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Abstract

We studied the eigenvalues of some complex potentials using two different methods. The
first method is perturbation theory, which is an analytical method. The second method is
the numerical shooting method. We look at the eigenvalue as a function of a coupling
constant. Some of the potentials possess a real spectrum, while for others, complex
eigenvalues appear. A pattern for the appearance of complex eigenvalues is observed, in

agreement with a related conjecture.
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1. Introduction

One of the axioms of quantum mechanics is the Hermiticity of the Hamiltonian operator.
This condition is sufficient to guarantee a real eigenvalue spectrum, but it is not necessary.
It is thus natural to ask if there are other possible conditions that can also give rise to real

eigenvalues.

In 1993, Bender learnt that two of his colleagues Bessis and Zinn-Justin had studied a non-
Hermitian Hamiltonian H = p? + i®3 numerically and noticed that it possessed real
eigenvalues [1]. He found out that almost a decade ago, in 1982, Andrianov, had studied
—x* potentials perturbatively. Andrianov’s analysis suggested that these potentials might
possess a real spectra, despite being non-Hermitian (because the boundary conditions are
imposed on the complex x-plane) [2]. This led Bender and his student Boettcher to wonder

if the spectra of these Hamiltonians were entirely real.

In 1998, Bender and Boettcher published a paper in which they studied a whole family of

Hamiltonians [3],

H =p? + 22(i%)¢ 1.1
Here, € is real. They showed that when € = 0, the spectra was entirely real and positive [3].
This family of Hamiltonians include some of the non-Hermitian Hamiltonians that were
previously discovered to possess some real eigenvalues. Furthermore, it was observed that
this family of Hamiltonians commute with the PT operator, where, the parity operator P

and the time reversal operator " have the action

PRP = —% PpP = —p 1.2
TRT = THT = —p 1.3

Also, the time-reversal operator performs complex conjugation.

TiT =—i 1.4
These Hamiltonians are said to be PJ-symmetric. This remarkable discovery of an
alternative condition to Hermiticity led to a flurry of research into PJ -symmetric non-

Hermitian Hamiltonians.



One of the interesting phenomena that occur with such Hamiltonians is known as PT -
symmetry breaking. In short, this occurs when some of the eigenvalues become complex.
For the family of Hamiltonians in (1.1), when —1 < e <0, complex eigenvalues are
obtained. This is a rich phenomenon because some Hamiltonians possess this behaviour
while others do not, which raises an interesting question on the origin of PT symmetry

breaking.

Even though this area of research originated from considerations of an axiom of quantum
mechanics, its major application surprisingly turns out to be in optics. The main link to optics

is through the paraxial equation of diffraction,

,aE+1aZE+k[ () 4 in COTE = 0 1.5
Y9z T 2k oxz T oMW TS =

Notice that if we were to treat the z coordinate as time t, the complex refractive index
ng(x) + in;(x) as a potential, the electric field as a wave function, after relabeling some of
the constants, we end up with the Schrédinger equation! It turns out that it is possible to
implement a PT" -symmetric optical system, and some of these systems also experience PT

symmetry breaking. Thus, PT symmetry breaking is an important phenomenon to study.

On the cause of PT symmetry breaking, Bender conjectured that for two-dimensional
guantum mechanical systems, PJ symmetry breaking occurs whenever a Hermitian term is

combined with a non-Hermitian PT symmetric one [12].

In this project, several examples of one-dimensional complex potentials were studied to
search for PT symmetry breaking. An example of a Hamiltonian with broken PT symmetry

is

H=p*+%%—igx® 1.6
The potential is a combination of a Hermitian term £2 and a non-Hermitian PT symmetric
term —igx>. We find that the results of this project are in agreement with Bender’s
conjecture even though we are studying one-dimensional potentials and we see that the

behaviour of complex potentials is rich and complex.



2. PT symmetry

2.1 PT -symmetric non-Hermitian quantum mechanics

In 1998, Bender and Boettcher wrote a paper that discussed the real spectra of PT -
symmetric non-Hermitian Hamiltonians [3]. Many important results are summarised in [1].
We mention briefly the important details, before mentioning a link between PJ symmetric

guantum mechanics and optics, which is the main application of the theory.

2.2 Parity and Time operators

There are two more important properties for the P and 7 operators defined in (1.2), (1.3)

and (1.4).
They are reflection operators, so we have

P2=7%=1 2.1
The last important property about them is that they commute.

PTr—-TP=0 2.2

2.3 A general class of PT -symmetric Hamiltonians

Let us return to the Hamiltonians in (1.1). The spectra of the Hamiltonians have very
different behaviours for different ranges of the parameter €. When this parameter is 0, the
Hamiltonian is the usual harmonic oscillator Hamiltonian. As this parameter increases from

0, the Hamiltonian becomes non-Hermitian. The following figure is obtained from [1].



Fig 1 : Eigenvalues for Hamiltonian in (1.6) for varying values of €. Taken from [1]

When € = 0, all the eigenvalues are real and positive and the energy levels rise with
increasing €. As € drops from 0 to -1, the number of real eigenvalues decrease, until
€ = —0.57793, then there is only the ground state eigenvalues left. Some of the
Hamiltonians we shall study in this project are similar to the (1.1), except that we have an
extra X%term so that the unperturbed Hamiltonian, the portion without the complex term,
is the usual Harmonic oscillator. Later on, we shall change the £? term to other terms to

look at the effects on the eigenvalue spectrum.
2.4 Important properties of a quantum theory

There are three properties the PJT" -symmetric quantum mechanics must fulfil.

i.  The Hamiltonian determines the energy levels of a quantum theory. The energy

levels are the eigenvalues in the following equation.

Hy = Ey 23



ii.  The Hamiltonian determines the time evolution of the states and operators in the

guantum theory. Time evolution is governed by

0P 2.4
Hl/) = la

Assuming H is independent of time, we obtain the solution as
P(t) = e Htp(0) 25

We require e At to be unitary so that the norm of the state will always be unity.

iii.  The Hamiltonian incorporates the symmetries of the theory. If a Hamiltonian H
commutes with P, and since P is a linear operator, P and H will share their
eigenstates. So any eigenstate of a Hamiltonian that is parity invariant will have a

definite parity (even or odd under space inversion).

2.5 Broken and Unbroken PJ Symmetry

A PT symmetric Hamiltonian commutes with the PJ operator. Since the PT operator is
antilinear, we cannot conclude that the eigenstates of H will be eigenstates of PT.
However, suppose that an eigenstate of H, 1, is also an eigenstate of PT". Then, calling its

eigenvalue A, we get the following
PTY = Wy 2.6
Multiply PT on the left and use the fact that (PT)? = 1, and we obtain

¥ = PTA(PT)?Y 2.7

Since PT is antilinear, we get
EDWIERVIRY 2.8
This implies that |1]? = 1, so A is a pure phase

1=el® 2.9



Multiplying the time independent Schrodinger equation by PJT’, we obtain

(PT)HY = PTE(PT)*y 2.10
HAY = (PT)E(PT) Ay 2.11
ENX = E* 2 2.12

Since A # 0, we conclude that E = E*, i.e. the eigenvalue E is real. Thus, an eigenstate of H
that is also an eigenstate of PJ will have a real eigenvalue. So, we make the following
definition: If every eigenfunction of a PT symmetric Hamiltonian is also an eigenfunction of
the PT operator, we say that the PT symmetry of H is unbroken. If some of the
eigenfunctions of a PT° symmetric Hamiltonian are not simultaneously eigenfunctions of the

PT operator, we say that the PT symmetry of H is broken.

With the result we just showed, we can conclude that all the eigenvalues of a PT symmetric
Hamiltonian with unbroken PJT symmetry will have all real eigenvalues. If some eigenvalues

are complex, then PT symmetry is broken.

In this report, we will see that for certain ranges of a coupling constant, we will have all real
eigenvalues, while for other values of the coupling constant, we will obtain some complex
eigenvalues, and the PJ symmetry is broken. PT symmetry breaking is worth studying

because this phenomenon also occurs in optics, as we will discuss in the following section.

