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Abstract

A study of charged multiplicity data from the Large Hadron Collider was

conducted. The study seeks to describe the obtained multiplicity data with a

new multiplicity distribution. This new distribution was derived by obtain-

ing the Asymptotic Solution to Giovanninis QCD-parton branching equation.

Experimental pp collision data from the CMS experiment at the LHC were

fitted with the aforementioned Asymptotic Solution. The charged particle

multiplicity data used are at centre-of-momentum energies of
√
s = 900, 2360

and 7000 GeV with pseudorapidity cuts of ηc = 0.5, 1.0, 1.5, 2.0 and 2.4 (full

phase space). The Asymptotic Solution is able to provide a reasonably good

fit to the experimental data. Although the Asymptotic Solution was unable

to reproduce the shoulder structure seen in the experimental data, the fit

in the shoulder region were all well within the range of experimental un-

certainties. Analysis of the behaviour of the fit parameters with respect to

pseudorapidity intervals ηc and centre-of-momentum energies
√
s were con-

ducted. The analysis indicates that gluon branching becomes more dominant

compared to quark branching as energy increases. Furthermore, the mean

multiplicity also increases with increasing
√
s. Additionally, results from the

analysis point to KNO scaling violation at high ηc. Finally, a prediction of

the multiplicity distributions for energies of 8000, 13000, and 14000 GeV was

made. One hopes to conduct a future study with an improved theoretical

model which builds on the results obtained from this study. One looks for-

ward to comparing the predictions made in this study to the experimental

data when the LHC is fully operational in 2015.
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Chapter 1

Introduction

1.1 Particle Physics

The field of particle physics has flourished in recent times, growing in tandem

with modern technology, with many new technological advances stemming

from the pursuit of experimental results in this field. These experimental

results and observations have given shape to our current models of under-

standing.

One of the milestones of particle physics was the quark theory proposed

by Gell-Mann and Zweig in 1964. They postulated that many particles dis-

covered were not elementary, but had an even more basic structure known

as “quarks”. Experimental evidence in later years would support the notion

of quarks.

Our understanding of particle physics was further advanced by the unifi-

cation of the electromagnetic force and weak force. The so-called electroweak

unification was separately proposed by Glashow, Weinberg and Salam. The

electroweak theory posits the existence of mediator bosons (W± and Z0 for

weak and photons for electromagnetic) which are the interaction carriers in

particle interactions. This was the first step to what is currently known as

the Standard Model of Particle Physics. The introduction of Quantum Elec-

trodynamics (QED) and subsequently Quantum Chromodynamics (QCD)

further spurred the advancement of the field. Gluons act as the mediator
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1.2. Phenomenology Chapter 1. Introduction

bosons for strong interactions (analog to the photon in QED). Both QED

and QCD led to the development of the Standard Model of Particle Physics.

Experiments to search for all the aforementioned particles require the

acceleration of elementary particles to very high energies. As such particle

accelerators are specially built to study the processes of particle production.

As of the time of writing, CERN has become the first to observe a Higgs

boson [1], which has given support to the Standard Model. This was done at

the Large Hadron Collider (LHC) by both the ATLAS and CMS experiments.

In early 2015, the LHC is set to operate at full energy of approximately 14

TeV. With the discovery of the Higgs, the field particle physics has never

been more vibrant. Many questions remain unanswered and studies in the

field may unlock more secrets of the universe.

1.2 Phenomenology

Phenomenology is an aspect of physics that can be best described as a bridge

between the realms of the theoretical that of the experimental. This prac-

tice involves describing and relating various empirical phenomena to known

fundamental theoretical models.

In particle physics in particular, phenomenology seeks to bring describe

experimental data with theoretical models. As such phenomenologists are

not only familiar with varying mathematical models, they are required to

have a certain degree of imagination and creativity so as to obtain the most

suitable models without bias.

The significance of this particular field is noticeable in the research fron-

tier, as phenomenological work is usually the first line of attack for new

experimental data. Often, there are no well established theories which are

able to satisfactorily explain the obtained experimental data, leading to a

phenomenological approach. As more ground-breaking research is conducted

in the experimental sector, there is great need for phenomenological work to

interpret the large amounts of observations recorded.
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1.3. Hadronization Chapter 1. Introduction

1.3 Hadronization

In nature, lone quarks are not detected; they form baryons and mesons which

are then detected. This process of forming baryons and mesons is called

hadronization. Although the Standard Model does well in explaining many

phenomena, it cannot explain the mechanism of hadronization. In fact, till

today, the mechanism of hadronization is not well understood [2].

In order to shed some light onto this phenomena, particle physicists turn

to study charged particle multiplicity distributions obtained from particle

colliders. It is thought that since quarks fragment and hadronize in the

form of jets, by studying the particle multiplicity, one takes a step closer to

understanding hadronization.

1.4 Charged Particle Multiplicity &

Multiplicity Distributions

Particle multiplicity refers to the number of hadrons produced (detected)

after each event. This number varies from event to event. Thus one can cal-

culate the probability that a certain number of hadrons are produced. Thus,

a probability distribution can be obtained. The probability distribution is

known as a multiplicity distribution.

Among the many distributions used to explain the multiplicity distri-

bution are the Negative Binomial Distribution (NBD) and the Generalized

Multiplicity Distribution (GMD) [3].

Although the both NBD and GMD can describe the data well at low ener-

gies, a single distribution is insufficient in describing the data satisfactorily.

The main reason is that at higher energies there seems to be a ‘shoulder-

ing’ in the multiplicity distribution. As such, multiple component NBD and

GMD [4,5] fits are used to better model the multiplicity data. Since there is

no one ‘best’ model that can perfectly describe the data, research in this area

is still ongoing [4,6–13]. The behaviour of the multiplicity distribution remains

one of the unsolved mysteries of particle physics.

3



1.5. Overview and Outlook Chapter 1. Introduction

1.5 Overview and Outlook

In this study, one seeks to describe the multiplicity data by the asymptotic so-

lution obtained by solving Giovannini’s QCD-parton branching equation [14].

The obtained asymptotic solution has the form of another multiplicity dis-

tribution. Hence, a single distribution fit (of collider data) will be performed

with this solution.

A good description of the data by this asymptotic solution will hope-

fully shed more light on charged particle multiplicities and thus help in the

understanding of the hadronization mechanism.

The next few chapters are dedicated to first deriving the asymptotic so-

lution, the results of the analysis, discussions and finally a conclusion to this

study.
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Chapter 2

Asymptotic Solution to the

QCD-Parton Branching

Equation

2.1 Introduction

2.1.1 Partons

The term ‘parton’ was coined by Richard Feynman himself as the constituent

point-like objects inside a hadron. These point like objects are what we know

today as quarks and gluons. Partons are coloured objects, hence, we are

unable to observe them in Nature. In an interaction, the main signature of

parton production are the detection of jets.

2.1.2 Jets

Jets are a result of QCD confinement. Due to colour-neutrality of all observ-

able objects, lone partons cannot exist freely. As a result, these partons will

fragment and hadronize into colourless hadrons before they can be detected.

The fragmentation and subsequent hadronization of partons will form nar-

row cones of hadrons close to the direction in which the initial parton was

travelling. This spray of collimated hadrons is called a jet.

5



2.2. Formalism Chapter 2. Asymptotic Solution

jet

jet

Figure 2.1: Schematic illustration of a typical event with QCD jets.

2.2 Formalism

There are three main fundamental processes that contribute toward the over-

all quark and gluon distribution QCD jets. Furthermore, since high energy

processes are considered, gluon activity also plays a role in the minijet cross

section. As such there are a total of four processes that are considered.

i. gluon fission: g → g + g,

ii. quark brehmsstrahlung: q → q + g,

iii. quark pair creation: g → q + q̄,

iv. four gluon vertex: g → g + g + g.

The first three are the main fundamental processes whilst the last process is

due to the role of gluon activity.

