
National University of Singapore

Generalized Uncertainty Principle

and its Applications

Author:

Yeo Cheng Xun

Supervisor:

A/P Kuldip Singh

Co-Supervisor:

Dr. Ng Wei Khim

A thesis submitted in partial fulfilment for the degree Bachelor of Science

with Honours in Physics

Department of Physics

National University of Singapore

April 6, 2014



Abstract

The Generalized Uncertainty Principle(GUP) is motivated by the predic-

tions from the various quantum gravity theories in an attempt to unify

gravity with quantum field theory. As the name suggests, GUP refers to

the modified uncertainty principle which allows the quantum gravity the-

ory predictions to be incorporated into quantum mechanics. By doing so,

we see that there are effects on the usual quantum mechanical problems.

In this thesis, we will be looking at the GUP algebra and how it can af-

fect the usual quantum mechanical problems. We will show that there are

new features in the deformed quantum mechanics through some examples.

An example of the effects is the existence of the additional spectrum in

the relativistic landau problem with minimum length(under Synder’s alge-

bra); this spectrum do not exist in the ordinary relativistic landau problem.

Furthermore, in this thesis, we will be working out the relativistic landau

problem under anti-Synder’s algebra. We will then see that it results in

a Schrodinger-like equation with a hyperbolic scarf potential, which is ex-

actly solvable. The solutions show that an upper bound state is found

to exist under such GUP with the existence of four distinct bands in the

energy spectrum. It is observed that such features vanishes in the limit of

β → 0, reducing back to the original Landau problem.
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Chapter 1

Introduction and Background

Generalized Uncertainty Principle(GUP), as the name suggests, is the gen-

eralization of the Heisenberg Uncertainty Principle. There are two ways to

generalize the uncertainty principle: modification of the commutator defi-

nition or modification of the commutator relations: modified commutator

relations(MCRs). The former refers to a modification to the left hand side

of commutator relations(changing the definition of commutator), called the

q-deformed quantum mechanics1. Such a modification leads to the com-

mutator relations to be rewritten as

[Xi, Pj]q = i~δij (1.1)

where [Xi, Pj]q = XiPj−qPjXi. On the other hand, the latter refers to the

modification to the right hand side of the commutator relations as follow

[Xi, Pj] = i~(f(P,X)δij + g(Xk, Pl)) (1.2)

1In this thesis, we will be focusing on the latter method. The q-deformed quantum
mechanics is mentioned to provide a more detailed picture of GUP and thus, q-algebra
has not been studied in this paper.
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where i,j,k,l=1,2,3 and f(P,X) and g(Xk, Pl) is the diagonal and off-diagonal

elements of the commutator relations respectively. We will see in the fol-

lowing chapters (chapter 3 and 4) that by modifying the commutation

relations, they will have impact on the usual quantum mechanical exam-

ples. In addition, we will show that by subjecting the functions(f(P,X) and

g(Xk, Pl)) to constraints imposed by Jacobi identities and imposing addi-

tional constraints, which will be discussed in section 1.1.1, different classes

of MCRs, corresponding to different parameters result. Before moving into

the uses of these different classes of MCRs, we will first discuss on the moti-

vation of introducing GUP and then, we will move on to the formalism and

studies on deformed quantum mechanics in chapter 2, 3 and 4 respectively.

1.1 Motivation

The successful unification of the three fundamental forces(electromagnetic,

strong and weak) motivated the attempt to unify gravity with quantum

field theory. However, divergences in the Feynman diagrams, suggest that

the theory becomes non-renormalizable. This have led to different quantum

gravity theories, such as string theory, loop gravity theory and the doubly

special relativity(DSR)2, to overcome this problem. It is noteworthy that

the string theory and loop gravity theory predicts an existence of minimum

length while the DSR predicts the existence of a maximum momentum.

The other way to see the possible existence of a minimum length is

through the distortion of spacetime. To answer the natural question of

whether spacetime is made up of fundamental units leads one to ask whether

there is a limit to spatial measurement precision [4]. This requires focusing

large energies onto a small region of space and thus, the energy densities

2These theories are not the focus of this thesis and hence, are not studied in-depth
but is the core to the motivation behind GUP.
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cannot be neglected for its effect on the curvature of spacetime. Hence, as

higher precision measurements are obtained, it will begin to diverge when

the gravitational effects of the energy densities becomes significant. It is in

this notion that we believe that existence of minimum length.

Putting the quantum gravity theories aside and moving back to quan-

tum mechanics, we want to incorporate the idea of minimum length and/or

maximum momentum into quantum mechanics so that we can study their

effect if they do exist. It turns out that we are able to do that by first

noting that minimum length is not a physical quantity but rather, it is

interpreted as minimum uncertainty in position3. With this in mind, we

will take a look at the Heisenberg uncertainty principle since it gives us

information on the minimum length.

According to the Heisenberg uncertainty principle, where commutator

is defined as [Xi, Pj] = i~δij, the relations ∆xi∆pi ≥ ~
2

(for i=1,2,3) suggest

that minimum length is not admissible. The Heisenberg uncertainty prin-

ciple tells us that to find a minimum length, we simply allow ∆pi → ∞,

giving ∆xi → 0. Thus, we have shown that the Heisenberg uncertainty

principle does not allow for a minimum length. We would then like to

consider a different uncertainty principle in the hope that it will allow for

a minimum length and/or maximum momentum. To do that, we first con-

sider a modified commutator relation4 defined as

[Xi, Pj] = i~(F (P )δij +G(P )PiPj). (1.3)

Before discussing whether such a commutator relation does allow a mini-

3In quantum mechanics, whenever minimum length is mentioned, it is referring to
minimum uncertainty in position.

4The MCR proposed here is one of the many MCRs. We will see that this form will
result in different classes that will allow a minimum length and maximum momentum
respectively.
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mum length and/or maximum momentum, constraints will be imposed to

obtain different classes of such modified commutator relations(MCRs) [1].

1.1.1 Classes of MCRs

Since we are modifying the right side of the commutator relation, keep-

ing the definition of the commutator, the operators will have to fulfill the

following Jacobi identities:

[[Xi, Xj], Pk] + [[Xj, Pk], Xi] + [[Pk, Xi], Xj] = 0 (1.4)

[[Pi, Pj], Xk] + [[Pj, Xk], Pi] + [[Xk, Pi], Pj] = 0. (1.5)

By choosing [Xi, Xj] = [Pi, Pj] = 0, we can easily check that the second

of the Jacobi identity is trivially satisfied and the first gives the following

constraints,5

G(P ) =
2F (P )F ′(P )

F (P )− 2F ′(P )P 2
(1.6)

where F ′(P ) = dF (P )
dP 2 .

Further requiring that F(P) is at most quadratic6, that is, F (P ) = 1 +

α1P+β1P
2, where α1 and β1 are the deformation parameters. Two different

classes are obtained by substituting F(P) into Eqn.(1.6) and Eqn.(1.3):

5Refer to appendix A for details of obtaining this constraint.
6It is the simplest form that the MCR will allow for minimum length and/or maxi-

mum momentum. Any higher order will not produce something new.
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[Xi, Pj] = i~(1− αP )

(
δij − α

PiPj
P

)
, for β1 = 0 (1.7)

[Xi, Pj]r = i~[δij − α
(
δijP +

PiPj
P

)
+α2(δijrP

2+

(2r + 1)PiPj)], for β1 6= 0 (1.8)

where the second class, the assumption |β1|P 2 << 1 is made and relabelling

α1 = −α and β1 = rα2 where r is a constant.

1.1.2 1-Dimensional Subspace

Using the above classes of MCRs in 1-dimensional subspace, we will analyse

the relations to see if it allows minimum length or maximum momentum.

In the 1-dimensional subspace, the two classes of MCRs can be written as

[X,P ] = i~(1− 2αP + qα2P 2) where q=3r+1. (1.9)

From the commutator relation, we can work out the uncertainty relation

since ∆x∆p ≥ |<[X,P ]>|
2

. The uncertainty relation then simplifies to

∆x ≥ ~
2

(
(1− α < P >)2

∆p
+

(q − 1)α2 < P >2

∆p
+ qα2∆p

)
. (1.10)

The right hand side of the uncertainty relation goes to infinity when ∆p goes

to 0 or infinity for q > 1. This means that, the expression has a minimum

point, leading to a minimum length ∆xmin. Based on dimensional grounds,

∆xmin will be of O(~α) since α has the dimension of P−1. On the other

hand, if q ≤ 1, the above MCRs do not allow a minimum length but will

exhibit a maximum momentum, which will be shown in section 2.1. In

addition, by plotting the above expression, the existence and non-existence
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of minimal length can be seen from the boundary of the allowed region.

Hence, through MCRs, the ideas/predictions of the quantum theories can

be incorporated into quantum mechanics.

