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Abstract 

Using information theoretic arguments to constraint the linear Dirac equation, we 

derive some generalized Dirac equation. Unlike in [11], we relax the locality 

constraint. Despite the removal of locality, the generalized Dirac equations are found 

to be nonlinear and Lorentz violating.  

Modified dispersion relations are obtained from the generalized Dirac equation, we 

then apply these to neutrino oscillations. Comparing with the conventional theory, the 

modified Dirac equations have various advantages such as sensitivity to individual 

masses of neutrinos and the removal of need for neutrinos to have masses.  

In summary, we are able to generate a class of non-local, nonlinear Dirac equation 

and it can be used as a probe for quantum linearity in future experiments.  
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Chapter 1 

Introduction 

Evolution equations used in quantum theories are linear. They have led to results that 

agree well with findings from experiments and no deviations from quantum linearity 

have been found till the present [3] [9]. As a result, any deviation from linearity has to 

be small and below the accuracy of those experiments. However many nonlinear 

quantum theories have been proposed and many of them have been useful in 

describing various physical phenomena in areas like optics, condensed matter physics, 

particle physics, atomic physics and nuclear physics [1] [15]. These nonlinear 

equations that describe the various phenomena serve as effective equations.  

As mentioned in Ref. [14], a viewpoint is that quantum linearity may be related to 

space-time symmetry and hence deviation in quantum linearity will mean a 

corresponding violation of the space-time symmetry, namely Lorentz violation. At 

present, there is no experimental evidence of Lorentz violation and hence any such 

violation must be small like that of quantum nonlinearity mentioned earlier.  

Hence, we will look for such violations at high energies or at very short distances. 

The Dirac equation is a relativistic wave equation that is consistent with both quantum 

mechanics and special relativity. In this thesis, one of the main objectives is to find a 

generalized Dirac equation. The approach to doing so will be by applying information 

theoretic arguments to the Dirac equation. Information theoretic approach is also 

known as the maximum entropy principle. It is a method to infer probability 
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distributions that gives the least biased description of the state of system [14]. It has 

been used to infer probability distributions in statistical mechanics [6] [7] and also the 

Schrödinger equation in non-relativistic quantum mechanics [16]. 

Using information theoretic arguments, we wish to construct a Lagrangian of the form 

   ̅(       )      (1. 1) 
 

 

where F is an information measure term that will be minimized using the Euler-

Lagrange equation when deriving the equation of motion as required by information 

theoretic. It is a function of the wavefunction   and its adjoint  ̅. 

From here we will then proceed to apply constraints obtained from information 

theoretic arguments to   to get various possible forms of  . Similarly, we do not 

demand nonlinearity but will find that it is an unavoidable consequence of the 

information-theoretic generalization. Unlike in [11], we do not impose locality as a 

constraint. Lorentz violation is also a consequence of the constraints. These 

generalised Dirac equations are interpreted as encoding new physics of higher 

energies. The generalized equation will lead to a modified energy dispersion relation 

which we will proceed to apply it to neutrinos oscillations. We will probe how the 

new equation affects the oscillation probabilities and non-linearity in future neutrino 

oscillations experiments [12]. We also find that some models have the advantage over 

conventional theory of enabling us to find masses of individual neutrinos. 

Finally we will discuss the possible applications of the generalisation. That is the 

possibility of describing neutrino oscillations without massive neutrinos. 

The thesis is outlined as follows: In chapter 2, we will describe information-theoretic 

approach and the constraints derived from it. In chapter 3 we will discuss plane wave 
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solution and how energy dispersion relation can be obtained from the Dirac equation. 

In chapter 4 we will discuss neutrino oscillation and apply our generalized Dirac 

equation to it. In chapter 5, we will discuss the future aims of this study and also some 

of the possible applications. We will end with a summary at chapter 6.  
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Chapter 2 

Information Theoretic 

In this chapter, we will be considering how information theoretic arguments can be 

used to form generalised Dirac equations. Information-theoretic arguments, also 

called maximum entropy principle, is a method to infer probability distributions that 

gives the least biased description of the state of system1 [14]. As quantum mechanics 

is also probabilistic in nature, we hope to apply information theoretic arguments to it.  

This method has been used to derive the Schrödinger equation which is in the non-

relativistic regime [16]. The nonlinear generalization of the Schrödinger equation has 

interesting properties and applications in areas such as quantum cosmology [13]. 