The four processes contribute with different weights, i.e. they have dif-

fering probabilities of occurring. The probabilities of the processes are:

6
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Process Probability

g → g + g A

q → q + g Ã

g → q + q̄ B

g → g + g + g C

Let t be the natural evolution parameter in QCD where

t =
6

11Nc − 2Nf

ln

[
ln(Q2/µ2)

ln (Q2
0/µ

2)

]
, (2.1)

and

Q = the initial parton invariant mass

Q0 = the hadronization mass

µ = a few GeV (a QCD mass scale)

Nc = number of colors

Nf = number of flavors

Giovannini proposed that this evolution of parton jets can be intepreted as

a Markov branching process [14].

Consider A∆t as the probability that gluon will, infinitesimal interval ∆t,

convert into two gluons (gluon fission occurs). Similarly the probabilities of

quark brehmsstrahlung, quark pair-creation and the formation of a four gluon

vertex is given by Ã∆t, B∆t and C∆t respectively. Thus, one arrives at the

following Markov equation:

Pm,n(t+ ∆t) = (1− An∆t− Ãm∆t−Bn∆t− Cn∆t)× Pm,n(t)

+ A(n− 1)∆tPm,n−1(t)

+ Ãm∆tPm,n−1(t)

+B(n+ 1)∆tPm−2,n+1(t)

+ C(n− 2)∆tPm,n−2(t)

(2.2)

7



2.3. Derivation Chapter 2. Asymptotic Solution

This branching process of partons terminates at Q0, after producing m

quarks and n gluons, and is expected to hadronize.

As ∆t→ 0 the Giovannini QCD-parton branching equation is obtained:

dP

dt
= − AnPn + A(n− 1)Pn−1

− ÃmPn + ÃmPn−1

−BnPn +B(n+ 1)Pn+1

− CnPn + C(n− 2)Pn−2

(2.3)

Since one is dealing with data from the Large Hadron Collider, the large

energy limit (TeV range) is considered. Thus, A, Ã ≥ B ≥ C, and the quark

evolution is neglected. An initial condition of

Pn(t = 0) = δn,k′ (2.4)

is imposed, i.e., initially after collisions there are k′ gluons formed.

An asymptotic solution to Eqn. (2.3) has been obtained. [15]

2.3 Derivation of the Asymptotic Solution

A solution of the Giovannini QCD-parton branching equation (2.3) is first

obtained by looking for a continuous-variable approximation. Here, one ap-

proximates n as a continuous variable x. Pn(t) is replaced by P (x, t) and λn

by λx where λ = A,A†, B, C and A† = mÃ.

Thus, Eqn. (2.3) can be rewritten as:

∂P (x, t)

∂t
= − AxP (x, t) + A(x− 1)P (x− 1, t)

− A†P (x, t) + A†P (x− 1, t)

−BxP (x, t) +B(x+ 1)P (x+ 1, t)

− CxP (x, t) + C(x− 2)P (x− 2, t)

(2.5)

8



2.3. Derivation Chapter 2. Asymptotic Solution

The solution to this partial differential equation is obtained using two

techniques. The first is the method of Laplace transform and the second is

that of the method of steepest descent (or saddle point approximation).

2.3.1 Method of Laplace Transform

First recall the definition of the Laplace Transform and its inverse:

P ∗(x, s) =

∫ ∞
0

e−stP (x, t) dt, Real (s) > 0 (2.6a)

P (x, t) =
1

2πi

∫ C+i∞

C−i∞
estP ∗(x, s) ds (2.6b)

where C is positive and greater than the real parts of all singularities of

P ∗(x, s).

Also note that:[
∂P (x, t)

∂t

]∗
= −P (x, t = 0) + sP ∗(x, s) (2.6c)

Starting with initial conditions P (x = k′, t = 0) = 1, the Laplace trans-

form is applied on both sides of Eqn. (2.5):

(
∂P

∂t

)∗
= − AxP ∗(x, s) + A(x− 1)P ∗(x− 1, s)

− A†P ∗(x, s) + A†P ∗(x− 1, s)

−BxP ∗(x, s) +B(x+ 1)P ∗(x+ 1, s)

− CxP ∗(x, s) + C(x− 2)P ∗(x− 2, s)

(2.7)

Firstly, consider when x > k′:

− P (x, t = 0) + sP ∗(x, s) = RHS of Eqn. (2.7) (2.8)

Since P (x > k′, t = 0) = 0 for x 6= k′ (due to the initial conditions), the

9



2.3. Derivation Chapter 2. Asymptotic Solution

above equation reduces to:

sP ∗(x, s) = RHS of Eqn. (2.7) (2.9)

Now, consider when x = k′:

− P (x = k′, t = 0) + sP ∗(x, s) = −[Ax+ A† +Bx+ Cx]P ∗(x, s) (2.10)

Recalling Eqn. (2.4) one arrives at:

P ∗(x = k′, s) =
1

s+ A† + (A+B + C)k′
(2.11)

Eqn. (2.9) is now considered. Let L(x, s) = lnP ∗(x, s). For simplicity,

all L(x, s) will be written as L(x). Eqn. (2.9) will become:

seL(x) = − AxeL(x) + A(x− 1)eL(x−1)

− A†eL(x) + A†eL(x−1)

−BxeL(x) +B(x+ 1)eL(x+1)

− CxeL(x) + C(x− 2)eL(x−2)

(2.12)

Suppose, L(x + 1) ∼ L(x) and L(x − 2) ∼ L(x − 1) due to the large

number of gluons created in high energy collisions. Then, Eqn. (2.12) can

be cast in the following form:

seL(x) = − [Ax+ A† +Bx+ Cx]eL(x)

+ [A(x− 1) + A† + C(x− 2)]eL(x−1)

+B(x+ 1)eL(x)

(2.13)

Since x is a continuous variable, L(x − 1) can be expanded about L(x)

10



2.3. Derivation Chapter 2. Asymptotic Solution

by a Taylor series up to the first differential coefficient.

L(x− 1) = L(x) + (−1)
∂L(x)

∂x

= L(x)− L′(x) (2.14)

where L′(x) = ∂L(x)
∂x

.

From (2.14) we have

eL(x−1) = eL(x)e−L
′(x) (2.15)

Substituting (2.15) into (2.13) and performing simple algebraic manipu-

lations, one obtains:

− ∂L(x)

∂x
= ln

s+ [A† −B + (A+ C)x]

(A+ C)x+ A† − A− 2C
(2.16)

Making these four substitutions

α = A† −B (2.17a)

β = A+ C (2.17b)

γ = A† − A− 2C (2.17c)

D = A+B + C (2.17d)

one arrives at:

− ∂L(x)

∂x
= ln

s+ α + βx

γ + βx
(2.18)

Integrating (2.18) to give a first approximation. One obtains:

L1(x, s) = −
∫ k′

x

ln
s+ α + βω

γ + βω
dω − ln [s+ A† +Dk′] (2.19)

where L(k′, s) = lnP ∗(x = k′, s) can be obtained from (2.11).

A more accurate solution can be obtained if one considers the second

11
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derivatives as well. Eqn. (2.14) becomes:

L(x− 1) = L(x)− L′(x) +
1

2
L′′(x) (2.20)

where L′′(x) = ∂2L(x)
∂x2

Consequently (2.15) will now be:

eL(x−1) = eL(x)e−L
′(x)e

1
2
L′′(x) (2.21)

Eqn. (2.18) becomes

− ∂L(x)

∂x
+

1

2

∂2L(x)

∂x2
= ln

s+ α + βx

γ + βx
(2.22)

Differentiating (2.18), we have:

∂2L(x)

∂x2
= β

[
− 1

s+ α + βx
+

1

γ + βx

]
(2.23)

Hence Eqn. (2.22) becomes:

− ∂L(x)

∂x
= ln

s+ α + βx

γ + βx
− β

2

[
− 1

s+ α + βx
+

1

γ + βx

]
(2.24)

Integrating (2.24) to give the second approximation:

L2(x, s) =−
∫ k′

x

ln
s+ α + βω

γ + βω
dω

+ ln
[s+ α + βk′]1/2[γ + βx]1/2

[s+ α + βx]1/2[γ + βk′]1/2[s+ A† +Dk′]

(2.25)

where∫ x

k′

β

2

[
− 1

s+ α + βω
+

1

γ + βω

]
dω = ln

[s+ α + βk′]1/2[γ + βx]1/2

[s+ α + βx]1/2[γ + βk′]1/2

To get the required expression for P (x, t) one makes use of Eqn. (2.6b).