(a) q=2

(b) q=0

Figure 1.1: A graph of boundary of the allowed region of the uncertainty
relations with α = 1 and q=2(figure 1.1a) and q=0(figure 1.1b) where the
∆x is in terms of 2

~
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1.1.3 Synder’s and anti-Synder’s case

From Eqn.(1.9), the Synder’s7 (and anti-Synder’s) case can be obtained by

assuming α → 0 and qα2 → β (qα2 → −β) respectively. Note that β is

now the deformation parameter. Taking a closer look at the Synder’s case:

[X,P ] = i~(1 + βP 2)

∆x∆p ≥~
2

(1 + β(∆p)2 + β < P >2)

~
2

(β(∆p)2−2

~
∆x∆p+ 1 + β < P >2) ≤ 0. (1.11)

In order for the LHS to have real roots for ∆p, it is required that

∆x

~
≥
√
β + (β < P >)2. (1.12)

Therefore, the minimum length ∆xmin = ~
√
β, which confirms the above

argument that the minimum length is of O(~α) (recall that β is of O(α2)).

1.2 Generalization to Higher Dimensions

Eqn.(1.7) and (1.8) are a particular class of the MCRs which allows the

concept of minimum length and maximum momentum to be incorporated

into quantum mechanics. They are obtained by a stringent condition that

the position and momentum operator commutes among themselves. How-

ever, the result of these MCRs do not conserve rotational symmetries and

hence, do not allow angular momentum.

On the other hand, the Synder’s and anti-Synder’s case can be gener-

7Synder’s case is the most common MCR and is usually referred to when GUP is
discussed.
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alized to higher dimensions, which preserves rotational symmetries [2].

[Xi, Pj] = i~δij(1 + βP 2) (Synder) (1.13)

[Xi, Pj] = i~δij(1− βP 2) (anti-Synder) (1.14)

It is clear that the above does indeed possess rotational symmetry. Such

a rotational symmetry enables the orbital angular momentum operator to

be defined as:

Lk =
1

1± βP 2
εijkXiPj (1.15)

where ”+” and ”-” refers to Synder’s and anti-Synder’s case respectively.

We see that the orbital angular momentum operator has a weight function

( 1
1±βP 2 ) to cancel a corresponding factor from the position operator. This

is similar to the weight function introduced in the completeness relation as

explained in section 2.1. While the above definitions have the usual inter-

pretation of the angular momentum, the constraints used here in obtaining

Eqn.(1.7) and (1.8) are different. It turns out that in order to fulfill the

Jacobi identities, we have to relax the constraints, that is, we can only

choose [Pi, Pj] = 0.

Hence, in these cases, the following commutation relations are obtained.

[Pi, Pj] = 0 (1.16)

[Xi, Pj] = i~δij(1± βP 2) (1.17)

[Xi, Xj] = ∓2i~β(1± βP 2)εijkLk (1.18)

[Pi, Lj] = i~εijkPk (1.19)

[Xi, Lj] = i~εijkXk (1.20)

[Li, Lj] = i~εijkLk (1.21)
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In the above, the position operators no longer commuting among them-

selves, which can be derived through the use of Jacobi identity8.

8An example of solving for the commutator relation for the position operator is shown
in section 4.1.
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Chapter 2

Implications of MCRs

2.1 Hermiticity of Operators

Rewriting Eqn.(1.9) as [X,P ] = i~f(P ), in the momentum representation,

P = p (2.1)

X = i~f(p)
∂

∂p
. (2.2)

Using this representation, the hermiticity of momentum operator is pre-

served but the hermiticity of the position operator introduces a weight

function in the inner product [2]

< φ|ψ >=

∫
dp

f(p)
φ∗(p)ψ(p). (2.3)

We see that the weight function is introduced in the inner product to

cancel a corresponding factor from the position operator to ensure that

< φ|X|ψ >=< φ|X|ψ >∗ with the appropriate boundary conditions9.

9These boundary conditions are those we used in usual quantum mechanics to prove
hermiticity of an operator.
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Hence, the completeness relation is then redefined as:

1 =

∫
dp

f(p)
|p >< p|. (2.4)

This means that the momentum eigenstates are no longer orthonormal but

has a probability distribution according to the weight function,

< p|p′ >= f(p)δ(p− p′). (2.5)

In Eqn.(2.3), the integrand has singularity when f(p)=0, leading to the

roots p = (1±
√
1−q)

αq
, where q ≤ 1. To avoid the singularity in the integrand,

a momentum cutoff p < pmax must be implemented, meaning that for q ≤ 1,

there is a maximum momentum cutoff.

The appearance of a maximum momentum also becomes evident when

we consider the commutation relations. Recall that the constraint (Eqn.1.6),

by substituting F (P ) = 1+α1P +β1P
2 into the denominator, can be writ-

ten as

G(P ) =
2F (P )F ′(P )

1− β1P 2
. (2.6)

From the above, it is observed that G(P) has a pole for β1 > 0, implying

an intrinsic maximum momentum. On the hand, when β1 < 0, it can also

introduce a maximum momentum through the weight function as discussed

above.
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2.2 Eigenstates of the position operator

The eigenvalue problem of the position operator in the momentum space

takes the following form, for the 1-dimensional Synder’s case10

i~(1 + βp2)∂pψλ(p) = λψλ(p). (2.7)

The above differential equation can be solved to obtain the position eigen-

state in momentum representation, giving

ψλ(p) = ke
−i λ

~
√
β
tan−1(

√
βp)
. (2.8)

However, as mentioned by Ref.[2] , the above position eigenstate is not

a physical state11. Therefore, to obtain information on the position, it is

required to study states which realize the maximally allowed localization.

This refers to states with minimum length as the uncertainty in position(a

’fuzziness’ in space). This means that such a state |ψmlξ > of maximally

localization around a position ξ has the following properties:

< ψmlξ |X|ψmlξ >= ξ (2.9)

∆x|ψmlξ > = ∆xmin. (2.10)

Such a state, in the momentum space, is obtained in Ref.[2] and is given

by

ψmlξ (p) =

√
2

√
β

π
(1 + βp2)1/2e

−i ξ tan
−1(
√
βp)

~
√
β . (2.11)

It is derived from deducing that such state lies on the boundary of the

allowed region, that is, the boundary of the uncertainty relations ∆x∆p =

10Recall that the position operator in the momentum representation is X = i~(1 +
βp2) ∂∂p .

11This state does not correspond to the observable state where it has a minimum
length. Hence, it is not a physical state.
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|<[X,P ]>|
2

. We have also seen that the minimum length occurs at < P >= 0

(from section 1.1.3). From the fact that such a states has the fuzziness

in space, these states are no longer orthogonal as can be seen by plotting

< ψmlξ′ |ψmlξ >.

Figure 2.1: A graph of < ψmlξ′ |ψmlξ > plotted against ξ − ξ′ in units of ~
√
β

However, these maximally localization states are still useful in extract-

ing information on the position of the particle. By using these maximally

localization states, arbitrary states |φ > can be projected onto these states,

just as in the usual quantum mechanics, to obtain the probability ampli-

tude for the particle to be maximally localized around the position ξ. The

probability of finding the particle in a region can then be calculated in the

usual way.
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Chapter 3

Effects of Deformed Quantum

Mechanics

After understanding the changes/implications of the MCRs, we will look

at the effects of the various MCRs have on the usual quantum mechanical

problems. Many authors have studied the effects of deformed quantum

mechanics, both non-relativistic and relativistic [1][3][5][6]. Some exam-

ples of deformed quantum mechanics that have been considered are the

1-dimensional Harmonic Oscillator, a particle in a box, the finite square

well, the 1-dimensional Klein-Gordon and Dirac equations with linear con-

fining potential and the Dirac oscillator. In the following section, several

examples in these literature will be discussed to demonstrate the different

effects that the various MCRs have on the usual quantum mechanics.

3.1 Non-Relativistic Quantum Mechanics

3.1.1 1-Dimensional Harmonic Oscillator

For 1-dimensional harmonic oscillator problem, the MCR in Eqn.(1.9) with

q=0, will be shown in this example. Recall that q=0 case corresponds to

16



the MCR that allows maximum momentum but no minimum length. The

Schrodinger equation, in the momentum representation, is then written as,

[
p2

(m~ω)2
−
(
f(p)

∂

∂p

)2
]

Ψ(p) =
2E

m(~ω)2
Ψ(p) (3.1)

where we have used the operators shown in section 2.1. Notice that this

is not the usual differential equation we have in quantum mechanics as

the second order derivative term here does not have a constant coefficient.