2.6 PT symmetry and optics

In [4], an observation of the behaviour of a PT symmetric optical coupled system is
reported. Spontaneous PJT symmetry breaking is also observed. As mentioned in the
introduction, the key to linking optics to PT symmetric quantum mechanics is to look at the
paraxial equation of diffraction (1.5). In (1.5), ko = 277:' k = kgngy, Ais the wavelength of light
in vacuum and n, represents the substrate index. More importantly, the complex refractive-
index distribution n(x) = ngz(x) + in;(x) plays the role of an optical potential. In order for
this “potential” to be PT symmetric, we require the refractive index profile ny be even,
while gain/loss distribution n; be odd. If we treat the coordinate z to be time, the electric

field E to be the wave function, and identify the constants accordingly, we notice that

10



equation (1.5) is equivalent to the time dependent Schrédinger equation. We can then

proceed to separate variables and obtain the time independent “Schrédinger equation”.

In [5], a PT symmetric ridge optical waveguide demonstrates PT symmetry breaking. It is
more interesting to note that once the gain/loss contrast exceeds a, = 50 cm™}, the set of
eigenvalues become partly complex. In a certain optical system, the eigenvectors before the
critical point are given by (1, ieiie) with eigenvalues + cos 8, where 6 is some parameter.
Above the critical point, the eigenvectors become (1,—ie$9) with eigenvalues ¥ isinh 6.
The key thing to note is that the critical point here behaves in a similar fashion to the critical
point € = —0.57793 in figure 1. Below the critical point, the eigenvalues are real, while

above it, complex eigenvalues are obtained.

Another interesting paper in which the connection between PJT symmetric quantum
mechanics and optics is explored is [11]. In this paper, a system of a one-dimensional array
with N identical, single-mode waveguides is explored. For a certain system with N = 2, the
Hamiltonian is
_h [iy —C] 2.13
2 |I-C iy
where C is the tunnelling amplitude between the two waveguides. This Hamiltonian is

clearly non-Hermitian, but it is PT symmetric because applying parity reflection (P:

waveguide 1 & waveguide 2) and time reversal (T:i — —i) does not change the matrix.

2.7 The Harmonic oscillator with a complex quintic perturbation

In 2008, Smilga published a paper [7] that had a numerical study of the Hamiltonian

pr+x* 2.14
=T~ igx

The perturbation series for the ground state energy is given by

H

g _1+449gz+0 . 2.15
0= 75 32 9

11



He plots the eigenvalues obtained numerically for the ground state:

Fig 2: Eigenvalues for the ground state of the Hamiltonian (2.19) as shown in [7]

He then looks at another eigenvalue problem. This time, the wave function ¥(x) is
analytically continued into the complex plane (i.e. x becomes a complex variable). This

approach is described in [8]. The relevant details will be described later on in the relevant

. o . . . 3
sections. For this eigenvalue problem, the variable x lie on the rays with arguments — 1—7: and

171 . . . .
~r respectively. Here, an interesting phenomenon occurs when g goes to zero. It is

observed that the ground state and the first excited state get closer until they merge at a
critical value of g = 0.3717 and their energies coincide. The energy of the second excited
state decreases with decreasing g and approaches the energy of the ground state. Below is

the logarithmic plot which demonstrates this behaviour.

12



Fig 3: Logarithmic plot of the eigenvalues of (2.19) as shown in [7]

2.8 Two dimensional PT symmetric potentials

In 2009, Wang [10] published a paper that shows the eigenvalues for some examples of two

dimensional PT symmetric potentials. The first example was a complex cubic potential
Hy; = pZ +py + x> + y* + igxy? 2.16
Plots of the real and imaginary parts of the eigenvalues are shown on the next page. From

figure 5, we can see that the eigenvalues come in complex conjugate pairs. It can be seen

from (2.11) that if E is an eigenvalue, then E™ is also an eigenvalue.

13



Fig 4: Real parts of the eigenvalues as functions of the coupling constant g with the complex cubic
potential. Lines are from perturbative expansion using (20,20) Padé. Crosses are the results using FEM.
Dots are results using the method based on two-dimensional HO basis expansions. The system is
symmetric under g — -g and only the part with positive g is shown. Taken from [10].
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Fig 5: Imaginary parts of the eigenvalues as functions of the coupling constant g with the
complex cubic potential. Crosses are the results using FEM. Dots are the results using the
method based on two-dimensional HO basis expansions. The system is symmetric under g
— -g, only the part with the positive g is shown. Taken from [10].
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The second Hamiltonian studied in the paper is the complex Hénon-Heiles Hamiltonian

, 1 2.17
Hyy =pz +pi +x*>+y*+ig (xy2 —§x3>

Fig 6: Real parts of the eigenvalues as functions of the coupling constant g with the complex
Hénon-Heiles potential. Lines are from perturbative expansion using (20,20) Padé. Crosses are
from HO basis expansions. Taken from [10].

Fig 7: Imaginary parts of the eigenvalues as functions of the coupling constant g with the
complex Hénon-Heiles potential. Only eigenvalues from HO basis expansions are shown.
Taken from [10].
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3. The quartic perturbation

The first Hamiltonian we studied is the harmonic oscillator with the quartic perturbation is

shown below.

H=p?+ 3%+ gz* 3.1
We will follow the procedure outlined in Bender’s paper on the anharmonic oscillator [6].
We are working in units where the factors in front of p? and x> are equal to unity. This helps

to make the calculation less messy.

3.1 Perturbation Theory

The first method we use is Perturbation theory. We start off with the Schrédinger equation.

dz 2 4 —
(—E;+x +gx)w@>—E¢@> 32
Let
w@=a§mm 3.3
Then
P () = e [0 (x) — 2x¢’ () + (% — D] 34

Substituting (3.3) and (3.4) into (3.2), we get

—¢" (x) + 2x¢"(x) + (1 + gxM)p(x) = E¢p(x) 3.5

Then we expand the energy and ¢(x) as power series of g, the perturbation parameter.

E = z g A, 3.6
6 = ) g7B) 37
r=0
Here, we have fixed n, and have left out the subscript for convenience. In the usual

perturbation series, we expand the wave function in terms of the unperturbed wave

function for the Harmonic oscillator. However, we have substituted B,.(x), which will be a

16



polynomial in x, since the exponential term has been factored out and all that remains are

linear combinations of Hermite Polynomials.

Note that

Ag=2n+1 3.8

x2
While Bye 2 is the unperturbed wave function of the harmonic oscillator.

Substituting (3.6) and (3.7) into (3.5) yields

Z g"B! (x) + ZxZ g Bl (x) + (1 + gx*) Z g" B, (x)

3.9
zzgr+sA B (X)
r=0s=
Letr' =r+s.Sincer >0, r' > s, so
- > gBI@+ ZxZ TBI +(1+gxh) ) g7B()
=0 =0 =0 3.10

Z Zg 'A_ By(x)

r1=0s=

Since r’ is just a dummy variable, we can replace it with r, to get

Zg (=B (x) + 2xB/(x) + B,(x)) + Zgrx"Br 1(0) = ZZgrAr Bs(x) 3.11

r=0s=

Each power of g" yields an equation. For r = 0, we get

—By (x) + 2xBj(x) + By(x) = AyBo(x) 3.12
For r = 1, we get equations for the unknowns A, and B,.. Let us solve this for the ground
state. Then, Ay = 1, and since we factored out the exponential from the wave function in
(3.3), Bp is just the Hermite polynomial for the ground state, so B, = 1. (3.11) then becomes

r—1

~BY () + 2xB{() + x*Bry (1) = AuBo(x) + ) Ar_oB(x) 3.13

s=1

Where the sum on the right hand side vanishes for r=1.

17



Now, we substitute an ansatz forB, (x), wherer > 1.

2r

B,.(x) = szme- 3.14

j=1
This step is different from the usual substitution we do for perturbation theory. In
undergraduate quantum mechanics textbooks like [8], the perturbed wave function is
usually expressed as a linear combination of the unperturbed wave functions since those
states form a complete orthonormal set. Since those unperturbed wave functions are just
linear combinations of Hermite polynomials with an exponential factor, we can just express
the " correction to the wave function as a polynomial after pulling out the exponential
factor. The advantage of working with these simple polynomials is that they are much easier

to evaluate.

The coefficient of g” in the usual perturbation series, is given by

r
(Hy — EQYp® = Z E@pr=9) _ =D 315
s=1

Where His the unperturbed harmonic oscillator Hamiltonian, H” is the perturbation, E™ s
the r'" order correction to the energy and l/J(T) is the r™ order correction to the wave

function. Consider the first order correction to the ground state (i.e.r=1).