P2(x, t) =
1

2πi

∫ C+i∞

C−i∞
g(s)est−f(s) ds (2.26)

12



2.3. Derivation Chapter 2. Asymptotic Solution

where

g(s) =

[
(s+ α + βk′)(γ + βx)

(s+ α + βx)(γ + βk′)

]1/2
1

(s+ A† +Dk′)
(2.27a)

f(s) =

∫ x

k′
ln
s+ α + βω

γ + βω
dω (2.27b)

Unfortunately, Eqn. (2.26) cannot be solved completely. An asymptotic

solution is obtained using the saddle point approximation.

2.3.2 Saddle Point Approximation

The complete analysis of steepest descents involves choosing an integration

path along a line of steepest descent from s0, which can be obtained from

the path in Eqn. (2.26). This particular treatment will lead to the following

asymptotic form:

F (t) ∼ g(s0)e
s0t−f(s0)

[−2πf ′′(s0)]1/2
(2.28)

which is used to approximate Eqns. (2.26) to (2.27b).

First, f ′′(s0) is obtained.

f ′′(s0) =
∂2

∂s2

∫ x

k′
ln
s+ α + βω

γ + βω
dω

∣∣∣∣
s=s0

=

∫ x

k′

∂2

∂s2
ln
s+ α + βω

γ + βω

∣∣∣∣
s=s0

dω

= −
∫ x

k′

1

(s0 + α + βω)2
dω (2.29)

Substituting this expression of f ′′(s0) and the values for g(s0) and f(s0)

from (2.27a) and (2.27b) into (2.28), one arrives at:

P2(x, t) =

[
(s0+α+βk′)(γ+βx)
(s0+α+βx)(γ+βk′)

]1/2
1

(s0+A†+Dk′)[
2π
∫ x
k′

1
(s0+α+βω)2

dω
]1/2 × es0t−

∫ x
k′ ln

s0+α+βω
γ+βω

dω (2.30)

The equation can be broken down into three parts for simpler evaluation.

13



2.3. Derivation Chapter 2. Asymptotic Solution

Let y represent the square root terms (except the 2π term) and z represent

the exponential term, i.e., (2.30) can be written as:

P2(x, t) =
1

(2π)1/2
y z

s0 + A† +Dk′
(2.31)

First, one considers the exponential term and look for a stationary func-

tion when the exponential term is stationary, i.e., ∂z
∂s0

= 0. So,

∂z

∂s0
=

(
t−
∫ x

k′

1

s0 + α + βω
dω

)
× z = 0 (2.32)

Since z 6= 0 one immediately obtains:

t =

∫ x

k′

1

s0 + α + βω
dω

=
1

β
ln

[
s0 + α + βx

s0 + α + βk′

]
(2.33)

Armed with this expression for t, one can simplify (2.30). Also note that:

e−βt =
s0 + α + βk′

s0 + α + βx
(2.34a)

and

1− e−βt =
(x− k′)β
s0 + α + βx

(2.34b)

Starting with the exponential term, let

u = −
∫ x

k′
ln
s0 + α + βω

γ + βω
dω

=
1

β

[
ln

(
(s0 + α + βk′)s0+α+βk

′

(s0 + α + βx)s0+α+βx
(γ + βx)γ+βx

(γ + βk′)γ+βk′

)]
Hence, z = es0teu.

z =
e−t(α+k

′β)(1− e−βt)x−k′

(x− k′)x−k′
(k + x)k+x

(k + k′)k+k′
(2.35)

14



2.3. Derivation Chapter 2. Asymptotic Solution

where (2.34a) and (2.34b) have been used. Also, the substitution

k =
γ

β
(2.36)

is made.

Next, the square root terms are evaluated. The integral in the denomi-

nator is:[∫ x

k′

1

(s0 + α + βω)2
dω

]1/2
=

(x− k′)1/2

(s0 + α + βk′)1/2(s0 + α + βx)1/2
(2.37)

Combining this with the numerator, we have the expression for y.

y = (s0 + α + βk′)

(
(k + x)

(x− k)(k + k′)

)1/2

(2.38)

we let p = (s0 + α + βk′) and q =
(

(k+x)
(x−k)(k+k′)

)1/2
. Combining p with the

1
s0+A†+Dk′

term:

w =
p

s0 + A† +Dk′
=

s0 + α + βk′

s0 + A† +Dk′
(2.39)

Recalling A† = α +B and D = β +B,

w =
e−βt(x− k′)[

e−βt(x− k′) + B
β

(1− e−βt)(1 + k′)
] (2.40)

Thus, with (2.35) and (2.40) as well as an expression for q, Eqn. (2.31)

will have the following form:

P2(xt) =
e−t(α+(k′+1)β)(1− e−βt)x−k′[

e−βt(x− k′) + B
β

(1− e−βt)(1 + k′)
] × (x− k′)× φ (2.41)

where

φ =
(k + x)k+x+1/2

(2π)1/2(x− k′)x−k′+1/2(k + k′)k+k′+1/2
(2.42)

The φ term is now investigated. The term φ turns out to contain the Stirling

15



2.3. Derivation Chapter 2. Asymptotic Solution

approximation of the form

P ! =
P P+1/2

eP
(2π)1/2 (2.43)

And hence,

φ =
(x+ k)!

(x− k′)!(k + k′)!

=
Γ(x+ k + 1)

Γ(x− k′ + 1)Γ(k + k′ + 1)
(2.44)

where the identity x! = Γ(x+ 1) has been used.1

So, the final form of the asymptotic solution of the branching equation

(2.3) is obtained by substituting (2.44) into (2.41). The variable x is then

replaced with n.

P (n) =
e−t(α+(k′+1)β)(1− e−βt)n−k′[

e−βt(n− k′) + D−β
β

(1− e−βt)(1 + k′)
] × (n− k′)

× Γ(n+ k + 1)

Γ(n− k′ + 1)Γ(k + k′ + 1)

(2.45)

This is the Asymptotic Solution to the QCD-parton Branching

Equation. The solution is a probability distribution of the number of par-

tons produced in a collision. The solution describes another multiplicity

distribution.

Remark: There is an error in the original derivation of this solution found

in [15] due to the error in the expression of Stirling’s formula2. Thus the

expression for P (n) in the original paper differs slightly from what is shown

above. Eqn. (2.45) is the corrected solution.

1Since k and k′ are both interpreted in an average way, the gamma function used is
defined as: Γ(x) =

∫∞
0
tx−1e−t dt

2The correct expression for Stirling’s formula was obtained from [16]
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2.4. Mean, Moments, KNO-Scaling Chapter 2. Asymptotic Solution

2.3.3 Relation to the Generalized Multiplicity Distri-

bution

Now suppose the probability vertex B = C = 0, i.e. there is no quark pair

creation and four-gluon vertices in the branching process, then Eqn. (2.45)

will reduce to:

P (n) = e−At(k
′+α

β
)
[
1− e−At

]n−k′ Γ(n+ k + 1)

Γ(n− k′ + 1)Γ(k + k′ + 1)
(2.46)

The distribution described by Eqn. (2.46) is slightly different from the

Generalized Multiplicity Distribution (GMD) due to the different expression

for the parameter k. Under the condition B = C = 0, we have the relation

that α
β

= kGMD and kGMD = k + 1. Using these two relations reduce the

distribution to the General Multiplicity Distribution.

PGMD(n) = e−At(k
′+kGMD)

[
1− e−At

]n−k′ Γ(n+ kGMD)

Γ(n− k′ + 1)Γ(kGMD + k′)
(2.47)

2.4 Mean Multiplicity, Moments

& KNO-Scaling

Since the asymptotic solution is a probability distribution, one makes use of

certain statistics to characterize this distribution, in particular the mean and

moments of the distribution. For example, the first moment is related to the

mean, the second to the variance, the third to the skewness, the fourth to

the kurtosis and so on. As noted, the mean multiplicity is the first moment

of interest.

