horizontal axis
is the credibility before the regions were expanded. The red and blue lines
represent the primitive and Jeffreys priors respectively, while the green line
is where the confidence is equal to the credibility. For comparison, the result
when E = 0 can be seen from plot (b) of Fig. 3.4 on page 18.
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Chapter 4

Moving to Quantum Systems

4.1 Likelihood and prior

After measuring N identical copies of the state, the data D =

{n1, n2, . . . , nK} is obtained, where nk is the number of times detector k

clicked, with
∑K

k=1 nk = N . Since D has a multinomial distribution for a

fixed ρ, L (D | ρ) takes on the form

L (D | ρ) = pn1
1 p

n2
2 p

n3
3 · · · p

nK
K . (4.1)

As for the prior, since each of the probabilities pk must be non-negative

and normalized, w (p) contains a factor w0 (p) given by

w0 (p) = η (p1) η (p2) · · · η (pK) δ

(∑
K

pK − 1

)
, (4.2)

with δ () being the Dirac delta function. Generally, there are additional

constraints on the probability space owing to the fact that the probabilities

must describe realizations of the POM acting on physical quantum states.

Therefore, (4.2) is insufficient to describe the constraint factor wcstr (p), which

takes the form

wcstr (p) =

1 if p is physically permissible

0 otherwise
. (4.3)
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For a multinomial distribution with probabilities {p1, p2, . . . , pK}, the Jeffreys

prior is proportional to 1√
p1p2···pK

. As such, the primitive and Jeffreys priors

for our probabilities p will be

wprimitive (p) ∝ wcstr (p) , (4.4)

wJeffreys (p) ∝ 1
√
p1p2 · · · pK

wcstr (p) . (4.5)

4.1.1 Example: prior for trine measurement on single

qubit

The trine measurement is a three-outcome measurement characterized by the

POM

Π1 =
1

3
(1 + σx) , (4.6a)

Π2 =
1

6

(
2− σx +

√
3σy

)
, (4.6b)

Π3 =
1

6

(
2− σx −

√
3σy

)
. (4.6c)

With this POM, the probabilities of each outcome are simply

p1 =
1

3
(1 + x) , (4.7a)

p2 =
1

6

(
2− x+

√
3y
)
, (4.7b)

p3 =
1

6

(
2− x−

√
3y
)
, (4.7c)

where x and y represent 〈σx〉 and 〈σy〉 respectively. If we sum the squares of

the probabilities, we find

p2 =
3∑

k=1

p2
k =

1

6

(
2 + x2 + y2

)
. (4.8)
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Since the state of the qubit lies within the Bloch sphere, where (x2 + y2) ≤ 1,

we find that p2 ≤ 1
2
. Combining this constraint with w0 of (4.2), we get

wcstr (p) = η (p1) η (p2) η (p3) δ (p1 + p2 + p3 − 1) η

(
1

2
− p2

)
. (4.9)

With this, along with (4.4) and (4.5), we get the complete form of the prim-

itive and Jeffreys priors to be

wprimitive (p) ∝ η (p1) η (p2) η (p3) δ (p1 + p2 + p3 − 1) η

(
1

2
− p2

)
, (4.10)

wJeffreys (p) ∝ 1
√
p1p2p3

η (p1) η (p2) η (p3)

× δ (p1 + p2 + p3 − 1) η

(
1

2
− p2

)
. (4.11)

4.2 Determining the physicality of p

For priors (4.4) and (4.5), we had a factor wcstr (p) which was given by

(4.3), and in 4.1.1, we showed an example of the form wcstr (p) might take.

In general, however, for more complicated systems and measurements, the

physicality of p cannot be easily expressed with a collection of delta and step

functions. We need a systematic way to determine the physicality of p that

will work regardless of the system being measured and the POM being used.

This can be done using the following steps.

1. Find the maximum likelihood estimator ρ̂mle that maximizes the like-

lihood of obtaining data D with relative frequencies nk/N = pk. How

this can be done will be discussed shortly.

2. Compute p̂ corresponding to ρ̂mle using p̂k = tr {Πkρ̂mle}.

3. Find the distance between p̂ and p, d =
√∑K

k=1 (p̂k − pk)2.

4. If d < ε for a small tolerance ε, we conclude that p is physical. If d > ε,

then we say that p is not physical.

23



Iterative methods can be used to find ρ̂mle numerically. In this thesis, we

discuss the use of the direct-gradient and conjugate-gradient methods.

4.2.1 Finding ρ̂mle using direct-gradient method

The direct-gradient method, or steepest ascent, aims to maximize the likeli-

hood function by moving along the direction of steepest ascent. This can be

used for finding ρ̂mle [4], and the algorithm is as follows:

1. Start with j = 1, a small tolerance value ε, a fixed constant α, and the

maximally mixed state ρ1 = 1/d, where d is the dimensionality of the

Hilbert space of ρ.

2. Compute Rj using

Rj =
K∑
k=1

pk
tr {ρjΠk}

Πk . (4.12)

3. If tr {|Rjρj − ρj|} ≤ ε, escape the loop and jump to step 6. Otherwise,

proceed on to step 4.