(Hy — EO)yp® = (E® — g")yp©® = (E® — gy © 3.16
Since X contains both the raising and lowering operators @ and @, the right hand side
would contain terms of up to |4 >. So, for the first correction, we would have polynomials
of degree 4. We can repeat this argument inductively to show that the r'" term is a

polynomial of degree 4r.

Note that in the expansion (3.14), the constant term is missing. This is because in the usual
perturbation theory where we expand the perturbed wave functions as a linear combination
of the unperturbed wave functions, the coefficient of g” gives (3.15). The terms on the right
hand side are known, assuming that we have calculated until the (r-l)th correction. Then we
have a linear inhomogeneous equation for gb(r). Adding a solution to the homogeneous
equation to a solution to the inhomogeneous equation will give another solution to the

inhomogeneous equation, so we have the freedom to subtract the homogeneous solution,

18



in this case the unperturbed ground state wave function, from 1,[1(”. This is why there are no
constant terms in (3.14), because we have the freedom to subtract away the constant terms

since the Hermite polynomial for the ground state is a constant term.

We have also only used even terms in the expansion (3.14) because for the ground state,
the wave function is even. We know that the unperturbed ground state is even, and looking
at (3.16), if we replaced x with —x, we would get back the same equation except that the
argument of ) would be =x. This is because the Hyand H' terms are even as well, and this
tells us that (V) is even. We can continue this inductively to show that for all non-negative

integers r, ™ is even.

Then the second derivative is given by

2r
B (x) = z 2j(2j — Dx¥2B, 3.17
=1

Now, we substitute 3.14 and 3.17 into 3.13

2r—1 2r+2

2r
— z (2j +2)(2j + Dx¥ B, j4q + z 4jx* B, ; + 2 x*B,_q i,
j=0 j=1 j=3

3.18
2r r—1
=A, + Z x? Z Ar_sBs;
j=1 s=1
Each coefficient of x2/ yields an equation.
x%: —2B,.; =4, 3.19
r—1
x3xt: —(@Q2j+2)(©2j+ DBy jy1+4jB,; = —Zz By _s1Bs 3.20
s=1
x?,j=3,..2r—1:
r—1
. . ) 3.21
~(2) + 22 + DBy jur + 4By + Brosjop = =2 ) By giBy
s=1
r—1
XV (orj=2):  8rByyr +Brsj2==2) By giBan 3.22
s=1

19



These recursion relations hold for r > 2. For the case where r = 1, apply (3.13) and (3.14)

directly.

With the recursion relations, we can solve for the energy eigenvalues. Starting from (3.22),
we can solve for B, for j =1,2,...,2r, and then we can use (3.19) to find the energy

eigenvalue. Using Mathematica to compute the coefficients, we get

g o_1.3 21, 333 . 30885 , 916731 . 65518401 , ...
0= 27297769 T629 1024 9 T 2006 ¢ 32768 7 '

This is the perturbation series for the ground state. We calculate up to the 200" order

correction.

Next, we move on to the first excited state. This time, we make the substitution

2r

B, = Z x¥*1B, 3.24
j=1

We use odd terms instead because the 1% excited state has a wave function that is odd. As
before, we do not use the x term because we have the freedom to subtract of a multiple of

the unperturbed solution, which is a multiple of x.

Proceeding in the same manner, we obtain the recursion relations for r > 2.

r—1

1
Br,Zr = g [_Br—l,Zr—Z -3 Br—s,lBs,Zr] 3.25
s=1
j=3,....2r—1:
1 r—1
By =2 [@ + D+ 3Byjes — Brorjoa =3 ) BrogaBs] 3.26
] s=1
1 r—1
j=12 Brj= Qi+ 2@ +DBrjes =3 Y BrsaBo)l 327
] s=1
A = _SBr,l 3.28

Forr = 1, use (3.13) directly.

20



Using Mathematica, the perturbation series is

po_, 15 165 , 3915 . 520485 , 21304485
1= 397969 Tea 9 T 1022 9 4096 Y
2026946145

32768

For the 2" excited state, we use the freedom to subtract multiples of the unperturbed state

3.29
6

g+

to remove the x° term, so we substitute

2r
B, = Z x**2B. i + B, 3.30
j=1
The recursion relations are as follows

r—1
1
By oy = 8r [—Br-12r-2 — 3 Z By_s1Bs2r] 331
s=1
j=3,..2r—1:
1 r—1
By =3[+ 3@+ DBryjss ~Broaya=3) BrsaByl 332
s=1
1 r—1
By, = 3 [56B;;3 — 3 By _s1Bs,2] 3.33
s=1
1 r—1
Bry=7[30Byz = Brio =3 ) Br_g1Bsa] 3.34
s=1
A, = —3B,, 3.35

We calculate the perturbation series to be

39 615 , 20079 , 3576255 , 191998593 _
b= S+ 9159 Y9 " 1024 9 t 4006 Y a6
23513776995 '
~ 32768 9 F

We can continue in this manner to calculate the perturbation series for higher energy levels.

Letting E,, be the perturbation series for the nth excited state, we get

21



75 1575 66825 15184575 1024977375

— 020 2 3 _ i -
b=t 9 g 9 9 " 02a 9t 2006 ¢ 337
155898295875 :
32768 U

123 3249 171153 47745225 3918561111

E, =922, 2277 2 3 _ 4 2727090777 5
T T e O e 9 T 024 9 T 2006 Y 338
718596848709 :
32768 U

183 5841 369063 122636745 11913835401

3 4 5

=11 — 2 —
T 916 9 e 9 1024 9 T 2006 9 120
2571309540261 '
32768 Y

The perturbation series are calculated to the 200" correction. We then convert this into a
Padé approximant. A Padé approximant is a rational approximation to a function. As an
example, suppose we have only found the ground state perturbation series up to the fourth

order correction.

3 21 333 30885
_ .3 21, 5 3088> 3.40
Bo=1+420-769" * 4159 ~ 7022 9

There are five undetermined coefficients, so we can approximate it with a rational function

with a degree 2 polynomial in the numerator and in the denominator.

2 A.gt
_éiffig7 3.41
It might seem like there are 6 undetermined coefficients in this rational functions, but we
can divide both the numerator and denominator by B, to end up with only five unknowns.
Then, we can match the Taylor series of (3.41) about g = 0 with (3.40) to determine the
values of the other undetermined coefficients. We then end up with the following.
3 1+ 7999321 g+ 119958647 g

T, 7187 22781
1+ 59779+ 3965 9

Note that when g = 0, we recover the ground state of E = 1. This is called a (2,2) Padé

Ey 3.42

approximant, because both the numerator and the denominator have degree 2. If we had a
degree 3 polynomial in the numerator and a degree 1 polynomial in the denominator, then

it would be called a (3,1) Padé approximant.

22
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Fig 8: Padé approximant for the eigenvalues perturbation series of x> + gx* potential for g=0 to g=30. For
each energy level, the highest most graph corresponds to (100,100) Padé, the second highest corresponds

We managed to calculate up to the 200" order correction for the energy level, so we solved
for a (100,100) Padé approximant. The purpose of calculating the Padé approximant is that
the Padé approximant usually gives a better approximation then the truncated power series
and has a larger radius of convergence as compared to the perturbation series. The reason
is because the original perturbation series is a 200" degree polynomial and so it will “blow-
up very quickly” as we increase g. For the (100,100) Padé approximation, for g > 1, the
numerator and the denominator are dominated by the x'°° term, and since they are of
equal order, the Padé approximant does not “blow up” as quickly as the original

perturbation series.

We also calculate the (101,99) and (99,101) Padé approximants. To determine the values of
g for which the (100,100) Padé approximant is a good approximation to the eigenvalue, we
compare the graphs of the (100,100), (101,99) and (99,101) Padé approximants and look at
the region where they agree. This should roughly correspond to the region where the Padé

approximant is accurate. The graphs are shown below.

5 10 15 20 75 30

to (101,99) and the lowest graph corresponds to (99,101)

23
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Note that for each energy level, we have plotted the three Padé approximants of order
(100,100), (101,99) and (99,101), and for each energy level, the highest graph corresponds
to (100,100), the second highest corresponds to (101,99) and the third highest corresponds
to (99,101). We consider the Padé to be a good approximation in the regions where the
three graphs match up. A table of estimates of the maximum value of g for which the Padé

approximants are valid is shown below.

