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ABSTRACT 
 
Graphene is a two-dimensional carbon honeycomb structure that gained popularity due to its 

excellent electronic properties, such as the ballistic electron transport and outstanding 

optical and mechanical properties [1]. In this thesis, we study the optical properties of 

graphene on SiO2/Si using spectroscopic ellipsometry. Our results show that many body 

effects, in particular the electron-electron (e-e) and electron-hole (e-h) interactions manifest 

themselves in the graph of optical conductivity of graphene. The strong e-h interactions is  

observed and it is prominent from the asymmetric resonance peak at 4.65eV. This observed 

excitonic resonance can be explained by the Fano model, which describes the residing of a 

discrete excitonic state in the band continuum. Comparing our experimental results with the 

theoretical calculations of the optical conductivity of a free-standing graphene, we found that 

the spectrum for graphene on SiO2/Si blue shifted and is less asymmetric. This could be due 

to an inaccurate optical model used or it could suggest a screening of e-h interactions due to 

the graphene-SiO2 interaction. 
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ORGANISATION OF MATERIALS 
 

In Chapter 1, we give a review of optical physics, giving important equations that will be used 

in the spectroscopy ellipsometry and curve fitting. Also, a general overview of the band 

structures and properties of Silicon (Si) and graphene will be given. Then we give a 

motivation of our thesis to end off the chapter. 

In Chapter 2, the experimental technique - spectroscopy ellipsometry will be introduced. In 

particular, we will be discussing on the equipment components and the quantities it 

measured. We then discuss about the mathematics behind the ellipsometry and provide a 

justification on the use of spectroscopy ellipsometry for our experiment through a simulation 

of another experiment called the reflectance spectroscopy, 

 In Chapter 3, we discuss about the data analysis of spectroscopy ellipsometry, in particular 

the curve fitting technique. We will give an evaluation of this technique, and discuss about 

the strengths and weaknesses. 

In Chapter 4, the experimental results will be presented. We will also discuss about our 

results and the excitonic effects in graphene on SiO2/Si.  

In Chapter 5, a summary of our findings will be given. We will also be giving some important 

future directions, in order to further study graphene on SiO2/Si optical properties in further 

details.  
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CHAPTER 1 INTRODUCTION 
 
 

Recent experiments are carried out in order to understand the properties of the two 

dimensional Dirac fermions in a graphene layer, due to its excellent electronic properties. 

The optical properties of graphene are also extensively studied using different experimental 

set-ups, in particular the spectroscopy ellipsometry is widely used due to the high degree of 

accuracy [2]. The spectroscopy ellipsometry is a non-destructive and simple experimental 

technique that measures the change in polarization state in the light, after reflected off the 

sample [3-4]. This chapter provides review on two components, namely the theoretical 

background for optical physics as well as the theoretical background to our sample used so 

as to understand the optical properties of matter as well as the necessary equations used in 

ellipsometry. 

1.1  THEORETICAL BACKGROUND – OPTICAL PHYSICS 

 

1.1.1  STANDARD WAVE PROPAGATION 
 
In 1849, Maxwell have shown that light has the characteristics of waves, with 

electromagnetic properties that follow the electromagnetic theory. The propagation of an 

electromagnetic wave can be derived from the well known Maxwell‟s equations below. 

 

 
∇. 𝐄 =

𝜌

𝜀
 ( 1.1 ) 

 
 

 ∇. 𝐁 = 0 
( 1.2 ) 

 
 

 

                                                 ∇ × 𝐄 = −
𝜕𝐁

𝜕𝑡  
        ( 1.3 ) 
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∇ × 𝐁 = 𝜇  𝜀

𝜕𝐄

𝜕𝑡
+ 𝐉    ( 1.4 ) 

 
 

Where E is the electric field and B is the magnetic induction. ε and μ are the permittivity and 

permeability of the materials. Also, ρ is the charge density and J is the current density, such 

that J=ζ E, where ζ is the conductivity.  

Multiplying both sides of Equation (  1.3 ), we get: 

 
∇ × ∇ ×𝐄 = −

∂∇ × 𝐁

∂t
              

( 1.5) 
 

 

Using the relation ∇ × (∇ × 𝐄) = ∇ ∇. 𝐄 − ∇2𝐄, and taking ρ to be zero, Equation (  1.5) can 

then be written as: 

 
∇2𝐄 = με

∂2𝐄

∂t2 +  μς
∂𝐄

∂t
          

(1.6) 
 

 

Equation ( 1.6) is the wave equation of an electromagnetic wave inside a conductor. When 

we consider electromagnetic wave propagation in vacuum, the permittivity ε will be written 

as ε0 while the permeability μ is written as μ0. Putting the conductivity ζ as zero, we can 

rewrite Equation ( 1.6) as: 

 
∇2𝐄 = εoμo

∂2𝐄

∂t2                        
(1.7) 
 

 

Comparing with the wave equation of a general wave which has the form ∇2𝐟 =
1

s2

∂2𝐟

∂t2  where s 

is the speed of the wave, the speed of light in vacuum can be obtained to be:  

 
𝑐 =

1

√𝜇𝑜𝜀𝑜

= 2.99792 × 108𝑚/𝑠 
(1.8) 
 

 

Equation ( 1.7) has the solution expressed by: 

 𝐄 = 𝐄o exp i ωt − κx   ( 1.9 ) 
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such that ҡ is the propagation number given by 2π/λ and Eo is the amplitude of the wave. 

The same procedure can be carried out on the B field, and it has the same form as Equation 

(  1.9 ) giving: 

 𝐁 = 𝐁o exp i ωt − κx   ( 1.10 ) 
 

The direction of light propagation is perpendicular to E and B, and there is a relation given 

by:  

 𝐄 = c𝐁    ( 1.11 ) 
 

1.1.2 PROPAGATION OF LIGHT IN SOLIDS 
 

When light propagates into an optically different medium, the refraction of light takes place. 

The refraction of light depends on the refractive index, n and n is defined to be: 

 n =
c

s
 ( 1.12 ) 

 

whereby s is the speed of light in the medium. From Equation (  1.12 ), light waves travel 

slower in a medium with high n. In the case when there is no light absorption in the media, 

the propagation number, κ can be written in terms of the refractive index, n as follows: 

 
κ =

2πn

λ
=

ωn

c
    ( 1.13 ) 

 
 
Equation (  1.13 ) is the propagation number of light waves in a transparent medium. If 

Equation (  1.13 ) is plugged into Equation (  1.9 ), it follows that: 

 

 𝐄 = 𝐄o exp i ωt − 2πnx/λ      ( 1.14 ) 
 

Equation (  1.14 ) illustrates the waveform when the light waves travelling in a transparent 

medium. One can see from this equation that the wavelength of light  becomes λ/n, simply 

by comparing with Equation (  1.9 ). One notable characteristic of this equation is that the 

amplitude of the wave will remain constant as it propagates in the medium. 
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In the event when light travels in an absorbing medium, Equation (  1.13 ) must be modified 

to include the extinction coefficient k, a quantity used to describe light absorption in a media. 

A complex refractive index N is defined, such that  

 N = n − ik           ( 1.15 ) 
 

and the n in Equation (  1.13 ) must be replaced with N, to describe light propagation in an 

absorbing medium. To show how the amplitude changes of the waveform changes when 

light propagates in an absorbing medium, one can substitute Equation (  1.13 ) into Equation 

(  1.9 ) again. It follows that: 

 
𝐄 = 𝐄o exp  i  ωt −

2πNx

λ
   

= 𝐄o exp  −
2πkx

λ
 exp  i  ωt −

2πnx

λ
     

 

( 1.16 ) 
 

Equation (  1.16 ) shows an exponential drop in the amplitude of the wave as it propagates 

into the medium. Meanwhile, the change in the wavelength of light remains at λ/n. This leads 

to an important conclusion: the absorption of light has no effects on the wavelength.  

There is an important point to be mentioned. In this thesis, the refractive index N is defined 

as N=n-ik as shown in Equation (  1.15 ) and the phase of the wave is expressed to be (ωt-

ҡx). Some literatures might define N=n+ik, and in this case, the phase of the wave must be 

expressed in (-ωt+ҡx), so that the decay of the electromagnetic wave in the medium can be 

expressed in exp(-2πkx/λ). 
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Figure 1.1 - The propagation of light waves in (a) a transparent medium and (b) an absorbing medium. From [3]. 

1.1.3  BEER’S LAW 
 
Using Equation (  1.16 ), one can find the intensity of light propagating in the medium using 

the following relation: 

 I = |𝐄|2 = 𝐄∗𝐄            ( 1.17 ) 
 

 

 
I = |𝐄𝐨 exp(−2πkx/λ) |2 = |𝐄 𝐨|2 exp  −

4πkx

λ
         ( 1.18 ) 

 
 

Equation (  1.16 ) shows that the intensity of light decreases exponentially in the medium. 

This is often referred to as the Beer‟s Law, an empirical relation: 

 I = Io exp −αd        ( 1.19 ) 
 

where α is the absorption coefficient of the medium and d is the distance from the surface. If 

Equation (  1.18 )and (  1.19 ) is compared, then   

 
 

α =
4πk

λ
                   ( 1.20 ) 

 
   
 
Equation (  1.20 ) shows that the absorption coefficient is related to the extinction coefficient,k. 
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1.1.4 DIELECTRIC CONSTANTS 
 

From the previous section, it has been shown that the propagation of light in a medium is 

largely described by the complex refractive index, N. In this section, it will be shown that N is 

actually determined by the dielectric polarization generated, when external E field impinges 

on the medium.  

In dielectrics, electric charges are not able to move freely as atoms are bound very strongly 

together. Nonetheless, under the application of the external E field, there will still be a 

modification of the positive and negative charges as they react differently to the E field. Due 

to this modification, there is a spatial distribution of the positive and negative charges, such 

that there will be regions that are more electrically positive and negative. This is further 

illustrated in Figure  1.2. 

 

Figure 1.2 - Dielectric polarization  of a dielectric under external electric field. a) The electric polarization b) The 
atomic polarization. From [3]. 

 

Figure  1.2a shows the electric polarization. Under the influence of the electric field, the 

positions of the negatively charged electron as well as the positively charged charges in the 

atom will be distorted in opposite directions. For ionic crystals like NaCl, which consists of 

positive and negative charged ions, atomic or ionic polarization takes place. 

The extent of polarization, P in a material is determined by dielectric constant or the 

permittivity εp . More often, the relative permittivity or the relative dielectric constant is used, 

and it has the form of: 

 ε =
εp

εo
                      ( 1.21 ) 
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where εo is the permittivity in vacuum. 