4. Compute ρj+1 using

ρj+1 =

[
1 + α

2
(Rj − 1)

]
ρj
[
1 + α

2
(Rj − 1)

]
tr
{[

1 + α
2

(Rj − 1)
]
ρj
[
1 + α

2
(Rj − 1)

]} . (4.13)

Here, α characterizes how far we change ρ along the direction of steepest

ascent.

5. Update j = j + 1, and go back to step 2.

6. Return ρj as the result for ρ̂mle.

In [11], rather than using a fixed constant α in step 4, Teo advocates using a

line search for finding an optimum value of α in each iteration. A line search

is performed as follows:

1. Using two trial values of α, compute ρj+1 (α) using (4.13).
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2. For each of these ρj+1 (α), along with ρj+1 (0) = ρj, determine

L (D | ρj+1 (α)).

3. Find the quadratic function that interpolates these three points, and

determine α that maximizes this quadratic function.

4. Use this value of α to generate ρj+1.

Performing a line search here has the benefit of reducing the number of

iterations required for the algorithm to converge. However, it has many

drawbacks. Firstly, it significantly increases the computational cost of each

iteration. More importantly, as the algorithm approaches the optimal state

ρ̂mle, the target function (the likelihood function in this case) becomes rather

flat. With the target function varying very slightly, numerical errors become

very significant when performing the interpolation, giving rise to cases where

the algorithm may return errors or even fail to converge. As such, using a

constant value of α may be preferred. When using a constant value of α, it

should be noted that too small a value will result in the algorithm converging

very slowly, while too large a value can result in algorithm circling about

the peak, and failing to converge altogether. Hence, should the user decide

against using a line search, care must be taken to choose an appropriate value

of α that works best for the particular situation.

The benefits of the direct-gradient method are that it is straightforward

to understand and apply. Additionally, individual iterations are relatively

fast. However, it is known to have a slower convergence compared to other

optimization algorithms. As such, we will take a look at an alternative, the

conjugate-gradient method.

4.2.2 Finding ρ̂mle using conjugate-gradient method

In the conjugate-gradient method, the “zig-zag” path that often results from

the direct-gradient method is avoided by attempting to make the direction

vectors in each iteration conjugate to the rest [12]. Applied to our search for

ρ̂mle, the conjugate-gradient method is as follows:
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1. Start with j = 1, a small tolerance value ε, a fixed constant α, another

fixed constant ξ, identity matrix A1 = 1, and the maximally mixed

state ρ1 = 1/d.

2. Compute R1 using (4.12).

3. Set G1 = R1 − 1, H1 = G1.

4. If tr {|Rjρj − ρj|} ≤ ε, escape the loop and jump to step 12. Otherwise,

proceed on to step 5.

5. Set Aj+1 = Aj + αHj.

6. Compute ρj+1 =
A†j+1Aj+1

tr{A†j+1Aj+1} .

7. Compute Rj+1 using (4.12).

8. Set Gj+1 = Aj+1 (Rj+1 − 1).

9. Compute γj = max

{
tr{G†j+1(Gj+1−ξGj)}

tr{G†jGj}
, 0

}
.

10. Set Hj+1 = Gj+1 + γjHj.

11. Update j = j + 1, and go back to step 4.

12. Return ρj as the result for ρ̂mle.

Instead of using a constant α in step 5, a line search can be performed to find

the optimal α, similar to what was described for the direct-gradient method.

The benefits and drawbacks of using such a line search are also the same

as mentioned for the direct-gradient method. As for the ξ parameter that

is used in step 9, it should be chosen from the range [0, 1). Smaller values

typically lead to quicker convergence, although Teo mentions that if set to

0, the algorithm may not converge. However during our tests, we did not

encounter any problems with setting ξ to 0. Having it at 0 indeed gave us

the best convergence rate, as shown in Fig. 4.1 on page 27. One suggestion

is to set it to 0, and then raise it slightly should it run into problems.
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Figure 4.1: Mean number of iterations required for the conjugate-gradient
algorithm to converge, as ξ is varied. We see that performance improves for
smaller values of ξ. The scenario used for this test is a nine outcome POM,
comprising of a double trine measurement of two qubits.

Compared to the direct-gradient method, each iteration of the conjugate-

gradient method is slightly more expensive computationally. However,

the number of iterations required for convergence is much smaller for the

conjugate-gradient method, as shown in Fig. 4.2 on page 28. The overall

effect is that the CPU time required for the conjugate-gradient method to

converge is a fraction of that required by the direct-gradient method.
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(a) (b)

Figure 4.2: Number of iterations taken using the direct-gradient method (a)
and conjugate-gradient method (b). The verticle red line represents the mean
number of iterations for each algorithm. For the direct-gradient method, the
mean large mean was due to a long and heavy tail which extended to the
range of thousands of iterations. The testing was done using a 9-dimensional
trine-antitrine measurement on a qubit pair, and the CPU time required for
the conjugate-gradient method to converge was an eighth of that required by
the direct-gradient method.
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Chapter 5