=30

24+2
20+2
17+2
15+2
1343

V| W|IN|FRLR|O|S>S

Table 1: Maximum values of g for which the three Padé approximants agree

3.2 Shooting method

The next method we use to study the Hamiltonian in (3.1) is a numerical method, namely
the shooting method. To do this, we must first determine the boundary condition of the
wave functions at “infinity”. For the wave functions to be square-integrable, we require the
wave function to vanish as x goes to infinity. For our numerical method, we do not have to
normalise the wave function because we are simply determining the eigenvalue e, and since
(3.2) is linear, any scalar multiple of its solution is still a solution. Normalisation is only
required when we wish to find the probability of finding the particle in a certain region.

Thus, for convenience, we set

P(£10) =1 3.43
We have used the value x = +10 as infinity. If this boundary is too small, then some
eigenvalues will not be detected because the boundary must be at “infinity”. If the
boundary is too large, the integration will take too long and also accumulate a lot of
numerical errors for each iteration. To determine ¥’'(£10), we shall use the WKB methods.
Note that the potential is growing for large x, so for large x we will be in the tunnelling

region. So, we use the following formulas obtained from [8]
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C
VIp()l

Where the absolute value of the momentum is given by

lp(x)| =+/x? + gx* —E 3.45

Then, we can differentiate (3.44) to get an expression for ¥'(x) and divide this by (3.44) to

P(x) = Exp|t [IpGolax] x> Fen 3.44

eliminate the undetermined constant C and obtain a ratio of 1’ to 1. This ratio is

YP'(x) x + 2gx3 —_—
¢(x):_2(x2+gx4—E)+ X rgxt=F xoe 345

Since we have fixed Y(£10) = 1, by (3.43),

x + 2gx3 N
2(x?2 + gx* —E)

P'(—10) = x2 4+ gx* —E, x=-10 3.47

We can also impose one more boundary condition to simplify our calculations. As
mentioned earlier, the odd states have wave functions that are odd while the even states
have wave functions that are even. These requirements can only be satisfied if the following

hold.

VYoaa(0) =0 3.48

d’even’(o) =0 3.49

So we basically require either the wave function to vanish at the origin (as in the case of odd
states) or the first derivative to vanish at the origin (for the even states). So, we use the
NDsolve function in Mathematica to integrate (3.2) along the real axis from x = —10 to
x = 0 with the boundary conditions (3.47) and (3.48)/(3.49). We first do the integration for
g = 0. Since this is just the unperturbed harmonic oscillator, we know what its eigenvalue
is. Let us consider the ground state. We integrate the Schrédinger equation with the
eigenvalue set to be a = 0.9, slightly below 1, which we know to be the actual eigenvalue,
and we calculate the value of the its first derivative at the origin and we call it a. Then, we
integrate the Schrodinger equation with the eigenvalue set to be b = 1.0, and we calculate
the value of the its first derivative at the origin and we store it as B. If a and B have different

signs, we know that the zero of the first derivative is somewhere between a and b. If it turns
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out that a and B have the same signs, then we shift a = 1.0 and b = 1.1 and shoot and
compare a and B again. We repeat the process until we find the correct a and b such that a
zero of the wave function derivative lies between a and b. For the unperturbed state (g=0),
a = 0.9 and b = 1.0, so we know that the eigenvalue lies within that range. Next, we let
a = 0.90 and b = 0.91. We shoot and then compare a and B. If they differ in sign (which
they should not), we will know that the eigenvalue lies between 0.90 and 0.91. If they have
the same sign, we increase a to 0.91 and b to 0.92 and shoot and compare a and B again.
We repeat this process until we have found the eigenvalue accurate up to two decimal
places. We can repeat this process until we have found the eigenvalue for a certain value of
g accurate to a specified number of decimal places. We illustrate the shooting method on

the simple harmonic oscillator below.

so0000 Y&

300000

E=0.5-0.000001

E=0.5+0.000001

- 100000

Fig 9: Plot of wave function when doing shooting method for the simple harmonic oscillator.
Instead of requiring the wave function to have a zero derivative at the origin, we integrate
directly from x = —5 to x = 5 and require that the wave function vanish exponentially at

x = 5. If the energy value E is off by even a small value, the wave function will not decay in
the manner it is supposed to at the end x = 5. In fact, they will diverge very quickly at x = 5.
The sensitivity of the wave function to the guessed eigenvalue illustrates the accuracy of the
method.

26



After we find the ground state eigenvalue at E = 1.00, we can continue scanning for more

eigenvalues for g = 0 by increasing the values of a and b.

Once we have found the eigenvalue for g = 0, we increase g to 0.1. We then repeat the
process and scan for all the eigenvalues at that value of g below a certain value for E. The

whole process can be repeated to give us the eigenvalues for a desired range of g and E.

Below is the plot of the eigenvalues found by the shooting method forn = 0 ton = 5.

) oooo.o".......
X ,...o.-.-". )
» .0'..... ...00.....00"'...

20
15 ....'.... ..o‘ooooo"".....

Fig 10: Eigenvalues of x* + gx* potential obtained using the shooting method for the first six
energy levels

We compare this with the eigenvalues found using perturbation theory in the plot on the

next page.
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Fig 11: Comparison of the eigenvalues of x* + gx* potential obtained using perturbation theory
and the shooting method for the first six energy levels. The lines are the results obtained using
perturbation theory while the “X” are obtained by shooting.

We note that for the values of g for which the shooting was done, the Padé approximant

matches the numbers calculated using the shooting method very well. Since both methods

agree, we conclude that the eigenvalues calculated are accurate.
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4. The Complex Cubic Perturbation

The previous Hamiltonian we tackled was PT -symmetric, but it was also Hermitian. Next,

we consider a PJ -symmetric non-Hermitian Hamiltonian.

H = p* + 2% + igx® 4.1
This is non-Hermitian because when we take the adjoint, the igx3 term gains a minus sign
because of i. It is still PT -symmetric because the T operator causes the i term to gain a
factor of -1 but the P operator causes each x to gain a factor of -1 as well, so there is no
overall sign change. Furthermore, we will impose a PJ symmetric boundary condition,
which we will discuss in greater detail later. The combination of a PT" symmetric operator
and a PT symmetric boundary condition give rise to what we call a PT symmetric

eigenvalue problem.

4.1 Perturbation Theory

The time-independent Schrodinger equation for this Hamiltonian is

d2
(—W +x2+ igx3> Y(x) = E(x) 4.2

This time round, the wave function does not have a parity because referring to equation
(3.15), if we replaced x with —x, we will not get back the same equation because the H’ term
contains x3. So, we have to expand the perturbed wave function in all orders of x up to the
maximum order needed. As before, we factor out the exponential term the way we did in
(3.3) and we substitute the same series for the perturbed energy and wave function as in
(3.6) and (3.7). The unperturbed energy and wave function A, and B, are the same as

before, and the Schrodinger equation becomes

[ee]

Z 9" (=B (x) + 2xBL(x) + B, () +1 Y g7x3By_1(x)
r=0 =1

w T = 4.3
= ZE:zizgrAT—sE%(x)
=0 s=0
Forr = 1, we get
r—1
—B}'(x) + 2xB/(x) — 2nB,(x) + ix3B,_,(x) = A, By(x) + ) A,_Bs(x) 4.4
s=1
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Note that (4.4) holds for all n. Repeating our previous arguments, the B,.(x) are polynomials

of degree 3r + n. So,

3r+n
B.(x) = Z x/B, 4.5
j=0
3r+n
B (x) = Z jG — 1)xj‘ZBm- 4.6
j=2
We then obtain from (4.4)
3r+n—-2 3r+n 3r+n
— Z G+2G+Dx/B,jip + Z (2j —2n)x/B,; +i Z x/By_1 -3 — 2nBy
j=0 j=1 j=3

