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Abstract 

We studied the eigenvalues of some complex potentials using two different methods. The 

first method is perturbation theory, which is an analytical method. The second method is 

the numerical shooting method. We look at the eigenvalue as a function of a coupling 

constant. Some of the potentials possess a real spectrum, while for others, complex 

eigenvalues appear. A pattern for the appearance of complex eigenvalues is observed, in 

agreement with a related conjecture. 
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1. Introduction 

One of the axioms of quantum mechanics is the Hermiticity of the Hamiltonian operator. 

This condition is sufficient to guarantee a real eigenvalue spectrum, but it is not necessary. 

It is thus natural to ask if there are other possible conditions that can also give rise to real 

eigenvalues. 

In 1993, Bender learnt that two of his colleagues Bessis and Zinn-Justin had studied a non-

Hermitian Hamiltonian    ̂    ̂  numerically and noticed that it possessed real 

eigenvalues [1]. He found out that almost a decade ago, in 1982, Andrianov, had studied 

    potentials perturbatively. Andrianov’s analysis suggested that these potentials might 

possess a real spectra, despite being non-Hermitian (because the boundary conditions are 

imposed on the complex  -plane) [2]. This led Bender and his student Boettcher to wonder 

if the spectra of these Hamiltonians were entirely real. 

In 1998, Bender and Boettcher published a paper in which they studied a whole family of 

Hamiltonians [3],  

    ̂   ̂ (  ̂)  1.1 

Here,   is real. They showed that when    , the spectra was entirely real and positive [3]. 

This family of Hamiltonians include some of the non-Hermitian Hamiltonians that were 

previously discovered to possess some real eigenvalues. Furthermore, it was observed that 

this family of Hamiltonians commute with the    operator, where, the parity operator   

and the time reversal operator   have the action 

   ̂    ̂                ̂    ̂ 1.2 

   ̂   ̂                    ̂    ̂ 1.3 

Also, the time-reversal operator performs complex conjugation. 

        1.4 

These Hamiltonians are said to be   -symmetric. This remarkable discovery of an 

alternative condition to Hermiticity led to a flurry of research into    -symmetric non-

Hermitian Hamiltonians. 
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One of the interesting phenomena that occur with such Hamiltonians is known as    -

symmetry breaking. In short, this occurs when some of the eigenvalues become complex. 

For the family of Hamiltonians in (1.1), when       , complex eigenvalues are 

obtained. This is a rich phenomenon because some Hamiltonians possess this behaviour 

while others do not, which raises an interesting question on the origin of    symmetry 

breaking. 

Even though this area of research originated from considerations of an axiom of quantum 

mechanics, its major application surprisingly turns out to be in optics. The main link to optics 

is through the paraxial equation of diffraction, 

 
 
  

  
 

 

  

   

   
   [  ( )     ( )]    

1.5 

   
Notice that if we were to treat the z coordinate as time t, the complex refractive index 

  ( )     ( ) as a potential, the electric field as a wave function, after relabeling some of 

the constants, we end up with the Schrödinger equation! It turns out that it is possible to 

implement a    -symmetric optical system, and some of these systems also experience    

symmetry breaking. Thus,    symmetry breaking is an important phenomenon to study. 

On the cause of    symmetry breaking, Bender conjectured that for two-dimensional 

quantum mechanical systems,    symmetry breaking occurs whenever a Hermitian term is 

combined with a non-Hermitian    symmetric one [12].  

In this project, several examples of one-dimensional complex potentials were studied to 

search for    symmetry breaking. An example of a Hamiltonian with broken    symmetry 

is  

    ̂   ̂       1.6 

The potential is a combination of a Hermitian term  ̂  and a non-Hermitian    symmetric 

term      . We find that the results of this project are in agreement with Bender’s 

conjecture even though we are studying one-dimensional potentials and we see that the 

behaviour of complex potentials is rich and complex. 
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2.    symmetry 

2.1     -symmetric non-Hermitian quantum mechanics 

In 1998, Bender and Boettcher wrote a paper that discussed the real spectra of    -

symmetric non-Hermitian Hamiltonians [3]. Many important results are summarised in [1]. 

We mention briefly the important details, before mentioning a link between    symmetric 

quantum mechanics and optics, which is the main application of the theory. 

 

2.2 Parity and Time operators 

There are two more important properties for the   and   operators defined in (1.2), (1.3) 

and (1.4). 

They are reflection operators, so we have 

         2.1 
The last important property about them is that they commute. 

         2.2 

 

2.3 A general class of    -symmetric Hamiltonians 

Let us return to the Hamiltonians in (1.1). The spectra of the Hamiltonians have very 

different behaviours for different ranges of the parameter  . When this parameter is 0, the 

Hamiltonian is the usual harmonic oscillator Hamiltonian. As this parameter increases from 

0, the Hamiltonian becomes non-Hermitian. The following figure is obtained from [1]. 
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When    , all the eigenvalues are real and positive and the energy levels rise with 

increasing ε. As ε drops from 0 to -1, the number of real eigenvalues decrease, until 

          , then there is only the ground state eigenvalues left. Some of the 

Hamiltonians we shall study in this project are similar to the (1.1), except that we have an 

extra  ̂ term so that the unperturbed Hamiltonian, the portion without the complex term, 

is the usual Harmonic oscillator. Later on, we shall change the  ̂  term to other terms to 

look at the effects on the eigenvalue spectrum. 

2.4 Important properties of a quantum theory 

There are three properties the    -symmetric quantum mechanics must fulfil. 

i. The Hamiltonian determines the energy levels of a quantum theory. The energy 

levels are the eigenvalues in the following equation. 

       2.3 
   

Fig 1 : Eigenvalues for Hamiltonian in (1.6) for varying values of ε. Taken from [1] 
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ii. The Hamiltonian determines the time evolution of the states and operators in the 

quantum theory. Time evolution is governed by 

 
    

  

  
 

2.4 

   
Assuming H is independent of time, we obtain the solution as 

  ( )        ( ) 2.5 
   

We require       to be unitary so that the norm of the state will always be unity. 

iii. The Hamiltonian incorporates the symmetries of the theory. If a Hamiltonian H 

commutes with  , and since   is a linear operator,   and H will share their 

eigenstates. So any eigenstate of a Hamiltonian that is parity invariant will have a 

definite parity (even or odd under space inversion). 

 

2.5 Broken and Unbroken    Symmetry 

A    symmetric Hamiltonian commutes with the    operator. Since the    operator is 

antilinear, we cannot conclude that the eigenstates of H will be eigenstates of   . 

However, suppose that an eigenstate of H,  , is also an eigenstate of   . Then, calling its 

eigenvalue  , we get the following 

        2.6 
   
Multiply    on the left and use the fact that (  )   , and we obtain  

      (  )   2.7 
   
 

Since    is antilinear, we get  

        | |   2.8 
   
This implies that | |   , so   is a pure phase 

       2.9 
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Multiplying the time independent Schrödinger equation by   , we obtain 

 (  )      (  )   2.10 
   
     (  ) (  )   2.11 
   
          2.12 
   
Since    , we conclude that     , i.e. the eigenvalue E is real. Thus, an eigenstate of H 

that is also an eigenstate of    will have a real eigenvalue. So, we make the following 

definition: If every eigenfunction of a    symmetric Hamiltonian is also an eigenfunction of 

the    operator, we say that the    symmetry of H is unbroken. If some of the 

eigenfunctions of a    symmetric Hamiltonian are not simultaneously eigenfunctions of the 

   operator, we say that the    symmetry of H is broken. 