The refractive index, N defined in the previous section is related to the relative dielectric 

constant as below: 

 N2 =  ε   ( 1.22 ) 
 

ε is a complex number and the complex dielectric constant is defined as: 

 ε = ε1 – iε2           

 

( 1.23 ) 
 

If we combine Equation (  1.15 ) and (  1.23 ), we can find that 

 ε1 = n2- k2 

 

( 1.24 ) 
 

 ε2 = 2nk 

 

( 1.25 ) 
 

and  

 n={[ε1 + (ε1
2 + ε2

2)1/2] /2}     

 

( 1.26 ) 
 

 k={[-ε1 + (ε1
2 + ε2

2)1/2] /2}    

 

( 1.27 ) 
 

From Equation (  1.22 ), one can see that the easier electric dipole is formed (higher ε), the 

slower the light propagation in the solid is.  

ε has been treated as a single complex number so far, but in actual experiments, it will 

change according to the angular frequency ω of incident light applied to the solid. One can 

see this from Figure (  1.3 ), a graph of dielectric function versus energy of Aluminum metal.  

In our experiment, the graph of dielectric function versus energy of graphene on SiO2/Si will 

be plotted in order to study the optical properties. 

1.1.5 DRUDE AND LORENTZ MODEL 
 

There are many dielectric models that describe the motions of electrons under the 

application of electric field, in particular, we use the Drude - Lorentz dielectric model for our 

curve fitting of experimental results. The Lorentz oscillator model is applicable to insulators 
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and semiconductors while the Drude model is applicable to metals, with free electron 

carriers.   

(a) LORENTZ MODEL  
 

In a classical picture, the electrons can be modeled to be connected to the positively 

charged atomic nucleus with a spring. Once the light is impinged onto the sample, the 

electric field with E=E0 exp(iωt) will induce an electric polarization mentioned in the previous 

section. Using Newton‟s second law, one can describe the motion of the electron like an 

oscillator.  

 
m

d2x

dt2
= −mγ

dx

dt
− mωo

2x − eEo exp iωt     
( 1.28 ) 
 

 

such that the first term on the right represents the viscous force, and ϒ is the damping 

coefficient (electron motion damped by phonons), ωo is the resonant frequency of the 

oscillator, while the second term refers to the restoring force on electrons and the third term 

represents the applied field. 

Equation (  1.28 ) gives an solution of x(t)=b exp (iωt), such that b has the form of  

 

 
b =

−eEo

m
 

1

 ωo
2 − ω2 + iγω

               

 

( 1.29 ) 
 

Considering a solid with Ne number of electrons per unit volume, the dielectric polarization P 

is expressed as P= -eNebexp(iωt). Meanwhile, P is also related to the dielectric constant with 

the following equation: 

 
              ε = ε∞ +

P

εoE
                                    

( 1.30 ) 
 

 

Combining Equation (  1.29 ) and Equation (  1.30 ), the dielectric function is expressed to be: 

 
ε = ε∞ +  

e2Ne

εom

1

 ωo
2 − ω2 + iγω

               
( 1.31 ) 
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The above described is only applicable to 1 oscillator. When there are many oscillators, 

Equation (  1.31 ) will become: 

 
ε = ε∞ +   

ωpi
2

 ωoi
2 − ω2 + iγiω

i

               
( 1.32 ) 
 

 

such that ωp is the plasma frequency, given by e2Ne/εom, and i refers to the ith oscillator.  

Equation (  1.32 ) also shows that the dielectric ε is a function of the frequency of light.  

 

(b) DRUDE MODEL 

As mentioned above, the Drude model can be used to model the dielectric functions of 

metals or semiconductors with free carriers. The dielectric function can be gotten from 

Equation (  1.31 ) by putting ω0, the resonant frequency to be 0, since the carriers are free to 

move and they are not under the effect of a restoring force that gives rise to resonant 

frequency. If we assume that the free carriers are also subjected to the same damping force, 

ϒ, then we can get: 

  
𝜀 = 𝜀∞ +  

ωp,D
2

 −ω2 + iγω
               

 

 

( 1.33 ) 
 

 

such that ωp,D
2  is the plasma frequency, where ωp,D

2 = e2Ne,f /εome and Ne,f is the 

concentration of the free electrons. The Drude model described predicts a frequency 

dependent free carrier conductivity to be: 

 ς ω =
ς0

1 + iωτ
= ς1 − iς2 ( 1.34 ) 

 

where ζ 0 and 𝜏 are the DC conductivity and the scattering time of the electrons respectively, 

while ω represents the frequency of light. It turns out that [5]:  

 
ς0 =

ne e2τ

me
   , Υ =

1

τ
 

(1.35 ) 
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It is also notable that the optical absorbance at normal reflectivity is related to the optical 

sheet conductivity by: 

 
A ω =

4π

c
[ς1 ω ]   ( 1.36 ) 

 
 

Thus, looking at the absorbance curve can already give us information of the optical 

conductivity. 

Figure  1.3 below shows  dielectric curve of an Aluminum metal measured from spectroscopy 

ellipsometry. 

 

Figure 1.3  - Dielectric Functions of Aluminum. From [6]. 

The Drude model is normally dominant at low energy of light. The peak of ε2 at around 1.6eV 

shown in Figure  1.3 represents the absorption of light, such that the corresponding 

frequency represents the resonant frequency of the oscillator predicted by the Drude-Lorentz 

model. Looking at Equation (  1.25 ) one can see that the ε2 is proportional to k, the extinction 

coefficient. Hence, looking at the peaks in curve of ε2 tells us the frequency of light that has 

been absorbed significantly, which is related to electrons transition from the valence band to 

conduction band. 

 

 

 

Drude Model 
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1.1.6 KRAMERS KRONIG RELATION 
 

As mentioned, ε=ε(ω) and due to causality principle, the real part and imaginary parts of ε 

are not independent. Instead, they are coupled with the Kramers-Kronig relation [7-8]. This 

gives: 

 
ε1 − 1 =

2

π
P  

xε2(x)

x2 − ω2

∞

0

dx              
( 1.37 ) 
 

 

 
ε2 = −

2ω

π
P  

ε1(x)

x2 − ω2

∞

0

dx               ( 1.38 ) 
 

 

where the P refers to the principal value integral, such that a singularity will occur when x=ω. 

The n and k defined in Section 1.12 are also connected with the Kramers-Kronig relation. In 

Chapter 2 where the comparison of ellipsometry and reflectance spectroscopy is made, the 

Kramers-Kronig relation will be revisited. 

1.1.7  P AND S POLARIZED LIGHT 
 

It is important to review on the theory of P and S polarized light as spectroscopy ellipsometry 

measures the amplitude as well as the phase difference between the P and S polarized light 

after reflecting off the surface.  

Light can be classified into P and S polarization, such that P- polarized light oscillates 

parallel to the plane of incidence, while the S- polarized light oscillates in a perpendicular 

direction to the plane of incidence. It is further illustrated in Figure  1.4 that after light 

reflection, the P polarized incident and P polarized reflected are in the same plane with the 

plane of incidence.  
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Figure 1.4 - The P- and S polarized light. From [3]. 

 

  
Figure 1.5 -  a) The P polarized light, b) The S polarized light. From [3]. 

 

1.1.8 FRESNEL’S EQUATION 
 

Figure  1.5a further illustrates the idea of P and S polarization of light. In the figure, ϴi , ϴr , 

and ϴt represents the incident angle, reflection angle and transmission angle of light 

respectively. Eip, Erp, Etp represents the amplitude of E field of incident, reflected and 

transmitted P polarized light while the subscript s represents the S- polarized light. The 

boundary conditions for E and B require 

  i) for the p-polarized light to be: 

 Eipcosϴi - Erpcosϴr=Etpcosϴt ( 1.39 ) 
 

 

Ep 
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 Bip+Brp=Btp 

ii) for the s-polarized light to be: 

 

( 1.40 ) 
 

 -Biscosϴi +Brscosϴr=-Btscosϴt 

 

( 1.41 ) 
 

 Eis+Ers=Ets                      

 

( 1.42 ) 
 

For a medium with a refractive index of N, E=sB from Equation (  1.12 ), such that s is the 

speed of light in the medium. Using this relation and Equation (  1.11 ), Equation (  1.40 ) can 

be re-written as: 

 Ni(Eip + Erp)=NtEtp               

 

( 1.43 ) 
 

If compare Equation(  1.39 ) and (  1.43 ) and eliminate Etp, one can get the amplitude 

reflection coefficient of the p polarized light by defining rp=Erp/Eip. Hence, 

 
rp =

Erp

Eip
=

Ntcosθi − Nicosθt

Ntcosθi + Nicosθt
   ( 1.44 ) 

 

 

If the same procedure is carried out for the s-polarized light, the amplitude reflection  

coefficient of the s polarized light is: 

 
rs =

Ers

Eis
=

Nicosθi − Ntcosθt

Nicosθi + Ntcosθt
  ( 1.45 ) 

 
 

rp and rs are called the Fresnel equations and they are complex functions, since related to 

the complex refractive index N. We can hence express rp and rs in the polar coordinate 

representation, such that: 

 rp= rp  exp(iδrP
)  

 

( 1.46 ) 
 

 

 rp= rp  exp(iδrs
) ( 1.47 ) 
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In ellipsometry, the difference between the two phases δrp
 and δrs

 will be measured, and 

will be further elaborated in Chapter 2. 

From the Fresnel‟s equation, we can also find the reflectance, the ratio of reflected intensity 

and incident intensity to be: 

 
Rp =

Irp

Iip
= |

Erp

Eip
|2 = |rp|2    ( 1.48 ) 

 

 

 
Rs =

Irs

Iis
= |

Ers

Eis
|2 = |rs|2    ( 1.49 ) 

 
 

1.1.9 OPTICAL INTERFERENCE IN THIN FILMS 
 

It is important to also review on the optical interference in thin films, in particular the 

Fresnel‟s equations for a multilayer system. We used optical model of 0123 system 

(Figure  1.6); 0 is the always defined as the medium air, 1 is medium graphene, 2 is medium 

SiO2, and lastly 3 is medium Si to describe our sample. This optical model assumes that  

graphene is smooth and there are no interface layer in between the interfaces. We will be 

talking more of the optical model in Chapter 4 when we discuss the experimental results, as 

the optical model is crucial for a good fitting. 

 

 

Figure  1.6 -  Optical model of sample used in experiment. 