Now we ask if it is possible to apply it to the relativistic regime. Instead of probability 

density and its adjoint, we will be using the wavefunction and its adjoint in our 

information measure. Starting with the linear Dirac Lagrangian, we will add a 

information measure term by considering our information theoretic argument 

constraints. We will then find out that nonlinearity is an unavoidable consequence of 

our information theoretic generalization.  

In the next section we will be looking at the constraints and their physical 

implications from information theoretic point of view. In Section (2.2) we will show 

how we construction our information measure from the constraints and that Lorentz 
                                                 
1 Refer to Ref. [10] for a concise description of information theoretic argument in statistical mechanics. 
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violation is unavoidable. In Section (2.3) we will discuss the minimization constraint 

and work through the process of doing it. In Section (2.4) we will look at the 3 

different models of the nonlinear, Lorentz violating Dirac equations. 

2.1 Constraints 

We are interested in information measure,   ∫    . Here our assumption is that   

and  ̅  in F contracts to form scalars. The information measure should satisfy the 

following conditions. 

 [C1] Homogeneity: The information measure is required to be invariant under 

the scaling  (     ̅)     (   ̅) so that the modified equation retain this 

property and is allowed to be freely normalized.  

 

 [C2] Uncertainty: As the information measure decree the amount of 

information, we require it to decrease as our wavefunction   goes towards a 

uniform distribution. A way to achieve this will be to include derivatives of  . 

Since the linear Dirac equation already contains this derivative, this seems to 

be a natural and simple solution. 

 

 [C3] Positivity: The information measure should be non-negative for generic 

 . Thus   should be real and non-negative. 
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 [C4] Minimisation: The maximum uncertainty principle requires that the 

information measure is minimum when we extremises the total action to 

obtain an equation of motion.  

Condition [C1] is satisfied by the usual linear Dirac Lagrangian, while conditions 

[C2], [C3] and [C4] are chosen to incorporate information theoretic principle.  

2.2 Construction 

As Ref [11] has already looked at information measures that satisfy the locality 

constraints, we will attempt to look for nonlocal generalizations which also 

simultaneously satisfy the other constraints. One example of such a term will be of the 

form         . Here     and   are functions constructed from the wavefunction 

and its adjoint.  In order to satisfy [C1], we require the exponent to be of the form   

 .  

Also   must be real and positive to satisfy [C3]. We can do so by using    instead of 

  , however this will lead to a violation of [C1]. Hence we will enforce [C3] by using 

   instead of  ̅  when contracting with   . Doing this will give rise to Lorentz 

violation and it cannot be avoided due to the constraints. We introduce a background 

vector field responsible for the Lorentz violation in the form  ̅     , with    

(       ) in the frame where positivity is enforced. Referring to ref. [11], such terms 

are not invariant under particle Lorentz transformation. Also, under observer Lorentz 

transformations [11], only observers who are only rotated with respect to the initial 

frame can interpret the generalized action in information-theoretic terms. Here,   and 

  will contain such a Lorentz violating term to make them positive. 
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As for [C2], it requires that   contains derivatives of the wavefunction. However as 

will be seen later, our   in this example does not contain any derivatives of the 

wavefunction and hence does not satisfy [C2]. It is to be noted that while   does not 

satisfy [C2], we do require it to be very small and thus [C2] is violated minimally.  

Other forms that satisfy our above four constraints and are nonlocal are    

  

 
       and    

  

 
      and they follow similar arguments as above. 

2.3 Minimization 

We will now proceed to look at the final constraint [C4] minimization. Note that the 

positivity constraint [C3] does not imply that [C4] is satisfied. Looking at the above 

example    
  

 
      , we consider the variation         of a Lagrangian2 

about a solution of the equation of motion. We will denote  (   ̅)   (   ̅)  

  (    ̅)        where   refers to   and  . The real parameter   keeps track of 

the order of infinitesimals and the deviation    is chosen such that P’ and Q’ are real. 

We will now find the second order derivative of the information measure term with 

respect to   and show that it is positive definite.  

   
 (   ̅) 

 (   ̅)
   

 (   ̅) 

 (   ̅) 
  

(2. 1) 

   

  
 [   

  

  
] [

 (     )  

(     )
 

(     )   

(     ) 

 
(     ) 

(     )
(
 (     )  

(     ) 
 

 (     )   

(     ) 
)] 

 

 

 

 

(2. 2) 

                                                 
2 In this variation,  ̅ is treated as a independent variable and kept fixed. 
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(2. 3) 

  

Thus we have shown that second derivative of    is always positive and thus satisfy 

[C4].  
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The same method is applied on    and we get 
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(2. 4) 

and for    
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(2. 5) 

Hence we have shown that both    and    satisfy the minimization condition [C4]. 

