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ABSTRACT 
Graphene possesses novel mechanical, electrical, optical and thermal properties which 
make it a very viable candidate for device applications. However, being a 2D material, it 
cannot be used by itself and requires some sort of substrate for it to be applicable in 
most devices. In this thesis, we employ the use of Spectroscopic Ellipsometry to probe 
the optical conductivity (0.5-6.3eV) of graphene to study the interaction with which 
graphene has with its substrate at room temperature. We will be using 2 different 
substrates to present the substrate dependence of graphene- Strontium Titanate (SrTiO3) 
and Lanthanum Aluminate (LaAlO3). The study of the interaction at the interface will help 
better understand the suitability of the sample for device applications. 

Our results show very strong interactions between Strontium Titanate (SrTiO3) and 
graphene causing the band structure of graphene to change significantly. The results of 
the extracted graphene sheet conductivity show several new characteristics such as the 
occurrence of a new peak as well as UV transparency.  

In the case of Lanthanum Aluminate (LaAlO3) and graphene, we see a different kind of 
interaction from SrTiO3 as a substrate as we see the universal value of the sheet 
conductivity of graphene increase from 𝜋𝑒2/2ℎ to 4𝜋𝑒2/2ℎ whilst retaining its peak at 
4.6eV as in the case of free standing graphene. 

In both cases, asymmetry of the optical spectra is observed, characteristic of Fano 
resonance. The presence of the resonant excitons in both cases exhibit low lifetime, 
which if we are able to put into device applications, can tremendously improve the 
frequency and hence speed of MOSFET devices. 
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Chapter One: Introduction 
Ellipsometry is a widely used technique for thin film characterization. It is highly accurate 
due to the fact that it is self-normalizing. This means that only the intensity modulation is 
required and hence is able to avoid uncertainties coming from the fluctuations in the 
intensity of the light source. In ellipsometry, the principles are based on how the sample 
interacts with a linearly-polarized light as a probe, hence changing the p- and s-polarized 
light’s amplitude and phase giving an elliptically-polarized light as an output which will be 
measured. In this chapter, we will provide an introduction to the principles of 
electromagnetism, optics and ellipsometry so as to facilitate the reader into 
comprehending the contents in subsequent chapters. 

As a foreword, it would also be good to note that the definitions of some optical 
constants are different in optics and physics readings. Therefore, we will try to be 
consistent throughout this thesis and will be using the optics convention to define our 
optical constants.  

 

1.1. Principles of electromagnetism and optics 
 

Electromagnetic waves always travel at the speed of light, c, regardless of its 
wavelength and also obey the Maxwell’s equations. They are composed of 2 one-
dimensional transverse waves of E and B which are mutually perpendicular. For 
references, the Maxwell’s equations can be found in the appendices. 

In general, the propagation of a wave in one-dimension can be expressed in terms of a 
general wave expression at (x,t) by 

 

 𝜑 = 𝐴 exp[𝑖(𝜔𝑡 − 𝐾𝑥 + 𝛿)] ( 1.1 ) 
 

Where A is the wave amplitude, K is the propagation number, 𝜔  is the angular 
frequency and 𝛿 is the initial phase of the wave. This can be brought forward to define 
our one-dimensional waves of E and B accordingly 

  

 

 

 𝐸 = 𝐸0 exp[𝑖(𝜔𝑡 − 𝐾𝑥 + 𝛿)] ( 1.2 ) 
 𝐵 = 𝐵0 exp[𝑖(𝜔𝑡 − 𝐾𝑥 + 𝛿)] ( 1.3 ) 
 

In principle, there are 3 kinds of interactions that can occur as light is incident on a 
material surface. Light can be reflected, transmitted or absorbed by the material. Based 
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on the conservation of probability that the light which is incident on a material must go 
through either one of these interactions then gives that 

 

 𝑅 + 𝑇 + 𝛼 = 1 ( 1.4 ) 
 

Where R is the reflection coefficient, T is the transmission coefficient and α is the 
absorption coefficient. 

As light is transmitted through a transparent medium, it gets refracted (bent) at the 
surface due to a change in its speed. The degree of refraction (bending) can be 
understood from the definition of the refractive index of a medium, n.  

 

 𝑛 =
𝑐
𝑣

 ( 1.5 ) 

 

where v is the speed of light in the medium. In vaccum, n is known be approximately 1. 
The degree of refraction of light travelling from medium 1 through 2 and their refractive 
indexes, 𝑛1 and 𝑛2, are related by Snell’s law. 

 

 𝑛1 sin𝜃1 = 𝑛2 sin𝜃2 ( 1.6 ) 
 

where 𝜃1 is the angle of incidence and 𝜃2is the angle of refraction. 

More generally, in a non-transparent medium where a portion of light is absorbed by the 
medium as well, the behavior of light is better expressed by the complex refractive index, 
N.  

 

 𝑁 = 𝑛 − 𝑖𝑘 ( 1.7 ) 
 

where k (k≥0) is the extinction coefficient and is related to the absorption of light in a 
medium as will be shown in Eq. (1.10). 

By substituting Eq. (1.6) into Eq. (1.2), we see that  

 

 𝐸 = 𝐸0 exp �−
2𝜋𝑘
𝜆

𝑥� exp[𝑖 �𝜔𝑡 −
2𝜋𝑛
𝜆

𝑥 + 𝛿�] ( 1.8 ) 
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This shows that in a light-absorbing medium, the amplitude of the electric field actually 
decreases as an exponential function, exp (-2𝜋𝑘𝑥/ 𝜆). That is, as the light gets 
transmitted deeper in the 𝑥 direction into medium, its intensity decays as the light gets 
absorbed.  

 

The intensity of light is then given by 

 𝐼 = |𝐸|2 = |𝐸0|2 exp �−
4𝜋𝑘
𝜆

𝑥� ( 1.9 ) 

 

This is directly related to the Beer’s law which states that 

 

 𝐼 = 𝐼0 exp(−𝛼𝑑) ( 1.10 ) 
 

Where α is the absorption coefficient and d is the distance from the medium’s surface. 

It is easy to see that by comparing Eq. (1.8) and (1.9) that 

 

 𝛼 =
4𝜋𝑘
𝜆

 ( 1.11 ) 

 

This equation relates the absorption and extinction coefficient of a medium to be directly 
proportional to each other. If the medium is transparent, then α=k=0 and the intensity 
amplitude does not decay. That is, the light is either reflected or transmitted through. 

 

1.2. Dielectric response of a medium 
 

Considering a linear isotropic dielectric medium, the dielectric polarization of the medium 
is given as  

 

 𝑃 =  𝜀0𝜒𝐸 ( 1.12 ) 
 

Where 𝜀0 is the free-space permittivity and 𝜒 is the dielectric susceptibility.  

The electric displacement, D, is related to the dielectric polarization, P, and E by 
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 𝐷 = 𝜀0𝐸 + 𝑃 ( 1.13 ) 
 

By putting Eq. (1.11) and (1.12) together, we can hence show that 

  

 𝐷 =  𝜀0(1 + 𝜒)𝐸 ( 1.14 ) 
 
 

By definition, we also know that for a dielectric material, 

 

 𝐷 = 𝜀𝑝𝐸 ( 1.15 ) 
 

Where 𝜀𝑝 is the permittivity of the dielectric medium.  

Therefore giving us finally the relative dielectric response constant, 𝜀, of a medium to be 

 

 𝜀 =
𝜀𝑝
𝜀0

= 1 + 𝜒 = 1 +  
𝑃
𝜀0𝐸

=  𝜀1 − 𝑖𝜀2 
( 1.16 ) 

 

Where 𝜀1 and 𝜀2 are just the real and imaginary parts of the dielectric constant. 

It is also known from electromagnetism that the complex refractive index is defined to be 
related to the dielectric constant as such 

 

 𝑁2 = (𝑛 − 𝑖𝑘)2 =  𝜀 ( 1.17 ) 
 

From Eq. (1.15) and (1.16), we can then write 𝜀1 and 𝜀2 in terms of 𝑛 and 𝑘. 

 

 𝜀1 = 𝑛2 − 𝑘2 ( 1.18 ) 
 𝜀2 = 2𝑛𝑘 ( 1.19 ) 
 

Similarly, by inverting the equations, we can also write 𝑛 and 𝑘 in terms of 𝜀1 and 𝜀2. 
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𝑛 = �

𝜀1 + (𝜀12 +  𝜀22)1/2

2 �
1/2

 
( 1.20 ) 

 
𝑘 = �

−𝜀1 + (𝜀12 +  𝜀22)1/2

2 �
1/2

 
( 1.21 ) 

 

It should be noted that thus far, we have treated the dielectric as a constant. This is only 
true for the case of a monochromatic wavelength of light as the dielectric response of a 
medium actually varies as a function of the frequency of light being used, 𝜔. What we 
are interested in is the dielectric response of the material as a function of the wavelength 
of light, 𝜀(𝜔). i.e. the dielectric function. 

In the classical picture, we can model the dielectric polarization as the oscillation of 
springs. When the frequency of the incident light coincides with the natural frequency of 
the spring, we have a resonant absorption which corresponds to a peak 𝜀2. It is easy to 
understand this by looking at Eq. (1.18) where we see that the extinction coefficient and 
hence absorption coefficient is directly proportional to 𝜀2. 

 

1.3. Fresnel equations in a 2-layered medium system (01 system) 
 

In the discussion of reflection of incident light off a medium, we can consider 2 kinds of 
polarization: the p-polarization and s-polarization. In p-polarization, the electric field 
vectors oscillate in the plane of incidence, whereas for the s-polarization, they oscillate in 
the plane perpendicular to the plane of incidence. 