With the result we just showed, we can conclude that all the eigenvalues of a    symmetric 

Hamiltonian with unbroken    symmetry will have all real eigenvalues. If some eigenvalues 

are complex, then    symmetry is broken. 

In this report, we will see that for certain ranges of a coupling constant, we will have all real 

eigenvalues, while for other values of the coupling constant, we will obtain some complex 

eigenvalues, and the    symmetry is broken.    symmetry breaking is worth studying 

because this phenomenon also occurs in optics, as we will discuss in the following section. 

 

2.6     symmetry and optics 

In [4], an observation of the behaviour of a    symmetric optical coupled system is 

reported. Spontaneous    symmetry breaking is also observed. As mentioned in the 

introduction, the key to linking optics to    symmetric quantum mechanics is to look at the 

paraxial equation of diffraction (1.5). In (1.5),    
  

 
,       ,   is the wavelength of light 

in vacuum and    represents the substrate index. More importantly, the complex refractive-

index distribution  ( )    ( )     ( ) plays the role of an optical potential. In order for 

this “potential” to be    symmetric, we require the refractive index profile    be even, 

while gain/loss distribution    be odd. If we treat the coordinate z to be time, the electric 

field E to be the wave function, and identify the constants accordingly, we notice that 
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equation (1.5) is equivalent to the time dependent Schrödinger equation. We can then 

proceed to separate variables and obtain the time independent “Schrödinger equation”. 

In [5], a    symmetric ridge optical waveguide demonstrates    symmetry breaking. It is 

more interesting to note that once the gain/loss contrast exceeds            , the set of 

eigenvalues become partly complex. In a certain optical system, the eigenvectors before the 

critical point are given by (       ) with eigenvalues      , where   is some parameter. 

Above the critical point, the eigenvectors become (       ) with eigenvalues         . 

The key thing to note is that the critical point here behaves in a similar fashion to the critical 

point            in figure 1. Below the critical point, the eigenvalues are real, while 

above it, complex eigenvalues are obtained. 

Another interesting paper in which the connection between    symmetric quantum 

mechanics and optics is explored is [11]. In this paper, a system of a one-dimensional array 

with N identical, single-mode waveguides is explored. For a certain system with N = 2, the 

Hamiltonian is  

 
  

 

  
 [

    
     

] 
2.13 

   
where C is the tunnelling amplitude between the two waveguides. This Hamiltonian is 

clearly non-Hermitian, but it is    symmetric because applying parity reflection (P: 

waveguide 1   waveguide 2) and time reversal (T :       ) does not change the matrix. 

 

 

2.7 The Harmonic oscillator with a complex quintic perturbation 

In 2008, Smilga published a paper [7] that had a numerical study of the Hamiltonian 

 
  

 ̂   ̂ 

 
      

2.14 

The perturbation series for the ground state energy is given by 

 
   

 

 
 

     

  
  (  ) 

2.15 
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He plots the eigenvalues obtained numerically for the ground state: 

 

 

He then looks at another eigenvalue problem. This time, the wave function  ( ) is 

analytically continued into the complex plane (i.e. x becomes a complex variable). This 

approach is described in [8]. The relevant details will be described later on in the relevant 

sections. For this eigenvalue problem, the variable x lie on the rays with arguments  
  

  
 and 

   

  
  respectively. Here, an interesting phenomenon occurs when g goes to zero.  It is 

observed that the ground state and the first excited state get closer until they merge at a 

critical value of          and their energies coincide. The energy of the second excited 

state decreases with decreasing g and approaches the energy of the ground state. Below is 

the logarithmic plot which demonstrates this behaviour.  

Fig 2: Eigenvalues for the ground state of the Hamiltonian (2.19) as shown in [7] 
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2.8 Two dimensional    symmetric potentials 

In 2009, Wang [10] published a paper that shows the eigenvalues for some examples of two 

dimensional    symmetric potentials. The first example was a complex cubic potential 

       
    

              2.16 

   

Plots of the real and imaginary parts of the eigenvalues are shown on the next page. From 

figure 5, we can see that the eigenvalues come in complex conjugate pairs. It can be seen 

from (2.11) that if E is an eigenvalue, then    is also an eigenvalue. 

 

 

 

Fig 3: Logarithmic plot of the eigenvalues of (2.19) as shown in [7] 
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Fig 4: Real parts of the eigenvalues as functions of the coupling constant g with the complex cubic 
potential. Lines are from perturbative expansion using (20,20) Padé. Crosses are the results using FEM. 
Dots are results using the method based on two-dimensional HO basis expansions. The system is 
symmetric under g → -g and only the part with positive g is shown. Taken from [10]. 

Fig 5: Imaginary parts of the eigenvalues as functions of the coupling constant g with the 
complex cubic potential. Crosses are the results using FEM. Dots are the results using the 
method based on two-dimensional HO basis expansions. The system is symmetric under g 
→ -g, only the part with the positive g is shown. Taken from [10]. 
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The second Hamiltonian studied in the paper is the complex Hénon-Heiles Hamiltonian 

 
      

    
          (    

 

 
  ) 

2.17 

   

 

 

 

 

 

Fig 6: Real parts of the eigenvalues as functions of the coupling constant g with the complex 
Hénon-Heiles potential. Lines are from perturbative expansion using (20,20) Padé. Crosses are 
from HO basis expansions. Taken from [10]. 

Fig 7: Imaginary parts of the eigenvalues as functions of the coupling constant g with the 
complex Hénon-Heiles potential. Only eigenvalues from HO basis expansions are shown. 
Taken from [10]. 
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3. The quartic perturbation 

The first Hamiltonian we studied is the harmonic oscillator with the quartic perturbation is 

shown below. 

    ̂   ̂    ̂  3.1 

We will follow the procedure outlined in Bender’s paper on the anharmonic oscillator [6]. 

We are working in units where the factors in front of p2 and x2 are equal to unity. This helps 

to make the calculation less messy. 

3.1 Perturbation Theory 

The first method we use is Perturbation theory. We start off with the Schrödinger equation. 

 
( 

  

   
       ) ( )    ( ) 3.2 

Let 

 
 ( )    

  

  ( ) 3.3 

Then 

 
   ( )    

  

 [   ( )      ( )  (    ) ( )] 3.4 

Substituting (3.3) and (3.4) into (3.2), we get 

 

 
    ( )      ( )  (     ) ( )    ( ) 3.5 

Then we expand the energy and φ(x) as power series of g, the perturbation parameter. 

 
  ∑    

 

   

 3.6 

 

 

 

 ( )  ∑    ( )

 

   

 3.7 

Here, we have fixed n, and have left out the subscript for convenience. In the usual 

perturbation series, we expand the wave function in terms of the unperturbed wave 

function for the Harmonic oscillator. However, we have substituted   ( ), which will be a 
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polynomial in x, since the exponential term has been factored out and all that remains are 

linear combinations of Hermite Polynomials. 

Note that  

         3.8 

While    
 

  

  is the unperturbed wave function of the harmonic oscillator.  