The detailed workings of the minimization are given in appendix B. 

2.4 Explicit Example 

In this section we will be looking at the 3 specific generalizations of the linear Dirac 

equations which satisfy the constraints [C1] to [C4]. As mentioned earlier our   will 

take the form   ̅      where    (       ), is a time-like constant background 

field resulting in our Lorentz violation.   is chosen to take the form   

[  ̅       (   ̅)   ]  . Hence our 3 models are 

     ̅(       )   ̅         
  ̅       (   ̅)   

  ̅     
 

 

(2. 6) 
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Chapter 3 

Plane-Wave Approximation and 

Modified Dispersion Relations 

In this chapter, we will find plane wave solutions to the nonlinear Dirac equations. As 

with the linear equation, we want the solution to be eigenstates of both momentum 

and energy. In Schrödinger representation of momentum  ̂      3, we have the 

expression 

 ̂         (3. 1) 

The energy-eigenvalue equation is given by 

              (3. 2) 

We look for plane-wave solutions of the form 

 (   )        ( )   (3. 3) 

where    is the four vector and we set      . 

3.1 Derivation of plane wave solutions 

As the   dependence is confined to the exponent, we have  

                                                 
3 Here  ̂ represents the 3 momentum. 
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                 (3. 4) 

Substituting it into the Dirac equation and simplifying we will get 

(      )  (       ⃗
   ⃗     

) (
  

  
)  (

(   )   (   ⃗)  

(   ⃗)   (   )  
)       

(3. 5) 

where    and   represent the upper two and lower two components respectively. 

We then obtain the expression for    and    which are given by  

   
   ⃗

   
        

   ⃗

   
     

and from substituting one to the other 

   
(   ⃗) 

     
       

(3. 6) 

Evaluating (   ⃗)  
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) 
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  (      )(      )
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   (
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(3. 7) 

Thus 

   
  

     
      (3. 8) 

Here we will get back our energy dispersion relation  

           (3. 9) 
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To get the plane wave solutions we consider four cases, letting    (
 
 
)     

(
 
 
)     (

 
 
) and    (

 
 
). We then substitute in the corresponding energy   and 

normalize the spinors. Finally we will end up with the plane wave solutions  
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(3. 10) 

with   √| |    

3.2 Explicit Modified Energy Dispersion Relation 

From our modified Dirac Lagrangian, we will apply the plane wave solution to get the 

modified energy dispersion relation. Here we will start with    and apply the Euler-

Lagrangian equation ((
  

  ̅
)    (

  

 (   ̅)
)   )  to obtain our modified energy 

dispersion relation. 

     ̅(       )   ̅         
  ̅       (   ̅)   
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(3. 11) 
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Squaring both terms we will obtain the expression 

       
  

       
  

      
   

   
    

 
 

   

   
  

  
 

   

    

         
  

      
   

      (3. 15) 

Here we require the information measure  ̅        
  ̅       (   ̅)   

  ̅     
 to be small, 

that is   is small. We also assume that the order of A is the same as m. Hence under 

this assumption we can safely ignore all higher order of A. Also we make the Taylor 

approximation for  
   

     
  

  
. Hence,  

                                                 
4           and        ̅    ̅ follows from linear Dirac equation.  

  

 ̅ 
 

 

 
 can be derived from 

plane wave solution and is shown in appendix. 
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      (  
  

  
) [       (  
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              (  
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(3. 16) 

The resulting expression         
   

  
 

  

     is our modified energy dispersion 

relation. 

The same method is applied to    and   . Below is a summary of their results.  

•   :         
   

  
 

  

    
  

(3. 17) 

•   :       
   

  
  

(3. 18) 

•   :          
   

    

(3. 19) 

The detailed derivation of the modified dispersion relation is shown in Appendix C. 
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Chapter 4 

Neutrino Oscillations 

Neutrinos are of interest as they are weakly interacting and hence are valuable probe 

of new physics. They are observed to change flavor and this phenomena is termed 

neutrino oscillation because the probability of measuring a flavor varies periodically 

when they propagates. In the conventional theory, neutrinos are assigned constant 

mass to explain for neutrino oscillation. Other theories such as a Lorentz violating 

dispersion relation do not seem to be possible explanations of the leading order effect 

[2]. 