Constructing SCRs for

Quantum Systems

In order to construct SCRs for our quantum systems, we return to the method

described in 2.2.4. However, we run into problems when attempting to eval-

uate sλ. Written in terms of p, sλ takes the form

sλ =

ˆ
Rλ
w (p) (dp) . (5.1)

Since (dp) = dp1dp2 · · · dpK , this is a K-dimensional integral that has to

be evaluated. The performance of integration schemes that rely on grids

over the variables deteriorate exponentially as dimensionality of the problem

increases. An improvement is to use sparse grids [13], but its reliability too

deteriorates quickly as dimensionality is increased. Our approach, therefore,

is to use Monte-Carlo integration [14].

In Monte-Carlo integration, points within the integration range are gen-

erated randomly. The integrand is evaluated at each of these points, and a

weighted sum over these values gives the estimated result for the integral.

Unlike integration over grids, the performance of Monte-Carlo integration

only depends on the number of sample points, and not on the dimensionality

of the problem. For the evaluation of (5.1), our general approach will be to

randomly generate sample points that are distributed according to our prior
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w (p). After generating m points, our estimate for the integral will be given

by

sλ =
m∑
j=1

η
(
L
(
D | p(j)

)
− λL (D | ρ̂mle)

)
m

, (5.2)

where p(j) is the set of probabilities of the jth sample, D is the set of data

obtained, and ρ̂MLE is the state that maximizes the likelihood of data D,

which can be found using the direct-gradient method described in 4.2.1, or

conjugate-gradient method described in 4.2.2. What is left now is to gen-

erate samples distributed according to w (p). There are many methods for

generating such samples [15, 16], and in this chapter, we discuss how some

of them can be used for our situation.

5.1 Independence sampling

In independence sampling, sample points are randomly generated indepen-

dent of each other, as its name suggests. In general, it is not straightforward

to sample directly from the target distribution (w (p) in this case). However,

as long as we can sample over the parameter space with some known distri-

bution, we can make use of such a sample by means of rejection sampling

or importance sampling [17]. For the case of probabilities p, the parameter

space is the simplex described by the simplex (1.3). Sampling uniformly over

the simplex is easy, and we provide two algorithms for doing so.

The first uses the idea that K exponential random variables, when nor-

malized, reduce to a Dirichlet distribution [18]. Together with the fact that

a uniform sample over the simplex is simply a Dirichlet distribution with its

α parameters all equal to one, we can sample uniformly over the simplex as

follows:

1. Generate K random numbers {x1, x2, · · · , xK} uniformly over the in-

terval (0, 1).

2. Transform each xk using yk = − log (xk). Each yk obtained this way is

drawn from an exponential distribution with λ = 1.
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3. Obtain pk using pk = yk∑K
k=1 yk

. The p = {p1, p2, · · · , pK} obtained will

be drawn uniformly over the simplex.

The other method, which is analyzed in [19], is as follows:

1. Start with x0 = 0, xK = 1.

2. Draw K − 1 random numbers uniformly over the interval (0, 1),

and sort the list from smallest to largest, to obtain a sorted list

{x1, x2, · · · , xK−1}.

3. Obtain pk using pk = xk − xk−1.

Now that we are able to sample uniformly over the simplex, we will discuss

how we can use rejection sampling and importance sampling to evaluate (5.1)

with such a sample.

5.1.1 Rejection sampling

In rejection sampling, we draw sample points from a convenient distribution,

then reject some sample points such that the remaining sample points are

distributed according to the target distribution. For target density w (p) and

sampling density f (p), we accept each sample point p(j) with probability

a =
w
(
p(j)
)

f (p(j))M
, (5.3)

where M is a covering constant, with value

M = max

{
w (p)

f (p)

}
. (5.4)

For our case, since our sampling distribution is uniform, we have f(p) ∝ 1,

and our acceptance ratio becomes

a =
w
(
p(j)
)

max {w (p)}
. (5.5)
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For the primitive prior, this reduces to the acceptance ratio taking the value

of 1 if p(j) is physical, and 0 otherwise. However, we run into a problem for

the Jeffreys prior. With the Jeffreys prior, max {w (p)} is typically very large,

or even infinite in some cases. This results in an extremely small acceptance

rate, or even 0 if max {w (p)} = ∞. As such, we should avoid rejection

sampling for sharply peaked priors. Additionally, the physical region can

be a very tiny subregion of the entire simplex. As dimensionality of the

problem increases, the volume of the physical region relative to the entire

simplex drops exponentially. For a 3-outcome trine measurement on one

qubit, π
3
√

3
= 60.5% of the generated points will be physical, but for a 9-

outcome trine-antitrine measurement on a qubit pair, it is found that only

9.3% of the points are physical [9]. Therefore, such a sampling scheme will

likely not be practical for cases of higher dimensions.