 

 

Figure 1.1: Reflection of p-polarized light 
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By solving the boundary conditions at the interface, such that the parallel components 
(p-polarization in this case) of the electric field and magnetic induction vectors must be 
continuous 

 

 𝐸𝑖𝑝 cos𝜃1 − 𝐸𝑟𝑝 cos𝜃1 = 𝐸𝑡𝑝 cos𝜃2 ( 1.22 ) 
 𝐵𝑖𝑝 + 𝐵𝑟𝑝 = 𝐵𝑡𝑝 ( 1.23 ) 
 

We can hence show the complex amplitude reflection coefficient and amplitude 
transmission coefficient for p-polarized light, 𝑟𝑝 and 𝑡𝑝, to be 

 

 𝑟𝑝 =
𝐸𝑟𝑝
𝐸𝑖𝑝

=  
𝑁2 cos𝜃1 − 𝑁1 cos𝜃2
𝑁2 cos𝜃1 + 𝑁1 cos𝜃2

 ( 1.24 ) 

 

𝑡𝑝 =
𝐸𝑡𝑝
𝐸𝑖𝑝

=
2𝑁1 cos𝜃1

𝑁2 cos𝜃1 + 𝑁1 cos𝜃2
 ( 1.25 ) 

 

Similarly, we can solve for the s-polarized light boundary conditions  

 

 𝐸𝑖𝑠 + 𝐸𝑟𝑠 = 𝐸𝑡𝑠 ( 1.26 ) 
 𝐵𝑟𝑠 cos𝜃1 − 𝐵𝑖𝑠 cos𝜃1 = −𝐵𝑡𝑠 cos𝜃2 ( 1.27 ) 
 

to give in the s-polarization, 

 

 𝑟𝑠 =
𝐸𝑟𝑠
𝐸𝑖𝑠

=  
𝑁1 cos𝜃1 − 𝑁2 cos𝜃2
𝑁1 cos𝜃1 + 𝑁2 cos𝜃2

 ( 1.28 ) 

 

 𝑡𝑠 =
𝐸𝑡𝑠
𝐸𝑖𝑠

=
2𝑁1 cos𝜃1

𝑁1 cos𝜃1 + 𝑁2 cos𝜃2
 ( 1.29 ) 

 

 

The four equations above, Eq. (1.24), (1.25), (1.28) and (1.29) together give the Fresnel 
equations which describe the behavior of light moving through 2 mediums with different 
complex refractive indexes. These equations can be simplified by letting N1=1 if we are 
performing an experiment in vacuum on a bulk substrate. 
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1.4. Fresnel equations in a 3-layered medium system (012 system) 
 

 

Figure 1.2: Optical model of a 3-layered medium system depicting the light’s behavior. 

  

Bringing forward the Fresnel equations in a 2-layered medium system to a 3-layered 
medium system, we can hence derive the Fresnel equations for the latter. We see that 
for an incident wave on such a system, the reflected light at the Medium 1 surface will 
meet with the light wave which had reflected at the Medium 1/2 interface, leading to an 
optical interference dependent on the phase difference between these waves. The 
phase difference between the 2 waves is given by  

  

 𝛼 =
4𝜋𝑑
𝜆

𝑁1 cos𝜃1 = 2𝛽 ( 1.30 ) 

 

where we simply used β for redefining purposes, and β is commonly known as the film 
phase thickness. The resultant secondary reflected wave after multiplying by the 
amplitude coefficients is therefore given by t01t10r12e-i2β. 

We see that in Figure 1.2, the amplitude reflection coefficient for the whole system is 
therefore a summation of the primary and secondarily reflected light waves.  
 

 𝑟012 = 𝑟01 + 𝑡01𝑡10𝑟12𝑒−𝑖2𝛽 + 𝑡01𝑡10𝑟10𝑟122𝑒−𝑖4𝛽 + 𝑡01𝑡10𝑟102𝑟123𝑒−𝑖6𝛽 … ( 1.31 ) 
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This is simply an infinite geometric series �∑ 𝑎𝑟𝑘 = 𝑎
1−𝑟

∞
𝑘=0 �  with the results of 

 
𝑟012 = 𝑟01 +

𝑡01𝑡10𝑟12𝑒−𝑖2𝛽

1 − 𝑟10𝑟12𝑒−𝑖2𝛽
=
𝑟01 +  𝑟12𝑒−𝑖2𝛽

1 + 𝑟01𝑟12𝑒−𝑖2𝛽
 

( 1.32 ) 

 

Similarly, the transmission coefficient can be given by 

 
𝑡012 =

𝑡01𝑡12𝑒−𝑖𝛽

1 + 𝑟01𝑟12𝑒−𝑖2𝛽
 

( 1.33 ) 

 

The Fresnel equations derived in 1.32 and 1.33 form the basis of a 
ambience/film/substrate system which will later aid us in our understanding of the 
mechanics of optical experiments such as ellipsometry. 

 

1.5. Principles of ellipsometry 
 

 

Figure 1.3: Simplified diagram showing measurement in ellipsometry [1] 

Ellipsometry makes use of incident light of a known polarization on a sample. Due to 
interaction at the surface/interface of the sample, the known polarization of the incident 
light then changes. The change in the polarization and amplitude reflection coefficient is 
then measured by a light detector. Usually, as it is in the case of our experiment, a 
linearly polarized light is set incident on the sample. Then, due to the interaction with the 
sample, the light undergoes a phase and amplitude change between the p- and s-
polarized light. This hence leads to an elliptically polarized light being detected at the 
output. 

There are 2 parameters which describe the output polarization (ψ,∆),  which are the 
amplitude ratio and phase difference between the output p- and s-polarized light as 
shown in Figure 1.3. The measurement of (ψ,∆) for each wavelength can then give us 
the frequency dependent (n,k) of our sample by applying the Fresnel equations. 
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𝜌 = tan𝜑 𝑒𝑖∆ =  
𝑟𝑝
𝑟𝑠

=  
�
𝐸𝑟𝑝
𝐸𝑖𝑝

�

�𝐸𝑟𝑠𝐸𝑖𝑠
�
 

 
( 1.34 ) 

 

 

It is easy to see that the ellipsometry parameters (ψ,∆)  describe the ellipticity of the 
output polarization as illustrated in Figure 1.4.  

 

Figure 1.4: The physical meaning of (ψ,∆)  [1] 

 

Ellipsometry in general uses a multitude of optical elements to help produce a known 
polarization as well as in the analysis of output polarization. Ellipsometry can be 
performed in various modes by varying the optical elements present in the experimental 
set up. For example, a polarizer may be placed at 450 just after the light source to 
produce a linear polarization, and a retarder just after to induce a phase difference 
between the p- and s-polarized light hence converting the linear polarization to a circular 
polarized light incident on the sample. In the rotating analyzer mode (RAE), a rotating 
analyzer is then employed at the end to help determine the ellipticity of polarization. 

 

1.6. Jones matrix/vector 
 

To help us understand the measurements in ellipsometry, it is important to understand 
the Jones matrix which gives a mathematical description of optical measurements. This 
means that the conversion of one polarization state to another may be mathematically 
described using a Jones matrix if we know the optical elements present in the 
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experimental set up. Typically, these polarization states are expressed in what we call 
Jones vectors. 

For an electromagnetic wave travelling in the z-direction, 

 
𝐸(𝑧, 𝑡) = �

𝐸𝑥
𝐸𝑦
� 

( 1.35 ) 

 

Where Ex and Ey are given as 

 𝐸𝑥 = 𝐸𝑜𝑥𝑒𝑖𝛿𝑥 ( 1.36 ) 
 𝐸𝑦 = 𝐸𝑜𝑦𝑒𝑖𝛿𝑦 ( 1.37 ) 
 

And the light intensity can then be computed to be 

 

 𝐼 =  𝐼𝑥 + 𝐼𝑦 = |𝐸𝑥|2 + �𝐸𝑦�
2 = 𝐸𝑥𝐸𝑥∗ + 𝐸𝑦𝐸𝑦∗ ( 1.38 ) 

 

Correspondingly, since we only take into account the relative changes in amplitude and 
phase in ellipsometry, the Jones vector is expressed by the normalized light intensity. 

 

 𝐸𝑥 = �
1
0�

   𝐸𝑦 = �
0
1�

 ( 1.39 ) 

 

And for the linearly polarized light at +45o, the Jones vector hence becomes 

 𝐸+45 =
1
√2

�
1
1�

 ( 1.40 ) 

 

Similarly, it is possible to give mathematical descriptions to right circular polarized light 
(ER) and left circular polarized light (EL) as well as elliptic polarized light (Eelliptic) 

 𝐸𝑅 =
1
√2

�
1
𝑖 �

   𝐸𝐿 =
1
√2

�
1
−𝑖�

 ( 1.41 ) 

 

 
𝐸𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 = �

sin𝜑𝑒𝑖∆

cos𝜑
� 

( 1.42 ) 
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1.6.1 Jones matrix of polarizer/analyzer 
 

A polarizer placed in front of the light source can convert unpolarized light to a linearly 
polarized light. An analyzer acts as the same function as a polarizer, except that it is 
placed in front of a light detector, and hence both of these optical elements share the 
same mathematical description/Jones matrix given below. 

 𝐴 = 𝑃 =  �
1
0

0
0�

 ( 1.43 ) 

1.6.2 Jones matrix of compensator/retarder 
 

A compensator (retarder) can be placed behind a polarizer or in front of an analyzer to 
convert linearly polarized light to a circularly polarized light, vice versa. This is possible 
because the retarder acts to generate a phase difference between the Ex and Ey vectors. 

 

 𝐶 =  �
1
0

0
𝑒−𝑖𝛿�

 ( 1.44 ) 

1.6.3 Jones matrix of an isotropic sample 
 

An isotropic sample will also change the polarization state of light and therefore may be 
represented in the form of a Jones matrix as well. 

 

 
𝑆𝑝 =  �

𝑟𝑝
0

0
𝑟𝑠
� = 𝑟𝑠 �

𝑟𝑝/𝑟𝑠
0

0
1�
≡  �

sin𝜑 𝑒𝑖∆

0
0

cos𝜑
� 

( 1.45 ) 

 

There is a proportional constant which was neglected in Eq. (1.45) since ellipsometry 
only takes into account the relative changes. 

1.7. Stokes vector/ Mueller matrix 
 

There is a limit to which how much the Jones vector can describe. The Jones vector 
cannot describe unpolarized or partial polarization states. The Stokes vectors hence and 
should be used to describe all kinds of polarization states in ellipsometry. This is 
precisely what is being measured in an ellipsometry experiment. Contrary to the Jones 
matrix which describes the optical elements in the Jones representation, the Mueller 
matrix describes the optical elements in the Stokes vector representation. 
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The Stokes vector consists of 4 parameters (S0-3) which can be expressed in terms of 
the intensities. 

 𝑆0 =  𝐼𝑥 + 𝐼𝑦 ( 1.46 ) 
 𝑆1 =  𝐼𝑥 − 𝐼𝑦  ( 1.47 ) 
 𝑆2 =  𝐼+45 − 𝐼−45 ( 1.48 ) 
 𝑆3 =  𝐼𝑅 − 𝐼𝐿 ( 1.49 ) 
 

Here, the subscripts indicate the linear polarization state of the intensities and S1-3 
represent the relative difference in light intensity between each state of polarization. 
Together, these 4 parameters then give the Stokes vector, S. 