 

The Fresnel‟s equation for a 012 system can be used to evaluate the Fresnel‟s equation for 

a 0123 system. 
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Figure  1.7- Optical model 012 system. From [3]. 

When an incident light wave is impinged and reflected from the surface of medium 1, shown 

in Figure  1.7, it will interfere with the light that is reflected off the medium 2. There is a 

possibility for a constructive interference or a destructive interference, depending on the 

wavelength of light and the optical constants of the system. Light wave reflected off the 

medium 1 will be called primary beam, while the wave reflected off the substrate and 

transmitted out from the thin film will be called the secondary beam.  

The phase difference between two beams of light can be found to be: 

 
β =

2πdN1

λ
 

1 − sin2θ1

cosθ1
 =

2πdN1

λ
cos θ1   

( 1.50 ) 
 

 

The Fresnel‟s equation for a 012 system for both P- and S- polarized light are expressed as: 

 
r012,p =  

r01,p + r12,p exp −i2β 

1 + r01,p r12,p exp −i2β 
 , 

 

r012,s =  
r01,s + r12,s exp −i2β 

1 + r01,sr12,s exp −i2β 
  

( 1.51 ) 
 

 

Equation (  1.51 ) can now be used to find the Fresnel‟s equation for a 0123 optical model 

system in Figure  1.6. For a 123 system, the Fresnel‟s equation is: 

 

r123,p =  
r12,p + r23,p exp −i2β2 

1 + r12,p r23,p exp −i2β2 
 , 

 

r123,s =  
r12,s + r23,s exp −i2β2 

1 + r12,sr23,s exp −i2β2 
  

( 1.52 ) 
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such that β2 is 2πd2N2

λ
cos θ2   with ϴ1 and ϴ2 as the transmission angles of light in medium 1 

and medium 2. The whole of 0123 system has the following Fresnel‟s equation: 

 

𝑟0123,𝑝 =  
r01,p + r123,p exp −i2β1 

1 + r01,pr123,p exp −i2β1 
 

 

𝑟0123 ,𝑠 =  
r01,s + r123,s exp −i2β1 

1 + r01,sr123,s exp −i2β1 
 

 

( 1.53 ) 
 

Combining Equation (  1.52 ) and (  1.53 ), we will get the full form of the Fresnel‟s equation of 

a 0123 system to be: 

 
r0123 =  

r01 + r12 exp −i2β1 +  r01r12 + exp −i2β1  r23 exp(−i2β2)

1 + r01r12 exp −i2β1 +  r12 + r01exp −i2β1  r23 exp(−i2β2)
   

( 1.54 ) 
 

 

We shall see in Chapter 2 the importance of understanding the Fresnel‟s equations, as they 

are crucial in understanding the ellipsometry. 

1.2 THEORETICAL BACKGROUND – PROPERTIES OF SAMPLES 
 

In this section, we give a brief introduction to the „generic‟ excitons and we will see that these 

excitons will not be present in graphene. We also give a brief review on the properties on our 

sample, namely the Si, SiO2 as well as graphene. This is crucial as we study the optical 

properties of graphene on SiO2/Si. 

1.2.1 E-H INTERACTION 
 

e-h interaction refers to the formation of an excitons, such that an electron and hole are 

bound together by their Coulomb interactions. When a photon excites an electron, a hole is 

left behind in the valence band, such that the negatively charged electron is attracted to the 

positively charged hole .  



18 
 

 
Figure 1.8 – The excitons energy levels. From [9]. 

One can see from Figure  1.8 that the energy of the excitons are also quantized, with n=1 

below the conduction band. The binding energy of the excitons is : 

 
EBind =

Rx

n2
   

( 1.55 ) 
 

 

such that Rx refers to the Rydberg formula of the hydrogen atom, giving: 

 
Rx =

1

2
 

meq4

(4πε0)2ℏ2
  

μ

ϵ2me
   

( 1.56 ) 
 

 

such that μ is the effective mass of the system, where  

 1

μ =
1

me
+

1

mh
  ( 1.57 ) 

 
 

There are two generic types of excitons, the Wannier Mott type excitons and the Frenkel 

excitons. Figure  1.9 below illustrates these two excitons. 
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Figure 1.9 – a) The Wannier Mott excitons. b) The Frenkel excitons. From [5]. 
 
The Wannier-Mott excitons have a larger radius that encompasses many atoms while the 

Frenkel excitons has smaller radius. The radius of an exciton can be quantified to be: 

 
ax =

4πεεoℏ2

μq2     
( 1.58 ) 
 

 

With Equation (  1.55 ) and (  1.58 ), one can that the binding energy of an excitons drops 

when the radius of the excitons are bigger. Thus, Wannier Mott excitons have weaker 

binding energy than the Frenkel excitons. 

A stable excitons will be formed if the binding energy is strong enough to protect itself from 

the collision of phonons. Since the energy of phonons is proportional to the temperature by 

~kBT, where kB is the Boltzmann‟s constant, an excitons can only be observed when EBind is 

greater than kBT. Typically, a Wannier-Mott excitons has a binding energy at around 0.01 

eV, which corresponds to a very low  temperature. Meanwhile, Frenkel excitons, with high 

binding energy can be observed at a room temperature, with a larger binding energy of 0.1-

1eV. We shall see that these types of excitons are not the ones that influenced the optical 

conductivity of graphene as graphene has zero band gap. Instead, a new type of excitons, 

called the resonant excitons will be reported from our experimental results. 

1.2.2  PROPERTIES OF c-SI AND SIO2  
 

Si is a group IV semiconductor that has a face-centered cubic (FCC) lattice with a two atom 

basis, and it has a diamond structure shown below in Figure  1.10. 
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Figure 1.10 – Si crystal structure. From : www.princton.edu. 

 

Figure 1.11 – Electronic band structure of Si. From [10]. 

 

Figure 1.12 – Cubic crystal of Si. From: http://www.cmmp.ucl.ac.uk/. 
 

Figure  1.11 shows the theoretical electronic band structure, calculated using the local-

density functional theory (LMTO) method.[10] One can see clearly in the band structure 

above that Si is a indirect band gap semi conductor, where the band gap is labeled as Eg . In 

http://www.princton.edu/
http://www.cmmp.ucl.ac.uk/
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momentum space where k=0(Γ point) lies the maximum of the valence band, while the 

minimum of the conduction band is at region X. This indirect band gap is found to be 1.12eV 

theoretically from [10]. Also, two bands converge at the valence band maximum at the Γ 

point (degenerate bands), and these bands are called the heavy and light hole bands; with 

the flatter one being heavy hole band and steeper one being light hole band, since the effect 

mass, m* is proportional to (
𝑑2𝐸

𝑑𝑘2)−1. Due to the different masses, the light holes will react 

faster than the heavy holes in the presence of electric field. Also, the density of state of the 

conduction (gc) and valence band (gv) near band edge (assuming a parabolic shape) are: 

 g c = C mc
∗

3
2(E − EC)1/2 ( 1.59 ) 

 
 

g𝑣 = C mhh
∗

3
2(Ev − E)1/2 

( 1.60 ) 
 

 

such that C= 
1

2𝜋2 (
2

ℎ2)3/2. 

Thus, the above equations suggests that there is a higher density of states of heavy holes. 

The substrate used in our experiment is crystalline c-Si whereby the crystal resembles an 

ordered arrangement and the figure below shows the dielectric function of c-Si studied with 

spectroscopic ellipsometry [11].  

 

Figure 1.13 – Dielectric function of c- Si. From [11]. 

There are two absorption peaks in ε2 spectrum, one at 3.4eV which corresponds to optical 

transition of Eo
\ and E1 shown in Figure  1.11 while another at 4.25eV which corresponds to 

the optical transition of E2. Many dielectric spectrum of c-Si can be found here [3,12-13]. 
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Meanwhile, SiO2 is known to be insulating and it is transparent in our experiment energy 

limit, with a large band gap of 8.9eV [14]. It must be noted that natural oxidation process will 

occur to the Si samples, such that a thin layer of native oxide is formed on the surface of Si. 

1.2.3 PROPERTIES OF GRAPHENE 
 

Graphene was quickly acknowledged as an interesting material due to its unique band 

structures and excellent electronic properties. Graphene is a two-dimensional (2D)  sheet of 

honeycomb structure made from hexagonal arrangements of carbon atoms as shown in 

figure below.  

 

Figure 1.14 – a) The lattice structure of graphene. b) The corresponding Brillouin zone. From [15]. 

The Bravais lattice are chosen such that the vectors a1, a2 are represented by: 

 𝐚𝟏 =
a

2
 3, √3 , 𝐚𝟐 =

a

2
 (3, −√3) ( 1.61 ) 

 
 

and the corresponding reciprocal space has the reciprocal lattice vector represented as: 

 
𝐛𝟏 =

2π

3a
 1, √3 , 𝐛𝟐 =

2π

3a
(1, −√3) ( 1.62 ) 

 
 

and the hexagon drawn in Figure  1.14b is the first Brillouin zone (FBZ). The κ and κ| 

represents the corners of the FBZ and they have the coordinates of: 

 
𝛋 =  

2π

3a
,

2π

3a√3
 , 𝛋| =  

2π

3a
, −

2π

3a√3
  ( 1.63 ) 
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Also, the nearest neighbor in real space shown in Figure  1.14a is represented by: 

 𝛅𝟏 =
a

2
 1, √3 , 𝛅𝟐 =

a

2
 1, −√3 , 𝛅𝟑 = −a 1,0  ( 1.64 ) 

 
 

Graphene has the band structure shown [16]. 

 

 

Figure 1.15 – Band structure of graphene. From [16]. 

We see that at the points κ and κ|, the linear valence band and the conduction bands meet. 

The π and π* states of carbon atoms form this valence and conduction bands respectively, 

and because they touch at the point κ at the Dirac point, graphene has zero band gap.  

Near the points κ and κ|, the energy band is represented by a linear energy dispersion, which 

directly implies that electrons in graphene have zero effective mass and they move at a 

speed 300 times smaller than the speed of light[1,16].  

Also, from Figure  1.15, the point M represents a saddle point in the energy spectrum.  This 

saddle point is known as the van-Hove singularity. The M point contributes an optical 

conductivity at around 5.2eV, but reduces to around 4.6eV due to e-h interactions [17]. This 

will be elaborated in the next sub-section  

Graphene exhibits excellent electronic transport properties. Electrons in graphene exhibits 

ballistic transport, and it moves with a Fermi velocity of vF~106 ms-1. This makes graphene a 

new candidate for making transistors [16,18]. However, for graphene on SiO2/Si, it was 
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found that the mobility of carriers dropped from 200000cm2 V-1s-1 to only a few thousands or 

tens of thousands cm2V-1s-1  due to scattering induced by the substrate [16]. Thus, in order 

to reap the excellent electronic properties of graphene, graphene were made suspended so 

that there is minimum interaction of graphene with the substrates [18]. The electronic 

properties of graphene are in general extensively studied. 