In this chapter, we will apply our modified energy dispersion relation derived from 

the generalized Dirac equation to neutrino oscillation and determine how well it 

agrees with conventional theory and also if there are new underlying physics. We will 

investigate the effect of our modified Dirac equation in the regime of high energy as it 

was mentioned is Ref. [14] that quantum nonlinearities and Lorentz violations might 

be related. We also do not reject the possibility that the nonlinearity is an effective 

nonlinearity summarizing the unknown microscopic physics rather than a 

fundamental modification to the quantum theory.  

Before we go on to apply the modified energy dispersion relation, let us briefly go 

through the conventional theory to remind ourselves of the role of energy dispersion 

relation in calculating the probability of neutrino oscillations. 
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4.1 Conventional Theory 

In the conventional theory, neutrinos having mass means that there exists neutrino 

mass eigenstates             each with a mass   . Considering the reaction  

        ̅  , where          , what lepton mixing means is that the 

accompanying neutrino mass eigenstates is not always the same   . We can denote the 

amplitude for the   decay to produce specific combination of      ̅ by    
 . Hence 

we will end up with the expression 

  ( )  ∑    
   ( ) 

 
  (4. 1) 

where    ( )  are the neutrinos flavor eigenfunctions and   ( ) are the mass 

eigenfunctions. For two neutrino flavor oscillation, the mixing matrix is given by  

  (
        
         

)   (4. 2) 

Now we consider a neutrino flavor change as depicted in the figure below. 

 

Figure 4.1 Neutrino flavour change (oscillation) in vacuum. 'Amp' denotes amplitude [12] 
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A neutrino is created at the source with a lepton   ̅ and it travels a certain distance L 

before interacting at the detector to produce another lepton   . Hence as it propagates 

from the source to the detector, it changes from    to   . 

The amplitude of such a reaction is given by  

   (     )  ∑    
 

 
    (  )      (4. 3) 

To find     (  ), consider rest frame of   , where time in that frame is    and    

have mass   . Here by solving the Schrödinger equation we will obtain the solution  

  (  )           ( )   (4. 4) 

    (  )            (4. 5) 

Now introducing lab frame variables        and    for the distance the neutrino 

travelled, the time elapsed in lab frame, energy and momentum of the neutrinos 

respectively. Here there is no Lorentz violation and hence  

               (4. 6) 

Here we will use the energy dispersion relation to obtain 

   √     
    

  
 

  
    

(4. 7) 

Giving us the probability of flavor change  

      
(   )            (

 

 
  )    

(4. 8) 

where           and       
    

 . Maximum oscillation occurs when 

  

 
   

 

 
   (4. 9) 

After restoring the     and     we will finally get the oscillation length    given by 
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(4. 10) 

The oscillation length expressions are valid even for our modified dispersion relation 

but with    taking a different form. 

4.2 Generalized Dirac Equation in Neutrino Oscillation 

 In this section, we will be applying our three generalized Dirac equation into neutrino 

oscillation. We will first start off by briefly discussing the Lorentz violating parameter 

along with the experimental data that will be used. Then we will apply our modified 

energy dispersion relation to neutrino oscillation. The results will be compared against 

experimental data to check that they are consistent. Lastly we will interpret the results 

and compare their differences with the conventional theory. 

Here we wish to introduce a dimensionless nonlinear/Lorentz violating parameter that 

makes our equation nonlinear. From Ref. [11], we can take the size of that parameter 

  to be  

          (4. 11) 

Here we also assume that this parameter may be dependent on neutrino species and 

it’s order is approximated to be      .This parameter will be compared with the 

magnitude of the nonlinear terms in our results and they should be consistent.  

 For the experimental data used, the relevant data are 

                 (4. 12) 

            

 

(4. 13) 
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that is the mean energy of the neutrino beam will be 100 GeV. Here the     is from 

the atmospheric neutrino sector. Also we make the assumption that the order of 

magnitude of the mass of neutrino approximately equal to the root of the difference 

between the masses 

  √      (4. 14) 

4.2.1 Lagrangian 1 

Starting with   , the result we obtained earlier was         
   

  
 

  

     . 