 

 

𝑆 =  �

𝑆0
𝑆1
𝑆2
𝑆3

� 

 
( 1.50 ) 

 

In the elliptical polarization, we may express the Stokes vector using the (ψ,∆) 
coordinate system such as that illustrated in Figure 1.4 to give 

 

𝑆 =  �

1
−cos 2𝜑

sin 2𝜑 cos∆
− sin 2𝜑 cos∆

� 

 
( 1.51 ) 

 

Similarly, the effect of optical elements on the polarization state can be represented in a 
matrix form. However, since the Stokes vector is a 4x1 vector, the matrix of the optical 
elements is now a 4x4 matrix. 

1.7.1 Mueller matrix of fixed polarizer/analyzer 
 

 
𝑃 = 𝐴 =  

1
2 �

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

� 
 

( 1.52 ) 

 

1.7.2 Mueller matrix of fixed compensator 
 

 
𝐶 =  �

1 0 0 0
0 1 0 0
0 0 cos𝛿 sin𝛿
0 0 − sin𝛿 cos𝛿

� 
 

( 1.53 ) 
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1.7.3 Mueller matrix of isotropic sample 
 

 

𝑆𝑝 =  �

1 − cos 2𝜑 0 0
− cos 2𝜑 1 0 0

0 0 sin 2𝜑 cos∆ sin 2𝜑 sin∆
0 0 − sin 2𝜑 sin∆ sin 2𝜑 cos∆

� 

 
( 1.54 ) 

 

 

1.8. Data analysis in ellipsometry 
 

In ellipsometry, the determination of the sample’s optical constants is not known directly. 
The measured parameters of (ψ,∆) needs to be converted into the optical constants by 
constructing an optical model (in the case when the sample is of unknown dimensions) 
and modelling of the dielectric function. In this section, we will focus more on the 
modelling of the dielectric function since we will be performing ellipsometry under a 
known dimension sample. 

There are many different models for the dielectric function, and it is necessary to choose 
an appropriate model which is characteristic of the sample to ensure a correct fitting.   

 

1.8.1 Dielectric function model – Lorentz model 
 

The Lorentz model is a classical model which models the electric polarization between 
electrons and the nucleus in the sample as a spring. The electron is modelled to 
oscillated about the fixed atomic nucleus, since its mass is much light than the latter. 
When light is incident upon, it will induce a dielectric polarization along the spring 
direction. 

By Newton’s 2nd law, assuming the modelled spring is along the x axis, 

 
𝑚𝑒

𝑑2𝑥
𝑑𝑡2

=  −𝑚𝑒𝛤
𝑑𝑥
𝑑𝑡

− 𝑚𝑒𝜔0
2𝑥 − 𝑒𝐸0𝑒𝑖𝜔𝑡 

( 1.55 ) 

 

Where the first term comes from the viscous forces and Γ is the damping coefficient, the 
second term is the restoration force coming from Hooke’s law, and the last term comes 
from the electrostatic force. 

This 2nd order ODE can be solved by using the solution, 𝑥(𝑡) = 𝑎 𝑒𝑥𝑝(i𝜔𝑡). By 
substituting this solution into Eq. (1.55), we may then see that 
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 𝑎 =  −
𝑒𝐸0
𝑚𝑒

1
(𝜔0

2 − 𝜔2) + 𝑖𝛤𝜔
 ( 1.56 ) 

 

 

Using Eq.(1.16) and rewriting the dielectric polarization in terms of the number of 
electrons per unit volume Ne as 𝑃 =  −𝑒𝑁𝑒𝑥(𝑡) =  −𝑒𝑁𝑒𝑎 𝑒𝑥𝑝(𝑖𝜔𝑡), we then get the 
dielectric constant as 

 
𝜀 = 1 +

𝑃
𝜀0𝐸

= 1 +
𝑒2𝑁𝑒
𝜀0𝑚𝑒

1
(𝜔0

2 − 𝜔2) + 𝑖𝛤𝜔
 

( 1.57 ) 

 

And by further separating the real and imaginary parts, 

 
𝜀1 = 1 +

𝑒2𝑁𝑒
𝜀0𝑚𝑒

(𝜔0
2 − 𝜔2)

(𝜔0
2 − 𝜔2)2 + 𝛤2𝜔2 = 1 + 𝜔𝑝2

(𝜔0
2 − 𝜔2)

(𝜔0
2 − 𝜔2)2 + 𝛤2𝜔2 

( 1.58 ) 

 
𝜀2 =

𝑒2𝑁𝑒
𝜀0𝑚𝑒

𝛤𝜔
(𝜔0

2 − 𝜔2)2 + 𝛤2𝜔2 = 𝜔𝑝2
𝛤𝜔

(𝜔0
2 − 𝜔2)2 + 𝛤2𝜔2 

( 1.59 ) 

 

where 𝜔𝑝 is the plasma frequency. In terms of the photon energy En, we can also re-
express Eq. (1.57) as the sum of different oscillators giving 

 
𝜀 = 1 + �

𝐴𝑗
𝐸𝑛0𝑗2 − 𝐸𝑛2 + 𝑖𝛤𝑗𝐸𝑛𝑗

 ( 1.60 ) 

 

Where 𝐴𝑗 is oscillator strength of the jth oscillator. 

1.8.2 Dielectric function model – Sellmeier and Cauchy model 
 

Depending on the sample, The Sellmeier or Cauchy model can also be used to model 
the dielectric function. The Sellmeier and Cauchy models both describe a sample/region 
where there is no absorption. i.e. 𝜀2 = 0. 

For the Cauchy model,  

 𝑛 = 𝐴 +  
𝐵
𝜆2

+
𝐶
𝜆4

+ ⋯ ,           𝑘 = 0 ( 1.61 ) 

 

Where A, B and C are just empirical constants.  
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And for the Sellmeier model, which is a further development of the Cauchy, the dielectric 
function is expressed as 

 
𝜀1 = 𝑛2 = 𝐴 + �

𝐵𝑗𝜆2

𝜆2 − 𝜆0𝑗
2𝑗

,         𝜀2 = 𝑘 = 0 
 

( 1.62 ) 

 
 

  

1.8.3 Dielectric function model – Drude model 
 

The Drude model is accounts for the free carrier contribution to the dielectric function. It 
is capable of describing light absorption characteristic of free electrons in metals and 
free carriers in semiconductors. 

The Drude model utilizes the classical equation of motion of electrons in an optical 
electric field to derive the dielectric function. Classically, this is given as 

 
𝑚
𝑑�⃑�
𝑑𝑡

+
𝑚�⃑�
𝜏

= −𝑒𝐸0𝑒𝑖𝜔𝑡 
( 1.63 ) 

 

Where 𝜏 ≡ 𝛤−1 is the relaxation time and �⃑� is the drift velocity of the carrier. 

Similar to how we solved this kind of equation for the Lorentz model, we may then obtain 
the dielectric function in the Drude model 

 
𝜀 =  𝜀∞ �1 −

𝜔𝑝2

𝜔2 − 𝑖𝜔𝛤�
 

 
( 1.64 ) 

 

Where 𝜀∞ is the high frequency dielectric constant. 

Once again, in terms of the photon energy En, we may rewrite Eq. (1.64) into 

 
𝜀 =  𝜀∞ −  

𝜀∞𝐸𝑝2

𝐸𝑛2 − 𝑖𝛤𝐸𝑛
 

( 1.65 ) 

 

1.8.4 Dielectric function model – Drude-Lorentz model 
 

Typically, we may combine the Drude and Lorentz model together to fully describe the 
dielectric functions of metals and conductive semiconductors which has a contribution 
from the free carriers as well as from bound electrons. When used together, they allow 
us to describe ellipsometric data over a large spectral range. 

 𝜀(𝐸𝑛) =  𝜀𝐹𝐶𝐴(𝐸𝑛) + 𝜀𝑏𝑜𝑢𝑛𝑑(𝐸𝑛) = 𝜀𝐷𝑟𝑢𝑑𝑒(𝐸𝑛) + 𝜀𝐿𝑜𝑟𝑒𝑛𝑡𝑧(𝐸𝑛) ( 1.66 ) 
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The free carrier absorption contribution is accounted for by the Drude model and the 
bound electrons contribution is accounted by the j Lorentz oscillators. 

 

 
𝜀(𝐸𝑛) = 𝜀∞ − �

𝑓0𝐸𝑝2

𝐸𝑛2 − 𝑖𝛤0𝐸𝑛
�+ �

𝑓𝑗𝐸𝑝2

𝐸𝑛𝑗2 − 𝐸𝑛2 + 𝑖𝛤𝑗𝐸𝑛𝑗
 

 
( 1.67 ) 

 
 

  

1.8.5 Data analysis procedure – Linear Regression Analysis  
 

Linear regression analysis is one of the standard data analysis procedures used in 
ellipsometry. A fitting error function 𝜎 is plotted against analytical parameters such as 
layer thickness or dielectric model parameters to find out the optimal parameters where 
the fitting error may be minimized. The flow chart of such a data analysis procedure is 
shown below. 

 

Figure 1.5: Flowchart of data analysis in ellipsometry adapted from [1] 

16 
 



  

An optical model of the sample is first constructed. For a bulk sample, this would be 
considered a 01 system as described in Section 1.3. For a thin film of bulk substrate, this 
would be a 012 system as described in Section 1.4. If the thickness of the sample is 
known, then it may be kept fixed, however, if it is not, then it may be used as one of the 
analytical parameters used to optimize the fitting error. A suitable dielectric function is 
then used to describe each layer. By varying the analytical parameters, the output (ψ,∆) 
spectra is then fitted against our own experimental data. After a decent fitting, the fitting 
error function may then be calculated to see if we are capable of minimizing the error 
function even more by varying the parameters. When the fitting error is minimized, or 
within acceptable limits, we are said to have then extracted the required optical 
constants and thickness of the thin film. 

The fitting error function we will be using for our data analysis will be the unbiased 
estimator or mean squared error (MSE) given by 

 
𝜎2 =

1
𝑀− 𝑃 − 1

��𝜌𝑒𝑥𝑝(𝐸)− 𝜌𝑐𝑎𝑙(𝐸)�2
𝑀

𝑗=1

 
( 1.68 ) 

 

Where M is the number of measurement points, P is the number of analytical 
parameters and  

 

1.9. The Hilbert transform - Kramers-Kronig transformation 
 

The Hilbert transform, H, arises from digital signal processing and allows us to relate the 
real and imaginary parts of a complex signal. Such a real and imaginary part is 
considered a Hilbert transform pair.   