(a) OPTICAL PROPERTIES OF GRAPHENE 
 

The optical conductivity of graphene shows characteristics of intraband and interband 

transitions, at different energy range  [17].  

Optical absorption in graphene is dominated by intraband transitions (free carriers) at  low  

photon energies in the far-infrared range. Since the speed of light c is much higher than that 

the Fermi velocity of Dirac fermions, such that the c/vF ~ 300, momentum will not be 

conserved when an electron absorbs light by an intraband optical transition. In order to 

conserve momentum, it requires the need of extra scattering with phonons or defects. From 

Figure  1.16 below, one can see a simple illustration of the intraband optical transition.   

 

Figure  1.16 – The intraband optical transition.  

 
Recent study of hole and electron doped CVD graphene at room temperature [19] using far-

infrared spectroscopy shows that the corresponding ζ 1(ω) curves can be fitted by using the 

Drude model, which directly shows that in the far-infrared energy range, the absorption is 

dominated by free carrier.  
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Figure 1.17 – a) Change in ζ 1 of a hole-doped graphene due to doping. b) change in ζ 1 of a electron-doped 
graphene due to doping. From [19]. 

Meanwhile, at above far-infrared region, interband transitions from the valence band to the 

conduction band take place and it has been found that there is a frequency independent 

universal absorption or ζ 1. Calculated in [20], the ζ 1 of graphene at zero temperature is 

found to be proportional to 𝜋𝑒2

2ℎ
. The transmission of light  was also calculated to be T= 1- 

πα~0.977, where α refers to the fine structure constant, 𝑒2

ℏ𝑐
.  This theoretical calculation is 

supported by the experimental work described in [21]. Using a reflectance spectroscopy 

measurement, Mak.et.al found that the absorbance at infrared to visible energy range is 

frequency independent and most importantly, close to πα=0.023. This is shown in diagram 

below. 

 

 

 

 

 

 

 

 

Figure 1.18 – a) Absorbance of 3 different graphene samples using reflectance spectroscopy from 0.5eV to 
1.2eV. b) Absorbance of graphene samples from 0.25eV to 0.8eV. From [21]. 

a) b) 
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Reference [21] did not specify the differences between each of the samples used in the 

experiment for the absorbance. Nonetheless, we can see that the general trend of the 

absorbance of graphene in that particular energy range. However, if one look closely at 

Figure  1.18b, there is a slight departure from the universal absorbance at lower energy. 

The slight departure is mainly due to the effect of finite temperature when the experiment 

was conducted and unintentional doping due to the preparation of sample. As a result, the 

calculation of optical conductivity due to interband transition takes the form of [21]: 

 
ς ω, T =

πe2

4h
[tanh  

ℏω + 2μ

4kB T
 + tanh  

ℏω − 2μ

4kB T
  ] 

(1.65) 
 

 

where μ refers to the chemical potential from the Dirac point. The shift of chemical potential 

is due to the doping. 

From the above equation, it can be calculated that only when the photon energy,  ℏω >>2μ 

and ℏω >>kB T, the optical conductivity will assume the universal conductivity value. It should 

be noted that interband transition will not take place at energy ℏω < 2μ. This is due to the 

Pauli-blocking of transition states caused by the doping. In this case, intraband transition is 

dominant.  

Lastly, we shall discuss the absorbance spectrum of graphene in the UV region and beyond. 

Theoretical studies of the absorbance of graphene using the GW calculations, which takes 

into considerations of the band to band and Coulomb e-e interactions is shown as dotted  

curve below. Meanwhile, when the attractive e-h interaction is accounted in the GW-Bethe-

Salpeter (GW-BSE) calculation, one can see a red shift in the peak position from 5.2eV to 

4.6eV [17]. 
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Figure  1.19 –Theoretical absorbance of graphene calculated with and without the calculation of e-h interaction. 
From [17]. 

Figure  1.19 shows that there is a uniform absorbance at approximately 0.5-1.5eV, which is 

supported by the experimental work mentioned above. Also, this theoretical results show 

that there is a significant influence of many body effects in graphene. Due to the vanishing 

density of states at the Dirac point, the screening of Coulomb interaction between the 

carriers are significantly reduced. Thus, the inclusion of e-e and e-h interaction in graphene 

is very important [17,21,20,22]. The curve (theoretical absorbance with e-e interaction but 

without e-h interaction)that peaks at 5.2eV assumes a symmetrical shape at the peak and 

this peak is due to band to band transition near the saddle point singularity, M point shown in 

Figure  1.15. At this singularity point, the joint density of states (JDOS) is proportional to –

log|1-(ω/ω0)|, which is symmetrical near the singularity point [21-22]. Since optical 

conductivity is related to JDOS, the conductivity will also assume a symmetrical shape. 

However, with the include of the e-h interaction in the GW-BSE calculation, the oscillator 

strength is re-distributed from higher energy to lower energy at around 4.6eV and the shape 

of the shifted peak assumes an asymmetry shape. This re-distribution has been observed 

experimentally in [21-22]. Not only do we see the red shift experimentally, we can also see 

the asymmetric red-shifted peak.  
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Figure 1.20 – a) Experimental optical conductivity of graphene on SiO2/Si b)Fano fitting of experimental 
conductivity. From [21]. 

The redistribution of oscillator strength (red-shift) can be explained by an exciton resonance 

at an energy below the saddle point singularity such that the discrete excitonic states 

couples strongly and reside  within the existing continuum of states. U.Fano [23] mentioned 

that the interference of the discrete states with the continuum states will give rise to an 

asymmetric peak. Thus, a Fano fitting is normally carried out to the red shifted conductivity 

spectrum using the following equation: 

 ς(E)

ςCONT  (E)
=

(q + ε)2

1 + ε2  
( 1.66 ) 
 

 

Where ςCONT  (E) refers to the optical conductivity arising from the unperturbed band to band 

transition (only GW calculation that includes e-e interactions), ε=(E-Eres)/(Γ/2), where Γ is the 

width of the perturbed conductivity curve (with e-h interaction) and Eres is the resonance 

energy. Also, the parameter q2 defines the ratio of the strength of the excitonic transition to 

the unperturbed band transitions while the sign of q will determine the asymmetry of the line 

shape [21,23]. The inset in Figure  1.20b shows the respective values used to Fano-fit the 

experimental conductivity curve. It is noteworthy to mention that the width parameter Γ used 

from reference [21] is 780meV, which corresponds to an excitonic lifetime of only ~ 0.5fs, 

from the Heisenberg‟s uncertainty principle. This suggested an extremely short lifetimes for 

the resonant excitons, which requires more study and research to understand the reason. 
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1.3  MOTIVATION OF THESIS 
 

The above theory for the excitonic effects of free-standing graphene sets the motivation our 

thesis. In this thesis, we want to study graphene on SiO2/Si using spectroscopic 

ellipsometry, in order to see how the excitonic effects vary when compared with the 

conductivity spectrum to a free standing graphene shown in Figure  1.19. The results will be 

important for theoretical development and practical photonic devices usage, especially for 

graphene on SiO2/Si, a widely used substrate material.  
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CHAPTER 2  SPECTROSCOPIC ELLIPSOMETRY AND SIMULATION 
 
 

Our experiment is carried out using Sentech SE850 rotating analyzer with compensator 

ellipsometer (PCSAR). This chapter is catered to introduce our experimental technique, the 

experimental set-up, in particular the quantities that are measured, the mathematics behind 

ellipsometry as well as a justification on why ellipsometry is a suitable experimental 

technique for our experiment. 

2.1 EXPERIMENTAL PROCEDURES 
 

 

Figure 2.1 – Ellipsometer set-up. 

 

Figure 2.2 –  Components of PCSAR. From [3]. 

 

Sender Receiver 

Sample Holder 
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The Figure  2.1 above shows the equipment used. The sender sends the light to the sample 

placed on the sample holder, and the receiver will receive the light reflected off the sample. 

Our equipment consists of three light sources: Halogen Lamp that provides infrared from 

0.5-1.5eV ,Xenon Lamp that provides visible light to UV from 1.5-4.8eV and Deuterium lamp 

that provides deep UV light from 4.8-6.5eV. From Figure  2.2, we see an illustration of the 

components of the ellipsometer used. It consist of a polarizer, rotated and fixed at 450 , and 

a retarder. After light reflected off the sample, it will go through the rotating analyzer, 

followed by the detector.  

 

Figure 2.3 – Sequence at which experiment is conducted.  

The experiment is done in a systematic manner: Si sample is first measured, followed by the 

SiO2/Si and lastly graphene on SiO2/Si. This is illustrated in Figure  2.3. Also, the three 

incidence angles of light were used, namely 500, 600 and 700 and this can be done by 

changing the angle of the „Sender‟. After which, the quantities Ψ and Δ will be measured. In 

the next section, we will be discussing the physical meaning of both Ψ and Δ. It should be 

mentioned that the samples Si and SiO2/Si were gotten from our manufacturer and SiO2/Si 

was grown through dry oxidation. As for the growth of graphene on SiO2/Si, it was 

conducted by Dr. Pranjal Gogoi in the clean room located at the Singapore Synchrotron 

Light Source (SSLS). Graphene grown on copper (Cu) foil was purchased from Graphene 

Square Inc, and from that, chemical etching was carried out to extract graphene. 

 

 

300nm 
3.35Å 
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2.2 QUANTITIES MEASURED – Δ, 𝚿 
 

Upon light reflection off the sample, the P and S polarized light will differ significantly such 

that there will be changes to their amplitude ratio, Ψ and their phases, Δ. Ellipsometry 

measures these quantities.  

In ellipsometry, it is defined that:  

 ρ = tanΨ exp iΔ =
rp

rs
=

Erp

Eip
 
Eis

Ers
 

( 2.1 ) 
 

 

where the last term is due to Equation (  1.44 ) and Equation (  1.45 ). Eip, Erp, Etp represents 

the amplitude of E field of incident, reflected and transmitted P polarized light while the 

subscript s represents that of S- polarized light and rp and rs are the Fresnel‟s equations, as 

defined in Section 1.18.  