Substituting (3.6) and (3.7) into (3.5) yields  

 
 ∑    

  ( )    ∑    
 ( )  (     )

 

   

∑    ( )

 

   

 

   

 ∑∑        ( )

 

   

 

   

 

3.9 

Let       . Since         , so 

 
 ∑    

  ( )    ∑    
 ( )  (     )

 

   

∑    ( )

 

   

 

   

 ∑ ∑          ( )

  

   

 

    

 

3.10 

Since r’ is just a dummy variable, we can replace it with r, to get 

 
∑  (   

  ( )      
 ( )    ( ))  ∑        ( )

 

   

 ∑∑        ( )

 

   

 

   

 

   

 3.11 

Each power of    yields an equation. For    , we get 

    
  ( )      

 ( )     ( )       ( ) 3.12 

For    , we get equations for the unknowns    and   . Let us solve this for the ground 

state. Then,     , and since we factored out the exponential from the wave function in 

(3.3), B0 is just the Hermite polynomial for the ground state, so     . (3.11) then becomes 

 
   

  ( )      
 ( )        ( )      ( )  ∑      ( )

   

   

  3.13 

Where the sum on the right hand side vanishes for r=1.  
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Now, we substitute an ansatz for  ( ), where    . 

 
  ( )   ∑       

  

   

 3.14 

This step is different from the usual substitution we do for perturbation theory. In 

undergraduate quantum mechanics textbooks like [8], the perturbed wave function is 

usually expressed as a linear combination of the unperturbed wave functions since those 

states form a complete orthonormal set. Since those unperturbed wave functions are just 

linear combinations of Hermite polynomials with an exponential factor, we can just express 

the     correction to the wave function as a polynomial after pulling out the exponential 

factor. The advantage of working with these simple polynomials is that they are much easier 

to evaluate. 

The coefficient of    in the usual perturbation series, is given by 

 
(    ( )) ( )    ∑ ( ) (   )

 

   

    (   )   3.15 

Where   is the unperturbed harmonic oscillator Hamiltonian, H’ is the perturbation,  ( ) is 

the rth order correction to the energy and  ( ) is the rth order correction to the wave 

function. Consider the first order correction to the ground state (i.e. r =1 ). 

 (    ( )) ( )    ( ( )    ) ( )  ( ( )   ̂ ) ( ) 3.16 

Since  ̂ contains both the raising and lowering operators  ̂  and  ̂, the right hand side 

would contain terms of up to |  . So, for the first correction, we would have polynomials 

of degree 4. We can repeat this argument inductively to show that the rth term is a 

polynomial of degree 4r. 

Note that in the expansion (3.14), the constant term is missing. This is because in the usual 

perturbation theory where we expand the perturbed wave functions as a linear combination 

of the unperturbed wave functions, the coefficient of    gives (3.15). The terms on the right 

hand side are known, assuming that we have calculated until the (r-1)th correction. Then we 

have a linear inhomogeneous equation for  ( ). Adding a solution to the homogeneous 

equation to a solution to the inhomogeneous equation will give another solution to the 

inhomogeneous equation, so we have the freedom to subtract the homogeneous solution, 
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in this case the unperturbed ground state wave function, from  ( ). This is why there are no 

constant terms in (3.14), because we have the freedom to subtract away the constant terms 

since the Hermite polynomial for the ground state is a constant term.  

We have also only used even terms in the expansion (3.14) because for the ground state, 

the wave function is even. We know that the unperturbed ground state is even, and looking 

at (3.16), if we replaced x with –x, we would get back the same equation except that the 

argument of  ( ) would be –x. This is because the   and    terms are even as well, and this 

tells us that  ( ) is even. We can continue this inductively to show that for all non-negative 

integers r,  ( ) is even. 

Then the second derivative is given by 

 
  

  ( )  ∑  (    )         

  

   

 3.17 

Now, we substitute 3.14 and 3.17 into 3.13  

 
 ∑(    )(    )          ∑          ∑            

    

   

  

   

    

   

 

    ∑   ∑        

   

   

  

   

 

3.18 

Each coefficient of     yields an equation. 

                   3.19 
 

 
             (    )(    )                ∑          

   

   

 3.20 

 

                 

 (    )(    )                         ∑          

   

   

 
3.21 

 
 
 
 

    (       )                              ∑           

   

   

 3.22 
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These recursion relations hold for    . For the case where    , apply (3.13) and (3.14) 

directly. 

With the recursion relations, we can solve for the energy eigenvalues. Starting from (3.22), 

we can solve for      for           , and then we can use (3.19) to find the energy 

eigenvalue. Using Mathematica to compute the coefficients, we get  

 
     

 

 
  

  

  
   

   

  
   

     

    
   

      

    
   

        

     
     3.23 

This is the perturbation series for the ground state. We calculate up to the 200th order 

correction. 

Next, we move on to the first excited state. This time, we make the substitution 

 
   ∑         

  

   

 3.24 

We use odd terms instead because the 1st excited state has a wave function that is odd. As 

before, we do not use the x term because we have the freedom to subtract of a multiple of 

the unperturbed solution, which is a multiple of x. 

Proceeding in the same manner, we obtain the recursion relations for    . 

 
      

 

  
[            ∑           

   

   

] 3.25 

 

                        
 

      
 

  
[(    )(    )                 ∑          

   

   

] 3.26 

 

 
                            

 

  
[(    )(    )        ∑          

   

   

] 3.27 

 

           3.28 
For    , use (3.13) directly. 
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Using Mathematica, the perturbation series is 

 
     

  

 
  

   

  
   

    

  
   

      

    
   

        

    
  

 
          

     
     

3.29 

For the 2nd excited state, we use the freedom to subtract multiples of the unperturbed state 

to remove the x2 term, so we substitute 

 
   ∑         

  

   

      3.30 

The recursion relations are as follows 

 
      

 

  
[            ∑           

   

   

] 3.31 

 

              
 

                
 

  
[(    )(    )                 ∑          

   

   

] 3.32 

 

 
             

 

 
[        ∑          

   

   

] 3.33 

 

 
             

 

 
[               ∑          

   

   

] 3.34 

 

           3.35 

We calculate the perturbation series to be 

 
     

  

 
  

   

  
   

     

  
   

       

    
   

         

    
  

 
           

     
     

3.36 

We can continue in this manner to calculate the perturbation series for higher energy levels. 

Letting En be the perturbation series for the nth excited state, we get 
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3.37 

 

 
     

   

 
  

    

  
   

      

  
   

        

    
   

          

    
  

 
            

     
     

3.38 

 

 
      

   

 
  

    

  
   

      

  
   

         

    
   

           

    
  

 
             

     
     

3.39 

The perturbation series are calculated to the 200th correction. We then convert this into a 

Padé approximant. A Padé approximant is a rational approximation to a function. As an 

example, suppose we have only found the ground state perturbation series up to the fourth 

order correction. 

 
     

 

 
  

  

  
   

   

  
   

     

    
   3.40 

There are five undetermined coefficients, so we can approximate it with a rational function 

with a degree 2 polynomial in the numerator and in the denominator.  

 ∑    
  

   

∑      
   

 3.41 

It might seem like there are 6 undetermined coefficients in this rational functions, but we 

can divide both the numerator and denominator by    to end up with only five unknowns. 

Then, we can match the Taylor series of (3.41) about     with (3.40) to determine the 

values of the other undetermined coefficients. We then end up with the following. 