Consider a complex signal  

 𝑧(𝜔) = 𝑥(𝜔) + 𝑖𝑦(𝜔) ( 1.69 ) 
 

Where 𝑥(𝑡) and 𝑦(𝑡) are real functions. 

From the definition of the Hilbert transform, we then get 

 

 
𝑦(𝜔) = 𝐻{𝑥(𝜔)} =

1
𝜋
𝑃�

𝑥(𝜔′)
𝜔 − 𝜔′

𝑑𝜔′
∞

−∞
 

 
( 1.70 ) 

 
 

  

 
𝑥(𝜔) = 𝐻−1{𝑦(𝜔)} = −

1
𝜋
𝑃�

𝑦(𝜔′)
𝜔 − 𝜔′

𝑑𝜔′
∞

−∞
 

 
( 1.71 ) 
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Where P is the Cauchy principal value of the integral of when 𝑢 = 𝜔. 

The real and imaginary parts of the dielectric function, 𝜀1and 𝜀2, are one of such Hilbert 
transform pairs. Such a Hilbert transform relating 𝜀1and 𝜀2 is known as the Kramers-
Kronig transformation. We understand that from Eq. (1.15), the dielectric function 
originates from a linear response function, and therefore satisfies the causality condition. 
This means that, intuitively as we already know, reflected light (or absorption) cannot 
appear before the light is incident upon the sample. 

 
𝜀1(𝜔) = 1 +

2
𝜋
𝑃�

𝜔′𝜀2(𝜔′)
𝜔′2 − 𝜔2

𝑑𝜔′
∞

0
 

 
( 1.72 ) 

 

 
𝜀2(𝜔) = −

2𝜔
𝜋
𝑃�

𝜀1(𝜔′) − 1
𝜔′2 − 𝜔2

𝑑𝜔′
∞

0
 

 
( 1.73 ) 

 

This means that once either of the functions is known for all frequencies, the other is 
immediately known through this relation. It should be noted that Sellmeier and Cauchy 
models do not satisfy the Kramers-Kronig relation because they assume that there is no 
absorption in the region. This implies that 𝜀2 = 0 for all frequencies and if we substitute 
this into Eq. (1.72), we see that 𝜀1(𝜔) gives us a constant which should not be the case. 

 

1.10. Excitons 
 

In the study of electronic band structures, we may infer insights on the interactions 
between charge carriers. One such interaction would be the electron-hole interaction. In 
the interband transition where photons are absorbed, the electron is excited from the 
valence band to the conduction band leaving behind a hole. Excitons may be formed in 
such a system where the electron and hole are bound together as a pair by their 
Coulomb interaction. Provided that the energy (e.g. thermal) is to not large, the exciton 
may continue to reside within the crystal and hence have interesting effects on the 
optical properties of the sample as we shall see. If the temperature is high enough, 
thermally excited phonons may start to collide with the excitons and provide them with 
an energy greater than their binding energy and cause the exciton to dissipate. 

In a simple physical picture, it is possible to model an exciton as a hydrogenic system 
although it should be taken note that the exciton binding energy is usually much smaller 
than that for a hydrogen atom because of the screening effects from neighboring 
electrons as well as their smaller effective mass.  
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Excitons can be classified into 2 general kinds: Wannier-Mott excitons which are free 
excitons, and Frenkel excitons which are bound excitons.  

 

Figure 1.6: The Wannier-Mott exciton (left) and Frenkel exciton (right) 

 

As Figure 1.6 illustrates, the Wannier exciton typically has a large radius (~100Å) as 
compared to the lattice spacing between atoms. This makes them delocalized states 
with a lower binding energy of about 0.01eV that are capable of moving freely about the 
crystal. Frenkel excitons on the other hand have a smaller radius (~10Å) with a higher 
binding energy of about 1eV. This radius is usually comparable to the size of the lattice 
spacing, hence making them a well localized state. 

 

1.11. Strontium Titanate (SrTiO3) 
 

Strontium Titanate has is a transition metal oxide a perovskite cubic crystal structure. 
Perovskite oxides have a chemical formula of the kind ABO3, where A and B are different 
cations. In this case, A is Strontium (Sr) and B is Titanium (Ti). Experimental findings 
show that it has a fundamental absorption edge of 3.2eV at room temperature and a 
direct band gap of 3.75eV [7]. 

It has a crystal structure as shown below with a cubic lattice constant of 3.905Å at room 
temperature [11]. There are many interesting properties regarding this material. One of it 
is that it undergoes an antiferrodistortive (AFD) phase transition at 110K [6,10]. Below 
this critical temperature, it transforms into the tetragonal structure. 
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Figure 1.7a and b: Crystal structure of SrTiO3 [6](left) and [9](right) 

 

 

Figure 1.8: Schematic diagram showing the AFD phase transition in SrTiO3 [12] 

 

This AFD phase transition can be understood by the rotation of the oxygen octahedra in 
the xy-plane as seen in Figure 1.8. Figure 1.8 is a schematic diagram of the phase 
transition looking down the (001) direction. As the octahedra in the middle rotates anti-
clockwise, the adjacent octahedra rotates clockwise. This results in an enlarged 
tetragonal unit cell as seen in the diagram. 
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Since Ti4+ is tetravalent, with 2 electrons from 3d and 4s shell each and Sr2+ is divalent 
with 2 electrons from the 5s shell, we can think of SrTiO3 being built up from SrO and 
TiO2 layers which result in a non-polar oxide. 

As seen in Figure 1.7, the oxygen ions break the atomic spherical symmetry of Sr and Ti 
ions and hence removing the five-fold degenerate d levels. 

The d orbitals may be distinguished into 2 subgroups based on their symmetry. These 2 
subgroups are known as the t2g and eg group. 

 

Figure 1.9: d orbitals separated into their 2 subgroups: t2g (above) and eg (below) [8] 

 

As seen in Figure 1.7b, for Sr ions, they are surrounded by 12 O. This means that they 
are in dodecahedral symmetry. 

Based on crystal field theory, the t2g d-orbital group of Sr interacts more heavily (through 
repulsion based on the Pauli Exclusion Principle) with the 12 surrounding O ions, 
therefore raising their energy. 
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Figure 1.10: Crystal field splitting of Sr ion in dodecahedral symmetry 

Therefore, as seen in Figure 1.10, the t2g Sr 4d-orbitals are higher in energy than eg Sr 
4d-orbitals for the Sr ions. 

As for Ti ions in Figure 1.7a, they are surrounded by 6 O giving them an octahedral 
symmetry. In this case, the eg Ti 3d-orbitals are raised with respect to the t2g Ti 3d-
orbitals instead as deducible from crystal field theory once again. 

It is also important to note that the O 2p orbitals which lie along the Cartesian axes will 
hybridize with the eg Ti 3d-orbitals since they will have a spatial overlap. i.e. a 
hybridization between O 2pz  with Ti 𝑑𝑧2  and O 2px,y with Ti 𝑑𝑥2−𝑦2. 

1.11.1. Band structure of SrTiO3 

 

Figure 1.11: Band structure of SrTiO3 calculated using LDA+G0W0 approximation by [6] 
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Figure 1.12: on-site angular momenta-projected l-DOS calculated by [6] 

 

By using the results of Figure 1.12 we can assign the conduction/valence bands in 
Figure 1.11 to their respective orbitals based on their character. These results will help 
us extend our knowledge of knowing what kind of transitions is occurring at a particular 
energy range. 

To begin the assignment of bands, Oxygen has a high electronegativity with respect to 
Strontium and Titanium, therefore we expect the Oxygen to attract most of the 3d2 and 
4s2 from Ti and 5s2 electrons from Sr. This suggests a filling of the O 2p orbitals, leading 
us to assign the valence bands (-4.7eV to 0eV) to be composed of the O 2p states which 
also weakly hybridize with the Ti 3eg states as mentioned earlier.[6] 

From Figure 1.12, we can also see that the second band of structures (3.4eV to 6eV) is 
predominantly made up of Ti 3d character. Since we know from crystal field theory that 
the 3t2g levels must be lower than the 3eg level, we can hence assign bands (21-23) to Ti 
3t2g levels.[6] 

Also with the help of Figure 1.12, we can assign to 2 lowest bands in the next band of 
structures (6-12.9eV) to the Ti 3eg levels. Also from crystal field theory, we can assign 
bands (29-31) to Sr 4t2g levels and band (26,27) to the Sr 4eg levels. Also, according to 
[10], band 28 is due to the hybridization of Sr 5s orbitals with the O 2s orbitals. 
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1.12. Lanthanum Aluminate (LaAlO3) 
 

Lanthanum Aluminate is a perovskite with a similar crystal structure to SrTiO3. As in 
Figure 1.7, the La ions now replace Sr and Al replaces Ti. Similar to SrTiO3, it undergoes 
an AFD phase transition at 813K from a cubic to the rhombohedral-central hexagonal 
structure at room temperature. (R-3C space group) [21] The phase transition can be 
visualized by the rotation of the oxygen octahedra around the (111) axis and 
compressing them along this axis. [10] The rhombohedral lattice parameters are 
a=b=5.370Å and c=13.138Å. [21] But as the distortion from a cubic structure is not much 
(0.10o), we can consider it to be a pseudo-cubic at room temperature with a lattice 
constant of 3.791Å. [10] LaAlO3 is also known to have a large band gap of (5.5-6.5eV) 
[21] 

Both La3+ and Al3+ which are trivalent contribute 3 electrons to form the covalent Al-O 
bonds. Hence we can think of the LaAlO3 crystal as (LaO)+ and (AlO2)- layers 
alternatingly stacked making it a polar oxide. [10] 

Since LaAlO3 shares the same crystal structure as SrTiO3, similar to how the Sr and Ti 
atoms were, the Al atoms are therefore at the body center of octahedral sites AlO6 and 
La atoms are 12-fold coordinated by the O atoms. 

 

1.12.1.  Band structure of LaAlO3 
 

 

Figure 1.13: Band structure of rhombohedral LaAlO3 computed by [21] 
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Figure 1.14: on-site angular momenta-projected l-DOS of rhombohedral LaAlO3 computed by [21] 

 

The band structure and l-DOS in Figure 1.13 and 1.14 were performed by [21] using the 
density functional theory (DFT) with full-potential linearized augmented plane wave (FP-
LAPW).  

Similar to what we did for SrTiO3, it is possible to study these 2 diagrams together to 
assign the bands. For the valence bands, the top of the valence bands from -9 to 0eV 
can be seen to be mainly made up of O 2p states with a mixture of Al sp and La p states. 
The O and Al sp are strongly mixed revealing a Al-O hybridization. On the other hand, 
the bottom of the conduction band (3.95-10eV) consists on mainly La 5d with La 4f 
states condensed in the region 6.2-7.2eV. 