If Eis=Eip (linearly polarized light), then from Equation (  2.1 ), 

 ∆= δrp
− δrs

     ( 2.2 ) 
 

and 

 
tanΨ =

 Erp  

 Ers  
=

 rp 

 rs 
     

( 2.3 ) 
 

 

Thus, from Equation (  2.3 ), one can see that the quantity Ψ measures the angle determined 

from the ratio of the amplitude of rp and rs. Also, it is evident from Equation  (  2.2 ) , Equation 

(  1.46 ) and Equation (  1.47 ) that the quantity Δ measured is the phase difference between 

the P- and S- polarized light after reflecting off the sample.  

Spectroscopy ellipsometry can be both a direct or indirect measurement method to measure 

the optical functions of sample. It is a direct method when the optical model used is just a 

single layer (or a 01 system).Meanwhile, for a multilayered optical model, one has to go 
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through curve-fitting of the measured Ψ and Δ to extract the optical functions of sample. This 

will be elaborated in later sections.  

2.3 MATHEMATICS OF ELLIPSOMETRY 
 

In Section 2.1, it has been mentioned that Ψ and Δ are measured from an ellipsometer. In 

this section, the mathematics will be reviewed, so that we can understand how the 

ellipsometer measures those quantities. 

Polarization state of light as well as each of the optical devices shown in Figure  2.2 can be 

represented with mathematical matrices called the Jones matrices. The table below shows a 

summary of the Jones matrices that will be used in this section. 

Polarization state 
of light  

Jones Matrix Optical Devices Jones Matrix 

General:  
 
Exo exp(i(δx − δy)

Eyo
  

Polarizer/ Analyzer, 

 

 
1 0
0 0

  

Linearly polarized 
light (parallel to x, y 
axis):  
 
 

 
1
0
 ,  0

1
  Compensator  

 
1 0
0 exp(−iδ)

  

Linearly polarized 
light (45o): 
 

1

√2
 
1
1
  Sample  

sinΨexpiΔ 0
0 cosΨ

  

Right Circularly 
Polarized Light: 

1

√2
 
1
𝑖
    

Left Circularly 
Polarized Light: 

1

√2
 

1
−𝑖

    

Table 1: Summary of Jones matrix 

In Table1, one can get the Jones matrix of a right circularly polarized light, simply by 

substituting δy=π/2 and δx =0. This means that when the phase difference of light is known, 

one can represent it with the Jones matrix. Also, in Table1, the compensator is represented 

by  
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1 0
0 exp(−iδ) . The compensator is placed in front of the polarizer shown in Figure  2.2 such 

that it is used to convert the linearly polarized light into circularly polarized light or vice versa. 

In order to do that, the compensator is composed of a birefringent crystal, such that the 

refractive index, n is different in different axis of the crystal. In the fast  or extraordinary axis, 

the refractive index is represented by ne. Meanwhile, in the slow or ordinary axis, the 

refractive index is represented by no and no > ne. From Equation (  1.12 ), light waves that are 

parallel to the slow or ordinary axis will travel slower that light waves parallel to the fast or 

extraordinary axis. Since light travels with different speed inside the compensator, they will 

end up with a different phase.   Hence, in Table 1, δ=2π
λ

|ne − no|d, is the phase difference 

generated and d is the thickness of the compensator. 

We now need to define the coordinate system of our system before describing the 

mathematics in proper. Before the reflection of light off a sample, δx will be δE ip
 while δy will 

be δE is
. After reflection, δx will be δrp

 while δy will be δrs
. This is illustrated in the following 

figure. 

 

 

 

 

 

 

Figure  2.4 – Coordinate representation of a) the (Ex,Ey) axis and b) (Erp,Ers) axis. From [3]. 

For convenience purposes, the matrices represented by different optical devices listed in 

Table1 will be labeled according to their first alphabet; matrices of polarizer/ analyzer are 

labeled as P and A respectively, compensator and sample matrices are labeled as C and S 

respectively. 
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Figure  2.5 – An example of how the matrices work. From [3]. 

A simple example of how the matrices multiplication works is first shown, before evaluating 

for our experimental set-up. From Figure  2.5, light is first transmitted into the polarizer which 

has an angle α, defined positive if it is tilted counter-clockwise from the x (or the Eip axis) 

when looked against the propagation direction of light. In this case, when light is transmitted 

out from the polarizer, it is in a x| and y| coordinate system such that x| is the transmission 

axis of the polarizer, hence, there is a need to change the coordinate system of the light 

vector coming out of the polarizer, to match the coordinate system where x axis= Eip and y 

axis = Eis. To do this, we apply a rotation matrix, R(-α) to the multiplication, such that 

R(α)= 
cos α sinα
−sinα cosα

 . R(α) represents a counter - clockwise rotation of the coordinate system 

(when looked against the propagation direction of light) and α is the positive angle of the 

polarizer. Then, light enters the analyzer. Supposed the analyzer is rotated at an angle a, 

then light vector has to be multiplied to the rotation matrix R(a), followed by the Jones matrix 

of analyzer, and finally, R(-a) in order to change the coordinate system of the light vector. To 

summarize, the matrix multiplication of the above system is represented as such: 

 Lout = R(-a)AR(a) R(-α)PR(α)Lin     ( 2.4 ) 
 

 

where, S,P and A are the Jones matrix of the sample, polarizer and analyzer shown in Table 

1 and Lout is the Jones vector of light detected. Equation (  2.4 ) can be further simplified for 

our case; Lin cannot be represented with Jones vector, since it is an unpolarised light but we 

all know the fact that light is in the transmission axis ( or the  x| axis)of the polarizer when it 
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propagates out from the polarizer.  PR(α)Lin from Equation (  2.4 ) can now be simplified into 

the  1
0
 . Also, since the light detector has no preference for the coordinate system that the 

light is in, R(-a) from Equation (  2.4 ) can be dropped. Hence, Equation (  2.4 ) can now be 

simplified as: 

 Lout = AR(a)R(-α)  
1
0
           ( 2.5 ) 

 

Applying these knowledge to our experimental set-up in Figure  2.2, the Jones vector of the 

light detected can be represented as:   

 

 Lout =  
EA

0
 

=  
1 0
0 0

    
cosα sinα
−sinα cosα

   
sinΨ exp(iΔ) 0

0 cosΨ
  e−iδ 0

0 1
  

cos P sin P
− sin P cos P

  
1
0
    

( 2.6 ) 
 

 

Note that the notation has been changed. α is the angle of analyzer while P is the angle of 

polarizer. 

Since the angle of the polarizer, P is 450 , Equation (  2.6 ) can be simplified into: 

  
EA

0
 =  

1 0
0 0

   
cosα sinα
−sinα cosα

   
sinΨ exp[i Δ − δ ]

cosΨ
    ( 2.7 ) 

 
 

and further simplified into: 

 EA = cosα sin Ψ exp i Δ − δ  + sinα cos Ψ ( 2.8 ) 
 

The light intensity detected will be: 

 I =  EA 2  = Io 1 − cos2Ψcos2α + sin2Ψ cos(Δ − δ) sin2α  
 

=  Io(1 − cos2Ψcos2ωt +  sin2ΨcosΔcosδ + sin2ΨsinΔsinδ sin2ωt ) 
 

= Io (1+S1cos2ωt +  S2cosδ−S3sinδ sin2ωt ) 
 

( 2.9 ) 
 

 

From Equation (  2.9 ), we see that α=ωt, since the analyzer is rotating at a frequency of ω. 

S1 and  S2cosδ−S3sinδ  are known to be the Fourier coefficients of cos2ωt  and sin2ωt 
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respectively. These Fourier coefficients are computed by the equipment, using the principle 

of Hadamard transform, a Fourier analysis mentioned in [24]. Once S1 is gotten, the quantity 

Ψ can be measured. Also, Δ can be found from  S2cosδ−S3sinδ  calculated from the 

Hadamard transform, as different angles of incidence were carried out, as mentioned at the 

start of this section. Thus, we are able to read Ψ and Δ for our experimental data. 

2.4 COMPARISON OF SPECTROSCOPY ELLIPSOMETRY WITH REFLECTANCE 

SPECTROSCOPY 

In this section, my classmate Mr. Tay Shengyu and I worked very closely together to conduct 

a simulation to justify the use of spectroscopic ellipsometry. This simulation was aimed to 

compare the data analysis technique of reflectance spectroscopy as well as spectroscopy 

ellipsometry.  Reflectance spectroscopy is a experimental set-up widely used, not just in the 

field of physics, but also in the field of medicine[25]. It measures the intensity of the reflected 

light off the sample (see Figure  2.6).  

 
Figure 2.6 – Reflectance experiment for a single layer (optical model 01) system. 

 

We simulated the reflectance curve of a sample (optical model 01 such that medium 0 is 

always the air, and medium 1 is the sample) measured by a reflectometer with energy limit 

till 7eV with normal incidence. Figure  2.7 shows our simulation of the reflectance curve. 
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Figure 2.7 – Graph of simulated reflectance versus energy measured by reflectance spectroscopy, with energy 
limit at 7ev and normal light incidence. 

In order to find the corresponding dielectric function ε(ω) of this reflectance curve, the 

following equations are used [7-8,26-27] . Since ε is related to R by the following relation at 

normal incidence: 

 
r =

1 − √ε

1 + √ε
= √R exp(iϴ)  

( 2.10 ) 
 

Where r is the reflection coefficient and ϴ is the phase difference between the measured 

reflectance, R and reflection coefficient r. We can then  write (  2.10 ) in the following form : 

 ln r ω = ln R(ω) + iϴ(ω)   ( 2.11 ) 
 

 

Whereby ϴ(ω) is the Hilbert Transform of ln √𝑅(𝜔).  

 
ϴ ω =

1

π
P  

ln  R(x)

x − ω
dx

∞

−∞

  
( 2.12 ) 
 

 

From Equation (  2.12 ), it can be further evaluated into the following equations: 

 
ϴ ω = −

2ω

π
 P  

ln R(x)

x2 − ω2

∞

0

  dx 
( 2.13 ) 
 

and   

/eV 
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ϴ ω = −

ω

π
  

ln R x − ln R(ω)

x2 − ω2

∞

0

  dx 
( 2.14 ) 
 

 

Doing an integration by parts on Equation (  2.12 ) gives us: 

 
ϴ ω = −

1

2π   
d

dx
[ln R(x)] ln  

x − ω
x + ω 

∞

0

  dx 
( 2.15 ) 
 

 

Both Equation (  2.14 ) and (  2.15 ) convenience our analysis of ϴ, because of the absence 

of the principal value P. The strategy to extract the ε(ω) is as follows: we get  ϴ(ω) from the 

simulated R(ω) through the above equations, then go back to Equation (2.10) and do a 

inversion method to arrive to the dielectric function, ε of the sample simulated. 