5.1.2 Importance sampling

In importance sampling, after drawing sample points from the sampling dis-

tribution, we assign weights to these points to compensate for the difference

between the sampling and target distributions. For each sample point, we

calculate the weight factor

Wj =
w
(
p(j)
)

f (p(j))
= w

(
p(j)
)
. (5.6)

With our uniform sampling distribution, we have f(p) ∝ 1, and the weight

factors become

Wj = w
(
p(j)
)
. (5.7)

Our estimate for the integral (5.1) is then

sλ =

∑m
j=1w

(
p(j)
)
η
(
L
(
D | p(j)

)
− λL (D | ρ̂mle)

)∑m
j=1w (p(j))

. (5.8)

At first glance, it may seem that importance sampling solves all the problems

of rejection sampling when working with priors that are sharply peaked. This
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is not true, however. For such priors, our uniform sample over the simplex

is likely to generate very few points that lie within the peak(s). Since these

few points carry a very large weight, the value of sλ is dominated by these

few points, resulting in a large variability in our estimate of sλ. Furthermore,

the problem of most points being unphysical will still be present here. The

unphysical points will carry 0 weight, and will therefore not contribute to

the evaluation of (5.8).

5.2 Markov-chain Monte Carlo

In the independence sampling schemes, we find that as the dimensionality

of the problem gets larger, the acceptance rate becomes very low due to

the physical region being a very small subregion in the entire simplex. Fur-

thermore, for sharply peaked priors, we either end up with extremely low

acceptance rates for rejection sampling, or for importance sampling, we get

very few points in the peaks where they matter most. These problems can

be resolved using Markov-chain Monte Carlo (MCMC), where sample points

are generated by means of a Markov-chain random walk, with the position

of each point depending on the position of the previous [20, 21].

Ideally, we want our Markov-chain’s stationary distribution to be our

target distribution, or the prior in this case. In order to achieve this, we use

the Metropolis-Hastings criteria [22, 23, 24] when performing the random

walk. The general algorithm for such a random walk over parameter θ and

target density f (θ) is as follows:

1. Choose a proposal-generating density, q (x|y), which describes the prob-

ability density of proposing point x if the current point is y. A common

example is a multivariate normal distribution, with a constant covari-

ance matrix and mean at y.

2. Choose an arbitrary starting point θ(1) and j = 1.

3. Randomly generate a proposal θ∗ with density q
(
θ∗|θ(j)

)
.
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4. Compute the acceptance ratio

a = min

{
f (θ∗) q

(
θ(j)|θ∗

)
f (θ(j)) q (θ∗|θ(j))

, 1

}
. (5.9)

5. Draw a random number U uniformly from the range (0, 1). If a > U,

set θ(j+1) = θ∗. Otherwise, set θ(j+1) = θ(j).

6. Set j = j + 1.

7. For target number of sample points m, escape the loop if j = m,

otherwise return to step 3.

For the proposal-generating density, it is convenient to choose one that is

symmetric, whereby q (x|y) = q (y|x) ∀ {x, y} . This proves difficult, however,

for bounded parameter spaces such as our probabilities p. Fortunately, there

are ways to reparameterize p that allow us to overcome this obstacle. We

define an auxiliary variable x = {x1, x2, · · · , xK}, with pk = x2
k. From (1.3),

we get
∑K

k=1 x
2
k = 1, indicating that the parameter space of x is the surface

of the unit (K − 1)- sphere centered about the origin. From point x, we

then propose a new point by drawing a K-dimensional multivariate normal

random variable with mean x and variance s2, and normalize it back to unit

length. The symmetry of such a proposal distribution is guaranteed due to

the spherical symmetry of the multivariate normal distribution.

There are a few more things we need to take note of before we can begin

generating our random walk. First of all, we will need the prior under our

new parameterization. Using (2.4), we find that w (x) ∝ xw (p) =
√
pw (p).

Next, it should be noted that our starting point must be physical. This can

be done by picking a state ρ (the maximally mixed state, for instance), then

getting the initial p(1) using (1.2), and finally getting x(1) using x
(1)
k =

√
p

(1)
k .

Put together, our algorithm for performing the Metropolis-Hastings random

walk is as follows:

1. Start with an arbitrary state ρ, a suitable constant step size s, and

j = 1.

34



2. Obtain p(1) using (1.2) and x(1) using x
(1)
k =

√
p

(1)
k .

3. Randomly generate ∆x, a K-dimensional multivariate random variable

with 0 mean and variance s2.

4. Compute x∗ = x(j)+∆x

|x(j)+∆x| .

5. Determine p∗ using p∗ = (x∗)2.

6. Compute the acceptance ratio a = min

{ √
p∗w(p∗)√
p(j)w(p(j))

, 1

}
.

7. Draw a random number U uniformly from the range (0, 1). If a > U,

set x(j+1) = x∗. Otherwise, set x(j+1) = x(j).

8. Obtain p(j+1) using p
(j+1)
k =

(
x

(j+1)
k

)2

.

9. Set j = j + 1.

10. For target number of sample points m, escape the loop if j = m,

otherwise return to step 3.