The mean multiplicity n is defined as:

n =
∑
n

nPn (2.48)
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2.4. Mean, Moments, KNO-Scaling Chapter 2. Asymptotic Solution

The reduced C-moment is defined as:

Cq =
nq

nq
=

∑
n n

qPn
(
∑

n nPn)q
(2.49)

where q ∈ Z+.3 Note that, per the definition from Eqn. (2.49), C1 will always

have the value of 1.

2.4.1 KNO-Scaling

The energy dependance of the multiplicity distributions and its moments

have been discussed in relation to the so-called Koba-Nielsen-Olesen (KNO)

scaling [17]. The main assumption of KNO scaling is that of Feynman scaling.

According to Feynman scaling [18]:

n ∝ ln
√
s (2.50)

The derivation of KNO scaling is a result of an extension of Feynman scaling

to include q-particle correlations (q-particles with energies Eq, momenta pq).
4

The multiplicity distribution is found to scale as

P (n) =
1

n
Ψ(
n

n
) +O

(
1

n2

)
(2.51)

where the first term results in the leading term in ln s, i.e. (ln s)q. All other

terms in ln s ((ln s)q
′

where q′ < q) are contained in the second term.

This scheme involves the consideration of the function:

Ψ(z) = nPn (2.52)

where z = n/n. Ψ(z) is a universal function, i.e. it is energy independent. If

KNO scaling holds, multiplicity distributions of all energies fall on the same

curve when plotted as a function of z [19,20]. Furthermore, it follows that the

3Z+ is the set of all positive integers, i.e. 1, 2, 3, 4...
4More on Feynman Scaling and KNO Scaling can be found in Appendix D
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2.5. Summary Chapter 2. Asymptotic Solution

Cq moments define Ψ(z) uniquely and are energy independent as well.

Cq =

∫ ∞
0

zqΨ(z) dz (2.53)

2.5 Summary

In this chapter, the Asymptotic Solution to the QCD-Parton Branching equa-

tion has been derived. The solution is obtained by considering four processes

with their corresponding probabilities (in parenthesis):

i. gluon fission (A): g → g + g,

ii. quark brehmsstrahlung (Ã): q → q + g,

iii. quark pair creation (B): g → q + q̄,

iv. four gluon vertex (C): g → g + g + g.

The parameters used are α, β, D, k, and k′ which are defined as follows:

α = A† −B

β = A+ C

D = A+B + C

k =
γ

β
=
A† − A− 2C

A+ C

k′ = initial number of gluons

The Asymptotic Solution is:

P (n) =
e−t(α+(k′+1)β)(1− e−βt)n−k′[

e−βt(n− k′) + D−β
β

(1− e−βt)(1 + k′)
] × (n− k′)

× Γ(n+ k + 1)

Γ(n− k′ + 1)Γ(k + k′ + 1)

(2.45)

The asymptotic solution reduces to the Generalized Multiplicity Distribution

when B = C = 0.
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Chapter 3

Data Analysis

In this work, proton-proton collision data from the Compact Muon Solenoid

(CMS) experiment at the Large Hadron Collider (LHC), was analysed. In

particular the charged particle multiplicity data at energies of 900 GeV,

2360 GeV and 7000 GeV were of interest. The data was obtained from

The Durham HepData Project [20,21].

3.1 About the Data

Measurements of multiplicity distribution Pn of primary charged hadrons

(baryons and mesons; although mostly π-mesons are produced in the collider)

in inelastic non-single-diffractive events were performed at the Large

Hadron Collider. These measurements were done at three center-of-mass

energies,
√
s, of 900, 2360 and 7000 GeV, with pseudorapidity intervals of

|η| < 0.5 to |η| < 2.4. For simplicity,the pseudorapidity cut ηc is defined as:

(ηc = x) ≡ |η| < x

i.e. ηc = 0.5 means |η| < 0.5. More information about η and
√
s can be

found in Appendix B.
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3.1. About the Data Chapter 3. Data Analysis

3.1.1 Primary Interactions

Primary charged hadrons are defined as all charged hadrons produced in the

interaction (collision), including products of the decay of objects with life-

time less than 10−10 s [20]. Decay products of longer-lived particles such as

K0
S and Λ, as well as hadrons originating from secondary interactions are

excluded. Here, secondary interactions refer to any other interaction other

than the initial proton-proton collision.

3.1.2 Non-Single-Diffractive (NSD) Events

(a) Elastic Scattering. No jets

are produced.

(b) Single-Diffractive Events.

Only 1 distinct jet of detected

particles.

(c) Double-Diffractive Events.

Particles are produced in 2 jets.

(d) Non-Diffractive Events. Par-

ticles produced in all directions.

Figure 3.1: Different scattering events.
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3.2. Analysis Methodology Chapter 3. Data Analysis

An explanation of non-single-diffractive (NSD) events is best done with Fig-

ure 3.1. The blue arrows indicate the colliding proton beams, whilst the red

arrows indicate the “trajectories” of the particles.

Firstly, elastic events are events where no jets are produced. The proton’s

act like “billiard balls” and just glance off each other. Products of these type

of collision have high η (close to the beam pipe) and will thus go undetected.

Inelastic events are categorised into diffractive events and non-diffractive

events. Diffractive events have large rapidity intervals devoid of any hadronic

activity. This interval is also known as the pseudorapidity gap. The two types

of diffractive events, single-diffractive (SD) and double-diffractive (DD) are

shown in Figures 3.1(b) and 3.1(c). All other inelastic events are known as

non-diffractive (ND) events.

DD and ND events combined are known as non-single-diffractive (NSD)

events. Event selection triggers are used to filter out events which do not fall

into this category. The triggers also filter out events which are not due to

primary interactions [20].

3.2 Analysis Methodology

In order to garner whether the data used can be described well by the dis-

tribution as expressed in Eqn. (2.45)1, a χ2-fit was used.

The χ2 value is defined as such:

χ2 =

(
|Pex − Pth|

σ

)2

(3.1)

where Pex is the experimental probabilities, Pth refers to the theoretical prob-

abilities (as from Eqn. (2.45)), and σ is the experimental uncertainty.

It is often more useful to use the reduced χ2 value,

χ2
red =

χ2

ν
(3.2)

1It may be puzzling to some as to why an equation that describes the behaviour of
partons is used when the multiplicity distribution data refers to hadrons. The assumption
of Local Parton-Hadron Duality has been used here (more of LPHD in Appendix C).
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3.2. Analysis Methodology Chapter 3. Data Analysis

where ν = Npoints −Nparameters − 1 is the number of degrees of freedom. The

reduced chi-squared value has an advantage in that it takes it normalizes for

the number of points and takes into account model complexity.

This χ2
red number was minimised to obtain the best fit of the data with

the curve. The minimization and fit was done using the software OriginPro

9.0, which makes use of the Levenberg-Marquadt algorithm2. The fitting

process was repeated for the pseudorapidity cuts of ηc = 0.5, 1.0, 1.5, 2.0,

and 2.4 for each of the three energies of 900, 2360 and 7000 GeV. The points

n = 0 and n = 1 were not included in the fit to allow k′ (n > k′) to vary.

The points at the tail end of the curve (high n) were also masked due to the

high relative errors involved.

The fit parameters used are αt, βt, Dt, k and k′. The reason t was not

used as a free parameter is because it does not appear independently of the

α, β and D. Thus, the curve is over-parameterised if t is taken to be a free

parameter, i.e. more parameters than are necessary to define the curve are

used. However, the value of t can be considered as absorbed into that of α,

β and D without any loss of generality. As such, for the sake of simplicity,

the parameters αt, βt, and Dt can simply be written as α, β and D.

Also, since Eqns. (2.48) and (2.49) are difficult to evaluate analytically,

they are done numerically. Once the fit parameters were obtained from the

fit, n and the Cq moments were computed. The Cq moments were computed

for q = 2, 3, 4, 5. Renormalization was performed before n and the Cq

moments were calculated.