 

   
  

    
     

     
      

  
    
     

     
      

 3.42 

Note that when    , we recover the ground state of    . This is called a (2,2) Padé 

approximant, because both the numerator and the denominator have degree 2. If we had a 

degree 3 polynomial in the numerator and a degree 1 polynomial in the denominator, then 

it would be called a (3,1) Padé approximant. 
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We managed to calculate up to the 200th order correction for the energy level, so we solved 

for a (100,100) Padé approximant. The purpose of calculating the Padé approximant is that 

the Padé approximant usually gives a better approximation then the truncated power series 

and has a larger radius of convergence as compared to the perturbation series. The reason 

is because the original perturbation series is a 200th degree polynomial and so it will “blow-

up very quickly” as we increase g. For the (100,100) Padé approximation, for    , the 

numerator and the denominator are dominated by the      term, and since they are of 

equal order, the Padé approximant does not “blow up” as quickly as the original 

perturbation series. 

We also calculate the (101,99) and (99,101) Padé approximants. To determine the values of 

g for which the (100,100) Padé approximant is a good approximation to the eigenvalue, we 

compare the graphs of the (100,100), (101,99) and (99,101) Padé approximants and look at 

the region where they agree. This should roughly correspond to the region where the Padé 

approximant is accurate. The graphs are shown below. 
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Fig 8: Padé approximant for the eigenvalues perturbation series of x2 + gx4 potential for g=0 to g=30. For 
each energy level, the highest most graph corresponds to (100,100) Padé, the second highest corresponds 
to (101,99) and the lowest graph corresponds to (99,101) 
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Note that for each energy level, we have plotted the three Padé approximants of order 

(100,100), (101,99) and (99,101), and for each energy level, the highest graph corresponds 

to (100,100), the second highest corresponds to (101,99) and the third highest corresponds 

to (99,101). We consider the Padé to be a good approximation in the regions where the 

three graphs match up. A table of estimates of the maximum value of g for which the Padé 

approximants are valid is shown below. 

n g 

0 ≈30 

1 24+2 

2 20+2 

3 17+2 

4 15+2 

5 13+3 

 

 

3.2 Shooting method 

The next method we use to study the Hamiltonian in (3.1) is a numerical method, namely 

the shooting method. To do this, we must first determine the boundary condition of the 

wave functions at “infinity”. For the wave functions to be square-integrable, we require the 

wave function to vanish as x goes to infinity. For our numerical method, we do not have to 

normalise the wave function because we are simply determining the eigenvalue e, and since 

(3.2) is linear, any scalar multiple of its solution is still a solution. Normalisation is only 

required when we wish to find the probability of finding the particle in a certain region. 

Thus, for convenience, we set 

  (   )    3.43 

We have used the value       as infinity. If this boundary is too small, then some 

eigenvalues will not be detected because the boundary must be at “infinity”. If the 

boundary is too large, the integration will take too long and also accumulate a lot of 

numerical errors for each iteration. To determine   (   ), we shall use the WKB methods. 

Note that the potential is growing for large x, so for large x we will be in the tunnelling 

region. So, we use the following formulas obtained from [8] 

Table 1: Maximum values of g for which the three Padé approximants agree 
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 ( )  

 

√| ( )|
   [ ∫| ( )|  ]                 3.44 

Where the absolute value of the momentum is given by 

 | ( )|  √         3.45 

Then, we can differentiate (3.44) to get an expression for   ( ) and divide this by (3.44) to 

eliminate the undetermined constant C and obtain a ratio of    to  . This ratio is 

   ( )

 ( )
  

      

 (        )
 √                 3.46 

Since we have fixed  (   )   , by (3.43), 

 
  (   )   

      

 (        )
 √                   3.47 

 

We can also impose one more boundary condition to simplify our calculations. As 

mentioned earlier, the odd states have wave functions that are odd while the even states 

have wave functions that are even. These requirements can only be satisfied if the following 

hold. 

     ( )    3.48 
 

       ( )    3.49 

So we basically require either the wave function to vanish at the origin (as in the case of odd 

states) or the first derivative to vanish at the origin (for the even states). So, we use the 

NDsolve function in Mathematica to integrate (3.2) along the real axis from       to 

    with the boundary conditions (3.47) and (3.48)/(3.49). We first do the integration for 

   . Since this is just the unperturbed harmonic oscillator, we know what its eigenvalue 

is. Let us consider the ground state. We integrate the Schrödinger equation with the 

eigenvalue set to be      , slightly below 1, which we know to be the actual eigenvalue, 

and we calculate the value of the its first derivative at the origin and we call it α. Then, we 

integrate the Schrödinger equation with the eigenvalue set to be      , and we calculate 

the value of the its first derivative at the origin and we store it as β. If α and β have different 

signs, we know that the zero of the first derivative is somewhere between a and b. If it turns 
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out that α and β have the same signs, then we shift       and       and shoot and 

compare α and β again. We repeat the process until we find the correct a and b such that a 

zero of the wave function derivative lies between a and b. For the unperturbed state (g=0), 

      and      , so we know that the eigenvalue lies within that range. Next, we let 

       and       . We shoot and then compare α and β. If they differ in sign (which 

they should not), we will know that the eigenvalue lies between 0.90 and 0.91. If they have 

the same sign, we increase a to 0.91 and b to 0.92 and shoot and compare α and β again. 

We repeat this process until we have found the eigenvalue accurate up to two decimal 

places. We can repeat this process until we have found the eigenvalue for a certain value of 

g accurate to a specified number of decimal places. We illustrate the shooting method on 

the simple harmonic oscillator below. 

  

 

 

 

 

 

4 2 2 4 6

100000

100000

200000

300000

400000

500000

Fig 9: Plot of wave function when doing shooting method for the simple harmonic oscillator. 
Instead of requiring the wave function to have a zero derivative at the origin, we integrate 
directly from      to     and require that the wave function vanish exponentially at 
   . If the energy value E is off by even a small value, the wave function will not decay in 
the manner it is supposed to at the end    . In fact, they will diverge very quickly at    . 
The sensitivity of the wave function to the guessed eigenvalue illustrates the accuracy of the 
method. 

E=0.5-0.000001 

E=0.5+0.000001 

E=0.5 

x 

 ( ) 
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After we find the ground state eigenvalue at       , we can continue scanning for more 

eigenvalues for     by increasing the values of a and b. 

Once we have found the eigenvalue for    , we increase g to 0.1. We then repeat the 

process and scan for all the eigenvalues at that value of g below a certain value for E. The 

whole process can be repeated to give us the eigenvalues for a desired range of g and E. 

Below is the plot of the eigenvalues found by the shooting method for     to    . 

 

 

 

We compare this with the eigenvalues found using perturbation theory in the plot on the 

next page. 
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g 

E 

Fig 10: Eigenvalues of x2 + gx4 potential obtained using the shooting method for the first six 

energy levels 
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We note that for the values of g for which the shooting was done, the Padé approximant 

matches the numbers calculated using the shooting method very well. Since both methods 

agree, we conclude that the eigenvalues calculated are accurate. 
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Fig 11: Comparison of the eigenvalues of x2 + gx4 potential obtained using perturbation theory 
and the shooting method for the first six energy levels. The lines are the results obtained using 
perturbation theory while the “X” are obtained by shooting. 
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4. The Complex Cubic Perturbation 

The previous Hamiltonian we tackled was    -symmetric, but it was also Hermitian. Next, 

we consider a    -symmetric non-Hermitian Hamiltonian. 