4.7

n 3r+n r—1
= A, Z By jx7 + Z xJ Z Ay_sBg
j=0 j=0 s=1

Where the last sum on the right hand side vanishes for r=1. If we obtained the recursion
relations from the coefficient of each power of x from (3.18) directly, we would have to take
into consideration that some terms are present and some terms are not for each value of n

and r. We can deal with this by defining

B,j=0 forj<O0 48

Then, we can extend the lower limit of the third sum of the left hand side to j = 1. Because
of this, we have to treat the n = 0 case separately. Forn = 0, we get

r—1

—2By,; = A + z Ar_sBsp 4.9

s=1

forj=12,..3r—2

r—1
_(j + 2)(] + 1)Br,j+2 + (2] - Zn)Br,j + iBr—l,j—S = Ar—sBs,j 4.10
s=1
r—1
(2j = 2n)B,; +iBy_yj_3 = Z Ar_sBsj forj=3r—13r 4.11
s=1
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Where the sums on the right hand side disappear for v = 1. Note that B,, terms are
undetermined. This is because we have the freedom to subtract any multiple of H, (zeroth
order Hermite polynomial) from the wave function. Forn > 1,

r—1

_ZBT,Z = AT + Z AT—SBS,O 4.12

s=1

forj=12,..,3r—2

r—1
_(i + 2)(] + 1)Br,j+2 + (2] - zn)Br,j + iBr—l,j—3 =4, + Ar—sBs,j
o 4.13
Where the A,term on the right hand side vanishes if j > n.
r—1
(2j —2n)B,; +iB,_1j_3 = ) A_sBsj forj=3r—13r 4.14
s=1

The perturbation series for the energy are then calculated using Mathematica and they are

listed below:
po_q 11, 465 . 39700 . 19250805 . 2944491879 ., 415
0= 27769 T 2569 T 4006 ¢ T 262144 9 4194304 Y
1075012067865
134217728
po_, 7L, 5625 , 827539 649176885 | 152513050809 . 4.6
1727769 ~ 256 4096 Y 262144 Y 4194304 Y
81681198068025
134217728 9
po_g 191 . 23475 | 5181319 5929555695 417
2707969 T 956 9 4096 Y 262144 Y
1983833350149 ;' 1480895068749675 ,,
4194304 Y 134217728 9
p_ g 371 , 62475 18657289 28547953455 418
35 /7969 T 256 9 2096 Y 262144 Y
12629014122459 = 12335622660979275
4194304 Y 134217728 9
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611 131085 49589809 95572832985 4.19

Ey=9+—00" —— 9"+ 150 9 262144 Y
52955574390579 64434150590988285
4194304 9 7 134217728 9
E5==114—%;}g2——237765g4—k109091359g6——254§ggjii345g8 4.20
169769670576429  248205956703612765
4194304 9 134217728 g
~ 1271 , 390975 , 211052539 _ 577534523475 421
Be =13+ =09 9569 Y~ 2006 9 " 262142 Y
452087065979409 _  773240779139026575
4194304 9 134217728 g

It is interesting to note that the odd terms are missing, but and the terms alternate in sign.

This is the reason why the eigenvalues are real. We show the Schrédinger equation again.

H=p?+x*+igx? 4.22

We can view ig as the perturbation parameter rather than g. Then, then the perturbed
eigenvalues and wave functions will be power series in terms of ig. Then, the odd order
terms will be imaginary. We know that when g is zero, we obtain the simple harmonic
oscillator. Comparison with the shooting method will show that the eigenvalues remain real
for small values of g as well. Thus, the eigenvalue perturbation series must be real, and so

the odd order terms must vanish.

The perturbation series contains the first 200 corrections, and as before, we convert them

into Padé approximants.
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The plots of the Padé approximants are shown below:

20

g

NN

:/

Fig 12: Padé approximant for the eigenvalues perturbation series of x> + igx’ potential for g=-5 to g=5.
For each energy level, the highest most graph corresponds to (99,101) Padé, the second highest
corresponds to (101,99) and the lowest graph corresponds to (100,100)

Note that the graphs are even with respect to g. This is because the Hamiltonian is PJ -

symmetric.

This time round, the Padé approximants are valid in a region much smaller than the previous
potential. Below is a table containing estimates for the largest g for which the Padé

approximants are valid.

g
5.0+0.5

3.5+0.5
3.0+0.5
2.5+0.5
2.5+0.5
2.0+0.5

VP WIN|R|O|D

Table 2: Approximate maximum values of g for which the Padé
approximant is valid

33



4.2 Shooting Method

Next we use the shooting method to calculate the eigenvalues. We proceed as before, but

the ratio of the first derivative of the wave function to the wave function is:

2x(x? — E) + 3g%x°®
4[(x* — E)* + g°x°]

Also, because the wave functions do not have parity, we have to integrate (4.2) from -10 to

Y'(-10) = - + ((x2—E)? + gzxﬁ)% 4.23

10 and see if the wave function vanishes at x = 10. The eigenvalues found are plotted

below.
40 oooo‘....
30 0.... 00....... eo0?®
E .0.. ..0'... ..o'oooo"'..
20 .'. .... .0.0'.... ...o"oooooo""'
10 :o':oo o°® ...oo.ooooooooo....

LI LILE A Ad dddddhbh AR A R

1 2 3 4 5

Fig 13: Eigenvalues of x> + igx’ potential obtained using the shooting method for the first six
energy levels
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We then compare this with the Padé approximants.

E

Fig 14: Comparison of the eigenvalues of x> + igx’ potential obtained using perturbation theory
and the shooting method for the first six energy levels. The lines are obtained by using
perturbation theory while the “X’ are obtained by using the shooting method. Since the
perturbation series is even in g, we show the part for the non-negative values of g

We see that the results obtained from perturbation theory and the shooting method match
up. In fact, when the Padé approximants for each energy level split up, the values obtained
from the shooting method seem to be the average of them. We conclude that the two

methods agree very well with each other.

4.3 Shooting on the Complex Plane

Since (4.2) is a complex differential equation, we can try to shoot it on the complex plane.

This is known as an analytic continuation of an eigenvalue problem, and it is discussed in [8].
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First, we have to determine the region for which we can do the shooting. We do this by

examining the WKB approximation.

For large values of x, we get

— F ~jgx3
V—E~igx 4.24
Then,
A X [T
lpWKB (x) — —leij‘ igx"3dxr
(igx3)s 4.25

Where A is a constant. Next, we find the roots in the expression.

391‘[

Jigx3 —\/—rzel(Z ) 4.26

1 3 .36 W
(lgx3)4' — g4r4el(4 8) 427

Since we are working with the differential equation on the complex plane, let us use the

letter “z” instead of “x”. The wave function becomes
A 205 5T D
Y(r, wie =13 3, m¢ 572Vg 498
girae'@o*y) :

There are two wave functions we can use. Let us stick to the wave function with the minus
sign in from of the S factor. Now, to obtain a solution that vanishes at infinity, we need the

real part of the exponent to be negative, so the cosine term must be positive. So, we get the

following inequality.

T mw 50 ®w
—— <-4 —=—<=
24 2 2 4.29
3w T
—— <0< —
10 10 4.30

So, for Re(z) = 0, we need to integrate within this wedge. Let us integrate along the middle

of the wedge, so 6 = —1”—0. For the Re(z) < 0 region, we integrate along a path that is the
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. . . . . . 9
reflection of the first path about the imaginary axis, so we integrate along 8 = —1—7;. Below

we have a figure that shows the wedge and the integration path. Note that in principle, we
do not require the entire integration path to be in those wedges. As long as the integration
paths are within the wedges as |x| = oo, the boundary conditions are satisfied. For
simplicity, however, we choose the integration paths to be straight lines, and we pick the
lines to be in the middle of the Stokes wedges. That is because in the middle of the wedge,

§+ ? = 0, and the real part of the exponent in (4.28) will have its largest magnitude, and

thus the wave function will decrease fastest along the middle of the Stokes wedge.

Im(z)

11n
10

o
10

Vs
10

Fig 15: The red lines depict the boundary of wedges while the blue lines are our path of
integrations. The symmetry about the imaginary axis is equivalent to P7 symmetry.

The differential equation (4.2) becomes a differential equation for the variable r, since the

angle 0 is fixed. (4.2) leads to the following equation:

2
e

W(r) +[E = (r%e?¥ + igr3e3¥)|p(r) = 0 4.31
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Now, the boundary conditions at ¢(r = 10) is given by differentiating (4.28) with respect to
r, and dividing by (4.28). By setting ¥, x5 (10) = 1, we obtain

7 3 (50
o) wkp = _Ei \/§r291< 2 4) 4.32

Now, we want the wave functions integrated on both halves of the complex plane to match
at the origin. Since they will have different normalisation factors, we cannot simply equate

them and their derivatives at the origin. In fact,

. (07) = NipR(0%) 4.33
Where we have divided the normalisation constant for y;. Here, N is the ratio of their

normalisation constants.