2A detailed description of the Levenberg-Marquadt algorithim can be found in [22]
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3.3 Analysis of Multiplicity Data for
√
s = 900 GeV

The graphs in Figure 3.2 show the multiplicity distribution at 900 GeV for

different ηc. Also shown on the graphs are the fit lines which were obtained

with the asymptotic solution (Eqn. 2.45). The grey points are masked.
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 P(n) ( c=0.5)
 Fit Line

(a) Multiplicity distribution and asymptotic solution fit at ηc = 0.5.

Figure 3.2: Multiplicity distribution at 900 GeV for various ηc fitted with

the Asymptotic Solution.

24



3.3. Analysis (
√
s = 900 GeV) Chapter 3. Data Analysis

0 50 100

1E-6

1E-5

1E-4

1E-3

0.01

0.1

P
(n
)

n

 P(n) ( c=1.0)
 Fit Line

(b) Multiplicity distribution and asymptotic solution fit at ηc = 1.0.
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(c) Multiplicity distribution and asymptotic solution fit at ηc = 1.5.

Figure 3.2: Multiplicity distribution at 900 GeV for various ηc fitted with

the Asymptotic Solution.
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(d) Multiplicity distribution and asymptotic solution fit at ηc = 2.0.
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(e) Multiplicity distribution and asymptotic solution fit at ηc = 2.4.

Figure 3.2: Multiplicity distribution at 900 GeV for various ηc fitted with

the Asymptotic Solution.
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Table 3.1 summarises the fit parameters and the χ2
red values for the fits

across all ηc. The values of all these parameters increase as ηc increases.

Also, χ2
red < 1 for all fits. The values of k′ are very small compared compared

ηc α β D k k′ χ2
red

0.5 0.73 1.32 2.13 0.16 3.74×10−15 0.91
1.0 0.99 1.82 3.64 0.54 4.00×10−15 0.59
1.5 1.31 2.17 4.34 0.60 5.00×10−15 0.50
2.0 1.53 2.42 4.85 0.63 7.00×10−15 0.46
2.4 1.68 2.59 5.18 0.65 9.00×10−15 0.39

Table 3.1: Fit Parameters for
√
s = 900 GeV at various ηc.

to that of k. Although there is an increasing trend across pseudorapidity,

the value of k′ is very small; they can be approximated as being constantly

zero. Recall that k′ is the initial number of gluons produced after collision.

The parameter k is related to the number of quarks.3 Thus both the initial

number of gluons and quarks increases as ηc increases.

The values of α, β and D show an increasing trend with increasing ηc.

From the definitions of α, β and D (Eqns. (2.17a), (2.17b), and (2.17d)),

one notes that:

• Quark brehmmstrahlung (A†) dominates over quark pair creation (B)

with increasing ηc (increasing α)

• Gluon splitting (gluon fission (A) and 4-gluon vertex (C)) increases as

ηc increases (increasing β)

• Gluon initiated processes (gluon splitting and quark pair creation) in-

creases as ηc increases (D increases)

• From the first three points, we can conclude that although all processes

increase with ηc the quark brehmmstrahlung process (producing gluon

3If one uses the GMD as an example, kGMD is defined as kGMD = A†

A = mÃ
A . k is

thus the number of quarks m multiplied by the ratio of the processes Ã and A. Since k
reduces to kGMD when B = C = 0 (up to an additive constant), one can interpret k as
being related to the number of quarks.
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from quarks) increases much faster than the quark pair creation process

(producing quarks from gluons).

The results indicate that as more particles are being considered (larger an-

gle coverage), the processes producing gluons seem to become more likely

as compared to those which produce quarks. Also, since the pseudorapidity

(and hence angle) is related to the particles transverse momentum, a larger

ηc means that particles with a larger range of transverse momenta are con-

sidered.

The mean multiplicity and the Cq moments that were numerically calculated

from the fit parameters are shown in Table 3.2. Comparison between the

experimental Cq moments and the calculated values are shown graphically

in Figure 3.3.

As expected, n increases with increasing ηc. Referring to Figure 3.3, one

can see that the Cq moments for q = 2, 3, 4 agree reasonably well with the

experimental values. The values for C5 however did not agree as well with

the data. The difference in C5 can be attributed to the difference at the

tail section (high n values) of the distribution. Also, there seems to be less

agreement of the Cq moments at higher ηc.

ηc n C2 C3 C4 C5

0.5 4.46 1.57 3.36 8.91 27.52
1.0 8.19 1.55 3.22 8.20 24.23
1.5 11.84 1.54 3.14 7.74 21.94
2.0 15.38 1.53 3.04 7.24 19.59
2.4 18.09 1.51 2.94 6.79 17.71

Table 3.2: Mean Multiplicity and Cq moments for
√
s = 900 GeV.
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Figure 3.3: Comparison of experimental and theoretical Cq moments for 900
GeV.
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3.4 Analysis of Multiplicity Data for
√
s = 2360 GeV

The graphs in Figure 3.4 exhibit the multiplicity distribution at 2360 GeV for

different ηc. Also shown on the graphs are the fit lines which were obtained

with the asymptotic solution (Eqn. 2.45). As before, the grey points are

masked.
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(a) Multiplicity distribution and asymptotic solution fit at ηc = 0.5.

Figure 3.4: Multiplicity distribution at 2360 GeV for various ηc fitted with

the Asymptotic Solution.
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(b) Multiplicity distribution and asymptotic solution fit at ηc = 1.0.
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(c) Multiplicity distribution and asymptotic solution fit at ηc = 1.5.

Figure 3.4: Multiplicity distribution at 2360 GeV for various ηc fitted with

the Asymptotic Solution.
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(d) Multiplicity distribution and asymptotic solution fit at ηc = 2.0.
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(e) Multiplicity distribution and asymptotic solution fit at ηc = 2.4.

Figure 3.4: Multiplicity distribution at 2360 GeV for various ηc fitted with

the Asymptotic Solution.
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Table 3.3 summarises the fit parameters and the χ2
red values for the fits

across all ηc. The values of all these parameters increase as ηc increases,

as was the case with the data for 900 GeV. Also, χ2
red < 0.2 for all fits -

indicating a good fit.

ηc α β D k k′ χ2
red

0.5 1.19 1.58 2.11 0.08 8.29×10−14 0.13

1.0 1.80 2.19 2.80 0.10 4.30×10−14 0.08

1.5 2.14 2.56 3.30 0.13 1.03×10−13 0.08

2.0 2.37 2.83 3.73 0.15 1.14×10−13 0.11

2.4 2.45 2.99 4.14 0.21 2.58×10−13 0.11

Table 3.3: Fit Parameters for
√
s = 2360 GeV at various ηc.

The same analysis performed on the 900 GeV data set can be applied

to this particular data set. As before, there is a trend that the values of

the parameters increase as ηc increases. This is true for all the parameters

execpt k′. The value of k′ at ηc = 0.5 is slightly larger than that of k′ = 1.0.

However, as previously mentioned, the values of k′ are orders of magnitude

smaller than that of the other parameters. Thus this small difference could

be treated as an anomalous result.

Since the values of α, β, D and k increase as ηc increases, the results from

the previous analysis hold true as well.

Table 3.4 displays the mean multiplicity as well as the calculated Cq mo-

ments, while Figure 3.5 compares these calculated values with experimental

values. From Figure 3.5, one can see that the values C2, C3, C4 agree rea-

sonably well, but again the values of C5 differ from that of experimental

values. In fact, these calculated values of C5 display an odd behaviour as ηc

increases. From the plot, one notices that C5 should decrease with increas-

ing ηc, but the calculated value of C5 does not exhibit this behaviour. The

possible anomalous points are at ηc = 0.5 and ηc = 2.4.
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ηc n C2 C3 C4 C5

0.5 5.41 1.56 3.25 8.22 24.15
1.0 9.87 1.56 3.23 8.17 24.56
1.5 14.11 1.53 3.03 7.26 20.54
2.0 18.39 1.51 2.92 6.78 18.36
2.4 21.83 1.50 2.90 6.83 18.97

Table 3.4: Mean Multiplicity and Cq moments for
√
s = 2360 GeV.
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Figure 3.5: Comparison of experimental and theoretical Cq moments for 2360

GeV.
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3.5 Analysis of Multiplicity Data for
√
s = 7000 GeV

The graphs in Figure 3.6 display the multiplicity distribution at 900 GeV for

different ηc. Also shown on the graphs are the fit lines which were obtained

with the asymptotic solution (Eqn. 2.45).
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(a) Multiplicity distribution and asymptotic solution fit at ηc = 0.5.