1.13. Graphene 
 

Graphene has been extensively studied over the past decade after its discovery. It 
possesses great potential in the field of optics and electronics due to its intrinsic novel 
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properties. However, being a 2D material of monolayer thickness, it cannot be used on 
its own in electronic components. Instead, it requires some sort of a substrate onto 
which it can be placed. This hence places great emphasis on the interaction which goes 
on at the interface as it can heavily affect the properties of graphene.  

Graphene is a 2D allotrope of carbon, where carbon atoms are located in a honeycomb 
lattice structure. The carbon atoms are sp2 hybridized from the mixing of the one 2s and 
2px and 2py orbitals. This forms a trigonal planar structure (120o) centered about each 
carbon atom. The 𝜎 bond between the adjacent sp2 orbitals lies in plane between each 
carbon atom with a distance of 𝑎 = 1.42Å. The one electron per carbon atom left resides 
in the 2pz orbital which is perpendicular to the plane and may bind covalently with 
neighboring atoms to form 𝜋 bands. The lattice vectors and reciprocal lattice vectors of 
the graphene crystal structure are given in Eq. (3.1) and (3.2). [23] 

 

Figure 1.15a  and b: Crystal lattice structure of graphene (left) and its Brillouin zone(right) [23] 

 

 𝑎1��� =
𝑎
2 �

3,√3�, 𝑎2��� =
𝑎
2 �

3,−√3� ( 1.74 ) 

 

 𝑏1��� =
2𝜋
3𝑎 �

1,√3�, 𝑏2��� =
2𝜋
3𝑎 �

1,−√3� ( 1.75 ) 
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1.13.1. Band structure of Graphene 

 

Figure 1.16: Energy dispersion of π bands in the graphene BZ [26] 

 

By solving the tight-binding Hamiltonian for electrons in graphene, it is possible to derive 
the energy dispersion giving Figure 1.16. 

 𝐸±(𝑘) = ±𝑡�3 + 𝑓(𝑘) − 𝑡′𝑓(𝑘), 
 

𝑓(𝑘) = 2 cos�√3𝑘𝑦𝑎� + 4 cos�
√3
2
𝑘𝑦𝑎� cos �

3
2
𝑘𝑥𝑎� 

 
 

( 1.76 ) 

 

Where t and t’ are the nearest-neighbor and next nearest-neighbor hopping energy 
respectively. [23] 

Near the K/K’ point of the Brillouin zone, the band structure resembles a Dirac cone. At 
this point, the valence and conduction bands become degenerate and display a linear 
dispersion. Near this point, electrons start to behave as massless Dirac fermions with a 
velocity of about 108 cm/s as first shown by Wallace. [24,25] 

Another peculiar point in the band structure is the M point where there exists a saddle 
point singularity. Typically, the region 𝐾𝑀 of the Brillouin zone is where low energy 
optical experiments such as our ellipsometry experiment (0.5-6.3eV) is of particular 
interest as it is not possible to excite electrons at the 𝛤 point (band gap of about 20eV 
[27]) with this low range of energy. 
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1.13.2. Optical absorption in Graphene 
 

The electronic properties of solids are largely related to their optical constants. Optical 
absorption, for instance, comes about from intraband and interband transitions.  

In Graphene, intraband transitions dominate in the far-infrared region. [28] The intraband 
transitions are mainly due to free-carrier excitations and can be well described by the 
Drude model elaborated in Section 1.8.3. In the mid-infrared to near-infrared region, 
interband transitions start to dominate over intraband transitions. The response in this 
region is also found to be largely frequency independent and is approximated to a 
universal value defined by the fine structure constant. [26,29] In the UV range, interband 
transitions (near the M point) increases beyond this universal value and starts to display 
excitonic structures 

 

 

Figure 1.17: Schematic diagram of intraband excitation near the Dirac point [26] 

Intraband transitions are the excitation of electrons in the same band across the Fermi 
level. In Figure 1.17, we see a typical intraband transition in hole-doped graphene near 
the Dirac point. As we can see, due to the energy dispersion, the momentum of the 
electron is changed as well. However, in graphene, c/vF~300 and the photon momentum 
hence is insignificant. To conserve momentum in such excitations, the electrons hence 
need to be scattered by phonons (which are temperature dependent) or defects. [26] 

The Drude model describes intraband transitions based on the frequency dependent 
sheet conductivity 

 𝜎(𝜔) =
𝜎0

1 + 𝑖𝜔𝜏
 ( 1.77 ) 

 

 

where 𝜎0 is the dc conductivity. For massless Dirac fermions, the Drude weight, which is 
the integrated oscillator strength, is given by 𝐷 = 𝑒2𝑣𝐹√𝜋𝑛. [26,30] 
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Interband transitions on the other hand are excitations of electrons from the valence 
band to the conduction band via photon absorption. These transitions are presented as 
the blue arrows in Figure 1.18. 

 

Figure 1.18: Schematic diagram of interband excitation near the Dirac point for hole-doped Graphene 
[26] 

Under the tight-binding model, it is possible to calculate the optical sheet conductivity 
from interband transitions to give Eq. (1.78) below. [26,30]  

 
𝜎1(𝜔) =

𝜋𝑒2

4ℎ ��tanh
ℏ𝜔 + 2𝜖𝐹

4𝑘𝐵𝑇
� + �tanh

ℏ𝜔 − 2𝜖𝐹
4𝑘𝐵𝑇

�� 
 

( 1.78 ) 
 

Where 𝜖𝐹 is the Fermi energy and is assumed to be close to the chemical potential. It is 
easy to see in Eq. (1.78) that transitions with energy up to 2|𝜖𝐹| are forbidden due to the 
doping as seen in Figure 1.18.  

For T=0K, we see that the optical sheet conductivity in Eq. (1.78) then reduces to 

universal frequency independent constant given by 𝜎1(𝜔) = 𝜋𝑒2

2ℎ
. 
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Figure 1.19: Excitonic effects on the optical response of Graphene [31] 

 

Beyond the mid-infrared to near-infrared region, ab-initio GW calculations which take 
into account the band to band transitions and electron-electron interactions predict a 
symmetric peak near the M-point at 5.20eV [31] The GW calculations for graphene is 
shown in blue in Figure 1.18. The symmetry of the peak is due to the joint density of 
state (JDOS) being proportional to − log|1 − (𝜔/𝜔0)| for a 2D saddle point. [26] 

The inclusion of electron-electron interaction in GW is essential as the Density functional 
theory local density approximation (DFT-LDA) calculation for a band structure 
underestimates the band gap of a solid. This is also known as the Kohn-Sham gap 
problem. By introducing electron-electron interaction in GW, we hence widen the band 
gap by shifting the absorption peak energy to a higher energy value. This is illustrated in 
Figure 1.19 where we see the GW calculations by [16] indeed opens up the band gap of 
graphene. 
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Figure 1.20: GW and LDA calculations near the Dirac point for graphene [16] 

 

On the other hand, the Bethe-Salpeter equation (BSE) which takes into account 
electron-hole interaction by dealing with a two particle (electron-hole) correlation function, 
predicts an asymmetric peak at 4.6eV as shown in the black dotted line.  

As shown in Figure 1.19, the GW-BSE correctly identifies the reflectivity experimental 
absorption spectra with the correct saddle point energy. [26] This correction shows that 
excitonic effects are important in graphene. The excitonic effects in graphene are 
however not due to bound excitons as described in Section 1.10 as graphene does not 
have a band gap but due to a redistribution of optical transition strengths by strong 
resonant excitons. [16]. This is essentially what the Fano resonance theory is about. The 
discrete excitonic states that lie below an continuous spectrum mixes with the continuum 
states to give an asymmetry transformation in the optical transition strengths near the 
saddle point singularity, a phenomenon known as autoionization. [13,17] 

To understand further the Fano resonance, we may apply Fano line-shape analysis to 
the optical conductivity curves by [7,16,26] 

 𝜎(𝜔)
𝜎𝐺𝑊𝜔)

=
(𝑞 + 𝜀)2

1 + 𝜀2
 

( 1.79 ) 
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Where 𝜎𝐺𝑊(𝜔) is the GW sheet conductivity (without excitonic effects) and 𝜀 = (𝜔 −
𝜔𝑟𝑒𝑠)/ (𝛤

2
) where 𝜔𝑟𝑒𝑠 is the resonance energy normalized by the width 𝛤, and 𝑞2 

denotes the ratio of the strength of the electron-hole interaction to the band to band 
transitions and the sign of 𝑞 determines the asymmetry of the line shape. 

As seen in Figure 1.19, the Fano fitting in green gives a good description of the 
experimental spectrum and is very close to the GW-BSE calculations. The GW-BSE 
spectrum is slightly broader by 200meV due to the rapid decay of the resonant excitons 
which are not included in the Fano line shape analysis. [26]  

 

1.14. Motivation of this thesis 
 

In this thesis, we aim to study the substrate effects of SrTiO3 and LaAlO3 for graphene. It 
is known that the substrate onto which graphene is placed on can have effects on the 
many body interactions at the interface. In the 2 extreme cases, it was found that in 
graphene on quartz (GOQ) interfaces, the electron-electron and electron-hole interaction 
was found to dominate with similar results to free standing graphene. [32] This shows 
that there is a weak interaction between graphene and quartz. However, the electron-
hole interaction was found to be screened in graphene on copper (GOC) interfaces due 
to the electron doping as charge is transferred from the copper substrate to graphene. 
[32] We hence aim to extend the similar studies of the many body effects and the 
interplay of the electron-electron and electron-hole interactions in G/SrTiO3 and 
G/LaAlO3 interfaces. 
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Chapter Two: Experimental set-up and Simulations  
 

In this chapter, we first begin by presenting the set-up of ellipsometer used in our 
experiment. Subsequently, we will be justifying the usage of ellipsometry as the choice 
of tool in our research using simulations.  Ellipsometry, as discussed in Chapter One, is 
capable of thin film characterization, but it would be useful to compare ellipsometry with 
other thin film characterization methods to allow us to see the advantages of 
ellipsometry over the others.  

To begin so, we will start by comparing the use of ellipsometry against reflectometry 
their effectiveness as well as accuracy in computing the dielectric function of a bulk 
substrate through a series of simulations. 