Let Yz be the wave function on the right half-plane obtained numerically, and let Yz be the

wave function on the right that has the correct factor such that it will match ;. So,

Yr = Nig 4.34

Y.L(2) = Yr(2) 4.35

Then, we get

dy, (z) _ dyr(2)

4.36
dZL dZR

Let z, = re'®L, zp = re'®”, where 6, = —j—’g, Og = —f—o.
Then, (4.39) becomes

¢/ (r) = 'O/ (r) 4.37
Where (z) = ¢(r). We can then obtain the following boundary condition.

$L(07) _ _tam §(0") 438

¢.(07) ¢ (0%)

This will be a boundary condition that the numerically calculated wave functions need to

satisfy.

The numerically calculated eigenvalues obtained by shooting off the real axis on the

complex plane are shown below.
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Fig 16: Eigenvalues of x* + igx’ potential obtained using the shooting method on the complex plane for
the first six energy levels
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Now, we compare this with our previous result that was done by doing the shooting on the

real line.

35t

30 ¢ E@@@

10

: CEEDRRRERRRRRRR
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RRBDD i
QREPRER

@@@E@E@@E@Q@@@@E@@E@@E@@E@@E@E@@@@E@DE@@@@DD@

| 1 2 3 4 s 8

Fig 17: Comparison of the eigenvalues of x* + igx’ potential obtained using the shooting method for the
first six energy levels on both the real line and on the complex plane. The “X” are the results obtained by
complex shooting while the “O” are obtained by shooting on the real line
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From the figure, we can see that the eigenvalues obtained using both shooting methods
match up. Therefore, the shooting performed on the complex plane is valid. The reason for
this is that referring to figure 10, we see that both paths of integration (the real axis and the
one off the real axis) lie in the same wedge. Thus, both eigenvalue problems are actually the

same and yield the same eigenvalues.
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5. The Complex Quintic Perturbation

Now we take a look at the following Hamiltonian.

H=p*+2x%—igx® 5.1

The resulting differential equation is

d2
- 2 _ g 5 =
< T2 +x°—igx >1/}(x) EY(x) 5.2
5.1 Perturbation Theory

Proceeding as before, we obtain the following recursion relations:

r—1
—U+1xp+mBmﬁf+Qj—m@&U=AJ%J+25AF¢gj forj=01234 53
s=1

Where the first term on the left hand side vanishes if j > 5r + n — 2. The first term on the

right hand side vanishes if j > n. The second recursion relation is

r—1
_(j + 1)(] + 2)Br,j+2 + (2] - 2n)Br,j + iBr—l,j—S = ArBO,j + Ar—sBs,j 5.4
s=1 '
forj=5,..5r+n—-2nz=2)

Where the first term on the right hand side vanishes if j > n. Lastly, we have

r—1
(2j = 2n)B,; +iBr_1j_5 = ZAr_SBSJ- forj=5r+n—-15r+n 5.5
s=1

Where the second term on the left hand side vanishes if j < 5.

The perturbation series is found to be

o1, M9 , 1723025 , 928230645  21855598127812155 56
0= 2T 6x I 10224 9 512 Y 4194304 g
4241564049337820159267

134217728 g
3004018902075901935125903275

8589934592 g

10

12_|_
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5769 55978965 1726220827845

_ 2 _ 4
Ey=3+—19 Toz¢ 97 16384 Y
1837895347604862315

4194304 g
458431674897151341746757

134217728 9
391801242823109228668877930115

8589934592

. 5.7

8

12+

g

31529 , 725013275 , 42510385518555 5.8
Er=5+—7—9"~ g+ 1 g

6384
71767789598896864725

4194304 9
24655643588409939496522577

134217728 g
26384964228947106683981642362325

8589934592

10

12+

g

g _ 5, 107969 , 5205697735 , 282306040675335 59
37 62 Y 1024 Y 8192 g
1567714101856010790885

4194304 g
| 791759677111410484076413007

134217728 g
1128084691762456704445372850663485 ,

8589934592 g

8

10

p_ g, 280449 25235008425 , 2377372219113645 510
4= 6 Y 1024 Y 8192 g
21359860254281050296795

4194304 g
, 16207151201898596347173667767

134217728 g
32149763011375712936070920485812675

8589934592

8

12+

g

609449 93231879125 , 28601440784556615 5.11
Bs=U+——9 ~ oz 9 g

16384
200216154841372798637355

4194304 g
, 225840319621430069032895577017

134217728 g
632549400791770673710109583962926475 ,,

8589934592 g
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1170569 283146505915 133628320215875145 5.12

_ 2 _ 4 6
Be=13+—1—9 1024 9 7 16384 g
1398864670178387598951765
4194304 g
, 2288662888169943342181246321757
134217728 g
8986703952907557149120813849459267965 .,
8589934592 9
g 1c 4 2054529 , 742540303575 ,  128520562454221545 513
7= 6 Y 1024 Y 4096 g
7745541107720770702937925
4194304 g
, 17868163738567451505920505568827
134217728 g
96690377195646878693313896616035860725 ,
8589934592 g
g _ 1y, 3367169 1738356714185 ,424330022970404655 514
8= 62 Y 1024 9 4096 9
35587150351275771284507835
4194304 g
, 112617580767088329163325095370507
134217728 g
822819631183036157876537275104276397835 ,
8589934592 g
p 19, 5229449 , 3718893468325 , 4955782430315884065 515
9= 6a Y 1024 9 16384 9
140446955069497643689501995
4194304 g
, 594570628580589313989104841577517
134217728 g
5745775133536442556329171158155664343875 |,
8589934592 g
g _gq J777449 7394461699275 , 13083803358884155215 516
10 = 6t Y 1024 9 16384 g
488798454990011628629678805
4194304 9
, 2706944439546788172543459383671017
134217728 9
33935025498709731356768785878597075191925 .,
8589934592 g
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11162369 13839224510615 15882559041092908785 5.17

_ 2 _ 4 6
En=23+—g—9 1024 g+ 8192 9

1530960584588160841637164965

4194304 9

, 10874003177007759482999783510188007
134217728 9
173734132470095764699701088337800256797565 .,
8589934592 g

The Padé approximants are then calculated and plotted in the figure below.

20

15

10

O I | I | I | I | I |
0.0 0.1 02 03 04 0.5
Fig 18: Padé approximant for the eigenvalues perturbation series of x* — igx” potential for g=0 to
g=0.5. For each energy level, the highest most graph corresponds to (99,101) Padé, the second
highest corresponds to (101,99) and the lowest graph corresponds to (100,100).

g

Note that the region for which the Padé approximants are valid is much smaller than the
previous Hamiltonians. An estimate for the maximum value of g for which the Padé

approximants are valid is shown below.
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g
0.1+0.04

0.06+0.02
0.04+0.02
0.04+0.02
0.04+0.02
5 | 0.02+0.02

AlWIN|FLR|O|D

Table 2: Maximum values of g for which the Padé approximant is valid

We also computed the perturbation series to the 400™ correction and then calculated the
(201,199), (200,200) and (199,201) Padé to see the improvement gained from the extra 200

terms. We plot the results below. This time round we calculated up to the 11" excited state.

E

35
30
25
20
15

5?

1 1 1

e

1 1 1 1 1 1

1 1 1 L 1 I I | I I | g
0.05 0.10 0.15 0.20
Fig 19: Padé approximant for the eigenvalues perturbation series of x* — igx’ potential for g=0 to
g=0.2. For each energy level, the highest most graph corresponds to (199,201) Padé, the second
highest corresponds to (201,199) and the lowest graph corresponds to (200,200).
If we compare the values of g for which the Padé approximant is valid, we note that there is
very little improvement over the Padé series calculated from 201 terms. This shows that
perturbation theory has a limitation of being valid for only small values of the perturbation

parameter in this instance. Its validity has to be cross checked with other methods like the

shooting method.
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5.2 Shooting Method

5.2.1 Shooting on the real axis

As before, we first perform shooting on the real axis. The eigenvalues obtained by shooting

on the real axis are plotted below. We can use (4.37) to obtain the boundary condition at

the origin
91000 __ r(0%) 13
¢.(07) Pr(0%)
Here, O = —m, 6, = 0.
10} ° o.o... “...-'“uono»u““'"““
L4 ° ..o“.'..
L ..0 .““”““...u.
. o000°°
o. .p'"“....
8 ° ....'.0...
o. o o.’...
6+ ...' o
4 ......00 0000 :
coeee0e®®®
1¢Oouo" “.“..’”
2 L
02 04 06 08 1.0 12 &

Fig 20: Eigenvalues of x> — igx’ potential obtained using the shooting method on the real
line up to E=10

5.2.2 Shooting off the real axis

Now, we try to perform numerical shooting off the real axis in the same way we did for the
complex cubic perturbation. Let us first calculate the wedge for which the wave function

goes to zero at infinity. If we repeat the calculations as in section 4.3, we get

<0<
14— — 14 5.19
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3T 11w

Let us integrate along the middle of the wedge, so 0z = =0

The boundary condition at “infinity” is given by

oo _ > i(2-5).3 5.20
¢(T—i10)——a+\/§e 12 .