Figure 3.6: Multiplicity distribution at 7000 GeV for various ηc fitted with

the Asymptotic Solution.
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(b) Multiplicity distribution and asymptotic solution fit at ηc = 1.0.
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(c) Multiplicity distribution and asymptotic solution fit at ηc = 1.5.

Figure 3.6: Multiplicity distribution at 7000 GeV for various ηc fitted with

the Asymptotic Solution.
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(d) Multiplicity distribution and asymptotic solution fit at ηc = 2.0.
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(e) Multiplicity distribution and asymptotic solution fit at ηc = 2.4.

Figure 3.6: Multiplicity distribution at 7000 GeV for various ηc fitted with

the Asymptotic Solution.
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Table 3.5 summarises the fit parameters and the χ2
red values for the fits

across all ηc. The parameters α, β, D and k′ increase as ηc increases, whilst

k decreases with increasing ηc. χ2
red < 1 for all ηc. The only difference in

ηc α β D k k′ χ2
red

0.5 1.64 1.86 2.18 9.63×10−03 4.54×10−10 0.91
1.0 2.24 2.48 2.87 7.62×10−03 3.04×10−09 0.59
1.5 2.58 2.86 3.35 6.49×10−03 8.00×10−09 0.50
2.0 2.81 3.13 3.74 2.15×10−03 5.98×10−08 0.46
2.4 2.97 3.30 3.93 1.09×10−04 1.43×10−04 0.39

Table 3.5: Fit Parameters for
√
s = 7000 GeV at various ηc.

the trend of parameters with increasing ηc of this data set and the former

two is that of the parameter k. The value of k decreases with increasing

ηc. An interesting point to note is also the value of k′ at ηc = 2.4. There

is a significant “jump” between that value and the preceding value. If one

interprets k as being related to the number of quarks, it is clear that at this

energy, the number of quarks decreases with increasing number of gluons.

This is an indication that gluon processes start to dominate.

The calculated mean and moments are shown in Table 3.6 with the corre-

sponding comparison plot on Figure 3.7. Again, one notes that the agreement

of C2, C3, and C4 is quite good; C5 deviates slightly from the experimental

values.

ηc n C2 C3 C4 C5

0.5 7.13 1.69 3.98 11.72 40.51
1.0 13.42 1.68 3.91 11.19 37.44
1.5 19.76 1.66 3.75 10.36 33.31
2.0 26.16 1.64 3.59 9.51 28.85
2.4 30.91 1.62 3.50 9.01 26.27

Table 3.6: Mean Multiplicity and Cq moments for
√
s = 7000 GeV.
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Figure 3.7: Comparison of experimental and theoretical Cq moments for 7000
GeV.
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3.6 Comparison Across Energies

A comparison of the fit parameters across the three different centre-of-momentum

frame energies was made. Tables 3.7 to 3.11 contain the values of the pa-

rameters across different energies and ηc. Each table corresponds to one

parameter. Figure 3.8 displays these values graphically.

α
√
s (GeV)

ηc

0.5 1.0 1.5 2.0 2.4

900 0.73 0.99 1.31 1.53 1.68
2360 1.19 1.80 2.14 2.37 2.45
7000 1.64 2.24 2.58 2.81 2.97

Table 3.7: Comparison of α across different energies.

β
√
s (GeV)

ηc

0.5 1.0 1.5 2.0 2.4

900 1.32 1.82 2.17 2.42 2.59
2360 1.58 2.19 2.56 2.83 2.99
7000 1.86 2.48 2.86 3.13 3.30

Table 3.8: Comparison of β across different energies.

D
√
s (GeV)

ηc

0.5 1.0 1.5 2.0 2.4

900 2.13 3.64 4.34 4.85 5.18
2360 2.11 2.80 3.30 3.73 4.14
7000 2.18 2.87 3.35 3.74 3.93

Table 3.9: Comparison of D across different energies.
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k
√
s (GeV)

ηc

0.5 1.0 1.5 2.0 2.4

900 0.16 0.54 0.60 0.63 0.65
2360 0.08 0.10 0.13 0.15 0.21
7000 9.63×10−03 7.62×10−03 6.49×10−03 2.15×10−03 1.09×10−04

Table 3.10: Comparison of k across different energies.

k′

√
s (GeV)

ηc

0.5 1.0 1.5 2.0 2.4

900 3.74×10−15 4.00×10−15 5.00×10−15 7.00×10−15 9.00×10−15

2360 8.29×10−14 4.30×10−14 1.03×10−13 1.14×10−13 2.58×10−13

7000 4.54×10−10 3.04×10−09 8.00×10−09 5.98×10−08 1.43×10−04

Table 3.11: Comparison of k′ across different energies.

(a) Comparison of α across energies

Figure 3.8: Comparison of Fit Parameters Across Different Energies
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Figure 3.8: Comparison of Fit Parameters Across Different Energies
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Figure 3.8: Comparison of Fit Parameters Across Different Energies
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The behaviour of α and β across the energies is very similar. At each ηc

the value for these two parameters increases. Thus, one infers that:

• Gluon brehmmstrahlung process (A†) increases more than that of quark

pair-creation when energy increases.

• Gluon splitting (A and C) increases with the increase of energy.

Next, one looks at the behaviour of k and k′. As energy increases, k

decreases, whilst k′ increases. This leads to:

• The number of quarks decreases while the initial number of gluons

increases.

• At higher energies, the gluon processes play a more dominant role over

the quark processes.

Finally, one turns to the behaviour of D across the three energies. The

parameter D behaves strangely. For ηc values of 0.5 to 2.0, as energy is

increased from 900 GeV to 2360 GeV, the values of D decreases. Then as

the energy is further increased to 7000 GeV, the values of D increase. This

indicates a presence of some sort of minimum value of D between energy

values of 2360 and 7000 GeV. On the other hand, values of D for ηc = 2.4

decreases with increasing energy. However, the behaviour of D for ηc = 2.4

is still consistent with the presence of a minima. The exact behaviour of D

can only be determined with additional data at higher energies.

A possible inference for a minima behaviour of D is as follows. The

variable D can be expressed as D = β + B. From the data, we know that

β increases with increasing energy. For a decreasing portion of D, since β

increases, B must decrease, and at a faster rate as compared to β. The

increasing portion of the curve would indicate that if B decreases, then β

would have to increase at a higher rate than the decreasing B.

Physically, this means that there seems to be a competition between the

gluon splitting process (β = A+C) and the quark pair creation process (B).

Initially, the quark pair creation process dominates. But at a certain energy

(the minima point), the gluon processes start to dominate. This again is
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Figure 3.9: Comparison of n across different energies and ηc.

consistent with the assumption that at high energies, gluon processes will

play a more significant role.

Turning ones attention to the mean multiplicity, the values of n across

different energies are compared in Figure 3.9. The mean multiplicity increases

as energy increases for each ηc.
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3.6.1 Violation of KNO Scaling
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Figure 3.10: Shown are plots of Ψ(z) against z for (a) ηc = 0.5 and (b)

ηc = 2.4.

From figure 3.10, one can see that there is a obvious violation of KNO scaling

at ηc = 2.4. However, at lower pseudorapidity ranges, ηc = 0.5 one can see

that KNO scaling could still hold, i.e. the curves seem to align better at

lower ηc.
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The observation of KNO scaling violation at high ηc but not at low ηc

leads one to infer that the scaling violation could be caused by particles with

high pseudorapidity, i.e. the particles close to the beam axis and thus have

low transverse momenta. In contrast, low η particles (high pT ) obey KNO-

scaling implying that these two types of particles (high and low pT ) undergo

different processes.

High pT particles are of great interest since their momenta must come

from the interaction process. Particles are accelerated along the beam axis,

so almost all their momenta are along the beam axis. Thus, the high pT of

a particle must come from particle interactions, and not left over from the

initial momentum along the beam axis.