    ̂   ̂     ̂  4.1 

This is non-Hermitian because when we take the adjoint, the      term gains a minus sign 

because of  . It is still    -symmetric because the T operator causes the   term to gain a 

factor of -1 but the P operator causes each x to gain a factor of -1 as well, so there is no 

overall sign change. Furthermore, we will impose a    symmetric boundary condition, 

which we will discuss in greater detail later. The combination of a    symmetric operator 

and a    symmetric boundary condition give rise to what we call a    symmetric 

eigenvalue problem. 

4.1 Perturbation Theory 

The time-independent Schrödinger equation for this Hamiltonian is 

 
( 

  

   
        ) ( )    ( ) 4.2 

This time round, the wave function does not have a parity because referring to equation 

(3.15), if we replaced x with –x, we will not get back the same equation because the H’ term 

contains   . So, we have to expand the perturbed wave function in all orders of x up to the 

maximum order needed. As before, we factor out the exponential term the way we did in 

(3.3) and we substitute the same series for the perturbed energy and wave function as in 

(3.6) and (3.7). The unperturbed energy and wave function    and    are the same as 

before, and the Schrödinger equation becomes 

 
∑  (   

  ( )      
 ( )    ( ))   ∑        ( )

 

   

 

   

 ∑∑        ( )

 

   

 

   

 

4.3 

For    , we get 

 
   

  ( )      
 ( )      ( )         ( )      ( )  ∑      ( )

   

   

  4.4 
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Note that (4.4) holds for all n. Repeating our previous arguments, the   ( ) are polynomials 

of degree     . So, 

 
  ( )   ∑       

    

   

 4.5 

 

 
    ( )   ∑  (   )        

    

   

 4.6 

We then obtain from (4.4) 

 
 ∑ (   )(   )         ∑ (     )        ∑           

    

   

    

   

      

   

        

   ∑     
 

 

   

 ∑   ∑        

   

   

    

   

 

4.7 

Where the last sum on the right hand side vanishes for r=1. If we obtained the recursion 

relations from the coefficient of each power of x from (3.18) directly, we would have to take 

into consideration that some terms are present and some terms are not for each value of n 

and r. We can deal with this by defining 

               for     

 
4.8 

Then, we can extend the lower limit of the third sum of the left hand side to    . Because 

of this, we have to treat the     case separately. For    , we get 

 
          ∑        

   

   

 4.9 

 

                   
 

 (   )(   )       (     )                ∑        

   

   

       

 

4.10 

 

 
(     )                ∑        

   

   

                    4.11 
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Where the sums on the right hand side disappear for    . Note that      terms are 

undetermined. This is because we have the freedom to subtract any multiple of    (zeroth 

order Hermite polynomial) from the wave function. For    , 

 
          ∑        

   

   

 4.12 

 

                   

 
 (   )(   )       (     )                   ∑        

   

   

      

 

4.13 

Where the   term on the right hand side vanishes if    . 

 
(     )                ∑        

   

   

                    4.14 

The perturbation series for the energy are then calculated using Mathematica and they are 

listed below: 
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4.21 

 

It is interesting to note that the odd terms are missing, but and the terms alternate in sign. 

This is the reason why the eigenvalues are real. We show the Schrödinger equation again. 

              4.22 
 

We can view    as the perturbation parameter rather than g. Then, then the perturbed 

eigenvalues and wave functions will be power series in terms of   . Then, the odd order 

terms will be imaginary. We know that when g is zero, we obtain the simple harmonic 

oscillator. Comparison with the shooting method will show that the eigenvalues remain real 

for small values of g as well. Thus, the eigenvalue perturbation series must be real, and so 

the odd order terms must vanish. 

The perturbation series contains the first 200 corrections, and as before, we convert them 

into Padé approximants.  
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The plots of the Padé approximants are shown below: 

 

 

 

Note that the graphs are even with respect to g. This is because the Hamiltonian is    -

symmetric.  

This time round, the Padé approximants are valid in a region much smaller than the previous 

potential. Below is a table containing estimates for the largest g for which the Padé 

approximants are valid. 

 

n g 

0 5.0+0.5 

1 3.5+0.5 

2 3.0+0.5 

3 2.5+0.5 

4 2.5+0.5 

5 2.0+0.5 
 

 

4 2 2 4
g

10

20

30

40

Fig 12: Padé approximant for the eigenvalues perturbation series of x2 + igx3 potential for g=-5 to g=5. 
For each energy level, the highest most graph corresponds to (99,101) Padé, the second highest 
corresponds to (101,99) and the lowest graph corresponds to (100,100) 

Table 2: Approximate maximum values of g for which the Padé 

approximant is valid 

E 
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4.2 Shooting Method 

Next we use the shooting method to calculate the eigenvalues. We proceed as before, but 

the ratio of the first derivative of the wave function to the wave function is: 

 
  (   )   

  (    )       

 [(    )      ]
 ((    )      )

 
  4.23 

Also, because the wave functions do not have parity, we have to integrate (4.2) from -10 to 

10 and see if the wave function vanishes at     . The eigenvalues found are plotted 

below. 
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Fig 13: Eigenvalues of x2 + igx3 potential obtained using the shooting method for the first six 
energy levels 

E 
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We then compare this with the Padé approximants. 

 

 

 

 

We see that the results obtained from perturbation theory and the shooting method match 

up. In fact, when the Padé approximants for each energy level split up, the values obtained 

from the shooting method seem to be the average of them. We conclude that the two 

methods agree very well with each other.  

 

4.3 Shooting on the Complex Plane 

Since (4.2) is a complex differential equation, we can try to shoot it on the complex plane. 

This is known as an analytic continuation of an eigenvalue problem, and it is discussed in [8]. 

Fig 14: Comparison of the eigenvalues of x2 + igx3 potential obtained using perturbation theory 
and the shooting method for the first six energy levels. The lines are obtained by using 
perturbation theory while the “X’ are obtained by using the shooting method. Since the 
perturbation series is even in g, we show the part for the non-negative values of g 

E 
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First, we have to determine the region for which we can do the shooting. We do this by 

examining the WKB approximation.  

For large values of x, we get 

            
 

4.24 

Then,  

 
    ( )  

 

(    )
 
 

  ∫ √        
 

 

 

4.25 

Where A is a constant. Next, we find the roots in the expression. 

 
√     √  
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) 4.26 

 

 
(    )
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) 4.27 

 

Since we are working with the differential equation on the complex plane, let us use the 

letter “z” instead of “x”. The wave function becomes 

 
 (   )    

 

 
 
  

 
   (

 
 
  

 
 
)
  

 
 
 
 
 √  

 (
  
 

 
 
 
)

 

 

4.28 

There are two wave functions we can use. Let us stick to the wave function with the minus 

sign in from of the 
 

 
 factor. Now, to obtain a solution that vanishes at infinity, we need the 

real part of the exponent to be negative, so the cosine term must be positive. So, we get the 

following inequality. 