Note that the integration in Equation (  2.14 ) are done from 0 to infinity, but in practice, we do 

not have high energy values to perform this. Following the work from reference [27], 

supposed our experiment is carried out with an energy limit from 0<E<b, then we will have to 

extrapolate for E>b. Equation (  2.15 ) comes in useful as it shows that if d/dx(ln R(x)) =0, it 

does not contribute to the integral and this means that the R curve can be extrapolated as a 

constant, such that R=R(b). 

The solving of Equation (  2.14 ) is an arduous journey as almost a month was spent to figure 

out the computer codes to solve this integral. Finally, the integral was solved analytically 

using Mathematica. Having the values of ϴ(ω), the dielectric functions were evaluated using 

Equation (  2.10 ) and another program IGOR  was used to generate the dielectric curves 

shown below.  
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Figure 2.8 – Graph of ε2 versus energy, extracted from simulated reflectance spectrum,  
 

This particular data analysis method in reflectance spectroscopy is inaccurate as the 

simulated reflectance curve has to be extrapolated to a constant value (R @ 7eV)) outside 

the experimentally accessible energy range of 7eV. This gives rise to a large uncertainty (will 

be shown soon).  By taking this extrapolation, we are making a big assumption that there is 

no more adsorption peak after 7eV, hence no more peak in epsilon 2 curve after 7eV. 

Consider the scenario where the same sample is examined with a reflectometer of energy 

limit of 10eV, and it turns out that this sample also has an absorption peak at 8eV that is not 

detectable by the first simulation with energy limit of 7eV. 

The reflectance curve is simulated to be:  

 
Figure 2.9 – Graph of simulated reflectance versus energy measured by reflectance spectroscopy, with energy 
limit at 10ev and normal light incidence. 

/eV 

/eV 
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Following the same procedure described earlier, we can generate the dielectric curves to be: 

 
Figure 2.10 – Graph of ε2 versus energy. 10ev reflectometer is used.  
 
If we compare Figure  2.8 and Figure  2.10 in Figure  2.11 below, we conclude that Kramers-

Kronig can be rather inaccurate. At energy less than 7eV, the ε2  from both experiments 

does not match each other , except maybe far from the absorption region. At 3eV, 

simulation1 (7eV) ε2 curve has an amplitude of 76.153 while simulation 2 ε2 curve(till10eV) 

has an amplitude of 68.677, giving a percentage difference of 10.3%. 

 
Figure 2.11 – Comparison of ε2 curves generated by energy limit 7ev and 10ev reflectometer. 

Although our reflectance spectroscopy simulation is done for normal incidence of light, the 

same idea still be forwarded for a varying incidence angles of light [28], such that the same 

Kramers Kronig analysis will still apply, thus giving the same kind of inaccuracy. 

/eV 

/eV 
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Meanwhile, in comparison, for a single layer of sample (01 optical model) shown in 

Figure  2.6, the spectroscopy ellipsometry will give more accurate results.  

Equation (  1.44 ) and Equation (  1.45 ) shows that: 

 
rp =

Erp

Eip
=

Ntcosθi − Nicosθt

Ntcosθi + Nicosθt
   

( 2.16 ) 
 

   

and  

 
rs =

Ers

Eis
=

Nicosθi − Ntcosθt

Nicosθi + Ntcosθt
  ( 2.17 ) 

 
   

such that ϴi and ϴt are the incident and transmitted angles respectively and Ni and Nt are 

the refractive index for the medium 0 and medium 1 optical systems respectively. These 

quantities are all connected by Snell‟s Law, such that Ni sin ϴi = Nt sin ϴt and N are related 

to the dielectric function by Equation (  1.22 ). Using these information, Equation (  2.1 ) can 

be written as: 

 

ρ =
rp

rs
=

sin2θi − cos θi  
ε(1)

ε(0) − sin2θi 
1/2

sin2θi + cos θi  
ε(1)

ε(0) − sin2θi 
1/2 = tan Ψ exp(iΔ) 

( 2.18 ) 
 

 

such that ε(1) and ε(0)
 are the complex dielectric functions of optical systems 1 and 0 

respectively. 

Since medium 0 is always defined as air, ε(0)=1 and Equation (  2.18 ) can be written  

 
ε(1) = sin2ϴi[1 + tan2ϴi  

1 − ρ
1 + ρ 

2

] 
( 2.19 ) 
 

 

In this case, we can directly calculate the dielectric function of the single layer, since Ψ and Δ 

are directly measured by ellipsometry. This requires no integration or extrapolation, unlike 

the Kramers-Kronig relation used in reflectance spectroscopy. Hence, spectroscopic 

ellipsometry is gives a better data analysis technique. 
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However, data analysis is easy only for single layer (01 optical model). For a multilayer 

system like our sample (0123 optical model such that medium 0 is air, medium 1 is 

graphene, medium 2 is SiO2 and medium 3 is Si), curve fitting is required. This is elaborated 

in Chapter 3. 

Spectroscopy ellipsometry is also very sensitive to ultrathin films below 10nm. This is due to 

the fact that spectroscopy ellipsometry measures Ψ and Δ, which will show a significant 

change even an ultra thin film is added. This can be further illustrated from work done in 

reference [29]. 

 

Figure 2.12 -  Changes to Δ when thin film is added. From [29]. 

This feature of spectroscopy ellipsometry is very important for our experiment, as the 

graphene used has a thickness of atomic order (3.35Å). Overall, spectroscopy ellipsometry 

is a suitable experimental technique to be used.  

2.4.1  DIFFICULTIES FACED IN THIS SIMULATION 
 

As mentioned in the previous section, we took more than a month to finish the simulation. 

One of the strongest reasons for this delay is due to the wrong reflectance simulation. For 

more than half a month, me and my classmate Mr. Tay Shengyu used a lorentzian function 

to simulate the reflectance peak. When a lorentzian function is used, a unphysical ε2 function 

will be gotten. From Equation (  1.25 ) one should be aware that ε2 must not be negative but 



44 
 

the use of a lorentzian reflectance peak gives rise to negative ε2. Failing to realize this 

mistake, my classmate and I thought that the problem lies with the Mathematica codes and 

we spent valuable time trying to rectify the Mathematica code that was already correct. 

However, it was after nearly one month and a half of communications over the Mathematica 

exchange forum and discussions with our supervisors that we found out that the use of 

lorentzian peak could be wrong. We then quickly rectified the reflectance equations to arrive 

at  a physical ε2 function. 

2.5 SUMMARY 
 

In this chapter, we have discussed the experimental procedures. We conducted the 

experiment in 500, 600 and 700 incidence angles and Si sample was first measured, followed 

by the SiO2/Si and lastly graphene on SiO2/Si, as illustrated in Figure  2.3. We then 

discussed the quantities measured in ellipsometry, such that the quantity Ψ measures the 

angle determined from the ratio of the amplitude of rp and rs, while the quantity Δ measured 

is the phase difference between the P- and S- polarized light after reflecting off the sample. 

These are described in Equation (  2.2 ) and (  2.3 ). We have went through the mathematics 

behind ellipsometry, and also created a simulation to argue that ellipsometry is suitable for 

our experiment because it requires no Kramer-Kronig relation and it is extremely sensitive to 

extremely thin sample. Lastly, it should be emphasized that spectroscopy ellipsometry can 

only work as a direct method when it involves a single layer (01 optical model) sample. 

Equation (  2.19 ) shows that for a single layer sample, the dielectric function can be found 

directly from the measured Ψ and Δ. However, when it involves a multilayered system, curve 

fitting technique will be used to extract the dielectric functions. Curve fitting will be discussed 

in Chapter 3. 
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CHAPTER 3 : DATA ANALYSIS TECHNIQUE – CURVE FITTING 
 

 

In the previous chapters, it has been mentioned that ellipsometry is an indirect method, such 

that curve fitting has to be done in order to get the desired dielectric functions ε1 and ε2 of our 

multilayered sample. However, this method does not need to be employed in the case of a 

single layer system (01 optical system), as discussed in Section 2.3. For a single layer, the 

dielectric function of medium 1 can be found directly from the following equation: 

 
ε(1) = sin2ϴi[1 + tan2ϴi  

1 − ρ
1 + ρ 

2

] 
 
( 2.19 )  
 

 

such that ε(1) and ε(0)
 are the dielectric functions of optical system 1 and 0 respectively and 

ϴi is the incident angle of light. Medium 0 is always air or vacuum. 

It was also mentioned that the experiment is carried out in a systematic order. Firstly, 

medium 3, the Si is measured with the ellipsometer. Since it is a single layer, we can get the 

dielectric functions from Equation  (  2.19 ) . Then, SiO2 is grown on Si and measured with 

the ellipsometer. Of course, since this is a multilayered system, we have to employ the curve 

fitting technique to get the dielectric functions of SiO2 on a SiO2/Si system. Lastly, graphene 

is grown on the SiO2/Si substrates for measurements, so we do curve fitting again to extract 

the dielectric function of graphene on a SiO2/Si system.   

3.1  CURVE FITTING 
 

We shall now describe the curve fitting process, using the example of a SiO2/Si system. For 

a multilayered system with 012 optical system (air-SiO2-Si), the Fresnel‟s equation is given 

in Section 1.1.8 to be: 

 
𝑟012,𝑝 =  

r01,p + r12,p exp −i2β 

1 + r01,pr12,p exp −i2β 
 , 

 
(  1.51 ) 
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𝑟012,𝑠 =  
r01,s + r12,s exp −i2β 

1 + r01,sr12,s exp −i2β 
  

 

such that β = 2πd1N1

λ
cos θ1   with ϴ1 as the transmission angles of light in medium 1. If 

Equation (  1.51 ) is placed in the relation ρ012 =
r012 p

r012 s
, then one can see that 

ρ=ρ(N0,N1,N2,d1,d2, ϴ0, ϴ1, ϴ2,λ). However, this can be shortened because of the Snell‟s 

law, N0sin ϴ0= N1sin ϴ1. Also, according to Equation (  1.22 ), N2=ε. Hence,  

 ρ = ρ ε 0 , ε 1 , ε 2 , d1, d2, ϴ0, λ = tanΨ exp(iΔ) ( 3.1) 
 

such that ε(0), ε(1), ε(2) are the dielectric functions in medium air, SiO2 and Si respectively.  