Comparing it to the conventional energy dispersion expression,      , we can see 

that    term is removed and replaced with function of our background field  , energy 

of neutrino     and   . Here we make a hypothesis that neutrinos do not have mass, 

instead the different species of neutrinos interact differently with the background field. 

This interaction is then responsible for the phenomena of neutrino oscillation. Hence 

with this hypothesis, we will now proceed to make momentum   the subject so that it 

can be substituted into our oscillation length expression. 

        
   

  
 

  

    
      

           

  √           (4. 15) 

         (4. 16) 

Thus our new oscillation length    will be  

   
  

  
   

  

  
      

(4. 17) 

Now setting our oscillation length to be consistent with experimental results, 
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                (4. 18) 

where     is the experimentally obtained mass difference. By substituting in the 

experimental values states in (4. 12) and (4. 13) we find that 

   
        

      
                  

(4. 19) 

Consider the order of magnitude comparison with (4. 11) , we have 

    (   ) (4. 20) 

           (4. 21) 

which is only 2 order of magnitude different from (4. 11).  

Hence instead of different neutrinos species having different mass eigenstates, 

lagrangian 1 use the idea of a background field interacting differently with the 

different species to explain neutrino oscillation. The order of magnitude of the 

differences between the interactions of the field with different species of neutrinos 

agrees quite well with experimental data. 

4.2.2 Lagrangian 2 

From       
   

  
, we see that the modified energy dispersion relation is similar 

to that of the conventional theory except with the addition of a term    

  
. From    

(3.18) we note that     must be small in order for the information measure to be 

small. Hence this modified energy dispersion relation can be seen as adding a small 

nonlinear/Lorentz violating term to the conventional energy dispersion expression. 

Hence from (4. 10) 
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   (   )  
    

(4. 22) 

where   is a small change and to be determined. Now making momentum the subject 

and substituting the expression into our (4. 10) 

  √      
   

  
   

  

  
 

  

   
    

 

(4. 23) 

From here we can have two different ways of interpreting our results. In the first case 

we could let different neutrino species have the same mass but interacts differently 

with our background field  . Hence we will end up with the expression 

   
  

    
    

(4. 24) 

Here we make the assumption that    have the same order of magnitude as (   ) . 

We then substitute the known values of    and    and let         as required by 

(4. 11). Thus 

   
    

   
    

 (        ) 

             

 

  
        

                (4. 25) 

which is in good agreement with what we have found earlier. 

For the second case, we let the neutrino mass be different for each of the different 

species and the interaction with the background field be the same. Thus we will obtain 

the expression 

    
   

  
 

   

   
    

(4. 26) 
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Here we make the assumption that     (   ) . We then substitute the known 

values of     and     let         as required by (4.11). 

   
    

   
    

 (        )  
 (        ) 

  
   

       

                 (4. 27) 

Hence for both interpretation of   , the magnitude of the background field   was 

found to be       which agrees with   .  

The results can be interpreted as such. In the first case, besides having mass, the 

neutrinos interact differently with the background field. Thus the background field 

also contributes to the neutrino oscillation. In the second case, the different species of 

neutrinos have different masses just as in the conventional theory. However, apart 

from the difference in masses, there is also a small contribution due to interactions 

with the background field.  

These model derived from    have the advantage in that it is possible to find the 

individual mass of the neutrinos due to the existence of    and   terms, unlike the 

conventional theory whereby only the difference between the mass of the neutrinos 

are known.  

4.2.3 Lagrangian 3 

For   ,                
     is similar to    in that both of them have similar 

form with the conventional energy dispersion relation adding a small nonlinear/ 

Lorentz violating term. Following the steps above, we have the momentum expression 

as  
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  √     (   
   
  )    

  

  
(   

   
  ) 

   
 

  
[      

  
    

  
 

   
  

    

  
 

]   
 

(4. 28) 

and the corresponding    value is given by  

   
  

  
    

  
 

   
  

    

  
 

   
   

As this expression cannot be solved analytically, we will have to make some order of 

magnitude approximation. Like in   , we have 2 ways of interpreting the results.  

In the first case, we assume that the different species of neutrinos all have the same 

mass but interact different with the background field  , i.e      ,      . Thus 

we will end up with the expression 

    
    
    

    
           (4. 29) 

Recalling that     is small and hence   is large for   , we will end up with the 

condition that    must be very small such that  
    

    
    

        .  

Thus in summary, this case postulates that all neutrinos have the same mass and they 

interact strongly with the background field   . And also the interactions with the 

background field differ slightly for each neutrino species.   