Some attention should be brought to the choice of step size s in step 1 of the

above algorithm. When carrying out the Metropolis-Hastings random walk,

if the step size is too large, acceptance rates tend to be very low. On the

other hand, if the step size is too small, the random walk will take a long time

before it can sample the entire space. Therefore, the step size has to be chosen

carefully. In the literature, it has been shown that under various conditions,

the optimal acceptance rate was found to be 23.4% [25, 26, 27, 28]. This

gives a good rule of thumb when finding an optimal step size s. Another way

of finding an optimal step size s would be to calculate the autocorrelations

at different lags, and to use a step size where autocorrelations decay most

quickly. This is illustrated in Fig. 5.1 on page 36.

While the Metropolis-Hastings criteria ensures all the sample points are

within the permissible region, we find that the points generated are highly

correlated. As the dimensionality increases, smaller step sizes are required to

maintain an acceptance rate close to 23.4%. The result is that increasingly

long chains are required before the entire space is sampled.
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(a)

(b)

Figure 5.1: Autocorrelations at various lags using the Metropolis-Hastings
random walk. These are the autocorrelation plots obtained from doing a
Metropolis-Hastings random walk for the 9-outcome trine-antitrine measure-
ment on a qubit pair. The step sizes used were 0.05 and 0.08 for (a) and
(b) respectively. The acceptance rates obtained were about 45% for step size
0.05 and 25% for step size 0.08. Based on this, our rule of thumb (target
acceptance rate of 23.4%) favours the the step size of 0.08. We see also that
for the step size of 0.08, the autocorrelations decay off faster, which agrees
with what we concluded based on our rule of thumb.
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5.3 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC), or Hybrid Monte Carlo, is a Markov-chain

Monte Carlo method that allows us to take large steps while still ensuring

an acceptance rate close to 1 [29, 16]. This is done by first treating the

parameters as the position q of the system. At each step, we give it a random

momentum q̇ and evolve the system over a time interval T according to

Hamiltonian dynamics. Here, the Hamiltonian H of the system is given by

H (q, q̇) =
q̇2

2
+ U (q) , (5.10)

where the potential energy U is given by

U (q) = − log [w (q)] , (5.11)

where w (q) is the density function of the target distribution. For evolving

the system over time T , we use the leapfrog method, which is as follows:

1. Start with t = 1, initial position q (0), initial momentum q̇(0), number

of sub-steps L, and time sub-interval ε = T/L.

2. Compute q̇
(
t− 1

2

)
= q̇ (0)− ε

2
∇U (q (t− 1)).

3. Compute q (t) = q (t− 1) + εq̇
(
t− ε

2

)
.

4. Compute q̇ (t) = q̇
(
t− 1

2

)
− ε

2
∇U (q (t)) .

5. If t = L, escape the loop. Otherwise, set t = t+ 1 and return to step 2.

With this, we proceed to the HMC algorithm.

1. Start with j = 1, an arbitrary starting point q(1), time step T , and

momentum scaling s.

2. Generate q̇(j) from a multivariate normal distribution with variance s.

3. Using the leapfrog method, evolve
{
q(j), q̇(j)

}
over time T to obtain

{q∗, q̇∗}.
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4. Calculate the acceptance ratio

a = min
{

exp
[
H
(
q(j), q̇(j)

)
−H (q∗, q̇∗)

]
, 1
}
. (5.12)

5. Draw a random number U uniformly from the range (0, 1). If a > U ,

set q(j+1) = q∗. Otherwise, set q(j+1) = q(j).

6. Set j = j + 1.

7. For target number of sample points m , escape the loop if j = m ,

otherwise return to step 2.

If the evolution of the system is done exactly, one finds that the acceptance

ratio is always 1 due to conservation of energy. As a result, there is a direct

relation between the number of sub-steps L in the leapfrog method, and the

acceptance rate. As for the momentum scaling s, if its value is too small, one

finds that the algorithm takes a long time to converge, while too large a value

of s requires a large L to maintain a reasonable acceptance rate. Similarly

with time step T , too small a value results in slow convergence, while too

large a value results in a drop in the acceptance rate.

5.3.1 HMC on quantum systems

At first glance, one might be tempted to use the probabilities p as the posi-

tion q. This will not work though, because the form of the potential (5.11)

demands that the prior w (q) must be non-zero for all values of q‡. Since our

prior contains the factor wcstr given by (4.3), we need a parameterisation that

is physical for the entire parameter space. As such, we look to parameterize

ρ directly.