 
 

 

 
 

 

 
 

  

 
 

 

 
 

 

4.29 

 
 

  

  
   

 

  
 

 

4.30 

So, for   ( )   , we need to integrate within this wedge. Let us integrate along the middle 

of the wedge, so    
 

  
. For the   ( )    region, we integrate along a path that is the 
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reflection of the first path about the imaginary axis, so we integrate along    
  

  
. Below 

we have a figure that shows the wedge and the integration path. Note that in principle, we 

do not require the entire integration path to be in those wedges. As long as the integration 

paths are within the wedges as | |   , the boundary conditions are satisfied. For 

simplicity, however, we choose the integration paths to be straight lines, and we pick the 

lines to be in the middle of the Stokes wedges. That is because in the middle of the wedge, 

 

 
 

  

 
  , and the real part of the exponent in (4.28) will have its largest magnitude, and 

thus the wave function will decrease fastest along the middle of the Stokes wedge. 

 

 

The differential equation (4.2) becomes a differential equation for the variable r, since the 

angle θ is fixed. (4.2) leads to the following equation: 

 
     

   

   
( )  [  (               )] ( )    4.31 

 
  

  
 

 
   

  
 

 
  

  
 

 
  

  
 

 
 

  
 

 

  
 

  ( ) 

  ( ) 

Fig 15: The red lines depict the boundary of wedges while the blue lines are our path of 
integrations. The symmetry about the imaginary axis is equivalent to    symmetry. 
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Now, the boundary conditions at  (    ) is given by differentiating (4.28) with respect to 

r, and dividing by (4.28). By setting     (  )   , we obtain  

 
 ( )      

 

  
 √  

 
  

 (
  
 

 
 
 
)
 

 
4.32 

Now, we want the wave functions integrated on both halves of the complex plane to match 

at the origin. Since they will have different normalisation factors, we cannot simply equate 

them and their derivatives at the origin. In fact,  

   ( 
 )    ̃ ( 

 ) 4.33 

Where we have divided the normalisation constant for   . Here, N is the ratio of their 

normalisation constants. 

Let  ̃  be the wave function on the right half-plane obtained numerically, and let   be the 

wave function on the right that has the correct factor such that it will match   . So, 

      ̃  4.34 
 

   ( )    ( ) 4.35 
Then, we get  

    ( )

   
 

   ( )

   
 4.36 

Let         ,         , where     
  

  
,     

 

  
. 

Then, (4.39) becomes  

    ( )    (     )   ( ) 4.37 

Where  ( )   ( ). We can then obtain the following boundary condition. 

   
 (  )

  (  )
   

   
 

  
 ̃ (  )

  ̃(  )
 4.38 

This will be a boundary condition that the numerically calculated wave functions need to 

satisfy. 

The numerically calculated eigenvalues obtained by shooting off the real axis on the 

complex plane are shown below. 
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Now, we compare this with our previous result that was done by doing the shooting on the 

real line. 
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Fig 16: Eigenvalues of x2 + igx3 potential obtained using the shooting method on the complex plane for 
the first six energy levels 

Fig 17: Comparison of the eigenvalues of x2 + igx3 potential obtained using the shooting method for the 
first six energy levels on both the real line and on the complex plane. The “X” are the results obtained by 
complex shooting while the “O” are obtained by shooting on the real line 
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From the figure, we can see that the eigenvalues obtained using both shooting methods 

match up. Therefore, the shooting performed on the complex plane is valid. The reason for 

this is that referring to figure 10, we see that both paths of integration (the real axis and the 

one off the real axis) lie in the same wedge. Thus, both eigenvalue problems are actually the 

same and yield the same eigenvalues. 
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5. The Complex Quintic Perturbation 

Now we take a look at the following Hamiltonian. 

    ̂   ̂     ̂  5.1 

The resulting differential equation is 

 
( 

  

   
        ) ( )    ( ) 5.2 

5.1 Perturbation Theory 

Proceeding as before, we obtain the following recursion relations: 

 
 (   )(   )       (     )            ∑        

   

   

                      5.3 

Where the first term on the left hand side vanishes if         . The first term on the 

right hand side vanishes if    . The second recursion relation is 

 
 (   )(   )       (     )                      ∑        

   

   

      

                 (   ) 

5.4 

Where the first term on the right hand side vanishes if    . Lastly, we have 

 
(     )               ∑        

   

   

                        5.5 

Where the second term on the left hand side vanishes if    . 

The perturbation series is found to be 
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5.17 

 

The Padé approximants are then calculated and plotted in the figure below. 

  

 

 

Note that the region for which the Padé approximants are valid is much smaller than the 

previous Hamiltonians. An estimate for the maximum value of g for which the Padé 

approximants are valid is shown below. 
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Fig 18: Padé approximant for the eigenvalues perturbation series of x2 – igx5 potential for g=0 to 
g=0.5. For each energy level, the highest most graph corresponds to (99,101) Padé, the second 
highest corresponds to (101,99) and the lowest graph corresponds to (100,100).  
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n g 

0 0.1+0.04 

1 0.06+0.02 

2 0.04+0.02 

3 0.04+0.02 

4 0.04+0.02 

5 0.02+0.02 

 

We also computed the perturbation series to the 400th correction and then calculated the 

(201,199), (200,200) and (199,201) Padé to see the improvement gained from the extra 200 

terms. We plot the results below. This time round we calculated up to the 11th excited state. 

 

 

 

If we compare the values of g for which the Padé approximant is valid, we note that there is 

very little improvement over the Padé series calculated from 201 terms. This shows that 

perturbation theory has a limitation of being valid for only small values of the perturbation 

parameter in this instance. Its validity has to be cross checked with other methods like the 

shooting method. 
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Table 2: Maximum values of g for which the Padé approximant is valid 

Fig 19: Padé approximant for the eigenvalues perturbation series of x2 – igx5 potential for g=0 to 
g=0.2. For each energy level, the highest most graph corresponds to (199,201) Padé, the second 
highest corresponds to (201,199) and the lowest graph corresponds to (200,200).  
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5.2 Shooting Method 

5.2.1 Shooting on the real axis 

As before, we first perform shooting on the real axis. The eigenvalues obtained by shooting 

on the real axis are plotted below. We can use (4.37) to obtain the boundary condition at 

the origin 

   
 (  )

  (  )
  

  
 ̃ (  )

  ̃(  )
 5.18 

Here,      ,     . 

 

 

5.2.2 Shooting off the real axis 

Now, we try to perform numerical shooting off the real axis in the same way we did for the 

complex cubic perturbation. Let us first calculate the wedge for which the wave function 

goes to zero at infinity. If we repeat the calculations as in section 4.3, we get 
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Fig 20: Eigenvalues of x2 – igx5 potential obtained using the shooting method on the real 
line up to E=10 
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Let us integrate along the middle of the wedge, so     
  

  
,     

   

  
.  

The boundary condition at “infinity” is given by 

 
  (     )   

 

  
 √  

 (
  
 

 
 
 
)
 
 
   5.20 

While the boundary condition at the origin is given by 

   
 (  )

  (  )
   

   
 

  
 ̃ (  )

  ̃(  )
 5.21 

The Stokes Wedges together with the integration paths are shown below. 

 

 

 

 

 

 

 

 

Fig 21: Stokes Wedges for      . The dashed lines are the integration paths while the full lines are 
the boundaries of the wedges 
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The eigenvalues obtained are plotted in a graph below. 