Hence, to solve the differential equation, a change of variable from p to new

variable ρ′ is done (f(p) ∂
∂p
→ ∂

∂ρ′
, giving p = 1−e−2αρ′

2α
). The equation, with

some scaling (ρ = −2αρ′) and in the ρ-representation, then becomes

[
− ∂2

∂ρ2
+ V (ρ)

]
Ψ(ρ) = εΨ(ρ) (3.2)

where

V (ρ) =
(1− eρ)2

δ4
, −∞ < ρ <∞ (3.3)

and

δ = 2
√
m~ωα (3.4)

ε =
2E

~ωδ2
. (3.5)

The resulting equation is a Schrodinger-like equation where we can now

solve it in the usual way. Before solving, the potential gives us some in-

formation on the bound state energies. The potential now, in contrast to

the usual problem, is asymmetric since V (ρ) → 1
δ4

(or ∞) when ρ → −∞

(or ∞) respectively. This limits the maximum energy of the bound state

spectrum, which is determined by the depth of the potential well as seen

from the graph below.
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Figure 3.1: Potential of the 1-D Harmonic Oscillator with δ = 2

From the graph, it is observed that although the bound state energies

have a finite maximum energy, it is possible to have a continuum states

of higher energies. These continuum states correspond to the scattering

states just as the usual quantum mechanics would defined for states with

E > V (ρ) over the whole space.

Returning to the equation Eqn.(3.2), with a further change of variables,

ξ =
2

δ2
eρ; 0 < ξ <∞. (3.6)

The resulting differential equation is given by

[
ξ2
∂2

∂ξ2
+ ξ

∂

∂ξ
−

(1− δ2

2
ξ)2

δ4
+ ε

]
Ψ(ξ) = 0. (3.7)

We can exploit the asymptotic properties to obtain an ansatz for the wave-
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function [1]. Referring to appendix B, such an ansatz is obtained to be

Ψ(ξ) = e−ξ/2f(ξ)ξk (3.8)

where

k =

√
1

δ4
− ε > 0. (3.9)

This wavefunction will then be substituted into Eqn.(3.7) to become

ξ
∂2f(ξ)

∂ξ2
+ (2k + 1− ξ)∂f(ξ)

∂ξ
+ ñf(ξ) = 0 (3.10)

where

ñ =
1

δ2
[1− (1− δ4ε)1/2]− 1

2
. (3.11)

In order for the wavefunction to be finite when ξ → 0, k is required to be

positive and hence, it is easy to see from Eqn.(3.9) that

En ≤ Emax =
1

8mα2
. (3.12)

This is in agreement with the observation above that there is an upper

bound to the energy spectrum. Writing the f(ξ) as a power series, a trun-

cation is needed to limit its growth; otherwise the wavefunction will not be

normalizable at ξ =∞ [1]. We see a similar truncation condition is needed

in the case of the hydrogen atom. This lead to the quantization condition

that ñ = n where n=0, 1, 2,... Thus, the bound state energy is obtained

to be

En = En(0)[1− 2mα2En(0)]. (3.13)

An interesting fact, according to Ref.[1], is that the number of bound
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states are finite, in contrast to the usual harmonic oscillator. However,

such a finite number of bound state are not found for the case when q=1

in spite of an upper bound in its energy spectrum.

Returning to Eqn.(3.10), it is observed that it has the form of a hy-

pergeometric equation of a Laguerre polynomial12. Hence, the normalized

wavefunctions are found to be

Ψ2k
n (ξ) =

√
4αknn!

Γ(2kn + n+ 1)
e−ξ/2ξknL2kn

n (ξ). (3.14)

With the wavefunction determined explicitly, it is possible to calculate the

various expectation values. It is noted that < P >→ 1
2α

in the limit

n → nmax = 1
4m~ωα2 − 1

2
. This is again in agreement with the q=0 theory

where a maximum momentum exist.

Figure 3.2: Probability density for q=0, n=10 and α = 0.1 with m = ~ =
ω = 1

From the graph above, it is evident that the probability density is asym-

12Explained in the appendix C.
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metric, unlike the usual case. It is also worth noting that as n increases,

there are more nodes and peaks but the dominant peak moves towards

ξ = 0, meaning that there is a higher probability of finding the particle

with the maximum momentum, an example is shown in the subsequent

graph.

Figure 3.3: Probability density for q=0, n=20 and α = 0.1 with m = ~ =
ω = 1

This corresponds to large n bound states accumulating at the maximum

momentum which results in ∆p = 0 as mentioned by Ref.[1]. This can also

be seen when ∆p is calculated using the wavefunctions found and that it

vanishes as it approaches the uppermost bound state.

3.2 Relativistic Quantum Mechanics

3.2.1 Klein-Gordon equation

Apart from looking at non-relativistic quantum mechanics, it is also in-

teresting to investigate deformed relativistic quantum mechanics, since the
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particles concerned may be in the relativistic regime. In relativistic quan-

tum mechanics, the Klein-Gordon equation can be obtained in the same

way as that to Schrodinger equation [8]. The Klein-Gordon equation is

used to describe spinless particles and can be written, for free particles, as

(P µPµ −m2c2)φ = 0 (3.15)

where Pµ → i~∂µ and in the (1+1)-dimensions, the Klein-Gordon equation

is (
∂2

c2∂t2
− ∂2

∂x2
+
m2c2

~2

)
φ(x, t) = 0. (3.16)

The above has a solution of a plane wave φ(x, t) = ei(kx−ωt), where ω = E
~

and k2 = E2

~2c2 −
m2c2

~2 . In the deformed case, Eqn.(1.9) will be used in the

context of the Klein-Gordon equation. The q=0 case will be considered

again as the effects are same for q=1 [3].

In the position representation,

P = f(P0) & X = X0 (3.17)

where P0 and X0 is the usual momentum and position operators satisfying

Heisenberg relations. Using this definition, the exact representation can be

found by solving P = f(P0) from the commutation relation, then

Px =
1

2α
(1− e−2αP0,x). (3.18)

The Klein-Gordon equation can then be solved by noting that the solution

will also be a plane wave φ(x, t) = ei(k
′x−ωt), since it is a free particle. Using
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the same notation above, it is calculated that

k′± =
−ln(1∓ 2α~k)

2α~
. (3.19)

Thus, the general solution is given by

φ(x, t) = e−iωt(Ae
−iln(1−2α~k)

2α~ +Be
−iln(1+2α~k)

2α~ )

≈ e−iωt(Aeikx(1+α~k) +Be−ikx(1−α~k)). (3.20)

In addition, an effective mass can be defined through the effective wave

vectors as (m±c
~

)2
=
ω2

c2
− (k′±)2 (3.21)

which can be written in an expansion as

m± ≈ m

[
1∓mc

(
~2ω2

m2c4
− 1

)3/2

α

]
+O(α2). (3.22)

The above effective mass implies that the deformed Klein-Gordon equation

for free particles results in the description of two particles. It is worth

noting that in the limit α → 0, k′± → ±k, the effective mass reduces

smoothly to the ordinary mass.

3.2.2 (2+1)-Dimensional Dirac Equation In A Con-

stant Magnetic Field

Having seen the examples of deformed quantum mechanics in presence

of a maximum momentum, an example of a minimum length case will be

discussed. The (2+1)-dimensional Dirac equation in an homogeneous mag-

netic field (relativistic Landau problem) within a minimal length scenario

is studied in Ref.[6]. This example is shown for the purpose of demonstrat-
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ing the effects of a minimal length for a real problem and the bounds on

the deformation parameters. In addition, this problem is studied with the

MCR of the Synder’s case, which can be used to contrast with the focus of

this project, that is, the anti-Synder’s case. Since the former corresponds

to the existence of minimum length and the latter corresponds a maximum

momentum, the different features can be compared.

As mentioned in section 1.2, the natural generalization of the 1-dimension

Synder’s case is given by Eqn.(1.13), which preserves rotational symmetry.

Considering (2+1)-dimensional Dirac equation in presence of a homoge-

neous magnetic field B = (0, 0, B0), the corresponding Hamiltonian is given

by

H = cσ · (P +
e

c
A) + σzMc2. (3.23)

After some notations and definitions13, the eigenvalue problem

Hψ = Eψ (3.24)

can be written into the components form in two coupled equations [6].

These equations can be decoupled as:

P−ψ
(2) = ε−ψ

(1), P+ψ
(1) = ε+ψ

(2), ε± =
E ±Mc2

c
(3.25)

P−P+ψ
(1) = ε2ψ(1), P+P−ψ

(2) = ε2ψ(2), ε2 =
E2 −M2c4

c2
. (3.26)

Note that we have choosen

Ax = −B0

2
Y and Ay =

B0

2
X (3.27)

13The details are omitted as it is similar to the steps we will be taking in the anti-
Synder’s case.
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and defining

P± =
(
Px +

e

c
Ax

)
± i
(
Py +

e

c
Ay

)
(3.28)

where P± are the ladder operators of the orbital angular momentum quan-

tum number. With a further notation and writing the wavefunctions in the

form14

ψ(1)
m = u(1)m (p)eimθ, ψ(2)

m = u(2)m (p)ei(m+1)θ (3.29)

where m is the eigenvalue of Lz, the third component of the orbital angular

momentum. Substituting the above wavefunctions, Eqn.(3.26) becomes

{
p2 + 2λ(1 + βp2)

[
m+ 1− βλ

(
p
d

dp
−m

)]
− λ2(1 + βp2)2

[
d2

dp2

+
1

p

d

dp
− m2

p2

]}
u(1)m (p) = ε2u(1)m (p)

(3.30)

{
p2 + 2λ(1 + βp2)

[
m− βλ

(
p
d

dp
+m+ 1

)]
− λ2(1 + βp2)2

[
d2

dp2

+
1

p

d

dp
− (m+ 1)2

p2

]}
u(2)m (p) = ε2u(2)m (p).