We can already calculate ε(2) from Equation (  2.19 ), thus essentially ε 1 , the dielectric 

function of SiO2 is the only unknown in Equation (  3.1). If we model the dielectric function of 

SiO2 with the Drude and Lorentz model described in Section 1.1.5,  such that  

 
ε = ε∞ +  

ωpi
2

 ωoi
2 − ω2 + iγiωi

               
(  1.32 ) 

 

then we can vary the parameters ωp , ωo and ϒ to fit our experimental Ψ and Δ. 

Fortunately, these process can be done with this powerful program RefFit. The following 

figure shows a screen shot from this program.  
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Figure 3.1 – a) The model window in RefFit b) The graphs that is represented by Equation ( 1.32 ). From: A 
screenshot from RefFit. 

 

On Figure  3.1a, it shows the parameters mentioned in Equation (  1.32 ) while Einf represents 

the ε∞  and we can add oscillators by clicking on the “Add” button. Meanwhile, Figure  3.1b 

shows the corresponding ε1 and ε2 curves represented by Equation (  1.32 ). RefFit offers 

some terrific built-in models for the users to fit data from ellipsometry, reflectance 

spectroscopy etc. We have used such a model (model -33) to do our curve fitting for Ψ and Δ 

and from there, we extracted the optical spectrum like dielectric functions. 

Now it comes to the question of what gives a good fit. In practice, we visually inspect the 

fitting curves and the experimental curves, and make sure that they matches. However, this 

method can be dangerous as a „reasonably looking‟ match could be far from the numerically 

best curves. Thus we also employ a technique called “simultaneous fitting”. This means that 

we fitted 500, 600 and 700 data simultaneously, such that it really pin down to the unique 

dielectric functions.  Also, we can calculate the “Mean Square Error” (MSE), and make sure 

they are minimized. 

3.2  MEAN SQUARE ERROR 
 

To calculate the fitting errors, we employ the use of unbiased estimator (or MSE) as shown 

below: 

a) b) 
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ς =

1

√M − P − 1
   [ρex  Ej − ρfit Ej ]2

M

j=1

  1/2 
( 3.2 ) 
 

 

where ρ is defined in Equation (  2.1 ) and the subscripts ex and fit represents the 

experimental values as well as the fitting values. M refers to the number of experimental 

points while P refers to the number of fitting parameters [3]. 

Using Equation (  2.1 ), we can further simplify the Equation (  3.2 ) to become: 

 
ς =

1

√M − P − 1
   ( [tan Ψex − tan  Ψfit ]2

M

j=1

+  [cos ∆ex − cos  ∆fit ]2  1/2 
( 3.3 ) 
 

 

However, this technique of finding the fitting error is not perfect [30]. There are some flaws 

that are noteworthy to be mentioned. Firstly, the unbiased estimator does not give a clear 

indication or guideline to whether further fitting can result in a statistically minimum value. 

The best method is curve fit several times, and try to reach the lowest value of the unbiased 

estimator as possible. Secondly, the accurate parts and the inaccurate parts of the 

experimental spectrum are given the same weight, thus the final unbiased estimator 

calculated is high, even when it is visually a good fit. The experimental spectrum (See 

Chapter 4) fluctuates very badly in the infrared spectrum and the discrepancy for the Ψ and 

Δ measured at deep UV range also increases. This implies that the discrepancy  between 

the fitted curve and the experimental curve are high in these energy range, thus contributing 

to a higher value of the unbiased estimator.  

Meanwhile, there is another fitting error function proposed, called the biased estimator 

[3,30]. The function is given by: 

 
χ =

1

√M − P − 1
   [

ρex  Ej − ρfit Ej 

δρ(Ej)
]2

M

j=1

  1/2 
( 3.4 ) 
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such that δρ(Ej) represents the measurement errors from the ellipsometry devices. The 

above equation can be further simplified to: 

 
χ =

1

√M − P − 1
   ( [

Ψex  Ej − Ψcal  Ej 

δΨ Ej 
]2

M

j=1

+  [
Δex  Ej − Δcal  Ej 

δΔ Ej 
]2  1/2 

( 3.5 ) 
 

 

where δΨ Ej  and δΔ Ej  represents the measurement errors at each Ψ and Δ. The use of 

above function can reconcile the flaws that are caused by the unbiased estimator. Firstly, χ ~ 

1 when the fitting is sufficiently good, while χ >>1 if the fitting is not good. When the 

measurement errors are overestimated, we get χ <1. Secondly, it is possible to increase 

δΨ Ej  and δΔ Ej  intentionally at the low and high energies, so a better representation of 

the errors in the inaccurate parts of the experimental spectrum can be given.  

However, despite the flaws that we have mentioned, we continued to use the unbiased 

estimator. This is because our equipment fails to give us the measurement errors at each 

energy values. Instead, we only know that δΨ and δΔ are 0.100 and 0.200 respectively, 

independent of energy.  Thus, it is unsuitable for the biased estimator to be used for our 

case. In order to reconcile the second flaw mentioned, we excluded the regions with high 

experimental discrepancies (high and low energy) in the calculation, which is also a common 

practice to do so [3]. 

Meanwhile there are some reasons discussed in literatures [3,30] to why a sufficiently low 

MSE cannot be reached.  

1) The measured Ψ and Δ are measured inaccurately. 

2) The optical model used in data analysis is inappropriate. 

In Chapter 4, we will set a range of acceptable MSE values to define acceptable fitting. More 

will be discussed in Chapter 4 as we discuss our data. 
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3.2.1 EVALUATION ON THE CURVE FITTING METHOD 
 

From Equation (  3.1), the only unknown is the dielectric function of SiO2.  One might 

question on why the curve fitting technique is chosen, instead of using numerical inversion 

method.(By numerical inversion, it means plugging all the known values into Equation (  3.1) 

to find the only unknown).  

The curve fitting method has several advantages.  

1) Firstly, in a 012 or 0123 optical system, the thickness of the film is also a changing 

parameter to be played with in RefFit. Although we have known the thickness of the 

Si, SiO2 thin film to be 0.5mm and 300nm respectively (given to us by the 

manufacturers), there are bound to have experimental discrepancies in these values. 

As we vary these values in the curve fitting process, we are able to find the “actual” 

thickness. However, if the mathematical inversion method is used, a fixed value of  

thickness will have to be used. 

2) Each of the oscillators added in Figure  3.1a has their physical meaning; they 

represent the dielectric polarizations in the sample and from the program RefFit, one 

can see how much contribution each oscillators has contributed to the dielectric 

function. However, the numerical inversion method does not allow this. 

However, this technique is not perfect. There are some disadvantages to this. 

1) Firstly, it is very time consuming. One has to devote time and effort to fit the 

experimental curve and try to find the lowest unbiased estimator. Sometimes, it is a 

game of trial and error, and there is no recipe to fitting perfectly and quickly. The 

fitting of the results of Si substrate and SiO2/Si had taken more than a month, and 

fitting graphene on SiO2/Si took even longer.  

2) Secondly, there is no clear and obvious criteria on how many oscillators are really 

necessary. The parameters of oscillator 1 can still be adjusted even when oscillator 2 

has been added, thus adding to the difficulty of curve fitting. 
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3) The construction of optical model is very important. Optical models constructed can 

directly affect the results. Sometimes a good fit cannot be achieved because of the 

wrong optical model used. In Chapter 4, we shall discuss more about optical models 

when the results of graphene of SiO2/Si is being discussed.  

Meanwhile, the curve fitting method is still widely used for spectroscopy ellipsometry as the 

advantages of curve fitting outweigh the disadvantages.  

3.3 SUMMARY 
 

In this chapter, we have discussed about the technique of curve fitting and the error analysis. 

We used the unbiased estimator instead of the biased estimator, mainly because our 

equipment does not offer us a energy dependent measurement errors, δΨ Ej  and δΔ Ej . 

We have also evaluated on the technique of curve fitting, by comparing it with the numerical 

inversion technique. The curve fitting offers us insights on the strengths of the oscillators and 

allow us to find out the “actual” thickness of the samples. Lastly, the flow chart below will 

briefly summarize the discussions for the data analysis of spectroscopy ellipsometry 
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Figure 3.2 – Flowchart To Data Analysis Procedure In Spectroscopic Ellipsometry. 
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CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

In this chapter, we will present the experimental results, the fitting as well as the optical 

functions extracted from the fitting and discuss their optical properties. We will also be 

looking at the unbiased estimator, and giving some suggestions to lower the value of the 

unbiased estimator. The results will be given in a systematic manner: Si first, followed by 

SiO2/Si and last but not least graphene on SiO2/Si.  

4.1 RESULTS AND DISCUSSION FOR C-SILICON 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 – a) ) Experimental 180- Δ spectra for multiple incidence angles with fitting. b) Experimental Ψ spectra 
for multiple incidence angles with fitting. Inset: Optical model with native oxide. 

a) 

b) 
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We initially used a 01 optical model for this sample, where medium 0 is the air and medium 1 

is the Si substrate. By using a 01 model, we are assuming that the system does not have 

any contamination. As mentioned in previous sections, being a single layered system, we 

can use Equation (  2.19 ) directly to extract the dielectric functions. Using the experimental 

data for 700 Ψ and Δ as well as Equation (  2.19 ), we calculated the dielectric functions and 

they are represented as the dotted lines in Figure  4.2.  

 

Figure 4.2 – Experimental Results. The red and blue dotted lines are calculated from Equation ( 2.19 ) with 700 
data, while the filled lines are the dielectric functions extracted from curve fitting. 
 

However, compared to the literatures [3,12-13], we see that the dotted lines in Figure  4.2 

resembles a contaminated c-silicon instead of a pure c-silicon. One can see that the 

amplitude of ε2 is lower than that of ε1 with the high chance of a presence of native oxide. 

This suggests that we could have constructed the wrong optical model for the system. There 

is a very possibility that our c-silicon sample has been contaminated with a ultra thin layer of 

native oxide residing on top of it.  

To rectify this, we constructed an optical model shown in the inset of Figure 4.1. 

This is a 012 optical model, with air as medium 0, native oxide (SiO2) as medium 1 and bulk 

Si as medium 2.  By doing a simultaneous fit on the 500, 600 and 700 Ψ and Δ spectra in 
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Figure  4.1, we managed to extract the dielectric functions of a pure sample of c-silicon, 

which is shown as the filled lines in Figure  4.2.. From the fitting, we found the native oxide 

layer to be 2.24nm and the Si substrate to be 0.5mm. Table 2 below gives the unbiased 

estimator for each of the fittings. It must be mentioned that we do not include the fluctuations 

in the infrared regions (1.3eV and below) as well as high energy regions, from 6.1eV and 

above. As mentioned in Chapter 3, these regions are prone to have higher discrepancies. 