We first consider the case where the POM we are working with is infor-

mationally complete. For an n-level quantum system, ρ can be writen in the

form

ρ = A†A . (5.13)

‡For continuous q, the prior is allowed to reach zero for countably infinitely many
points. This is because in practice, it is very unlikely for our numerical algorithms to land
precisely on any of these points.
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Here, A is an upper-triangular n × n complex matrix with real diagonal

entries, and satisfying
n∑

j=1,k≥j

|Ajk|2 = 1 . (5.14)

From (5.14), we see that the moduli of the elements of A are points on

a
(
n(n−1)

2
− 1
)

-sphere, which can be parameterized by
(
n(n+1)

2
− 1
)

angles

using a spherical coordinate system. In addition, we need another n(n−1)
2

angles to describe the arguments of the off-diagonal terms. All of these

angles are unbounded, which is what we want. If we consider a tetrahedron

measurement on a single qubit, we have n = 2, which results in a total of 3

angles required to parameterize ρ. In terms of the angles, we have

A =

(
cos θ1 sin θ1 sin θ2e

iθ3

0 sin θ1 cos θ2

)
, (5.15)

ρ = A†A =

(
cos2 θ1

1
2

sin (2θ1) sin θ2e
iθ3

1
2

sin (2θ1) sin θ2e
−iθ3 sin2 θ1

)
. (5.16)

It is also worth determining the expectation values of the Pauli matrices,

x = 〈σx〉 = sin (2θ1) sin θ2 cos θ3 , (5.17a)

y = 〈σy〉 = sin (2θ1) sin θ2 sin θ3 , (5.17b)

z = 〈σz〉 = cos (2θ1) . (5.17c)

On the other hand, if the POM we are working with is not informationally

complete, we should not parameterize the entire state space. Rather, we

should be parameterizing just the reconstruction space, which is a set of ρ

that contains exactly one ρ for each permissible p, otherwise we will not be

able to find the correct Jacobian factor relating these parameterizations. An

example will be the trine measurement on the xz-plane of a single qubit,

where a possible reconstruction space is simply the y = 0 plane of the Bloch

sphere. We can then simply reuse the parameterization described above for

the full qubit, but with θ3 = 0. It should be noted, however, that there is no
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general way to find a parameterization that gives us a reconstruction space.

5.3.2 Example: sampling the prior of a tetrahedron

measurement

The tetrahedron measurement is a symmetric, informationally complete

(SIC) POM on a single qubit, which takes the form

Π1 =
1

4

(
1 +

√
1

3
σx +

√
2

3
σy

)
, (5.18a)

Π2 =
1

4

(
1 +

√
1

3
σx −

√
2

3
σy

)
, (5.18b)

Π3 =
1

4

(
1−

√
1

3
σx −

√
2

3
σz

)
, (5.18c)

Π4 =
1

4

(
1−

√
1

3
σx +

√
2

3
σz

)
. (5.18d)

Using the parameterization described in 5.3.1, the probabilities of each out-

come take the form

p1 =
1

4

(
1 +

√
1

3
x+

√
2

3
y

)

=
1

4

(
1 +

√
1

3
sin (2θ1) sin θ2 cos θ3 +

√
2

3
sin (2θ1) sin θ2 sin θ3

)
, (5.19a)

p2 =
1

4

(
1 +

√
1

3
x−

√
2

3
y

)

=
1

4

(
1 +

√
1

3
sin (2θ1) sin θ2 cos θ3 −

√
2

3
sin (2θ1) sin θ2 sin θ3

)
, (5.19b)
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Figure 5.2: Random sample from the prior distribution generated using
HMC. The POM used was a tetrahedron measurement on a single qubit.
The sampling was done over the primitive prior with 50,000 sample points.
The points are then projected onto the xz-plane for the purpose of illustra-
tion. We see that the density of points is higher near the middle, which
is what we expect when we project a random sample over the volume of a
sphere onto a flat plane. This indicates that the HMC algorithm has indeed
successfully converged to our target distribution.
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p3 =
1

4

(
1−

√
1

3
x−

√
2

3
z

)

=
1

4

(
1−

√
1

3
sin (2θ1) sin θ2 cos θ3 −

√
2

3
cos (2θ1)

)
, (5.19c)

p4 =
1

4

(
1−

√
1

3
x+

√
2

3
z

)

=
1

4

(
1−

√
1

3
sin (2θ1) sin θ2 cos θ3 +

√
2

3
cos (2θ1)

)
. (5.19d)

Using (2.4) to transform the prior, we get the primitive prior in our param-

eterization to be

w0 (θ) = w0 (p)

∣∣∣∣∂p∂θ
∣∣∣∣ ∝ ∣∣∣∣∂p∂θ

∣∣∣∣ =
∣∣sin3 (2θ1) sin (2θ2)

∣∣ . (5.20)

With this, we use (5.11) to obtain the potential for our Hamiltonian,

U (θ) = 3 log |sin (2θ1)|+ log |sin 2 (θ2)| , (5.21)

as well as ∇U (θ) which we need for performing the leapfrog algorithm, given

by
∂U

∂θ1

= 6 cot (2θ1) , (5.22a)

∂U

∂θ2

= 2 cot (2θ2) , (5.22b)

∂U

∂θ3

= 0 . (5.22c)