(3.31)

The above equations can be solved by a change of variable [6]

u(i)m (p) = p−1/2ϕ(i)
m (p) and p =

1√
β

tan
(x

2
+
π

4

)
, x ∈ [−π

2
,
π

2
]

(3.32)

14The form of the wavefunctions is an ansatz by considering the commutator relation
[P±, Lz] = ∓~P±.
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to obtain a Schrodinger-like equation as shown below

{
− d2

dx2
+

1

2

[
ζi(ζi − 1) + ξi(ξi − 1)

cos2(x)

]
+

1

2
[ξi(ξi − 1)− ζi(ζi − 1)]

sin(x)

cos2(x)

}
ϕ(i)
m (x) = k2ϕ(i)

m (x)

(3.33)

where

k2 =
ε2 + 1/β

4βλ2
(3.34)

ζ1 = m+
1

2
ξ1 = m+

3

2
+

1

βλ
(3.35)

ζ2 = m+
3

2
ξ2 = m+

1

2
+

1

βλ
. (3.36)

The above Eqn.(3.33) is a Schrodinger equation with trigonometric Scarf

potential and the solution can be obtained by the hypergeometric equation

or according to Ref.[6], the wavefunctions, in the momentum space, are

found to be

uin,m(p) = Ci
pζi−

1
2

(1 + βp2)
ζi+ξi

2

∗2 F1

(
−n, ζi + ξi + n, ζi +

1

2
;

βp2

1 + βp2

)
.

(3.37)

An interesting feature is that by demanding that the wavefunctions are nor-

malizable, the bound state spectrum consists of three regions with different

ranges of the orbital angular momentum quantum number m.

En,m =
√
M 2c4 + 2~eB0c(n+m)[1 + β ~eB0

2c (n+m)],
ψn,m =

 ψ1
n,m

ψ2
n,m


n=0,1,2,...

ψ1
n,m(p) = C1

pm

(1+βp2)
m+1+ 1

2λβ
∗2 F1

(
−n, n+ 2(m+ 1) + 1

λβ ,m+ 1; βp2

1+βp2

)
eimθ

ψ2
n,m(p) = C2

pm+1

(1+βp2)
m+1+ 1

2λβ
∗2 F1

(
−n, n+ 2(m+ 1) + 1

λβ ,m+ 2; βp2

1+βp2

)
ei(m+1)θ

Table 3.1: Energy levels and the corresponding wavefunctions for m ≥ 0.
A given energy level with n+m=N has finite degeneracy D=N+1.
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E0 = Mc2, ψ0,m =

 0

ψ2
0,m

 En

√
M 2c4 + 2~eB0cn(1 + β ~eB0

2c n),
ψn,m =

 ψ1
n−1,m

ψ2
n,m


n=1,2,...

ψ1
n,m(p) = C1

p|m|

(1+βp2)
1+ 1

2λβ
∗2 F1

(
−n, n+ 2 + 1

λβ , |m|+ 1; βp2

1+βp2

)
eimθ

ψ2
n,m(p) = C2

p|m+1|

(1+βp2)
1

2λβ
∗2 F1

(
−n, n+ 1

λβ , |m|;
βp2

1+βp2

)
ei(m+1)θ

Table 3.2: Energy levels and the corresponding wavefunctions for−1
2
− 1
λβ
<

m ≤ −1. The degeneracy D of these levels is finite and explicitly given by
D = 1

2
+ 1

λβ
.

En,m =
√
M 2c4 + 2~eB0c(n+ |m|)[β ~eB0

2c (n+ |m|)− 1],
ψn,m =

 ψ1
n,m

ψ2
n,m


n=0,1,2,...

ψ1
n,m(p) = C1

p|m|

(1+βp2)
|m|− 1

2λβ
∗2 F1

(
−n, n+ 2|m| − 1

λβ , |m|+ 1; βp2

1+βp2

)
eimθ

ψ2
n,m(p) = C2

p|m|−1

(1+βp2)
|m|− 1

2λβ
∗2 F1

(
−n, n+ 2|m| − 1

λβ , |m|;
βp2

1+βp2

)
ei(m+1)θ

Table 3.3: Energy levels and the corresponding wavefunctions for m <
−1

2
− 1

λβ
. The degeneracy of the energy levels with n + |m| = N and

N ≥ 1
2

+ 1
λβ

+ 1 is finite and given by d = N − 1
2
− 1

λβ

The three regions of the bound state spectrum are shown in the above

tables [6]. It is noted that in the second region, the degeneracy of the

energy levels becomes infinite in the limit of a vanishing minimum length

(β → 0). On the hand, in this limit, the third region becomes meaningless

since it would mean that m < −∞. Thus, in this limit, this region of

the spectrum vanishes. This is the interesting feature that turns out in

the minimum length scenario, which is not present in the original problem.

However, the physical meaning and the properties of this region has not

been studied in the literature.

Moving a step further, the (2+1)-dimensional massless Dirac equation

with a slight modification is applied to the graphene case. A correction term

to the usual Landau levels is found to exist in the small β limit according
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to Ref.[6]. Also, from the energy levels calculated, the upper bound on the

minimum length is obtained to be

∆x0 = ~
√
β < 2.3nm. (3.38)

However, this upper bound is not absolute and unique as noted in Ref.[6]

as it could vary from one system to another.
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Chapter 4

(2+1) dimensional Relativistic

Landau problem under

Anti-Synder’s Algebra

We will now move onto the focus of the project where we will be working

out the relativistic landau problem under anti-Synder’s algebra. In this

problem, we will be using the anti-Synder’s case MCR. As mentioned above,

the natural generalization of the anti-Synder’s case in higher dimensions is

given by Eqn. (1.14). Such a generalization allows for the preservation of

rotational symmetry even in the the (2+1) dimensional problem as shown

in the example above. Therefore, in the (2+1) dimension, the anti-Synder’s

case MCR15 becomes

[Xi, Pj] = i~δij(1− βP 2) where i,j=1,2. (4.1)

Recall that this MCR belongs to the class which does not allow a minimum

length but a maximum momentum since it has a singularity in the weight

15In literature, the commutation relation between spatial and temporal components
are not known, hence the commutator is defined only for the spatial components.
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function. In this project, we will be using the anti-Synder’s algebra to study

the effects of a maximum momentum on (2+1) dimensional relativistic

landau problem, the same problem in the above example.

This problem, with the anti-Synder’s algebra, is interesting due to the

fact that the (2+1) dimensional problem has its importance in various

branches of physics, especially condensed matter physics. This can be seen

in the case of graphene where the Dirac equation can be modified to a

massless case to describe the behaviour of the electrons in graphene. In

addition, from the above examples, the deformed quantum mechanic prob-

lems present itself with different new features in presence of minimal length

and maximum momentum respectively. Therefore, the (2+1) dimensional

Dirac equation with the anti-Synder’s algebra may present itself with new

features, which it does as it is seen in the following discussions.

4.1 Background

Before moving directly into the problem, we will go through some of the

background knowledge needed for this problem. The operators that satisfy

Eqn.(4.1), in the momentum representation, have the following form:

Xi = i~(1− βp2) ∂

∂pi
(4.2)

Pi = pi. (4.3)

Using these representations and [Pi, Pj] = 0, we can work out the commu-

tation relation [Xi, Xj] from the Jacobi identity. This lead to the following

equations:
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[[Xi, Xj], Pk] + [[Xj, Pk], Xi] + [[Pk, Xi], Xj] = 0

[[Xi, Xj], Pk] + i~δjk[1− βP 2, Xi]− i~δik[1− βP 2, Xj] = 0

[[Xi, Xj], Pk] = i~βδjk(Pl[Pl, Xi] + [Pl, Xi]Pl)− i~βδik(Pl[Pl, Xj]

+ [Pl, Xj]Pl)

[[Xi, Xj], Pk] = −i~βδjk(2i~δil(1− βP 2)Pl) + i~βδik(2i~δjl(1− βP 2)Pl)

[[Xi, Xj], Pk] = 2~2βδjk(1− βP 2)Pi − 2~2βδik(1− βP 2)Pj

[[Xi, Xj], Pk] = 2~2β(1− βP 2)(δjkPi − δikPj)

[[Xi, Xj], Pk] = 2~2β(PiXj − PjXi)Pk

=⇒ [Xi, Xj] = 2~2β(PiXj − PjXi). (4.4)

Hence, in the above, the position operator no longer commutes with each

other; in contrast to the constraints imposed earlier to get Eqn(1.6). This is

in agreement with the fact that in order to preserve rotational symmetry,

we need to relax the constraint which requires the position operators to

commutes.