This is because these energies approach the energy limits of our equipment and there is 

lower amount of light intensity present in those regions.  

Incidence Angles Unbiased Estimator 

700 0.009860 

600 0.005680 

500 0.003610 

Table 2: MSE Values for curve fitting of Si. 

 

Figure 1.11 – Electronic Band Structure of Si. From [10]. 

In the ε2 experimental spectrum shown in Figure  4.2, the optical transition of Eo
\ and E1 

shown in Figure  1.11 is seen at the peak of 3.42eV, while the optical transition of E2 is 

shown in the peak at 4.25eV. These agrees with the literatures presented in the Introduction 

section. 
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4.2 RESULTS AND DISCUSSION FOR SIO2/SI 
 

With the information of the dielectric function of c-Si, we are able to perform a curve fitting on 

the experimental results of the SiO2/Si sample. Below shows the experimental results and 

their fitting. Inserted as an inset in the Figure is a picture of the optical model used and 

tabulated in Table 3 are the MSE values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 – a) The experimental (180- Δ) for multiple angles and fitting b) The experimental Ψ for multiple angles 
and fitting for SiO2/Si.  Inset: Optical model used for fitting. 

 

 

a) 

b) 
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Incidence Angles Unbiased Estimator 

700 0.04070 

600 0.02010 

500 0.01320 

Table 3: MSE Values for curve fitting of SiO2/ Si. 

The following diagram is the extracted dielectric function of SiO2 on Si. 

 

Figure  4.4 – Experimental Dielectric Function of SiO2/Si. 

The fitting was done with 307.48nm as opposed to the manufactured readings of 300nm. 

This clearly shows the advantage of curve fitting, being able to know the true thickness. 

From our results, we see that SiO2 is transparent in our experimental energy range since ε2 

=0.  

4.3 DETERMINATION OF AN ACCEPTABLE RANGE OF MSE 
 

Before we show the results of the graphene on SiO2/Si, we need to first give a rough 

estimate of an acceptable MSE. We see from Table 2 and Table 3 the MSE calculated for 

each angles, and the corresponding dielectric functions agree well with other literatures. We 
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now need to set a rough estimate for upper limit of MSE, such that beyond this value, we 

deem the fitting as a bad fitting. 

To do that, we deliberately upset the fitting of Si curves and calculate the MSE values. This 

is shown in below figure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 –An illustration of bad fitting. a) Ψ fitting for multiple angles. b) 180-Δ fitting for multiple angles. c) 
Corresponding dielectric functions. 

Incidence Angles Unbiased Estimator 

700 0.08410 

600 0.06380 

500 0.05910 

Table 4 – MSE tabulation 

a) b) 

c) 
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Clearly, the above fitting is not acceptable. Visually, we see that the curve fitting is not 

accurate. Looking at the corresponding Si dielectric functions, we see that it shows large 

deviations from other literatures. Hence, we give a rough estimate of the accepted range of 

the MSE – 0-0.05910. Beyond 0.05910, we shall deem the fitting to be unreasonable. 

Once again, it must be emphasized that this only gives a rough estimation. We have to do 

this because the calculation of unbiased estimator does not give us the definition of what is a 

good fitting as mentioned in Chapter 3, and we needed a limit to check when a fitting is 

unreasonable.  

4.4 RESULTS AND DISCUSSION FOR GRAPHENE ON SIO2/SI 

Now that the dielectric functions of SiO2 and Si are extracted, we are able to do the curve 

fitting on the Ψ and Δ measured. Once again, they are shown in figure below with the MSE 

values tabulated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 
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Figure 4.6 - a) The experimental (180- Δ) for multiple angles and fitting b) The experimental Ψ for multiple angles 
and fitting for Graphene on SiO2/Si. Inset: Optical model used. 

 

Incidence Angles Unbiased Estimator 

700 0.2890 

600 0.02770 

500 0.01650 

Table 4: MSE Values for curve fitting of Graphene on SiO2/ Si. 

Below shows the dielectric functions and conductivity of graphene on SiO2/Si extracted from 

the fitting. 

 

 

 

 

b) 
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Figure  4.7- Experimental dielectric functions of graphene on SiO2/Si.  

 
Figure 4.8 – Experimental optical conductivity of graphene on SiO2/Si with theoretical free-standing graphene 
extracted from [23] .  

The fitting was done with 3.35Å of graphene layer. There are some traits to our experimental  

optical conductivity curve. Firstly, for low energy from 0.5-1.3eV, the conductivity is 

frequency independent and it is equal to the universal conductivity of 𝜋𝑒2

2ℎ
 which is in 

agreement with other literatures [17,19-22]. Secondly, the conductivity assume a 

asymmetrical peak, at 4.65eV, which is clearly due to the e-h interaction that is calculated in 
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the GW-BSE calculations. The asymmetrical peak predicted and highlighted the importance 

of the resonant excitonic effects in the graphene. This asymmetry could also be explained by 

the Fano model, which suggested a discrete excitonic state residing within a continuum 

state.  

 In Figure  4.8, we have also compared the theoretical optical conductivity of free standing 

graphene with our experimental optical conductivity of graphene on SiO2/Si. Upon 

comparison, there are two distinct features that should be noted. 

1) There is a blue shift of the photon energy. The theoretical curve peaks at 4.60eV, 

while the experimental curve peaks at 4.65eV.  

2) The experimental curve is less asymmetrical than that of the theoretical curve. 

The above two observations could be due to two reasons. 

Firstly, the optical model constructed might not be accurate and hence our corresponding 

experimental optical conductivity spectrum is inaccurate. Table 4 shows the MSE values 

determined from the fitting, and 700 fitting is unreasonable according to our guidelines. This 

high MSE value could be due to the incorrect optical model that was constructed. Below 

shows a series of optical modelling that could be constructed. 

 

  

 

 

 

 

Figure 4.9 – Various optical models for spectroscopy ellipsometry. 
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We used models in Figure  4.9a and b in our analysis of data. But constructing those models, 

we are making an assumption that the samples are flat and smooth. But these are  ideal 

scenarios. For the case of graphene on SiO2/Si. a surface roughness layer should be added 

as it has been shown experimentally from other literatures [31-34] that a thin roughness 

layer (corrugations) forms on graphene surface. These corrugations are intrinsic as well as 

substrate induced [35-36]. The addition of roughness layer to our optical model remains to 

be future work to be carried out.  Meanwhile, it has to be emphasized that although the fitting 

of Si and SiO2 turns out to be acceptable, the optical models constructed is only a rough 

estimation to the real structure of the sample and thus independent estimation of the sample 

structure has to be carried out with other experimental techniques like atomic force 

microscopy (AFM) or transmission electron microscope (TEM). Working hand in hand with 

these experimental techniques can give us information to better construct the optical model 

and get a better fitting. 

Secondly, it remains to be an open question whether the addition of a surface roughness 

layer on the optical model of graphene on SiO2/Si would differ our current experimental 

optical conductivity spectrum. If there is no difference, then the blue shift and lesser degree 

of asymmetry compared to the theoretical spectrum of free standing graphene  is clearly due 

to substrate interaction. The e-h interaction, as mentioned in Section 1.2 causes a 

redistribution of the oscillator strength, causing the energy peak of the optical conductivity of 

free standing graphene to drop from 5.2eV (GW calculations) to 4.6eV (GW-BSE 

calculation). The e-h interaction also causes an asymmetry to the optical conductivity of free-

standing graphene. These implies that there could be a screening of e-h interactions in 

graphene on SiO2/Si, which causes the blue shift as well as the lesser degree of asymmetry. 

These screenings could be due to substrate induced charge impurities but with regards to 

the extent they screen the e-h interactions, more studies need to be conducted.  
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4.5 SUMMARY 

In this chapter, we have looked at our experimental results. Both the dielectric functions of c-

Si and SiO2 turns out to be in agreement with other literatures. We also gave a rough 

estimation to the acceptable MSE value, and using this guideline, we found that fitting 

graphene on SiO2/Si is unreasonable. The experimental optical conductivity of graphene on 

SiO2/Si, when compared with the theoretical calculation of free-standing graphene, shows a 

blue-shift and a lesser degree of asymmetry. Before we quickly associate those observations 

to graphene-substrate interaction, we have to construct a more accurate representation of 

the optical model that includes the corrugations and extract a new optical conductivity 

spectrum. If the new optical conductivity spectrum still resembles our current spectrum, we 

can conclude that there is an interaction between graphene and SiO2 substrates such that it 

leads to a screening of e-h interaction.  
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CHAPTER 5 SUMMARY AND FUTURE DIRECTIONS 
 

 

5.1 SUMMARY 

In our thesis, we want to study the resonant excitonic effects of graphene on SiO2/Si, using 

spectroscopic ellipsometry. We compared this experimental technique with reflectance 

spectroscopy in Chapter 2, and we found out through our simulation that the data analysis of 

a single layered sample is more accurate than that of reflectance spectroscopy as the latter 

requires the use of Kramers-Kronig relations which requires an extrapolation of data. We 

also justified that spectroscopy ellipsometry is suitable for our experiment as the quantities 

measured are very sensitive to ultrathin layers. Through curve fitting, we are able to extract 

the optical spectra of multilayered samples and calculate the MSE values. Our experimental 

results were presented in Chapter 4. The experimental optical conductivity of graphene on 

SiO2/Si, when compared with the theoretical calculation of free-standing graphene, shows a 

blue shift ( 4.0eV to 4.65eV) and a lesser degree of asymmetry. However, before we quickly 

associate those observations to graphene-substrate interaction, we have to construct a more 

accurate representation of the optical model that includes the corrugations. The curve fitting 

of graphene on SiO2/Si for 700 incidence angle shows very high MSE at 0.2890 and there is 

a high chance that the optical model constructed was wrong. Meanwhile,  if the new optical 

conductivity spectrum still resembles our current experimental spectrum, we can conclude 

that there is an interaction between graphene and SiO2 substrates such that it leads to a 

screening of e-h interaction.  

5.2 FUTURE DIRECTIONS 

It requires further work to understand the resonant excitonic effects in graphene on SiO2/Si. 

Firstly, the optical model has to include the roughness layer, which involves a different 

mathematical formulation. Also, to ensure that our optical models are constructed accurately, 
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it is required that for the samples to be studied under other optical measurements like AFM 

or STM.  
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