2.1. Experimental Set-up 

 

Figure 2.1: Actual SE850 ellipsometer in our lab 

 

For this project, the spectroscopic ellipsometer SE850 is used to perform our experiment. 
The multi-chromatic light source is provided from 3 different light sources: near infrared 
source 0.5-1.5eV, UV-visible light 1.5-4.8eV and Deep UV 4.8-6.3eV to give us the 
broad experimental spectral range of 0.5-6.3eV. 

The ellipsometry is performed in the RAE mode to help us extract the output polarization 
and a compensator is used at the incident end to increase the accuracy of measurement 
when ∆≈ 0𝑜 or 180𝑜 where the RAE mode alone shows inaccuracy. This is because the 
use of the compensator in the RAE mode allows the measurement of the extra Stokes 
parameter 𝑆3 otherwise not possible. [1] The technical details are not shown explicitly. 
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The experiment is performed at room temperature in a non-vacuum environment and the 
samples used in our experiment are bought from Graphene Square Inc.  

Raman Spectroscopy has been performed on the samples to ensure that there is only a 
monolayer thin film (Graphene) as well as being mostly defect free. 

 

2.2. Reflectometry: Determination of bulk dielectric function 
 

Reflectometry is an optical experiment very similar to ellipsometry with the exception that 
we are now wholly interested in the reflection coefficients, disregarding the phase 
change upon the reflection of light.  

To simplify the experimental simulation calculation, we will be performing the 
reflectometry at normal incidence. However, this simple assumption here already starts 
to present a huge flaw in the sense that it is very difficult or impossible to perform such a 
normal incidence reflectometry experiment. This is because the optical path of the light 
source and the reflected light will lie on the same path. This hence produces an 
experimental set up difficulty of having the photodetector being blocked or blocking the 
light source, vice versa. To avoid this experimental set up difficulty, it is possible to 
perform the reflectometry in a near-normal incidence angle although the experimental 
results will be subjected to a slight inaccuracy if we do not take into account this slight 
angle variation. 

For this simulation, we will be performing reflectometry at normal incidence on a bulk 
substrate with a light source capable of producing energy 0-7eV. Consider Eq. (1.28), 
the rs polarization then gives us 

 

 
𝑟 =

1 − √𝜀
1 + √𝜀

=
1 − 𝑛 + 𝑖𝑘
1 + 𝑛 − 𝑖𝑘

= √𝑅𝑒𝑖𝜃 
( 2.1) 

 

Since 𝜃1and 𝜃2are both 0. 

From a known reflection coefficient, it is not possible to directly use the Kramers-Kronig 
relation of Eq. (1.72) and (1.73) to compute the dielectric function because the real and 
imaginary parts of the dielectric function depend on an unknown phase 𝜃 of the 
reflection coefficient. To solve this, we thus need to do a simple manipulation to Eq. (2.1) 
first. By taking the logarithm on both sides, 

 ln 𝑟(𝜔) = ln�𝑅(𝜔) + 𝑖𝜃(𝜔) ( 2.2) 
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From here, it is easy to then relate both sides by the Hilbert transform and hence derive 
a new Kramers-Kronig relation for the reflection coefficient and its phase. 

 
𝜃(𝜔) = −

2𝜔
𝜋
𝑃�

ln�𝑅(𝜔)
𝑥2 − 𝜔2 𝑑𝑥 + 𝜃(0)

∞

0
 

 
( 2.3) 

 

With Eq. (2.3), we will be able to obtain 𝜃(𝜔) since 𝑅(𝜔) will be experimentally available 
to us. By solving Eq. (2.1) for n and k in terms of R and 𝜃, 

 

 𝑛 =
1 − 𝑅

1 + 𝑅 + 2√𝑅 cos𝜃
  

( 2.4) 
   
 

𝑘 =
2√𝑅 sin𝜃

1 + 𝑅 + 2√𝑅 cos𝜃
 

 
( 2.5) 

   
 

We can hence compute the dielectric function with our known 𝑅(𝜔) and 𝜃(𝜔) using Eq. 
(1.18) and (1.19). 

 

2.1.1 Problems and limitations faced in the simulation 
 

It should be noted here that Eq. (2.4) and (2.5) are solved for rs polarization in the 
convention, 𝑁 = 𝑛 − 𝑖𝑘. One of the mistakes we have made in this simulation was 
forgetting to take note of the convention being used and using the wrong formulas for n 
and k to compute for the dielectric function. Additionally, we have also been misled by 
several papers which did not specify the polarization for which their n and k were derived. 
It was only when we found conflicting formulas from different sources, did we decide to 
re-derive the equations relating n and k to R and 𝜃 and hence find out wherein lies our 
problems. As an example to this, for the rp polarization under the same convention of 
𝑁 = 𝑛 − 𝑖𝑘 gives us 

   

𝑛 =
1 − 𝑅

1 + 𝑅 − 2√𝑅 cos𝜃
 

 

 
 

( 2.6) 

 
𝑘 =

−2√𝑅 sin𝜃
1 + 𝑅 − 2√𝑅 cos𝜃

 
 

( 2.7) 
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Another problem faced was the integration limits and principal value in Eq. (2.3). In Eq. 
(2.3) the integration limits is stated to be 0 to infinity for the frequency (or energy), as 
brought forward from the Hilbert transform. However, this is realistically impossible since 
we there is an experimental limitation to how much frequency (or energy) of light we can 
provide. This therefore leads to need for an assumption to be made for the reflectivity 
beyond the experimental accessible range. As we shall show later, it is important to take 
note of how important this assumption is, as any possible artefacts beyond the 
experimental accessible range is immediately covered once we make this assumption. 
The effects of this assumption shall be further discussed in the following section. 

Initially, we tried simulating a Lorentzian function reflectivity curve. However, this led to 
many problems which we had to troubleshoot. The results of simulating with a 
Lorentzian function reflectivity curve gave us an absorption curve (and hence 𝜀2) which 
was negative at some regions. This was physically impossible, and we presumed the 
problem lied in the integration with regards to the principal value. 

Several papers suggest using a slightly modified Kramers-Kronig relation which takes 
care of the principal value 

 

 
𝜃(𝜔) = −

𝜔
𝜋
�

ln𝑅(𝑥) − ln𝑅(𝜔)
𝑥2 − 𝜔2 𝑑𝑥

∞

0
 

( 2.8) 

Or equivalently, 

 
𝜃(𝜔) = −

1
2𝜋

�
𝑑
𝑑𝑥

(ln𝑅(𝑥)) ln �
𝑥 − 𝜔
𝑥 + 𝜔�

𝑑𝑥
∞

0
 

( 2.9) 

 

However, even after the application of Eq. (2.8) and (2.9), we failed to correct the 
problem of getting negative absorption at certain energy values. It was only after 
studying in depth on the Hilbert transform, did we realize that that the shape of the 
reflectivity curve cannot take the shape of a Lorentzian. i.e. such a reflectivity curve is 
unphysical in the real world. By studying the reflectivity spectra of different materials, we 
then changed the function of our reflectivity curve to a more physical and realistic 
reflectivity curve. 
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2.1.2 Reflectivity simulation I 
 

 

Figure 2.2: Simulated reflectivity spectra 

 

In our first simulation, we have a reflectometer capable of performing reflectivity up to 
7eV. To make use of the Kramers-Kronig relation, it is assumed that the reflectivity is a 
constant beyond 7eV.  

Solving the integration in Mathematica, we found 𝜃 and hence computed n and k from 
Eq. (2.6) and (2.7).  

  

Figure 2.3: Simulated results for n, the refractive index 
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Figure 2.4: Simulated results for k, the extinction coefficient 

 

 

Figure 2.5: Simulated results for the imaginary dielectric function 

 

2.1.3 Reflectivity simulation II 
 

Using the same method as above to simulate for a 2nd reflectivity experiment, however, 
this time with a reflectometer capable of performing reflectivity up to 10eV. Suppose now 
that there was a secondary peak (artefact) which was covered up previously by our 
assumption. 
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Figure 2.6: Simulated reflectivity spectra 

 

 

Figure 2.7: Simulated results for the imaginary dielectric function 

 

 

2.1.4 Comparison between both reflectivity simulations 
 

As seen in Figure 2.5 and 2.7 there are some difference between the imaginary 
dielectric peak at about 4eV. This difference worked out to be about 20%, which is a 
rather big discrepancy. This discrepancy proves that the Kramers-Kronig relation can 
lead to a big discrepancy in the experimental results obtained if the experimental range 
is not wide enough, or if an inappropriate assumption is made. In this case, the 
assumption made in Simulation I covered the secondary peak at 9eV which causes the 
integration in the Kramers-Kronig to be inaccurate. 
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2.3. Ellipsometry: Determination of bulk dielectric function 
 

For a smooth bulk substrate, it is possible to write the experimental results of (ψ,∆) 
directly into the dielectric function. Such a dielectric function is considered the pseudo-
dielectric function, 〈𝜀〉. 

For a simple 01 system, we may use Eq. (1.24) and (1.28) to show 

 

𝜌 =
𝑟𝑝
𝑟𝑠

=
sin2 𝜃𝑖 − cos𝜃𝑖 �

𝜀𝑡
𝜀𝑖
− sin2 𝜃𝑖�

1/2

sin2 𝜃𝑖 + cos𝜃𝑖 �
𝜀𝑡
𝜀𝑖
− sin2 𝜃𝑖�

1/2 

 
( 2.10) 

 

By letting 𝜀𝑖 = 1 as in vacuum and 𝜀𝑡 = 〈𝜀〉, we can obtain 

 
〈𝜀〉 = sin2 𝜃𝑖 �1 + tan2 𝜃𝑖 �

1 − 𝜌
1 + 𝜌

�
2

� 
( 2.11) 

 

Evidently, it can be seen from here that once the (ψ,∆) are known for a particular energy 
range, the pseudo-dielectric function of the bulk substrate is immediately known. 
Additionally, the results gotten from the pseudo-dielectric function is independent of the 
experimental range unlike in reflectometry and does not require any kind of extrapolation 
of results. 