While the boundary condition at the origin is given by
- iarr B’ (0F
¢1(07) _ e_% $r(07) 591

$.,(07) (Ee(oﬂ

The Stokes Wedges together with the integration paths are shown below.

Im(x)

Re(x)

Fig 21: Stokes Wedges for —igx®. The dashed lines are the integration paths while the full lines are
the boundaries of the wedges
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The eigenvalues obtained are plotted in a graph below.
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Fig 22: Eigenvalues of x* — igx’ potential obtained using the shooting method on the

complex plane up to E=10

5.2.3 Comparison of the eigenvalues obtained using different methods

Let us first compare the shooting on the real axis with the results from perturbation theory.
We shall focus on the 0 < g < 0.2 region, since we are interested in the region where both

results agree. This time round, we calculate the perturbation series to the 400™ correction.
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0.05 0.10 0.15 020 8

Fig 23: Eigenvalues of x* — igx’ potential obtained using the shooting method on the real line
compared with those obtained using perturbation theory. The lines are the Padé approximants
while the “O” are obtained using the shooting method on the real line.

Note that the results match very closely for small values of g. We shall next compare the

two graphs obtained via the shooting method with the perturbation theory results.
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Fig 24: Comparison of Eigenvalues of x* — igx’ potential obtained using the shooting method on the real line
and on the complex plane and with Perturbation theory. The straight line is the Padé approximant, the “O”
are the results obtained by shooting on the real line and the “+” are the results obtained by shooting on the
complex plane.
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Unlike the results obtained by shooting on the real axis, the eigenvalues obtained by
shooting on the complex plane do not match the perturbation results at all. In fact, we see
that the behaviour of the eigenvalues from the complex shooting is very different from the
real shooting and the perturbation results. This is because by choosing to do the shooting
along different paths, we have imposed different boundary conditions on the differential
equation, and are hence studying different eigenvalue problems. The reason why the Padé

approximation does not match the results obtained by doing the shooting on the complex

x2

plane is because the perturbed wave function contains an exponential term e 2, but when

we derive the wedge for which the wave function will vanish, we find that the wave function

will have an real exponential term of e“éﬁr%cos(@_%. Thus, the wave function obtained by
shooting off the real axis and the wave function obtained using perturbation theory decay at
different rates, thus perturbation theory does not agree with the results obtained from the
shooting performed off the real line. The perturbation results do agree with the eigenvalues
obtained by doing the shooting on the real line because when doing perturbation theory,
only real numbers were involved so the analysis is essentially restricted to the real line,

hence it matched up with the eigenvalues obtained by doing the shooting on the real axis.

We also do the shooting on the complex plane for small g (i.e. on a logarithmic scale). The

result is shown below.
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Fig 25: Eigenvalues of x” — igx’ potential obtained using the shooting method off the real line
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We note that this graph corresponds to the one that Smilga got, and we have done the
shooting method for higher energy levels as well. At certain values of g, the eigenvalues
cease to be real, and they become complex instead. We can see the ground state and the
first excited state merging, for example. The second excited state tends to the ground state
energy, which matches up with Smilga’s observation. The third and fourth excited states

also merge, while the fifth excited state tends to the energy level of the first excited state.

Next, we do a trick to extend our result for the shooting off the real axis further. Suppose

we have a potential with a quintic perturbation.
d2
<_W + kx™ — igx5> P(x) = E;p(x) 5.22

Here, k is just a constant, and n is a positive integer. We divide by g to obtain

1d% kN Eg
—EE'F(EX — X )lp:?lp(.?() 5.23

Then, we make the substitution x = ay, where a is a constant. We then obtain

1 d2¢+ ka®> o\ Eg 5 24
ga’ dy? g 7 Y lp_gasw '

1

Seta = g 7.Then, we get

d*y _nt2 s _2
—d—yz+<kg 7yt =1y )zszgg 7P 5.25

n+2 2 2
Next, callA =g 7, E; = E;g 7 = E;jAn+2. We end up with a Schrédinger equation where
the coupling constant is attached to the other term instead.
d%y

g + (kAy™ — iy*)y = Exp 5.26

We can then perform the shooting method on this differential equation and convert the

7 2
eigenvalues by g = A n+2, E; = E)A n+2. Notice that the two coupling constant g and A are

reciprocals of each other. So, when we calculate eigenvalues for small values of A, we end
up with the eigenvalues for large values of g. A more comprehensive plot of the eigenvalues

is shown below.
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Fig 26: Eigenvalues of x* — igx’ potential obtained using the shooting method off the real line. The
coloured lines show the limit of the eigenvalues as g goes to infinity. Thus, we know that the
eigenvalues remain real after g = 0.074

For this potential, we know that when g = 0, we recover the harmonic oscillator so the
eigenvalues should be real when g = 0. For g > 0.1, we can see from the graph that the
eigenvalues are real. Let us refer to the eigenstates for small values of g as the small-g
eigenstates, and large-g eigenstates to refer to the eigenstates for large values of g. We also
know that for large g, the potential tends to —igx® and we obtain real eigenvalues. This is

the case of € = 3 in Bender’s review paper [1].

In the graph, we have shown three lines that are the limits of the large-g ground state, 1*
excited state and 2™ excited and we can clearly see that the large-g ground state, 1% excited
state and 2" excited tend to these limits as g becomes large. This tells us that the

eigenvalues do become real for large values of g.
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Let us take a more detailed look at the eigenvalues for smaller values of g
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Fig 27a,b,c: Eigenvalues of x> — igx’ potential for small values of g obtained using the shooting
method off the real line

The energy levels have been labelled by the large-g eigenstates, so the “0” energy level
corresponds to the ground state for the —igx® potentials. We note that for values of g
smaller than 0.074, we start to obtain complex eigenvalues. This value corresponds to the
value obtained by Smilga in [7]. Looking at the graphs, the ground state and the 1*' excited
state merge, while the 2" excited state remained real. The 3" and 4™ excited states merged
while the 5™ one remained real. The 6™ and 7™, 8" and 9™ states merged, while the 10™
states remained real. If we look at the higher energy levels, it seems like there is a pattern of
2 states merging, followed by a state that remains real, followed by another 2 states
merging, followed by a state that remains real, and then 2 consecutive pairs of energy levels
merging. However, we can see that this pattern does not last by looking at the states 22, 23,

25, 26, 28 and 29.

We note, from figure 19, that the ground state and first excited state merge at about
g = 10711, while the third and fourth excited states merge at about g = 10785, The
values of g for which some of the higher energy levels merge and become complex keeps

decreasing as the energy goes up. Here, we have two possibilities: either the values of g for
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which the eigenvalues merge goes to zero as E — o, or it tends to some lim,,_,,, inf g,. In
the first case, for any small positive value of g, at high enough energies, the eigenvalues will
be complex, and the Hamiltonian will have broken PJ -symmetry since if the Hamiltonian
shared eigenfunctions with PT then it would have real eigenvalues. In the second case, we
would have a critical point g.,;+ below which the Hamiltonian has unbroken PJ" -symmetry

but beyond which the PT -symmetry is broken.

Based on our current data, it seems like there will always be complex eigenvalues for small
non negative values of g. We would have a better clue if the higher energy levels can be
computed. Unfortunately, doing so would require an enormous amount of computational

power.

Returning to a point we made in the beginning, the value of approximately g = 0.074 is a
point where PT symmetry breaking occurs. Recall that this is a phenomenon that is also
observed in PT symmetric optics. In the last section, we shall take a look at some other
Hamiltonians that are not perturbations of the simple harmonic oscillator and try to see if

there is PT symmetry breaking.
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6. Numerical Studies of other complex potentials

In this section, we show the eigenvalues for various complex potentials. For the potentials
with the quintic term —igx>, the integration path is the same, except for the —x* — igx®
potentials, which will be explained later. For the potentials with the —igx3, the integration
path is the same as the ones in chapter 4 where we did the shooting method off the real

line.