For case two, we assume that both the mass and interaction with the background field 

varies with the neutrino species. Meaning      , and      . Thus we have 

   
  

  
    

  
 

   
  

    

  
 

   
       

 

(4. 30) 
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(4. 31) 

And since we know that   
    

              , we can see from the above 

expression that      must be very small. 

The interpretation of this case will be that different species of neutrino have different 

mass and they also interact differently with the background field. However the 

difference in the combination of the interaction divided by the mass is very small 

between the different species. 
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Chapter 5 

Future Aims 

In this chapter, we will discuss some future possible expansion of this theory along 

with some of the possible application of the models we have derived earlier. Firstly in 

our discussion above, we set four constraints and created the models based on them. 

The four constraints are namely homogeneity, uncertainty, positivity and 

minimization. For future development of this theory, we can try relaxing one of the 

constraints while adding another to obtain other models. For example, we can relax 

the constraint on homogeneity and instead require our generalized Dirac equation to 

be Lorentz invariant. Hence the final resulting model will be positive definite, 

contains derivatives, is minimum and Lorentz invariant but not invariant under the 

scaling     . 

In our discussion above, we have applied our generalized Dirac equation to two 

neutrinos case and attempted to find the scale of our Lorentz violating background 

field. A possible future extension of this project will be to apply the three models we 

obtained earlier to the case of three neutrinos. From there we can obtain more 

information of our models and compare it to the case of two neutrinos we used earlier 

and see if they agree with each other. 

Using our nonlinear Dirac equation, we have obtained a modified energy dispersion 

relation. This nonlinearity may have interesting application to study of dark matter 

and sterile neutrinos. Also at high energy nonlinearity becomes of greater significance, 
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we can attempt to apply it to baryogensis where it could be a new source of   and    

violation. However more research is to be done before we can apply it to these areas. 
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Chapter 6 

Conclusion 

In this thesis, we have obtained a nonlinear generalization of the Dirac equation. The 

approach we used was the application of information theoretic axiom to constrain our 

generalization. After applying the homogeneity, uncertainty, positivity and 

minimization constraints, the resulting generalization is found to be nonlinear and 

Lorentz violating. Using the constraints, we are able to generate various possible 

generalizations. Here we looked at three generalizations which satisfy the various 

constraints and they are non-local. 

Using the generalizations, we proceeded to derive modified energy dispersion 

relations using the plane wave solutions. The modified energy dispersions are then 

applied to neutrino oscillation to examine how the probabilities of neutrino oscillation 

changes. From there we can predict possible future modifications to neutrino 

oscillation experiments. Some of the advantages of our generalized Dirac equations 

include the possibility of massless neutrinos or the possibility of finding individual 

mass of neutrinos instead of the difference between them. 

We have also discussed the possibility of changing our information theoretic 

constraints to generate new generalizations. Applications of our generalized Dirac 

equation to various field of physics is possible. If the generalizations serve as 

fundamental equations, we can use it as a test for quantum linearity in various areas of 
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physics. If instead it is an effective equation, we can see it as a way to describe 

various physics phenomena. 
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Appendix A Notations 

Here we list some of the conventions used for the convenience of the reader. 

We work in 3+1 dimensional flat space with metric 

    (

        
      

        
        

       
       

      
      

) 

 

 

(A. 1) 

The Dirac Equation is  

(       )    (A. 2) 

Where the gamma matrices satisfy  

{     }                 (A. 3) 

The Pauli matrices are 

   (
  
  

)     (
   
  

)     (
  
   

) (A. 4) 

The Dirac representation of the   matrices are 

   (
  
  

)     (    

    
) (A. 5) 
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Appendix B Minimization 

Lagrangian 1 
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(Here we set R=Q) 
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(       ) 

  
 

 
  (B. 3) 

Thus this Lagrangian is always positive when we extremise it if we set  (   ̅)  

 (   ̅), fulfilling the constraint [C4]. 
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Lagrangian 2 
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(B. 6) 

Thus it is always positive.  

Lagrangian 3 
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(B. 9) 

Thus it is always positive.   
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Appendix C Energy dispersion relation 

Lagrangian 1 
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Squaring both terms we will obtain the expression 
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Squaring both terms we will obtain the expression and let     be small and  
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Lagrangian 3 
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Squaring both terms we will obtain the expression and let     be small. 
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