We now proceed to perform the HMC sampling over the prior of θ. Fig. 5.2

on page 41 shows the distribution of 50,000 sample points generated using

the HMC algorithm. The density of the points are higher around the middle,

which is what we expect for points distributed over the volume of a sphere

and then projected onto a flat plane, hence verifying that the HMC algotithm
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Figure 5.3: Trajectory taken by the HMC algorithm. The POM is the same as
that used in Fig. 5.2 on page 41, but only 50 sample points were generated for
this plot. Here, the blue lines join consecutive points to show the trajectory
taken by the HMC algorithm. We can see that the sample points do not
stay close together, unlike what we might expect from other MCMC random
walks.
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has successfully produced a sample according to our target distribution. In

Fig. 5.3 on page 43, only 50 sample points are generated, with consecutive

points joined by a blue line. This allows us to see the path taken by the HMC

algorithm. From the plot, we can see that the path does not resemble what

we might expect from a random walk, where consecutive points are always

close together. Hence, HMC overcomes the problem of long autocorrelation

times found in the Metropolis-Hastings random walk. Together with a high

acceptance rate (about 95% in this example), HMC is able to converge on the

target distribution much faster than the Metropolis-Hastings random walk.

Furthermore, since all proposed points are guaranteed to be physical, we do

not have to check them for physicality, therefore saving much time.

5.3.3 Sampling the posterior

In 2.2.4, we used the sλ and (2.17) to obtain cλ. There is, however, a more

direct method, which is to compute cλ using (2.15). By obtaining m sample

points distributed according to the posterior distribution, we can estimate cλ

using

cλ =
m∑
j=1

η
(
L
(
D | ρ(j)

)
− λL (D | ρ̂mle)

)
m

. (5.23)

For the other sampling methods, this would not work as the posterior tends

to be sharply peaked, resulting in extremely low acceptance rates. HMC

however, allows us to still achieve high acceptance rates when sampling such

distributions. Therefore, we have the flexibility to decide either sampling the

prior and computing cλ as described in 2.2.4, or sampling the posterior and

computing cλ using (5.23).

A benefit of sampling from the posterior is that by simply setting

D = {0, 0, . . . , 0}, we get back the prior distribution, meaning that an algo-

rithm for sampling the posterior will also be able to sample from the prior.

Furthermore, for the multinomial likelihood, the Jeffreys prior happens to

be a conjugate prior. This results in the posteriors from the Jeffreys and
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primitive priors being related by

gJeffreys (ρ|D) = gprimitive

(
ρ|D − 1

2

)
, (5.24)

where
(
D − 1

2

)
=
{
n1 − 1

2
, n2 − 1

2
, . . . , nK − 1

2

}
. As such, having a scheme

to sample from the posterior of the primitive prior will enable us to sample

both the prior and the posterior distributions, for both the Jeffreys prior and

the primitive prior.

We shall now work out the posterior in our parameterization of the re-

construction space. Combining (2.10), (4.1) and (5.20), the posterior density

takes the form

g (θ|D) ∝ pn1
1 p

n2
2 · · · p

nK
K

∣∣∣∣∂p∂θ
∣∣∣∣ . (5.25)

5.3.4 Example: sampling the posterior of a trine mea-

surement

For a trine measurement on the xz-plane of a single qubit, the POM takes

the form

Π1 =
1

3
(1 + σx) , (5.26a)

Π2 =
1

6

(
2− σx +

√
3σz

)
, (5.26b)

Π3 =
1

6

(
2− σx −

√
3σz

)
. (5.26c)

Using the parameterization described in 5.3.1 with θ3 = 0, the probabilities

of each outcome take the form

p1 =
1

3
(1 + x) =

1

3
(1 + sin (2θ1) sin θ2) , (5.27a)

p2 =
1

6

(
2− x+

√
3z
)

=
1

6

(
2− sin (2θ1) sin θ2 +

√
3 cos (2θ1)

)
, (5.27b)

p3 =
1

6

(
2− x−

√
3z
)

=
1

6

(
2− sin (2θ1) sin θ2 −

√
3 cos (2θ1)

)
. (5.27c)
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From (5.20), we find that the primitive prior takes the form

w0 (θ) =

∣∣∣∣∂p∂θ
∣∣∣∣ ∝ sin2 (2θ1) |cos θ2| . (5.28)

Using (5.25), the posterior becomes

g (θ|D) ∝
[

1

3
(1 + sin (2θ1) sin θ2)

]n1

×
[

1

6

(
2− sin (2θ1) sin θ2 +

√
3 cos (2θ1)

)]n2

×
[

1

6

(
2− sin (2θ1) sin θ2 −

√
3 cos (2θ1)

)]n3

× sin2 (2θ1) |cos θ2| . (5.29)

Next, we use (5.11) to obtain the potential of our Hamiltonian,

U (θ) = −n1 log (1 + sin (2θ1) sin θ2)

− n2 log
(

2− sin (2θ1) sin θ2 +
√

3 cos (2θ1)
)

− n3 log
(

2− sin (2θ1) sin θ2 −
√

3 cos (2θ1)
)

− 2 log |sin (2θ1)| − log |cos θ2|+ c , (5.30)

where c is a constant that has no effect on the dynamics of the system.