 

 

 

5.2.3 Comparison of the eigenvalues obtained using different methods 

Let us first compare the shooting on the real axis with the results from perturbation theory. 

We shall focus on the         region, since we are interested in the region where both 

results agree. This time round, we calculate the perturbation series to the 400th correction. 
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Fig 22: Eigenvalues of x2 – igx5 potential obtained using the shooting method on the 
complex plane up to E=10 
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Note that the results match very closely for small values of g. We shall next compare the 

two graphs obtained via the shooting method with the perturbation theory results.  
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Fig 24: Comparison of Eigenvalues of x2 – igx5 potential obtained using the shooting method on the real line 
and on the complex plane and with Perturbation theory. The straight line is the Padé approximant, the “O” 
are the results obtained by shooting on the real line and the “+” are the results obtained by shooting on the 
complex plane. 

Fig 23: Eigenvalues of x2 – igx5 potential obtained using the shooting method on the real line 
compared with those obtained using perturbation theory. The lines are the Padé approximants 
while the “O” are obtained using the shooting method on the real line. 
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Unlike the results obtained by shooting on the real axis, the eigenvalues obtained by 

shooting on the complex plane do not match the perturbation results at all. In fact, we see 

that the behaviour of the eigenvalues from the complex shooting is very different from the 

real shooting and the perturbation results. This is because by choosing to do the shooting 

along different paths, we have imposed different boundary conditions on the differential 

equation, and are hence studying different eigenvalue problems. The reason why the Padé 

approximation does not match the results obtained by doing the shooting on the complex 

plane is because the perturbed wave function contains an exponential term   
  

 , but when 

we derive the wedge for which the wave function will vanish, we find that the wave function 

will have an real exponential term of   
 

 √
  

 
     (

  

 
 

 

 
). Thus, the wave function obtained by 

shooting off the real axis and the wave function obtained using perturbation theory decay at 

different rates, thus perturbation theory does not agree with the results obtained from the 

shooting performed off the real line. The perturbation results do agree with the eigenvalues 

obtained by doing the shooting on the real line because when doing perturbation theory,  

only real numbers were involved so the analysis is essentially restricted to the real line, 

hence it matched up with the eigenvalues obtained by doing the shooting on the real axis.  

We also do the shooting on the complex plane for small g (i.e. on a logarithmic scale). The 

result is shown below. 
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2

4

6

8

10

Fig 25: Eigenvalues of x2 – igx5 potential obtained using the shooting method off the real line 
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We note that this graph corresponds to the one that Smilga got, and we have done the 

shooting method for higher energy levels as well. At certain values of g, the eigenvalues 

cease to be real, and they become complex instead. We can see the ground state and the 

first excited state merging, for example. The second excited state tends to the ground state 

energy, which matches up with Smilga’s observation. The third and fourth excited states 

also merge, while the fifth excited state tends to the energy level of the first excited state. 

Next, we do a trick to extend our result for the shooting off the real axis further. Suppose 

we have a potential with a quintic perturbation.  

 
( 

  

   
         ) ( )     ( ) 5.22 

 

Here, k is just a constant, and n is a positive integer. We divide by g to obtain 

 
 

 

 

   

   
 (

 

 
      )  

  

 
 ( ) 5.23 

Then, we make the substitution     , where a is a constant. We then obtain 

 
 

 

   

   

   
 (

     

 
      )  

  

   
  5.24 

   

Set     
 

 . Then, we get 

 
 

   

   
 (   

   
       )     

 
 
   5.25 

   

Next, call     
   

 ,       
 

 

     
 

   . We end up with a Schrödinger equation where 

the coupling constant is attached to the other term instead. 

 
 

   

   
 (        )      5.26 

   
We can then perform the shooting method on this differential equation and convert the 

eigenvalues by     
 

   ,       
 

 

   . Notice that the two coupling constant g and λ are 

reciprocals of each other. So, when we calculate eigenvalues for small values of λ, we end 

up with the eigenvalues for large values of g. A more comprehensive plot of the eigenvalues 

is shown below. 
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For this potential, we know that when    , we recover the harmonic oscillator so the 

eigenvalues should be real when    . For      , we can see from the graph that the 

eigenvalues are real. Let us refer to the eigenstates for small values of g as the small-g 

eigenstates, and large-g eigenstates to refer to the eigenstates for large values of g. We also 

know that for large g, the potential tends to       and we obtain real eigenvalues. This is 

the case of     in Bender’s review paper [1]. 

In the graph, we have shown three lines that are the limits of the large-g ground state, 1st 

excited state and 2nd excited and we can clearly see that the large-g ground state, 1st excited 

state and 2nd excited tend to these limits as g becomes large. This tells us that the 

eigenvalues do become real for large values of g.  

0.001 0.01 0.1 1 10 100 1000
0

20

40

60

80

Fig 26: Eigenvalues of x2 – igx5 potential obtained using the shooting method off the real line. The 
coloured lines show the limit of the eigenvalues as g goes to infinity. Thus, we know that the 
eigenvalues remain real after         
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Let us take a more detailed look at the eigenvalues for smaller values of g
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The energy levels have been labelled by the large-g eigenstates, so the “0” energy level 

corresponds to the ground state for the       potentials. We note that for values of g 

smaller than      , we start to obtain complex eigenvalues. This value corresponds to the 

value obtained by Smilga in [7]. Looking at the graphs, the ground state and the 1st excited 

state merge, while the 2nd excited state remained real. The 3rd and 4th excited states merged 

while the 5th one remained real. The 6th and 7th, 8th and 9th states merged, while the 10th 

states remained real. If we look at the higher energy levels, it seems like there is a pattern of 

2 states merging, followed by a state that remains real, followed by another 2 states 

merging, followed by a state that remains real, and then 2 consecutive pairs of energy levels 

merging. However, we can see that this pattern does not last by looking at the states 22, 23, 

25, 26, 28 and 29. 

We note, from figure 19, that the ground state and first excited state merge at about 

        , while the third and fourth excited states merge at about          . The 

values of g for which some of the higher energy levels merge and become complex keeps 

decreasing as the energy goes up. Here, we have two possibilities: either the values of g for 

Fig 27a,b,c: Eigenvalues of x2 – igx5 potential for small values of g obtained using the shooting 
method off the real line 
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which the eigenvalues merge goes to zero as    , or it tends to some            . In 

the first case, for any small positive value of g, at high enough energies, the eigenvalues will 

be complex, and the Hamiltonian will have broken    -symmetry since if the Hamiltonian 

shared eigenfunctions with    then it would have real eigenvalues. In the second case, we 

would have a critical point       below which the Hamiltonian has unbroken    -symmetry 

but beyond which the    -symmetry is broken. 

Based on our current data, it seems like there will always be complex eigenvalues for small 

non negative values of g. We would have a better clue if the higher energy levels can be 

computed. Unfortunately, doing so would require an enormous amount of computational 

power. 

Returning to a point we made in the beginning, the value of approximately         is a 

point where    symmetry breaking occurs. Recall that this is a phenomenon that is also 

observed in    symmetric optics. In the last section, we shall take a look at some other 

Hamiltonians that are not perturbations of the simple harmonic oscillator and try to see if 

there is    symmetry breaking. 
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6. Numerical Studies of other complex potentials 

In this section, we show the eigenvalues for various complex potentials. For the potentials 

with the quintic term      , the integration path is the same, except for the          

potentials, which will be explained later. For the potentials with the      , the integration 

path is the same as the ones in chapter 4 where we did the shooting method off the real 

line.  