It is interesting to note that the anti-Synder’s case exhibits rotational

symmetry. Hence, we are able to construct orbital angular momentum

operators as defined in Eqn.(1.15) and discussed in Ref.[2]. The only orbital

angular momentum operator in the (2+1) dimensional problem is

Lz =
1

1− βP 2
(XPy − Y Px) = −i~∂θ. (4.5)

Furthermore, by requiring hermiticity of the position operator, we see
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that the inner product between two arbitrary wavefunctions becomes

< φ|ψ >=

∫
d2p

1− βp2
φ(p)ψ(p). (4.6)

The above weight function shows that there exist a maximum momentum

pmax where the inner product diverges and hence, to ensure normalizability,

0 < p < pmax = 1√
β

must be implemented.

4.2 The Corresponding Hamiltonian

After discussing on the background knowledge, the (2+1) dimensional

Dirac equation in presence of a homogeneous magnetic field B = (0, 0, B0)

can be approached in the following manner. Firstly, the corresponding

Hamiltonian of the Dirac equation is first written down as

H = cσ · (P +
e

c
A) + σzMc2 (4.7)

where σ = (σx, σy) and σz are Pauli matrices and

Ax = −B0

2
Y and Ay =

B0

2
X. (4.8)

The eigenvalue problem is then written as

Hψ = Eψ where ψ =

 ψ(1)

ψ(2)

 (4.9)
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Hψ =

c
 0 Px − iPy

Px + iPy 0

+ e

 0 Ax − iAy

Ax + iAy 0

+

 Mc2 0

0 Mc2


ψ = Eψ

(4.10)

 Mc2 P−

P+ Mc2


 ψ(1)

ψ(2)

 = E

 ψ(1)

ψ(2)

 . (4.11)

Defining the ladder operators as

P± =
(
Px +

e

c
Ax

)
± i
(
Py +

e

c
Ay

)
, (4.12)

we can then write Eqn.(4.11) into the components where they are coupled

as

P−ψ
(2) = ε−ψ

(1) (4.13)

P+ψ
(1) = ε+ψ

(2) (4.14)

ε± =
E ±Mc2

c
. (4.15)

The above coupled equations can be decoupled to obtain two independent

equations.

P−P+ψ
(1) = ε2ψ(1) (4.16)

P+P−ψ
(2) = ε2ψ(2) (4.17)

ε2 =
E2 −M2c4

c2
. (4.18)
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Defining

λ =
~eB0

2c
, px = p cos θ, py = p sin θ, p2x + p2y = p2, (4.19)

the ladder operators in the momentum representation can be written as

P± = pe±iθ − λ(1− βp2)
[
± ∂

∂px
+ i

∂

∂py

]
P± = pe±iθ − λ(1− βp2)

[
±
(
p cos θ

p

∂

∂p
−p sin θ

p2
∂

∂θ

)
+

i

(
p sin θ

p

∂

∂p
+

cos θ

p

∂

∂θ

)]

P± = e±iθ
[
p− λ(1− βp2)

[
± ∂

∂p
+
i

p

∂

∂θ

]]
. (4.20)

Using Eqn.(4.20), we find that [P±, Lz] = ∓~P± because Lz = −i~ ∂
∂θ

,

defined in the usual way. This confirms that P± is indeed a ladder operator

and from [P±, Lz] = ∓~P±, one can introduce the ansatz,

ψ(1)
m = u(1)m (p)eimθ (4.21)

ψ(2)
m = u(2)m (p)ei(m+1)θ (4.22)

where m is the eigenvalue of Lz, the third component of orbital angular mo-

mentum. Using the above ansatz, the decoupled equations, in momentum

representation, are
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P∓P±ψ
(j)
m

=P∓P±u
(j)
m (p)eim

′
jθ

=P∓

(
e±iθ

[
pψ(j)

m (p)− λ(1− βp2)
[
±eim′jθ ∂

∂p
u(j)m (p)−

m′j
p
ψ(j)
m (p)

]])
=e∓iθ

[
p− λ(1− βp2)

[
∓ ∂

∂p
+
i

p

∂

∂θ

]]
(
e±iθ

[
pψ(j)

m (p)− λ(1− βp2)
[
±eim′jθ ∂

∂p
u(j)m (p)−

m′j
p
ψ(j)
m (p)

]])
=ε2ψ(j)

m (p), where m′j=m or m+1 for j=1 or 2 respectively.

After simplifying the above, it reduces to

[
p2 + 2λ(1− βp2)

[
m′j ± 1 + λβ

(
p
∂

∂p
∓m′j

)]
− λ2(1− βp2)2

[
∂2

∂p2

+
1

p

∂

∂p
−
m′2j
p2

]]
u(j)m (p) = ε2u(j)m (p).

(4.23)

4.3 Solution to the problem

To solve the above equation, we will do a change of variable in two steps

to simplify the equation: firstly, u
(j)
m = p−1/2ϕ

(j)
m ,

[
p2 + 2λ(1− βp2)

[
m′j ± 1 + λβ

(
p
∂

∂p
∓m′j −

1

2

)]
−λ2(1− βp2)2

[
∂2

∂p2
+

1

p2

(
1

4
−m′2j

)]]
ϕ(j)
m (p) = ε2ϕ(j)

m (p).

(4.24)
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With this simplified equation, it can be further cast into Schrodinger-like

equation with another change of variable16 as follows:

p =
tanh q√

β
, q ∈ [0,∞). (4.25)

The above equation ensures that 0 < p < 1/
√
β since tanh q → 1 when

q → ∞. Hence, with this change of variable, the above equation, in the

q-domain, becomes

[
−λ2β d

2

dq2
+

2λ

cosh2 q

[
(m′j ± 1) + λβ(∓m′j −

1

2
)

]
+

tanh2 q

β

− λ2β

sinh2 q cosh2 q

(
1

4
−m′2j

)]
ϕ(j)
m (q) = ε2ϕ(j)

m (q).

(4.26)

This is the Schrodinger-like equation that we are familiar with. On closer

examination, the Schrodinger-like equation has a potential, which consists

of hyperbolic functions. This suggests that the equation may be exactly

solvable if it reduces to the hyperbolic scarf potential V
(a,b)
h (x) (Eqn.(4.34)).

In order to do that, we need to represent the radial momentum in a complex

plane through the following transformation

p =
tanh q√

β
→ p′ =

tanh(1
2
x+ iπ

4
)

√
β

(4.27)

where

p = Re[p′] and x ∈ [0,∞). (4.28)

With this transformation, Eqn.(4.26), in the x-domain17, reduces to

16The choice of variable results from demanding that the resulting equation do not

contain first order derivative. It can be found by letting p = f(q)√
β

then setting the

coefficient of the first order derivative to zero.
17The variable x here is just another variable and should not to be confused with

position eigenvalues.
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[
− d2

dx2
+ µsech2x+ νsechx tanhx

]
ϕ(j)
m = k2ϕ(j)

m (4.29)

where

µ =
1

βλ
(m′j ± 1 + λβ(∓m′j −

1

2
)) +

1

4
−m′2j −

1

2β2λ2
(4.30)

ν =
i

2β2λ2
− i

βλ
(m′j ± 1 + λβ(∓m′j −

1

2
)) (4.31)

k2 =
ε2 − 1/β

4βλ2
. (4.32)

Before proceeding further, it is interesting to note that in the x-domain,

the wavefunction can also exist in the negative region. Taking into account

of the range of the radial momentum p, the following transformation and

change of variables yield the same equation as Eqn.(4.29)

p = −tanh q√
β
→ p′ = −

tanh(1
2
x+ iπ

4
)

√
β

, x ∈ (−∞, 0]. (4.33)

Thus, in the x-domain, the potential in Eqn.(4.29) reduces to the form of

V
(a,b)
h , in which Eqn.(4.29) is exactly solvable [7]. Now,

V
(a,b)
h (x) = a2 + (b2 − a2 − aα)sech2(αx) + b(2a+ α)sech(αx) tanh(αx)

(4.34)

where in the case of α = 1, we can identify

b2 − a2 − a = µ =
1

βλ
(m′j ± 1 + λβ(∓m′j −

1

2
)) +

1

4
−m′2j +

1

2β2λ2

(4.35)

b(2a+ 1) = ν = − i

2β2λ2
− i

βλ
(m′j ± 1 + λβ(∓m′j −

1

2
)). (4.36)

Eqn.(4.29) can be further reduced to a hypergeometric equation, which

is exactly the differential equation satisfied by Romanovski polynomials
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R
(a+ 1