6.1 Graphs of eigenvalues versus coupling constant for various
complex potentials

ix® —igxS

g
Fig 28: Eigenvalues of ix’ — igx’ potential obtained using the shooting method off the real line.

The blue, green and yellow dotted lines show the correct limit of the eigenvalues for large g

The spectra is entirely real. When g = 0 and g — o, we retrieve the potentials ix3 and
—igx®, which are shown to be real in Bender’s paper [3].
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—x* —igx5

Since —x*

is not much smaller than —igx® in terms of magnitude, when choosing the
integration path, we had to consider the wedge for —x*. We chose the integration path to
be in the middle of the overlap between the wedges for —x* and —igx®. The integration

path is shown below.

Im(x)

Re(x)

Fig 29: The red lines show the wedge for —x* while the blue lines show the wedge for —igx®. The green
lines are the integration paths. Notice how the —igx> wedge is closer to the imaginary axis then the —x*
wedge.
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Fig 30: Eigenvalues of —x* — igx’ potential obtained using the shooting method off the real line.

The purple, blue and green lines show the correct limit of the eigenvalues for large g

When g = 0, we obtain the —x* which was shown to have real eigenvalues by Bender in
[3]. This potential has an entirely real spectrum. The first four eigenvalues when g = 0 are
1.47, 6.0, 11.8, 18.45, which are in agreement with Bender’s result.
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Fig 31: Eigenvalues of ix — igx’ potential obtained using the shooting method off the real line.
The blue, green and yellow dotted lines show the correct limits of the eigenvalues for large g.
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Fig 32: Eigenvalues of —x” — igx’ potential obtained using the shooting method off the real line.

The blue, green and yellow dotted lines lines show the correct limit of the eigenvalues for large g
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Fig 33: Eigenvalues of x — igx’ potential obtained using the shooting method off the real line.
The blue, green and yellow dotted lines show the correct limit of the eigenvalues for large g
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Fig 34: Eigenvalues of x — igx’ potential obtained using the shooting method off the real line for

small values of g
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Fig 35: Eigenvalues of ix + igx® potential obtained using the shooting method off the real
line. The light green, brown, purple, blue, dark green and yellow dotted lines show the
correct limit of the eigenvalues for large g.
[ ‘e ot T T e 7, . "% e
. " ° ee ° ® o00 . oo °® ..' ;
s 8 ° :. o o° ° .o s : ° ¢ i' o'..
° o® o o ° .: o®
0o ° ° ® o ° .o R ¢ o. ¢ (]
. [ ] o ©® ° L] .. ° ] . :. ° .....
r o ® % o e e © ¢ ° 00®’
‘ IS ° ° * ® ¢ [ ¢ ..... oo. ‘
'. [ ]
L] . L] . ° [} . o : o © .. . ....o
: ¢ Ses o ’ :o ’ e o.l! cose®®’ soo®’
° ° . ° o ° ° ° o0®
o ° o o .OO...... 00 ®
I ° ’ ¢ ¢ lo."'.... ° oot
. ° oooc"‘.....
e00000000 000
looooooooooo.oooooooOO”'°..........
,. s [ ] :. .”“.-ﬂC
LD oooo.oolooooo............. ©000000000000000000000000000000
.....

0.001 0.002 0.005 0.010 0.020 0.050 0.100 8

Fig 36: Closer look at eigenvalues of ix + igx’ potential obtained using the shooting
method off the real line for small values of g.
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Fig 37: Eigenvalues of x + igx’ potential obtained using the shooting method off the real
line. The light green, brown, purple, blue, dark green and yellow dotted lines show the
correct limit of the eigenvalues for large g.
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Fig 38: Closer look at eigenvalues of x + igx’ potential obtained using the shooting
method off the real line for small values of g.
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6.2 Discussion

The purpose of calculating all these eigenvalues is to see if there is an explanation for PT
symmetry breaking, and hence the appearance of complex eigenvalues. Before we discuss
this further, let us make some definitions. Firstly, a Hermitian eigenvalue problem is one in
which the Hamiltonian is Hermitian, and the eigenvalue problem is defined on the real line
(i.e. an eigenvalue problem where the Stoke’s wedges contain the real axis). A PT
symmetric eigenvalue problem is one where the Hamiltonian commutes with PJ’, and the
boundary conditions are PT symmetric (i.e. the Stokes wedges are symmetric about the

imaginary axis).

Bender conjectured that the reason for PT symmetry breaking for two-dimensional

potentials is that there is a Hermitian term interacting with a PT symmetric one.

In our context, we see that the x? — igx® potential has PT symmetry breaking, and it also
has a Hermitian term x? and a PT-symmetric term —igx>. This agrees with Bender’s

conjecture, except that it is a one-dimensional system instead of a two-dimensional one.

We summarise our results in a table on the next page.
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Potential | Type of terms in potential | Boundary Behaviour of eigenvalues as g goes
Condition from 0 to infinity
x2+gx* Hermitian + Hermitian Hermitian PT symmetry unbroken
throughout
x’+igx> | Hermitian + PT symmetric | Hermitian PT symmetry unbroken
throughout
x>-igx’ Hermitian + PT symmetric | Hermitian PT symmetry unbroken
throughout
xz—igx5 Hermitian + PT symmetric | PT Symmetric Inconclusive evidence for
behaviour at small values of g—>
PT symmetry broken -> PT
symmetry unbroken
ix3—igx5 PT  symmetric PT | PT Symmetric | PT symmetry unbroken
symmetric throughout
x*ige | PT  symmetric PT | PT Symmetric | PT symmetry unbroken
symmetric throughout
ix-igx’ PT  symmetric PT | PT Symmetric | PT symmetry broken - PT
symmetric symmetry unbroken
-x%-igx’ Non-Hermitian non-PT + | PT Symmetric | PT symmetry broken - PT
PT symmetric symmetry unbroken
x-igx’ Non-Hermitian non-PT + | PT Symmetric Inconclusive evidence for
PT symmetric behaviour at small values of g—>
PT symmetry broken - PT
symmetry unbroken
ix+igx3 PT  symmetric PT | PT Symmetric | PT symmetry broken - PT
symmetric symmetry unbroken
x+igx® Non-Hermitian non-PT + | PT Symmetric Inconclusive evidence for

PT symmetric

behaviour at small values of g—>
PT symmetry broken > PT

symmetry unbroken

Table 3: Behaviour of the eigenvalues for various complex potentials
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From the table, we see that when we have a Hermitian and a PJ" symmetric term with a PT
Symmetric boundary condition (as in the case of x*-igx’), we do end up with PT symmetry
breaking, and whenever we have a PJ symmetric potential with a PJ symmetric boundary
condition (as in the case of ix*-igx’ and -x*igx’), we end up with real eigenvalues
throughout. However, we also note that having a non-Hermitian non- PJ7 symmetric term
with a PT symmetric term and a PT symmetric boundary condition might also give rise to

PT-symmetry breaking (e.g x-igx°).

From this, it seems like having a Hermitian and a PJ symmetric term does cause PT

symmetry breaking, but it is not the only possible cause.
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7. Conclusion

In this project, we have studied various complex potentials on the real axis and off it, using
perturbation theory and the shooting method to solve for the eigenvalues. The results do
agree with Bender’s conjecture that PT symmetry breaking can be caused by having a
Hermitian term and a PJ symmetric term and imposing a PJ symmetric boundary
condition. As we have seen, however, that is not the only possible scenario that gives rise to
PT symmetry breaking. This suggests the richness of the PJ symmetry breaking
phenomenon. More examples could be solved to give a better idea on the conditions that

could be the cause of PT symmetry breaking.

Another possible direction for future work could be to study two-dimensional or higher

potentials to find more examples of PT symmetry breaking.
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Appendix

In the appendix, we show some of the codes used to calculate the eigenvalues for the

Hamiltonian in chapter 5. The first code is the one used to calculate the perturbation series
of the ground state.
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Code 01: Code used for calculating the eigenvalues of the x> — igx’ potential obtained by
perturbation theory

The following code is the code used to calculate the eigenvalues by performing shooting on
the complex plane.
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Code 02: Code used for calculating the eigenvalues of the x* — igx’ potential obtained by shooting
off the real line
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