Finally, we need ∇U (θ) in order to perform the leapfrog algorithm. These

take the form

∂U

∂θ1

= −n1
2 cos (2θ1) sin θ2

1 + sin (2θ1) sin θ2

+ n2
2 cos (2θ1) sin θ2 + 2

√
3 sin (2θ1)

2− sin (2θ1) sin θ2 +
√

3 cos (2θ1)

+ n3
2 cos (2θ1) sin θ2 − 2

√
3 sin (2θ1)

2− sin (2θ1) sin θ2 −
√

3 cos (2θ1)

+ 2 (tan θ1 − cot θ1) , (5.31a)
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∂U

∂θ2

= −n1
sin (2θ1) cos θ2

1 + sin (2θ1) sin θ2

+ n2
sin (2θ1) cos θ2

2− sin (2θ1) sin θ2 +
√

3 cos (2θ1)

+ n3
sin (2θ1) cos θ2

2− sin (2θ1) sin θ2 −
√

3 cos (2θ1)

+ tan θ2. (5.31b)

Figure 5.4: Random sample from the posterior distribution generated us-
ing HMC. The POM used was a trine measurement on the xz-plane of a
qubit, the simulated data was {8, 5, 11}, and the number of sample points
was 50,000. From this, we see that the HMC algorithm is indeed able to
successfully converge to the target distribution.
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We can now perform the HMC sampling over the posterior of θ. Fig. 5.4

on page 47 shows the distribution of 50,000 sample points obtained using

the HMC method. Here, the data used was {8, 5, 11}. This verifies that the

HMC algorithm is able to successfully sample from the posterior. We then

proceed to compute cλ for varying λ using (5.23). Fig. 5.5 on page 48 shows

the results of computing cλ using two methods, the first being sampling the

posterior and using (5.23) to obtain cλ, and the second being sampling the

prior, obtaining sλ using (5.2), and then using (2.17) to compute cλ. We

see that the results from both methods are in agreement with each other,

indicating that both methods are able to reliably produce cλ.

Figure 5.5: Obtaining cλ from sampling the prior and posterior. The red
line represents cλ obtained by sampling from the posterior, and then using
(5.23). The blue line represents sλ, obtained by sampling the prior and then
using (5.2). (2.17) is then used to compute cλ from sλ, and these values for
cλ are represented by the green line. We see that the values of cλ obtained
from both methods agree with each other, as they should.

HMC does, however, have its drawbacks. The most important drawback

is that in general, for informationally incomplete POMs, there is no straight-

forward parameterization that will give a reconstruction space. In addition,
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as the dimensionaility of the problem increases, we find that the potential

(5.30) and its derivatives (5.31a)(5.31b) become increasingly complicated,

making HMC difficult to implement.

49



50



Chapter 6

Conclusion

In this thesis, we have discussed how optimal estimator regions can be char-

acterized and constructed. We argued since there is no meaningful way to

measure the size of confidence intervals, there is no way to define the op-

timality of a set of confidence regions. We therefore move to the Bayesian

approach, and define optimal estimator regions to be SCRs, regions with the

smallest size for a given credibility. Here, the size and credibility of a region

refers its prior and posterior content respectively.

We then use the case of a coin flip with an unknown success rate to

demonstrate how SCRs are constructed. We use this example to draw con-

strast between credible regions and confidence regions, and also show that

for this case, credible regions do not make good confidence regions.

Moving on to quantum systems, the first problem we encounter is that

checking if a set of probabilities p is physical given the POM. Fortunately,

this can be done using numerical methods [30]. By comparing the direct-

gradient and conjugate gradient methods, we found the conjugate-gradient

method to be the better of the two, being able to converge in a fraction of

the time of the direct-gradient method.

The remaining problem is then to find a way to evaluate the multidimen-

sional integral (5.1). In order to evaluate the integral using the method of

Monte Carlo integration, we need to sample the parameter space according

to the prior. To do this, we propose three methods, each with its own benefits
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and drawbacks. The first is independence sampling, where we generate ran-

dom points uniformly over the simplex and either accept of scale the points

according to the prior. Independence sampling has the benefits of being easy

to implement, and also gives uncorrelated sample points. However, for high

dimensional problems, most of the sample points will be unphysical, resulting

in a very small proportion of sample points being useful. The second method

is MCMC using the Metropolis-Hastings random walk. While this gives us

points that are all physical, the sample points are highly autocorrelated,

resulting in a large number of sample points required before the sampling

distribution converges onto the target distribution. Finally, we have HMC,

which enables us to achieve larger step sizes compared to the Metropolis-

Hastings random walk. This allows us to obtain sample points that are all

physical, and with small autocorrelations. Hence among the three methods,

HMC is able to converge using the fewest sample points. Furthermore, in

HMC, all the proposal points are physical, hence saving us the trouble of

checking them, which is a computationally expensive procedure. Its draw-

backs however, are that it is difficult to implement, and also it requires a

parameterization of a reconstruction space, which is not straightforward to

find for informationally incomplete POMs.

Currently, we are trying to implement the HMC method to two qubit

systems, and possibly even more complicated systems in the future.
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