Violation of KNO scaling at the low pT region seems to indicate that this

scaling scheme may be too simple. An extension or revision to this scheme

is needed. The new scaling principle has to take into account the different

processes of high and low η particles.
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3.7 Discussion

An interesting point to note is that by obtaining an asymptotic solution of

the QCD-parton branching equation, one obtains a probability distribution

which can be used to model the multiplicity data. This solution takes into

account two more processes than that of the GMD, and one notes that these

two processes have non-zero branching probabilities (B,C 6= 0).

The trend in the fit parameters reflects the different behaviours of the

branching processes in the jets. With data across a larger range of energies

were available, one could then study this trend more precisely. The knowledge

of how the fit parameters behave as a function energy would shed some light

on how the different branching processes are affected with regard to energy.

The relationship between the branching processes and energy could in turn

provide a reason as to how hadronization occurs.

An important observation one makes from the results is that as the en-

ergy increases, so does the significance of gluon activity. At higher and higher

energies, gluon activity is believed to be increasingly dominant. From the

analysis above, higher energies seem to favour gluon production modes (in-

crease of α and β, decrease of D). The increasing dominance of gluon activity

is also reflected in the increase in k′ over the decrease in k.

Although the model may seem to fit the data well, it is still unable to

explain or reproduce the shouldering seen from the data. The shouldering

structure is increasingly obvious at high ηc at higher energies. A revision of

this model may be necessary to explain the shouldering structure.
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Chapter 4

Predictions for LHC energies of
√
s = 8, 13, and 14 TeV

A prediction of the behaviour of the multiplicity distribution for 8000, 13000

and 14000 GeV is made. To obtain such a prediction, one first has to ex-

trapolate the fit parameters.

4.1 Extrapolation of Fit Parameters

A simple linear extrapolation for the fit parameters would not suffice. Fig-

ures 3.8a to 3.8c and 3.8e display this non-linear behaviour. However, a linear

extrapolation can be done for parameter k.

The three parameters α, β and k′ are extrapolated by making these few

observations:

1. As Figure 3.8e shows, k′ seems to increase exponentially with increasing

energy.

2. The parameters α and β seem to depend logarithmically on the energy.

(Figures 3.8a and 3.8b).

3. From Section 3.6, one makes the assumption that B decreases with

energy; the behaviour of B can also be assumed to decay exponentially

49



4.2. Predictions Chapter 4. Prediction for Higher Energies

with increasing energy. Since β is known to increase logarithmically

(preceding point). The trend of D with increasing energy can be found.

The observations lead to extrapolation based on the following set of equa-

tions:

α = a1 + a2 ln (
√
s)

β = a3 + a4 ln (
√
s)

D = β +B = a3 + a4 ln (
√
s) + a5 + a6 e

−a7
√
s

k = a8 e
a9
√
s

k′ = a10 + a11
√
s

Where ai are constants determined from the fit parameters obtained from

the data set studied. Here, the trend of B is modelled by the equation

B = a5 + a6 e
−a7
√
s.

4.2 Predictions

Tables 4.1 to 4.6 summarize the predicted parameters as well as the predicted

mean and moments of the multiplicity distribution at these three energies

(8000, 13000 and 14000 GeV). Figure 4.1 displays the predicted multiplicity

distributions graphically.

ηc α β D k k′

0.5 1.71 1.90 2.20 6.04×10−03 5.19×10−10

1.0 2.39 2.54 2.93 3.56×10−03 3.47×10−09

1.5 2.74 2.93 3.41 2.95×10−03 9.13×10−09

2.0 2.96 3.20 3.81 8.42×10−04 8.22×10−08

2.4 3.11 3.37 3.97 2.86×10−05 2.02×10−04

Table 4.1: Predicted Fit Parameters for 8000 GeV
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ηc n C2 C3 C4 C5

0.5 7.29 1.69 3.97 11.67 40.07

1.0 14.04 1.68 3.84 10.85 35.66

1.5 20.72 1.65 3.67 9.99 31.57

2.0 27.61 1.62 3.50 9.05 26.73

2.4 32.44 1.61 3.41 8.59 24.38

Table 4.2: Predicted Mean and Cq moments for 8000 GeV

ηc α β D k k′

0.5 1.93 2.03 2.32 5.93×10−04 9.20×10−10

1.0 2.69 2.70 3.08 1.28×10−04 6.15×10−09

1.5 3.04 3.09 3.57 8.16×10−05 1.62×10−08

2.0 3.26 3.36 3.97 8.10×10−06 1.35×10−07

2.4 3.41 3.54 4.13 1.80×10−08 3.28×10−04

Table 4.3: Predicted Fit Parameters for 13000 GeV

ηc n C2 C3 C4 C5

0.5 8.25 1.67 3.84 10.82 35.30

1.0 16.14 1.64 3.63 9.72 30.27

1.5 23.76 1.61 3.45 8.91 26.78

2.0 31.40 1.58 3.25 7.93 21.99

2.4 36.67 1.57 3.16 7.45 19.63

Table 4.4: Predicted Mean and Cq moments for 13000 GeV
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ηc α β D k k′

0.5 2.99 2.05 2.33 3.73×10−04 1.00×10−09

1.0 4.13 2.73 3.11 6.59×10−05 6.69×10−09

1.5 4.50 3.11 3.60 3.98×10−05 1.76×10−08

2.0 4.73 3.39 4.00 3.20×10−06 1.45×10−07

2.4 4.90 3.56 4.16 4.12×10−09 3.53×10−04

Table 4.5: Predicted Fit Parameters for 14000 GeV

ηc n C2 C3 C4 C5

0.5 8.40 1.67 3.81 10.68 34.58

1.0 16.45 1.64 3.59 9.57 29.56

1.5 24.21 1.61 3.41 8.77 26.16

2.0 31.97 1.57 3.21 7.78 21.37

2.4 37.32 1.56 3.12 7.29 19.01

Table 4.6: Predicted Mean and Cq moments for 14000 GeV
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Figure 4.1: Predicted Curves for 8 TeV, 13 TeV and 14 TeV

With increasing energy, one predicts that the gluon activity will dominate

quark activity. This is shown in the decrease in k with increasing energy and

an increase in k′ with increasing energy. The values for α and β as well as

D are also predicted to increase as energy increases.

Since there is an increase in energy, the mean multiplicity is expected to

increase as well.

One can deduce if there is KNO scaling violation from the Cq moments.

From Tables 4.2, 4.4 and 4.6, the Cq moments for low ηc agree reasonably

well across energies. At higher ηc the Cq moments do not agree as well. Thus,

KNO scaling is predicted to hold at low ηc but violated at high ηc. Figure 4.2

display this prediction graphically.
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Figure 4.2: Shown are plots of Ψ(z) against z for (a) ηc = 0.5 and (b)
ηc = 2.4.
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Chapter 5

Concluding Remarks

5.1 Conclusions

The motivation to shed light on the mechanism of hadronization led one to

study the multiplicity distribution of pp collisions at various
√
s. This led

to the derivation of the Asymptotic Solution to the QCD-Parton Branching

Equation.

P (n) =
e−t(α+(k′+1)β)(1− e−βt)n−k′[

e−βt(n− k′) + D−β
β

(1− e−βt)(1 + k′)
] × (n− k′)

× Γ(n+ k + 1)

Γ(n− k′ + 1)Γ(k + k′ + 1)

(2.45)

The best-fitting Asymptotic Solution was then determined with experimen-

tal data and the parameters α, β, D, k and k′ were obtained.

From the analysis of the fit parameters, one learns that as ηc increases:

1. α, β, D and k′ increase for all
√
s.

2. k increases for
√
s = 900, 2360 GeV.

3. k decreases for
√
s = 7000 GeV.
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leading to the conclusion that gluon branching increases with increasing ηc.

Also, at higher energies, quark branching decreases (point 3).

One also learns from the comparison of the fit parameters across different
√
s that:

1. α, β, and k′ increases with increasing
√
s.

2. D and k decreases with increasing
√
s.

which implies that gluon branching dominates over quark branching at higher

energies.