It should be sufficient to see from Eq. (2.11) that the ellipsometry has clear advantages 
over reflectometry in the determination of the bulk substrate dielectric function. Although 
extending the experiments on multi-layered systems such as a thin film on bulk substrate, 
it becomes impossible to write the dielectric function in terms of the experimental 
parameters (ψ,∆) directly, the disadvantages and inaccuracy of reflectivity still remains. 
Hence, although in a multi-layered system experiment, ellipsometry requires an indirect 
way of extracting the dielectric function from (ψ,∆) , the final results still remain highly 
accurate.   
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Chapter Three: Experimental Results and Discussion 
 

In this section, we bring the experimental results of our samples using ellipsometry. 
(Energy range 0.5-6.3eV) The samples being used in our experiment are Strontium 
Titanate (SrTiO3) and Lanthanum Aluminate (LaAlO3) as substrates for Graphene. The 
sample dimensions for both SrTiO3 and LaAlO3 are 10 mm X 10 mm X 0.5 mm as the 
substrate with a monolayer film of graphene of 3.3Å thickness. As discussed in the 
earlier sections, ellipsometry is performed on the bulk substrate first followed by on the 
monolayer graphene on the respective substrate. 4 different sections in this chapter 
bring us the results obtained for bulk SrTiO3, bulk LaAlO3, G/SrTiO3 and G/SrTiO3 

respectively. All experiments are done at room temperature in a non-vacuum 
environment as mentioned in Chapter 2. 

 

3.1. Optical spectra of SrTiO3 (Results and Discussion) 
 

As mentioned in earlier chapters, ellipsometry gives us the response of reflected light 
through 2 parameters, (ψ,∆). And for the determination of a smooth bulk substrate, we 
may use Eq. (2.11) to compute the pseudo-dielectric function directly from our 
experimental data. 

Although the pseudo-dielectric function can be computed using Eq. (2.11), to extract the 
dielectric function of a multi-layered system such as Graphene on SrTiO3, we will need 
the  Drude-Lorentz dielectric model of our bulk SrTiO3 first as a supplement. We used a 
graphical program called Reffit to help us fit our experimental data and extract the 
Drude-Lorentz dielectric model of our bulk SrTiO3 data. 

Although there are many programs capable of fitting ellipsometry data, Reffit gives us 
the freedom of playing with the parameters in the Drude-Lorentz model and allow us to 
see physically how each parameter changes the output of our spectra. 

41 
 



  

 

Figure 3.1: Screenshot of Reffit program in the dielectric fitting of bulk SrTiO3 (𝜺𝟏, 𝜺𝟐) 

 

Although not shown in full in Figure 3.1, a total of 46 oscillators were required for this 
fitting of bulk SrTiO3. 

In this section, we will also be using 2 sets of calculations from [6] to help us compare 
with our experimental results. These 2 sets of calculations are done in the RPA+GW and 
BSE+GW in the Tamm-Dancoff approximation.  

In the computation of the absorption spectrum, it is important to consider many-body 
perturbation theory (MBPT) as the independent picture (IP) does not take into account 
essential responses in the medium such as screening effects or electron-hole 
interactions (such as a bound or continuum exciton). These effects can heavily change 
the optical spectra of a material and are hence of particular importance to absorption 
experiments such as ellipsometry. [6,13] Typically, the many-body exchange and 
correlation effects can be described by a nonlocal, non-Hermitian, and energy-
dependent operator called the self-energy ∑ = 𝑖𝐺𝑊. Where 𝐺 is the one-particle Green’s 
function and 𝑊 is the screen coulomb interaction. [6]  

The GW calculation takes into account band to band and electron-electron interaction. 
The Random Phase Approximation (RPA) accounts for the weakly screen coulomb 
interaction by assuming that the potential experienced by an electron is composed of 2 
components, an external potential and potential from the induced charge density. [14,15] 
On the other hand, the Bethe-Salpeter equation (BSE) takes into account electron-hole 
interaction by dealing with a two particle (electron-hole) correlation function. [6] 

In Figure 3.8, we compare the ab initio calculations from [6] with our experimental results. 
The results shown in Figure 3.2 for the RPA+GW and BSE+GW clearly show that by 
accounting for the electron-hole interaction, the structures are red-shifted and show an 
increase in amplitude. 
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Figure 3.2: Absorption spectrum of SrTiO3computed by [6] compared to our ellipsometric data of 
bulk SrTiO3 

 

From Figure 3.2, we see that the BSE+GW calculation gives a good description of the 
onset of our experimental absorption spectrum. Moreover, the peak structure positions 
at 5eV and 6.2eV are well reproduced coinciding with our experimental data although 
the intensity is strongly overestimated.  

In comparison, RPA+GW reproduces the amplitudes of the structures in our 
experimental data well but the positions are blue-shifted by about 0.8eV due to the lack 
of excitonic effect consideration.  

Although the overestimation of amplitude indicates that there is a too strong excitonic 
effect in the BSE+GW calculation, the corrected structure positions nevertheless verifies 
that excitonic effects are essential in the computation of the optical spectrum of SrTiO3. 
The amplitude of the peak can be damped by considering dynamical effects such as the 
frequency dependent 𝑊 and electron-phonon coupling effects. [6] 
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Figure 3.3a and b: RPA+GW(left) and BSE+GW(right) spectrum with the conduction bands included 
in the calculation progressively reduced to determine the roles each band play by [6] 

 

To study the roles of which each bands play, a calculation was done progressively for 
each band to band transition by [6]. Based on Figure 3.3a and b, the structure Aa and Ab 
is due to transitions involving the Ti 3t2g states (bands 21-23) only as they form almost 
the full spectra weight of the structure. As for structure Ba, based on Figure 3.3a, they 
are due to the transitions to Ti 3eg states (bands 24,25) with band 24 making up 80% of 
the spectral weight. And likewise in Figure 3.3b, the structure Bb is made up of the Ti 3eg 
states as well but each band now holds a 50% spectral weight. [6] Similarly, the 
transitions making up the structures of C and D can be determined in the same way but 
we will not be going into detail since they lie outside of the experimental range.  

This analysis demonstrates that bands 24 and 25 from the Ti 3eg states play a big role in 
the formation of the excitonic peak in B. Since structure Bb shows a strong and narrow 
exciton, it should come from a localized state. [6] By referring to the band structure of 
SrTiO3 in Figure 1.11 once again, we notice that band 24 is relatively flat and non-
dispersing in the 𝛤𝑋 direction. It is suggested in [6] that the structure Bb is hence formed 
by the transitions from bands 19 and 20 to 24 along the 𝛤𝑋 direction. 

By inferring from the analytical data provided extensively from [6], we hence conclude 
that the first structure in our experimental data at about 4.8eV is due to the transitions to 
the Ti 3t2g states (bands 21-23). For our second structure at 6.2eV, this is most likely due 
to transitions from bands 19 and 20 to 24 along the 𝛤𝑋 direction where they are less 
dispersing. The damped peaks as compared to the theoretical work of GW+BSE are due 
to dynamical effects such as the frequency dependent 𝑊 and electron-phonon coupling 
effects which were not included in the calculation. 
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3.2. Optical spectra of LaAlO3 (Results and Discussion) 
 

Using Eq. (2.11) to once again compute the pseudo-dielectric function of LaAlO3, we 
obtain the bold line dielectric function as shown in Figure 3.10. To facilitate the extraction 
of results for G/LaAlO3, we used Reffit to fit the data of bulk LaAlO3 as we did for SrTiO3. 
A total of 30 oscillators were used to fit the pseudo-dielectric function. 

 

Figure 3.4: Screenshot of Reffit program in the dielectric fitting of bulk LaAlO3 

 

In Figure 3.5, we compare our experimental results of the imaginary dielectric function 
with theoretical results computed by [21] using FP-LAPW which revealed a 6.1eV optical 
band gap.  

 
Figure 3.5: Absorption spectrum of LaAlO3 computed by [21] compared to our ellipsometric data of 

bulk LaAlO3 
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As shown in Figure 3.5, there is little to be discussed as the energy range of our 
experiment was too short. (up to 6.3eV) The calculation seem to describe well the 
absorption onset of our experimental data but due to the limitation of out experimental 
set up, we cannot study if the structures beyond 6.3eV were reproduced in our 
experimental data. Due to this experimental limitation, it is hence also not possible to 
extract the optical band gap of bulk LaAlO3 from the experimental absorption spectrum.  

By studying the l-DOS in Figure 1.14, we suggest that the absorption onset is most likely 
due to transitions from the O 2p to La 4f states. 

 

3.3. G/SrTiO3 results and Discussion 
 

The effects of graphene on SrTiO3 can drastically change the experimental parameters 
of (ψ,∆) as shown in Figure 3.6 below. Although the graphene is only of monolayer 
thickness, ellipsometry is able to detect the changes in the system regarding how the 
sample reacts to the incident light. This further demonstrates the sensitivity of 
ellipsometry to thin films and hence choice of research tool. 

 

 

Figure 3.6: Experimental data of (ψ,∆) for bulk SrTiO3 and G/ SrTiO3 system with incident angle 70o 

 

For the fitting of a G/SrTiO3 multilayered system, we used model -33 in Reffit to help us 
with the fitting. The details of the model used are omitted. The Drude-Lorentz model for 
the bulk substrate SrTiO3 has already been obtained in Section 3.1, we played with the 
2nd layer Drude-Lorentz dielectric model to obtain the computed (ψ,∆) spectra fitting of 
the G/SrTiO3 system. To increase the accuracy of our results, we used a simultaneous 
fitting of incident angles 50o

, 60o and 70o. In Figure 3.7-3.9, we show the results of our 
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fittings for a monolayer graphene of 3.3Å. Raman spectroscopy has been used to verify 
that there is only a monolayer graphene hence we kept the thickness of graphene fixed 
at about 3.3Å. The mean squared errors (MSE) calculated for the 50o

, 60o and 70o 
spectra are 0.036, 0.038 are 0.058 respectively. 

 

 

 

Figure 3.7: Simultaneous fitting of G/SrTiO3 (ψ,∆)  50o  

 

 

 

 

Figure 3.8: Simultaneous fitting of G/SrTiO3 (ψ,∆)  60o  
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Figure 3.9: Simultaneous fitting of G/SrTiO3 (ψ,∆)  70o  

 

The simultaneous fitting of G/SrTiO3 is considerably decent although there is some 
discrepancy in the ∆ for all 3 incident angles after 3.3eV. This could be due to some 
imperfections in our sample since in our fitting we assumed that the optical model of 
G/SrTiO3 to be perfectly smooth and free from impurities. In reality, this is hardly true for 
any sample. It is very difficult to fabricate a sample perfectly free from any adatoms or 
vacancies. Furthermore, as the experiment was done in a non-vacuum environment, it 
could be possible that some sort of impurity layer exists on the sample hence affecting 
our experimental data.  

Technically, it is possible to model a roughness layer in the optical model of our sample 
to take into account of this. [1] However, the fitting program which we used, Reffit, does 
not have an approach to take into account of this roughness layer.  