2
,−2b)

n (z). R
(a+ 1

2
,−2b)

n (z) can be constructed through the Rodrigues rep-

resentation as mentioned in appendix C. Hence, the solution of the equa-

tion is given by

ϕ(j)
m,n(x) = (sinh2 x+ 1)−

aj
2 e−bj tan

−1(sinhx)R
(aj+

1
2
,−2bj)

n (sinhx) (4.37)

with

k2 = −(aj − n)2

E2 = M2c4 + c2
(

1

β
− 4βλ2(aj − n)2

)
(4.38)

where aj and bj are the parameters of the Romanovski polynomials. These

are solved18 through the simultaneous equations (4.35) and (4.36) with n

being the order of the polynomial(i.e., n=0,1,2,...). After solving them, we

obtain

for j=1, the four solutions are

a1 = − 1

2βλ
, b1 =

i

2

(
1 + 2m− 1

βλ

)
(4.39)

a1 =
1

2

(
2m− 1

βλ

)
, b1 =

i

2

(
1− 1

βλ

)
(4.40)

a1 =
1

2

(
−2− 2m+

1

βλ

)
, b1 =

i

2

(
−1 +

1

βλ

)
(4.41)

a1 =
1

2

(
−2 +

1

βλ

)
, b1 =

i

2

(
−1− 2m+

1

βλ

)
(4.42)

18b is set to be complex.
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while for j=2,

a2 =
1

2βλ
, b2 =

i

2

(
−1− 2m+

1

βλ

)
(4.43)

a2 =
1

2

(
2m− 1

βλ

)
, b2 =

i

2

(
−1− 1

βλ

)
(4.44)

a2 =
1

2

(
−2− 2m+

1

βλ

)
, b2 =

i

2

(
1 +

1

βλ

)
(4.45)

a2 =
1

2

(
−2− 1

βλ

)
, b2 =

i

2

(
1 + 2m− 1

βλ

)
. (4.46)

The above values of aj are subjected to bounds imposed by the finite or-

thogonality property of the Romanovski polynomials. As mentioned by

Ref.[7], the polynomials have orthogonal properties with respect to their

weight functions as long as weight function decreases as x−2a−1. Also inte-

gral of the type

∫ ∞
−∞

(z2 + 1)−(a+
1
2
)e−2b tan

−1 zR
(a+ 1

2
,−2b)

n (z)R
(a+ 1

2
,−2b)

n′ (z)dz (4.47)

will be convergent only if

n+ n′ < 2(a+
1

2
)− 1 = 2a. (4.48)

From the orthogonality property of the Romanovski polynomials, there is

a finite number of bound states determined by the inequality, where the

uppermost bound state n is bounded by the value of aj, which is nmax < aj.

Furthermore, in order for the weight function to decrease as x−2a−1, it

is required that 2a + 1 > 0. In addition, from Eqn.(4.38), E2 ≥ M2c4, we

then have

1

β
− 4βλ2(aj − n)2 ≥ 0. (4.49)
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When n=0, we obtain a constraint on aj,

1

β
− 4βλ2a2j ≥ 0

aj ≤
1

2βλ
. (4.50)

Thus, to satisfy −1
2
< aj ≤ 1

2βλ
, we obtain the following energy spectrum by

solving for the ranges of m values (see Eqns.(4.39) to (4.42) and Eqns.(4.43)

to (4.46)). The corresponding negative energy eigenvalues can be obtained

through Eqn.(4.38). The energy spectrum and states are arranged accord-

ing to the orbital angular momentum quantum number m and building the

spinors with same energy eigenvalues.

Em,n =

√
M 2c4 + c2

(
1
β − 4βλ2(m− 1

2βλ − n)2
)

, n = 0, 1, 2, ... < aj

ψm,n(p) =

 ψ
(1)
m,n(p)

ψ
(2)
m,n(p)


ψ

(1)
m,n(p) = p−

1
2 ( 1

1−βp2 )
−a12 e

−b1 tan−1
( √

βp√
1−βp2

)
R

(a1+ 1
2 ,−2b1)

n (
√
βp√

1−βp2
)eimθ ,

a1 = m− 1
2βλ , b1 = i

2

(
1− 1

βλ

)
ψ

(2)
m,n(p) = p−

1
2 ( 1

1−βp2 )
−a22 e

−b2 tan−1
( √

βp√
1−βp2

)
R

(a2+ 1
2 ,−2b2)

n (
√
βp√

1−βp2
)ei(m+1)θ ,

a2 = m− 1
2βλ , b2 = i

2

(
−1− 1

βλ

)
Table 4.1: Energy levels and the corresponding wavefunctions for −1

2
+

1
2βλ

< m ≤ 1
βλ

.

Em,n =

√
M 2c4 + c2

(
1
β − 4βλ2(−1−m+ 1

2βλ − n)2
)

, n = 0, 1, 2, ... < aj

ψm,n(p) =

 ψ
(1)
m,n(p)

ψ
(2)
m,n(p)


ψ

(1)
m,n(p) = p−

1
2 ( 1

1−βp2 )
−a12 e

−b1 tan−1
( √

βp√
1−βp2

)
R

(a1+ 1
2 ,−2b1)

n (
√
βp√

1−βp2
)eimθ ,

a1 = −1−m+ 1
2βλ , b1 = i

2

(
−1 + 1

βλ

)
ψ

(2)
m,n(p) = p−

1
2 ( 1

1−βp2 )
−a22 e

−b2 tan−1
( √

βp√
1−βp2

)
R

(a2+ 1
2 ,−2b2)

n (
√
βp√

1−βp2
)ei(m+1)θ ,

a2 = −1−m+ 1
2βλ , b2 = i

2

(
1 + 1

βλ

)
Table 4.2: Energy levels and the corresponding wavefunctions for −1 ≤
m < 1

2βλ
− 1

2
.
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Em,n =

√
M 2c4 + c2

(
1
β − 4βλ2( 1

2βλ
− n)2

)
, n = 1, 2, ... < 1

2βλ
for 1

βλ
> 1

ψm,n(p) =

 ψ
(1)
m,n−1(p)

ψ
(2)
m,n(p)


ψ

(1)
m,n−1(p) = p−

1
2 ( 1

1−βp2 )
−a12 e

−b1 tan−1
( √

βp√
1−βp2

)
R

(a1+ 1
2 ,−2b1)

n−1 (
√
βp√

1−βp2
)eimθ ,

a1 = −1 + 1
2βλ

, b1 = i
2

(
−1− 2m+ 1

βλ

)
ψ

(2)
m,n(p) = p−

1
2 ( 1

1−βp2 )
−a22 e

−b2 tan−1
( √

βp√
1−βp2

)
R

(a2+ 1
2 ,−2b2)

n (
√
βp√

1−βp2
)ei(m+1)θ ,

a2 = 1
2βλ , b2 = i

2

(
−1− 2m+ 1

βλ

)
Em,0 = Mc2 , n=0, for 1

βλ > 1

ψm,0(p) =

 0

ψ
(2)
m,0(p)

 ψ
(2)
m,0(p) = p−

1
2 ( 1

1−βp2 )
−a22 e

−b2 tan−1
( √

βp√
1−βp2

)
R

(a2+ 1
2 ,−2b2)

0 (
√
βp√

1−βp2
)ei(m+1)θ ,

a2 = 1
2βλ , b2 = i

2

(
−1− 2m+ 1

βλ

)
Em,n =

√
M 2c4 + c2

(
1
β − 4βλ2(a2 − n)2

)
, n = 0, 1, 2, ... < 1

2βλ for 1
βλ ≤ 1

ψm,n(p) =

 0

ψ
(2)
m,n(p)

 ψ
(2)
m,n(p) = p−

1
2 ( 1

1−βp2 )
−a22 e

−b2 tan−1
( √

βp√
1−βp2

)
R

(a2+ 1
2 ,−2b2)

n (
√
βp√

1−βp2
)ei(m+1)θ ,

a2 = 1
2βλ , b2 = i

2

(
−1− 2m+ 1

βλ

)
Table 4.3: Energy levels independent of m and the corresponding wave-
functions for m < −1, m > 1

βλ
.

4.4 Results and Discussions

From Eqns.(4.35) and (4.36) and the various boundaries on the values of

aj, we realize that one of the solutions for the value aj for both components

cannot satisfy the boundaries and thus, is not part of the solutions. The

last solution offer energy levels that are independent of the orbital angular

momentum m as shown in table 4.3.

The tables above show that, under the anti-Synder’s algebra, the en-

ergy spectrum results in four distinct bands in contrast to the usual case.

Three out of the four bands are dependent on the value of the deformation

parameter β, that is, the range of values of m in each band varies with

β. In the limit of β → 0, the states in table 4.1 vanishes as the range

of m becomes meaningless. Furthermore, many of the states in table 4.3

vanishes for the same reason, leaving only the states with m < −1. Hence,

in the limit, β → 0, the energy spectrum reduces to two distinct bands as
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would be expected in the undeformed case(as discussed later).

On the other hand, a finite value of β, places an upper bound to the

bound states. As seen from the orthogonality properties of Romanovski

polynomials, the uppermost bound state nmax < aj is dependent on the

value of aj, which is in turn dependent on β. This can be seen as an upper

bound on the momentum(maximum momentum) since total relativistic

energy depends on momentum for a constant mass, an upper bound on

the energy implies a finite maximum momentum. In the limit of β → 0, it

is noted that the number of bound states becomes infinite, and this reduces

to the undeformed case.