6.1 Graphs of eigenvalues versus coupling constant for various 

complex potentials 

 

         

 

 

The spectra is entirely real. When     and    , we retrieve the potentials     and 

     , which are shown to be real in Bender’s paper [3]. 

 

 

Fig 28: Eigenvalues of ix3 – igx5 potential obtained using the shooting method off the real line. 
The blue, green and yellow dotted lines show the correct limit of the eigenvalues for large g 
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Since     is not much smaller than       in terms of magnitude, when choosing the 

integration path, we had to consider the wedge for    . We chose the integration path to 

be in the middle of the overlap between the wedges for     and      . The integration 

path is shown below. 

 

 

 

 

 

When    , we obtain the     which was shown to have real eigenvalues by Bender in 

[3]. This potential has an entirely real spectrum. The first four eigenvalues when     are 

1.47, 6.0, 11.8, 18.45, which are in agreement with Bender’s result. 
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Fig 30: Eigenvalues of –x4 – igx5 potential obtained using the shooting method off the real line. 
The purple, blue and green lines show the correct limit of the eigenvalues for large g 

 

E 

g 

Fig 29: The red lines show the wedge for     while the blue lines show the wedge for      . The green 
lines are the integration paths. Notice how the       wedge is closer to the imaginary axis then the     
wedge. 
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Fig 31: Eigenvalues of ix – igx5 potential obtained using the shooting method off the real line. 
The blue, green and yellow dotted lines show the correct limits of the eigenvalues for large g.  
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Fig 32: Eigenvalues of –x2 – igx5 potential obtained using the shooting method off the real line. 
The blue, green and yellow dotted lines lines show the correct limit of the eigenvalues for large g 
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Fig 33: Eigenvalues of x – igx5 potential obtained using the shooting method off the real line. 
The blue, green and yellow dotted lines show the correct limit of the eigenvalues for large g 

 

g 

Fig 34: Eigenvalues of x – igx5 potential obtained using the shooting method off the real line for 
small values of g 
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Fig 35: Eigenvalues of ix + igx3 potential obtained using the shooting method off the real 
line. The light green, brown, purple, blue, dark green and yellow dotted lines show the 
correct limit of the eigenvalues for large g. 

 

Fig 36: Closer look at eigenvalues of ix + igx3 potential obtained using the shooting 
method off the real line for small values of g.  
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Fig 37: Eigenvalues of x + igx3 potential obtained using the shooting method off the real 
line. The light green, brown, purple, blue, dark green and yellow dotted lines show the 
correct limit of the eigenvalues for large g. 

Fig 38: Closer look at eigenvalues of x + igx3 potential obtained using the shooting 
method off the real line for small values of g.  
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6.2 Discussion 

The purpose of calculating all these eigenvalues is to see if there is an explanation for    

symmetry breaking, and hence the appearance of complex eigenvalues. Before we discuss 

this further, let us make some definitions. Firstly, a Hermitian eigenvalue problem is one in 

which the Hamiltonian is Hermitian, and the eigenvalue problem is defined on the real line 

(i.e. an eigenvalue problem where the Stoke’s wedges contain the real axis). A    

symmetric eigenvalue problem is one where the Hamiltonian commutes with   , and the 

boundary conditions are    symmetric (i.e. the Stokes wedges are symmetric about the 

imaginary axis). 

Bender conjectured that the reason for    symmetry breaking for two-dimensional 

potentials is that there is a Hermitian term interacting with a PT symmetric one. 

In our context, we see that the         potential has PT symmetry breaking, and it also 

has a Hermitian term    and a PT-symmetric term      . This agrees with Bender’s 

conjecture, except that it is a one-dimensional system instead of a two-dimensional one.  

We summarise our results in a table on the next page. 
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Potential Type of terms in potential Boundary 

Condition 

Behaviour of eigenvalues as g goes 

from 0 to infinity 

x2+gx4 Hermitian + Hermitian Hermitian    symmetry unbroken 

throughout 

x2+igx3 Hermitian +    symmetric  Hermitian    symmetry unbroken 

throughout 

x2-igx5 Hermitian +    symmetric  Hermitian    symmetry unbroken 

throughout 

x2-igx5 Hermitian +    symmetric     Symmetric Inconclusive evidence for 

behaviour at small values of g→ 

   symmetry broken →    

symmetry unbroken 

ix3-igx5    symmetric +    

symmetric 

   Symmetric    symmetry unbroken 

throughout 

-x4-igx5    symmetric +    

symmetric 

   Symmetric    symmetry unbroken 

throughout 

ix-igx5    symmetric +    

symmetric 

   Symmetric    symmetry broken →    

symmetry unbroken 

-x2-igx5 Non-Hermitian non-    + 

   symmetric 

   Symmetric    symmetry broken →    

symmetry unbroken 

x-igx5 Non-Hermitian non-    + 

   symmetric 

   Symmetric Inconclusive evidence for 

behaviour at small values of g→ 

   symmetry broken →    

symmetry unbroken 

ix+igx3    symmetric +    

symmetric 

   Symmetric    symmetry broken →    

symmetry unbroken 

x+igx3 Non-Hermitian non-    + 

   symmetric 

   Symmetric Inconclusive evidence for 

behaviour at small values of g→ 

   symmetry broken →    

symmetry unbroken 

 

Table 3: Behaviour of the eigenvalues for various complex potentials 



64 
 

From the table, we see that when we have a Hermitian and a    symmetric term with a    

Symmetric boundary condition (as in the case of x2-igx5), we do end up with    symmetry 

breaking, and whenever we have a    symmetric potential with a    symmetric boundary 

condition (as in the case of ix3-igx5 and -x4-igx5), we end up with real eigenvalues 

throughout. However, we also note that having a non-Hermitian non-    symmetric term 

with a    symmetric term and a    symmetric boundary condition might also give rise to 

PT-symmetry breaking (e.g x-igx5). 

From this, it seems like having a Hermitian and a    symmetric term does cause    

symmetry breaking, but it is not the only possible cause. 
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7. Conclusion 

In this project, we have studied various complex potentials on the real axis and off it, using 

perturbation theory and the shooting method to solve for the eigenvalues. The results do 

agree with Bender’s conjecture that    symmetry breaking can be caused by having a 

Hermitian term and a    symmetric term and imposing a    symmetric boundary 

condition. As we have seen, however, that is not the only possible scenario that gives rise to 

   symmetry breaking. This suggests the richness of the    symmetry breaking 

phenomenon. More examples could be solved to give a better idea on the conditions that 

could be the cause of    symmetry breaking. 

Another possible direction for future work could be to study two-dimensional or higher 

potentials to find more examples of    symmetry breaking. 
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Appendix 

In the appendix, we show some of the codes used to calculate the eigenvalues for the 
Hamiltonian in chapter 5. The first code is the one used to calculate the perturbation series 
of the ground state.  
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The following code is the code used to calculate the eigenvalues by performing shooting on 
the complex plane.  

 

Code 01: Code used for calculating the eigenvalues of the x2 – igx5 potential obtained by 
perturbation theory 
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 Code 02: Code used for calculating the eigenvalues of the x2 – igx5 potential obtained by shooting 
off the real line 