The results of our fitting certainly can be improved, but further studies on the sample’s 
film structure needs to be performed first. One of the disadvantages of ellipsometry is 
that if the sample has too many unknowns it may become exponentially harder to find an 
accurate extraction of the dielectric function as the analytical parameters have too wide 
of a range. Supplementary characterization techniques such as scanning electron 
microscope (SEM), transmission electron microscope (TEM), and atomic force 
microscope (AFM) can be used to help us determine a more accurate film structure first 
so we can apply a roughness layer appropriately using another fitting program. 
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Figure 3.10: Extracted sheet conductivity of Graphene on SrTiO3 (red) compared to extracted 
conductivity of Graphene on SiO2 (blue) from [33] 

 

In Figure 3.10, we show the extracted sheet conductivity for the monolayer graphene on 
SrTiO3 substrate. We compare our results in Figure 3.10 to the case of graphene (on 
SiO2). To recap, in [31] the GW calculation shows a peak at 5.2eV and the GW-BSE 
calculation red-shifts this peak down to 4.6eV due to the consideration of e-h interaction. 
This peak corresponds to the Van Hove singularity at the M point of the BZ of graphene 
band structure. In the G/SrTiO3 system however, there is large renormalization in the 
optical spectra with 2 peak structures of similar amplitude appearing at 1.7eV and 2.5eV. 
This suggests strong interaction at the interface between graphene and SrTiO3 as the 
band structure of the graphene on the SrTiO3 system has been altered.  

To further analyze and give a more detailed explanation of the interaction at the interface, 
an ab initio calculation for the composite system would be required. Since our sample is 
Graphene on SrTiO3 (001), there are possibilities of strong hybridizations between the C 
pz orbital of graphene with O pz, Sr dz

2 and Ti dz
2 orbitals, which a DFT calculated band 

structure and l-DOS spectra can probably shed light on as we had in Section 1.11.1 and 
1.12.1 for the cases of bulk SrTiO3 and LaAlO3. 

The red-shift and asymmetry of the optical spectra suggests e-h interaction present in 
the system and further investigation through the Fano line-shape analysis (Eq. 1.79) as 
described in Section 1.13.2 can be performed on the optical spectra. The parameters in 
Eq. 1.79 used to fit the optical spectra can shed light on the resonant exciton energy as 
well as its lifetime. Typically, this will also tell us the lifetime as it can be determined from 
the width of the peak based on Heisenberg’s uncertainty principle.  

Also, another key structure in the sheet conductivity obtained is that it demonstrates UV 
transparency after the 2nd peak at 2.5eV. We see that after this peak, the sheet 
conductivity quickly falls off in the UV range. 
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We see that SrTiO3 indeed has strong interaction with graphene. The extracted 
graphene sheet conductivity no longer resembles the case of free standing graphene. 
The strong interaction, which we propose could be due to strong hybridizations between 
the bands, significantly changes the optical spectra of graphene, different from the case 
of Graphene on SiO2/Si where it behaves more or less like a free standing graphene. i.e. 
negligible interaction. Some key features however, like the fall off the sheet conductivity 
to the universal value at the mid to near infrared region, remains unchanged. 
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3.4. G/LaAlO3 results and Discussion 
 

 

 

Figure 3.11: Experimental data of (ψ,∆) for bulk LaAlO3 and G/LaAlO3 system with incident angle 70o 

Here we see again considerable difference in the (ψ,∆) spectra just after adding one 
monolayer of graphene. This once again showcases the sensitivity of ellipsometry. 

Similar to what we did in Section 3.3 for the G/SrTiO3 case, we show the results of our 
simultaneous fitting of 50o

, 60o and 70o (ψ,∆) spectra in Figure 3.12-3.14 below. The 
graphene film thickness is fixed at 3.3Å as well for G/LaAlO3. A total of 23 oscillators 
were used in this fitting. 

 

Figure 3.12: Simultaneous fitting of G/LaAlO3 (ψ,∆)  50o  
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Figure 3.13: Simultaneous fitting of G/LaAlO3 (ψ,∆)  60o  

 

 

 

Figure 3.14: Simultaneous fitting of G/LaAlO3 (ψ,∆)  70o  
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To avoid any misleading of information, although it may look like the fitting for 50o and 
60o to be much worse than the case of 70o, it should be highlighted here that the y-axis 
of the graphs are of different scale. The MSE for the 50o

, 60o and 70o spectra are 0.11, 
0.17 and 0.15 respectively. 

As in the case of the G/SrTiO3 in Section 3.3, similar techniques can be used to improve 
our fitting by using supplementary experiment information to build on our knowledge of 
the film structure and hence improve our optical model. In this case, it was almost 
impossible to lift our fitting of ∆ in Figure 3.11 and 3.12 just by varying the parameters of 
our model as ascertained through trail and error. This leads to our deduction that the 
discrepancy hence must be due to some sort of roughness layer or impurities missing in 
our optical model. A similar improvement as in the case of G/SrTiO3 to the fitting can be 
done by performing supplementary experiments to better understand the film structure 
first.  

 

 

Figure 3.15: Extracted sheet conductivity of Graphene on LaAlO3 (red) compared to extracted 
conductivity of Graphene on SiO2 (blue) from [33] 

 

In Figure 3.15, we present the sheet conductivity of graphene on LaAlO3.  As seen in 
Figure 3.15, the optical spectrum has changed significantly with respect to the case of 
graphene (on SiO2/Si). Some characteristic features are unchanged though. We observe 
a peak structure at 4.6eV, similar to the case of graphene (on SiO2/Si) as shown in blue. 
However, for the case of G/LaAlO3, it was found that the optical conductivity does not 
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reduce to the universal value of 𝜋𝑒2/2ℎ in the IR region anymore. Instead, a relatively 
constant sheet conductivity of 4𝜋𝑒2/2ℎ was observed in the IR-visible region (0.5-3eV).  

In the case of free standing graphene, the linear bands near the Dirac point (0.5-1.2eV) 
are the ones that give rise to this frequency independent universal conductivity. [26] 
Therefore, now for the case of G/LaAlO3, the linear bands are expected to extend over a 
wider energy range (0.5-3eV). Secondly, since the amplitude of the frequency 
independence of sheet conductivity (and hence absorption) is higher in the 
G/LaAlO3case, we expect that this linear dispersion to be less steep than the free 
standing graphene case since a less steep dispersion allows for more absorption of 
photons.  

Also, we can expect that the Van Hove singularity at the M-point (4.6eV) to be the same 
in both cases since the peaks of both curves coincide. In both cases, this peak 
corresponds to the flat dispersion bands in the M-point. Since there is now a flat 
dispersion, more photons of the same energy can be excited and hence resulting in a 
peak in the optical spectrum. 

However like before, it is hard to give an explanation why this would happen without any 
supplementary ab initio calculations. It will be interesting to see what kind of interaction 
actually occurs between graphene and LaAlO3 in future work. The optical spectrum also 
shows hints of asymmetry, indicating the presence of resonant excitons which we will 
need Fano line-shape analysis to quantify. 

We hence see that the interaction between Graphene and LaAlO3 as a substrate is not 
as strong as in the case of Graphene on SrTiO3 where we saw huge shifts and new 
peaks appearing. In this case, we saw that some characteristic features of free standing 
graphene still remains which could be due to their relatively larger band gap as 
compared to SrTiO3. 
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3.5. Future work 
 

As mentioned in Section 3.3 and 3.4, a lot of further study needs to be performed on the 
samples to give us a more accurate picture.  

Firstly, on our part, improvements on the experimental results can be achieved. This can 
be done so by firstly taking a longer measurement in ellipsometry. If we notice the 
experimental data (for example Figure 3.13) in the IR region, it has very high noise due 
to the low intensity and hence high signal-to-noise ratio of IR photons. This noisiness 
can be reduced simply by taking a longer measurement. Also, we can improve the 
probability of impurities being present on the sample by performing the experiment in a 
vacuum environment.  

Another point we have discussed is the addition of a roughness layer in our optical 
model to make the fitting more realistic. However, the addition of such a layer is not so 
trivial as it requires a better understanding of the film structure using supplementary 
experiments such as AFM. 

Secondly, DFT band calculations and l-DOS of graphene on the composite systems can 
give us a more analytical picture and help us answer what kind of possible hybridization 
or charge transfer exist between the graphene and substrate bands there could be. As 
seen in the case of G/SrTiO3 in Section 3.3, the considerable change in the optical 
spectra suggests that the band structure of the extracted graphene layer has changed 
significantly due to the strong interaction with the SrTiO3 substrate.  

Also, we are still missing the Fano line-shape analysis on Figure 3.10 and 3.15 for 
G/SrTiO3 and G/LaAlO3. Without the Fano line-shape analysis, it is hard to give a 
physical picture of how much the resonant excitons renormalize the graphene optical 
spectra to give it an asymmetric shape. 

Finally, it will also be interesting to see the dependence of the sheet conductivity of our 
samples with regards to temperature variations. This will enlighten us on the changes in 
the Fano resonance occurring in our samples with respect to temperature, and any 
possibilities of controlling the resonant excitons for future applications might become 
clearer then. However, we can expect this to be very challenging as we will need to 
analyze the optical spectrum at each temperature individually first using the ab initio 
calculations to understand the interactions before we can put them together for 
comparison. Moreover, both SrTiO3 and LaAlO3 exhibit a phase transition (AFD) after a 
certain critical temperature which we must remember to take into account.    
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3.6. Conclusion 
 

It can be seen clearly that the substrate of which graphene is placed on can hugely 
affect the optical spectra of graphene. This is due to a strong interaction between 
graphene and the substrate from possibly hybridizations or charge transfer effects. The 
results presented in Figure 3.3 and 3.4 clearly show that graphene can have large 
interactions depending on the substrate it is placed on. Typically, larger band gaps 
substrates such as SiO2, and for our case LaAlO3, seem to have lesser interaction with 
graphene as compared to SrTiO3 as a substrate.  

On the other hand, SrTiO3 with a band gap of about (~3.2eV) perturbs the monolayer 
graphene more strongly in our experimental range. This suggests significant 
restructuring in the band structure of graphene on the SrTiO3 substrate as we see new 
peak structures appearing and red shifts in the optical spectrum. 

However, it is difficult to give a more analytical picture as for what kind of hybridization or 
coupling exists at the interfaces without supplementary data. Furthermore, the analysis 
of our optical spectra can be more detailed if we perform Fano line-shape analysis to 
give us insights on the Fano resonance present.  

The depth of the work presented in this thesis can definitely be gone into more detail 
with more supplementary data; however, we should realize that this thesis has also 
opened the door to a wide breath of future development, of which includes the 
temperature dependence of the sheet conductivity of our samples. 
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