In table 4.3, it is noted that there are two different scenario. Firstly, for

1
βλ

> 1, interestingly, the ground state is a spin singlet while the excited

states are spin doublets. This is similar to the observation made with the

Synder’s algebra. In contrast, for 1
βλ
≤ 1, the states are all spin singlets.

Next, we will take a look on how the wavefunctions behave as n in-

creases. The probability density is

< ψ|ψ > = N2

∫
d2p

1− βp2
(
ψ(1)∗
m,n(p)ψ(1)

m,n(p) + ψ(2)∗
m,n(p)ψ(2)

m,n(p)
)

= N ′2
∫ 1√

β

0

pdp

1− βp2
(
u(1)∗m,n(p)u(1)m,n(p) + u(2)∗m,n(p)u(2)m,n(p)

)

< ψ|ψ >= N ′2
∫ 1√

β

0

dp

1− βp2
(
ϕ(1)∗
m,n(p)ϕ(1)

m,n(p) + ϕ(2)∗
m,n(p)ϕ(2)

m,n(p)
)

(4.51)

where N is the normalizing constant and N ′2 = 2πN2. Furthermore, the

probability density in the x-domain is given by

< ψ|ψ >= N”2

∫ ∞
−∞

dx
(
ϕ(1)∗
m,n(x)ϕ(1)

m,n(x) + ϕ(2)∗
m,n(x)ϕ(2)

m,n(x)
)
. (4.52)
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In the x-domain, we see that the probability density is symmetrical about

x=0. It is noted that for both states(n=2 and n=20), the probability

densities peak at x=0 where it corresponds to p=0 and vanishes at x =

∞(−∞) corresponding to p = 1√
β
. Furthermore, there is a widening of

the peak and a reduction in the peak height as n increases. This means

that as n increases, there is a decreasing probability of finding the particle

with p=0 but we have a wider distribution of momentum. However, it is

observed that this is a gradual change as portrayed in the graph, comparing

probability density of the nth state with an order difference.

Figure 4.1: Probability density in the x-domain for 1
2βλ

= 30 and m=59 for

n=2(solid line) and n=20(dotted line)

The probability density in the momentum space is also plotted to show

that the information in the x-domain can be transported back into the

momentum space as shown in the graph below. It is observed that the

probability density in the momentum space has the same gradual widening

and reduction in the peak height as the n increases.

43



Figure 4.2: Probability density in the momentum space for 1
2βλ

= 30 and

m=59 for n=2(solid line) and n=20(dotted line)

Recall that in attempting to solve the problem, a transformation of p

into the complex plane p’ is done. We have introduced a non-hermitian

’Hamiltonian’ in Eqn.(4.29). This is reflected by the complex potential19.

However, we would like to obtain the solution of the observable Hamiltonian

as this is what we will be observing in experiments. Simultaneously, we

are able to investigate the effects of the complex potential of our problem,

that is, the role of the imaginary part of the potential.

To obtain the observable solution and investigate the effects of the com-

plex potential, we begin with Eqn.(4.29) and dropping the imaginary part

of the potential. This ensures that the Hamiltonian is hermitian and cor-

respond to an observable quantity; the energy eigenvalue in this case. We

then obtain the following from Eqn.(4.29),

19Non-Hermitian Quantum Mechanics(NHQM) is not studied in-depth as it consists of
new interpretations/effects to the Hermitian Quantum Mechanics. NHQM is mentioned
here is to provide a supporting evidence to the existence of the solutions obtained above,
that a solution can be obtained from a non-hermitian Hamiltonian.
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[
− d2

dx2
+ µ′sech2x

]
ϕ(j)
m = k2ϕ(j)

m (4.53)

where

µ′ =
1

βλ
(m′j ± 1 + λβ(∓m′j −

1

2
)) +

1

4
−m′2j −

1

2β2λ2
(4.54)

and k has the same definition as before. It is clear that this is again a

Schrodinger-like equation20 with potential of the form in Eqn.(4.34) with

b=0. Hence,

−a2 − a = µ′ =
1

βλ
(m′j ± 1 + λβ(∓m′j −

1

2
)) +

1

4
−m′2j −

1

2β2λ2
. (4.55)

For j=1,

a1 = −1

2
− α1 (4.56)

a1 = −1

2
+ α1 (4.57)

where

α1 =
1√
2βλ

√
(βλ(m+ 1)− 1)2 +m2β2λ2 (4.58)

while for j=2,

a2 = −1

2
− α2 (4.59)

a2 = −1

2
+ α2 (4.60)

where

20Recall that the m′j has the same definition as above
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α2 =
1√
2βλ

√
(mβλ− 1)2 + ((m+ 1)βλ)2. (4.61)

The above values of aj is then subjected to the same constraints/range

−1
2
< aj ≤ 1

2βλ
, which then results in the following energy spectrum. The

energy spectrum is arranged according to the values of m and the states

are build with the same energy eigenvalues. Similarly, the negative energy

eigenvalues can be obtained through Eqn.(4.38).

After dropping the imaginary part of the potential, it is observed that

the four distinct bands of the energy spectrum combined into one band and

is of a finite range. Once again, we see that there is an upper bound to

the bound states. The uppermost bound state is denoted by nmax < aj.

In addition, the same characteristic extension of the energy spectrum to

infinitely wide band (that is, the widening range of values of m to the whole

real line) and the infinite number of bound states in the limit of β → 0 is

observed.

Em,n =

√
M2c4 + c2

(
1
β
− 4βλ2(−1

2
+ α1 − n)2

)
n = 0, 1, 2, ... < a1

ψm,n(p) =

 ψ
(1)
m,n(p)

0

 ψ
(1)
m,n(p) = p−

1
2 ( 1

1−βp2 )−
a1
2 R

(a1+
1
2
,0)

n (
√
βp√

1−βp2
)eimθ, a1 = −1

2
+ α1

Table 4.4: Energy levels and the corresponding wavefunctions for m− ≤
m ≤ m+, where m± = 1−βλ

2βλ
± 1

2β2λ

√
β(1 + β(4βλ− 1)).

Em,n =

√
M2c4 + c2

(
1
β
− 4βλ2(−1

2
+ α2 − n)2

)
n = 0, 1, 2, ... < a2

ψm,n(p) =

 0

ψ
(2)
m,n(p)

 ψ
(2)
m,n(p) = p−

1
2 ( 1

1−βp2 )−
a2
2 R

(a2+
1
2
,0)

n (
√
βp√

1−βp2
)ei(m+1)θ, a2 = −1

2
+ α2

Table 4.5: Energy levels and the corresponding wavefunctions for m =
1

2βλ
(1− βλ).
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In table 4.4 and 4.5, it is noted that most of the states are spin singlet

unless the value of β and λ results inm = 1
2βλ

(1−βλ) to be an integer. Since

only in this case, a spin down state is possible and the spinor components

can have same energy eigenvalues for certain states. In the limit of β → 0,

apart from the widening of the band in table 4.4, the states in table 4.5

will exist for all values of m as seen from the inequalities of aj that arise

from the constraints. However, for a finite value of β, the states will only

exist for specific value of m.

The behaviour of the wavefunctions is also investigated as n increases.

Following the previous discussion, the probability density can be plotted

in the x-domain.

Figure 4.3: Probability density in the x-domain for λ = 1, β = 0.1, m=38,
n=2.
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Figure 4.4: Probability density in the x-domain for λ = 1, β = 0.1, m=38,
n=20.

From the two graphs, it is observed that as n increases, the dominant

peak shifts away from the origin. This shows that as n increases, there

is a higher probability in finding the particle at larger x (smaller x, for

the negative region), both a correspondingly higher momentum. It is also

observed that as n increases, more peaks appear and the ratio of the dom-

inant peak to the lowest peak increases. This is in contrast to the previous

case where in figure 4.1, we see that even as n increases, the probability

density remains as a Gaussian distribution. Hence, we can deduce that

with a complex potential, the imaginary part play a role in restraining the

behaviour of the wavefunctions. This is reflected by the probability density

having only a gradual change over n.

We shall now look at the undeformed case as a contrasting case. Start-

ing from Eqn.(4.24) and setting β = 0, we have

(
d2

dp2
+

1

p2

(
1

4
−m′2j

)
+
ε2

λ2
− 2

λ
(m′j ± 1)− p2

λ2

)
ϕ(j)
m (p) = 0. (4.62)
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We will solve the above equation by exploiting the asymptotic analysis of

the dominant behaviour at the end points. This method is similar to the

one of the employed in solving the harmonic oscillator or hydrogen atom.