From the χ2
red values, the asymptotic solution seems to be able to describe

the data well, with all χ2
red < 1. However, the asymptotic solution is unable

to reproduce the shouldering observed from the experimental data. KNO-

scaling is also seen to be fulfilled at low ηc and violated at high ηc.

5.2 Future Work

Data from different experiments [23–27] from the LHC could be analysed as

a consistency check. The parameters used above should agree at the same

ηc. The significance difference in parameters would indicate that there are

underlying issues that have yet to be understood.

With the LHC set to collect data at higher and higher energies, it would

be interesting to see if the predictions made in the previous chapter would

hold. Also, one is eager to find out if the shoulder-like structure becomes

more prominent (or otherwise) at higher
√
s.

The presence of a shoulder structure seems to indicate that there could

be more than one process involved. Thus one can consider a superposition

of two processes:

Pn = ωPAS(α1, β1, D1, k1, k
′
1) + (1− ω)PAS(α2, β2, D2, k2, k

′
2) (5.1)

where the subscript 1 and 2 refer to the processes involved, and ω is the

superposition coefficient. Such superposition has been done for many distri-

56



5.2. Future Work Chapter 5. Concluding Remarks

butions [5,28] with the two processes being interpreted as soft and semi-hard

processes [28]. At the increased energy, it would be interesting to see if this

model would describe the data better as compared to other models. However,

the flaw in the above method is that of number of parameters used.

Finally, an analytical solution for n is sought. If such a solution exist it

could reduce the number of parameters used for the fitting process (n can be

obtained experimentally).
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Appendix A

Markov Branching Process

A Markov chain is a type of stochastic process in which the current state

depends only on the immediately preceding state. If one deals with proba-

bilities (as in the case for this study), one gets:

P (Xn+1|Xn, Xn−1, ..., X0) = P (Xn+1|Xn) (A.1)

where Xn represents a state X at time n.

Formally, for a Markov chain, the conditional distribution of any future

state Xn+1, given past states X0, X1, ..., Xn−1, and present states Xn, is in-

dependent of all past states and only depends on the present state.

In a Markov branching process, each member of a population in some gen-

eration n produces a number ‘offspring’ in the subsequent generation n + 1

according to a fixed probability distribution.

A detailed explanation of the Markov branching processes can be found

in [29].
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Appendix B

Commonly Used Variables in

Particle Physics

B.1 Pseudorapidity, η

B.1.1 Definition

Pseudorapidity is defined as:

η = − ln

[
tan

(
θ

2

)]
(B.1)

Figure B.1 below is a schematic representation of the collision point along

the beam-axis. The beam-axis is denoted as the z-axis, while the y-axis is

perpendicular to the plane of the paper. Thus, θ is the angle between the

resultant particle momentum and the z-axis. Thus, with Eqn. (B.1), one

can see that η ranges from −∞ to +∞, depending on the value of θ.

Figure B.1: Schematic Illustration for Pseudorapidity
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Figure B.2: Plot of Pseudorapidity η against polar angle θ.

B.1.2 Relation to Rapidity, y

Pseudorapidity can also be written in terms of the particle momentum ~p.

η =
1

2
ln

(
|~p|+ pL
|~p| − pL

)
(B.2)

The variable pL here is the longitudinal momentum (momentum along the

beam axis) of the particle.

This definition of η stems from the particle physics’ definition of the

rapidity, y:

y =
1

2
ln

(
E + pL
E − pL

)
(B.3)
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For relativistic particles, E ≈ |~p|, and thus

η ≈ y (B.4)

at high energies.

B.1.3 y vs η and their importance

These two quantities, rapidity and pseudorapidity, are useful in particle

physics’ because of their properties. It turns out that the difference in rapid-

ity (and difference in pseudorapidity) are invariant quantities under a Lorentz

boost in the z-axis.

y1 − y2 = y′1 − y′2
η1 − η2 = η′1 − η′2

It is common in hadron collisions that there is a leading quark or gluon with

a higher momentum than the other particle. This causes the secondary par-

ticles (particles produced in collision) to be produced nearer one end of the

beam axis. The Lorentz invariance enables the conversion of to the centre-

of-mass frame of the leading quark without any loss of information.

Why then do particle physicists use pseudorapidity instead of rapidity?

Pseudorapidity is a useful concept because it only depends on one variable,

the polar angle θ. Thus, calculating pseudorapidity only requires an accurate

measurement of the polar angle. In contrast, the calculation of rapidity would

require us to know the particle mass (since we need both E and p). The

measurement of particle mass is much more involved as compared to that of

the polar angle. Also since modern colliders run at high energies, the two

values are essentially the same. As such, pseudorapidity is more widely used

as compared to rapidity.
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B.2 Mandlestam Variables

Consider the scattering process A+B → C+D. It is desirable to express the

(scattering) amplitude as a function of Lorentz invariant variables. Particle

physicists, by convention, use these set of variables known as the Mandelstam

variables. The Mandelstam variables are defined as:

s = (PA + PB)2 = (PC + PD)2

t = (PA − PC)2 = (PB − PD)2

u = (PA − PD)2 = (PB − PC)2

where Pi is the four-momentum of particle i. Here the Planck units are used

(c = 1). The Feynman Diagrams in Figure B.3 depict examples of s-channel,

t-channel, and u-channel processes.

Also, it can be shown that:

s+ t+ u = m2
A +m2

B +m2
C +m2

D (B.5)

where mi is the mass of particle i.

(a) s-channel (b) t-channel (c) u-channel

Figure B.3: Feynman Diagrams representing different scattering channels
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B.2.1 More on
√
s

If we consider the center-of-mass frame, we have:

PA = (EA, ~pA)

PB = (EB, ~−pA)

If we consider an s-channel process, then

s = (EA + EB)2

s = E2
Tot

√
s = ETot (B.6)

Thus we can see that
√
s is just the total energy of the system.
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Appendix C

Local Parton Hadron Duality

The theory of Local Parton-Hadron Duality (LPHD) posits that there is a

direct correspondence (local) between partonic and hadronic spectra (dual-

ity) [30]. In other words, the distributions of partons and hadrons are

similar. Experimental evidence for LPHD is shown in [31]. This theory

has been applied to available data, but with many different interpretations

(depending on the author). For instance, some follow literally the idea of

“one parton - one hadron” equivalnce, while others believe that LPHD will

work only if averages are taken (and not applied at an exclusive level) [32].
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Appendix D

Feynman Scaling

& KNO Scaling

D.1 Feynman Scaling

Feynman concluded that at asymptotically large energies,

n ∝ ln
√
s (2.50)

The relation above was obtained from phenomenological arguments about the

exchange of quantum numbers between colliding particles. Feynman argued

that the number of particles with a given mass and transverse momentum

per longitudinal momentum interval pz depends on energy E = E(pz) as

dN

dpz
∼ 1

E
(D.1)

The probability of finding a particle of kind i with mass m and transverse

and longitudinal momentum pT and pz is:

fi(pT , xF )
dpz
E

d2pT (D.2)

with E =
√
m2 + p2z + p2T and xF = 2pz/

√
s. The variable xF is known as

the Feynman-x. Feynman hypothesised that fi becomes independent of
√
s
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at high energies. The assumption is known as Feynman scaling with the

function fi known as the Feynman function or scaling function.

The relation given in Equation (2.50) is obtained by integrating Equa-

tion (D.2). A derivation can be found in [19].

D.2 KNO scaling

As mentioned in Section 2.4.1, KNO scaling is obtained by an extension of

Feynman scaling. KNO scaling is derived by calculating:

〈n(n−1) . . . (n−q+1)〉 =

∫
f (q)(pT,1, x1; . . . ; pT,q, xq)

dpz,1
E1

d2pT,1 . . .
dpz,q
Eq

d2pT,q

(D.3)

Integration by parts is performed for all xi, and with the substitution of

the form n ∝ ln s, the multiplicity distribution is found to scale as:

P (n) =
1

n
Ψ(
n

n
) +O

(
1

n2

)
(2.51)

The full derivation of KNO scaling can be found in [17].
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