Here we obtain

ϕ(j)
m (p) = p

1
4
(2∓4m′j)f (j)(p)e−

p2

2λ (4.63)

where ”-” is assumed for m′j <
1
2

and ”+” for m′j > −1
2

and m′j=m or

m+1 for j=1,2 respectively. And f (j)(p) satisfies the following equation,

considering m′j <
1
2
,

(
d2

dp2
+

[
1− 2m′j

p
− 2p

λ

]
d

dp
+
ε2

λ2
− 2

λ
(1± 1)

)
f (j)(p) = 0. (4.64)

Let χ = p2

λ
, then

(
χ
d2

dχ2
+

[
1− 1

2
m′j − χ

]
d

dχ
+
ε2

4λ
− 1

2
(1± 1)

)
f (j)(χ) = 0. (4.65)

By assuming that f(χ) can be written as a power series f (j)(χ) =
∑
ckχ

k,

one notes that a truncation in the number of terms have to be effected;

otherwise it leads to unnormalizable solution. This truncation condition

leads to the quantization

ε2

2λ
− (1± 1) = n, where n=0,1,2,.. (4.66)

E2 = M2c4 + 2λc2(n+ (1± 1)). (4.67)

The same argument holds for m′j > −1
2
, obtaining the same energy eigen-

values as above. The solutions for the Eqn.(4.65) is given by the associated

Laguerre polynomials. Hence, the wavefunctions are given by

ψ(j)
m,n(p) = p∓m

′
je−

p2

2λL
∓ 1

2
m′j

n

(
p2

λ

)
. (4.68)
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In the undeformed case, it is observed that the energy spectrum has two

distinct bands(m′j <
1
2

and m′j > −1
2
). We shall take a look at the be-

haviour of the wavefunctions as n increases and compare it with that of the

deformed problem.

(a) zoom out view for the whole range

(b) zoom in view on small features

Figure 4.5: Probability density in momentum space for m=38, n=2
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(a) zoom out view for the whole range

(b) zoom in view on small features

Figure 4.6: Probability density in momentum space for m=38, n=20

In contrast to figure 4.2, it is observed that the undeformed case has

probability density in which its peak shift towards higher momentum values

with increasing n. In addition, as n increases, more peaks appear. It

is interesting to note that such behaviour can also be observed with the

solutions of Eqn.(4.53) as shown in the following graphs.
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Figure 4.7: Probability density in momentum space for β = 0.1, λ = 1,
m=38, n=2

Figure 4.8: Probability density in momentum space for β = 0.1, λ = 1,
m=38, n=20

From the similar behaviour, we deduce that the complex potential does

have a restraining effect on the behaviour of the wavefunction. Here, we

do not observe the same shifting of dominant peak towards the higher
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momentum(in the deformed case, the maximum momentum).

4.5 Massless Dirac equation in (2+1) dimen-

sions

The Hamiltonian for the electrons in graphene in the presence of magnetic

field is similar to the (2+1) dimensional massless Dirac equation with Fermi

velocity vF ,

Hmassless = cσ · (P +
e

c
A)→ Hgraphene = vFσ · (P +

e

c
A) (4.69)

Following the above discussion, to solve this problem, only a minor change

is required, which is

ε→ ε′ =
E

vF
(4.70)

where ε = E/c. This means that the above discussions are similar except

a minor change to the energy levels, which becomes

Em,n = vF

√
1

β
− 4βλ2(a− n)2 (4.71)
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Chapter 5

Energy Dispersion Relation

Apart from quantum mechanical implications, we see that MCRs have an

implication on the energy dispersion relation as seen in Ref.[6]. We will now

proceed to work out the modified dispersion relation under anti-Synder’s

algebra.

Recall that [Xi, Pj] = i~δij(1 − βP 2) where i,j=1,2,3. In the position

representation, X i = xi0 and P i = f(pi0), then21

< [Xi, f(P j
0 )] > = i~δji < (1− βf(P k

0 )2) >

i~
∂f(pi0)

∂pi0
= i~(1− βf(pi0)

2)

∂f(pi0)

1− βf(pi0)
2

= ∂pi0

P i = f(pi0) =
1√
β

tanh(
√
βpi0). (5.1)

21Xi
0 and P i0 are the usual low energy operators that satisfy Heisenberg algebra.

P i = f(P i0) comes from the motivation to express P i in terms of operators that are
associated with the familiar Heisenberg algebra.
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We now have

Xµ = (ct, xi0) (5.2)

P µ = (E/c, P i = pi0

(
1− β

6
|p0|2

)
) (5.3)

where P µ is the 4-momentum and µ = 0, 1, 2, 3. Here we have effected an

expansion and kept terms up to O(β). Under the general static metric gµν ,

the norm of P µ takes the form

P µPµ = gµνP
µP ν = g00(P

0)2 + gijP
iP j

= g00
E2

c2
+ gijp

i
0p
j
0

(
1− β

6
|p0|2

)2

= g00
E2

c2
+ gijp

i
0p
j
0

(
1− β

3
|p0|2

)
. (5.4)

We recognize that under a general static metric, g00
E2

c2
+ gijp

i
0p
j
0 is a scalar

of the undeformed norm. We denote this by γ. Hence, in terms of low

momentum pi0,

P µPµ = γ − gijpi0p
j
0

β

3
|p0|2. (5.5)

We can rewrite the above in terms of high momentum by finding pi0 in

terms of P i. This is shown below, up to O(β)

pi0 =
1√
β

tanh−1(
√
βP i)

≈ P i

(
1 +

β

3
|P |2

)
.

Eqn.(5.5) can then be written as

P µPµ = γ − gijP iP j β

3
|P |2 (5.6)

where we have kept terms up to O(β). Recall that P µPµ = g00(P
0)2 +
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gijP
iP j, then

(P 0)2 = − 1

g00

(
−γ + gijP

iP j

(
1 +

β

3
|P |2

))
. (5.7)

The energy of a particle in static gravitational field gµν is given by

E2 = (−g00cP 0)2 = −g00c2
(
−γ + gijP

iP j

(
1 +

β

3
|P |2

))
. (5.8)

We now see that in the Minkowski spacetime where g00 = −1, γ = −m2c2.

Hence, we arrived at the modified energy dispersion relation

E2 = c2
(
m2c2 + |P |2

(
1 +

β

3
|P |2

))
= E2

0 +
β

3
|P |4c2 (5.9)

where E2
0 = m2c4 + |P |2c2, the usual relativistic energy dispersion relation.

5.1 Application to Neutrino Physics

The modified energy dispersion relation can be applied to neutrino physics

to obtain a bound on the deformation parameter β through experimental

measurements.

Before we start, we will give a brief introduction to neutrino oscillation.

Neutrino oscillations refer to the physics of neutrino flavour change. It is

used to explain the solar neutrino problem [9] - the number measured fall

short of the expected value22.

Here we will only consider the case of two neutrino types, electron

and muon neutrino. As mentioned in Ref.[6], we see that the neutrino is

22The measurement yield only a third of what is expected.
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not an eigenfunction of the Hamiltonian since it can change into another

type. Hence, we would expect that the eigenstates are orthogonal linear

combinations:

ν1 = νµ cos θ − νe sin θ (5.10)

ν2 = νµ sin θ + νe cos θ (5.11)

where the coefficients are chosen for a normalized states and θ is the mixing

angle. These states will then evolve through time with a phase factor as

ν1(t) = ν1(0)e−i
E1
~ t (5.12)

ν2(t) = ν2(0)e−i
E2
~ t. (5.13)

Now, we suppose that the particle is an electron neutrino at t=0, then from

Eqn.(5.10) and Eqn.(5.11),

ν1(0) = − sin θ (5.14)

ν2(0) = cos θ. (5.15)

We can solve Eqn.(5.10) and Eqn.(5.11) for νµ and using the above,

νµ(t) = ν1(t) cos θ + ν2(t) sin θ

= sin θ cos θ
(
−e−i

E1
~ t + e−i

E2
~ t
)
. (5.16)

The probability of electron neutrino converting into muon neutrino after

time t is given by

Pνe→νµ = |νµ(t)|2 = (sin θ cos θ)2
(
−e−i

E1
~ t + e−i

E2
~ t
)2

=

(
sin(2θ) sin

(
E2 − E1

2~
t

))2

(5.17)
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Pνe→νµ =

(
sin(2θ) sin

(
(m2

2 −m2
1)c

4

4~E
t

))2

(5.18)

where E1 and E2 are the usual relativistic energy relations and we have

assumed E ≈ |P |c and they have the same |P |. The above shows that

the neutrino flavour will oscillate between electron and muon neutrino.

We can see that if there is no mixing, the probability above will be zero

immediately. Similarly, if the neutrinos are massless then m2
2 − m2

1 = 0,

neutrino flavour change is also not possible. This shows the condition for

neutrino oscillation. In experiments, the value of m2
2 − m2

1 can then be

determined.

At this stage, we are in position to apply the modified energy dispersion

relation (Eqn.(5.9)) to neutrino physics. In Eqn.(5.17), it depends on the

energy difference between the two eigenstates. We can get the energy of

each eigenstate from Eqn.(5.9),

E =

√
m2c4 + |P |2c2

(
1 +

β

3
|P |2

)
≈ |P |c

(
1 +

1

2

(
m2c2

|P |2
+
β

3
|P |2

)
− 1

4

(
m4c4

|P |4
+

2β

3
m2c2

))
≈ |P |c

(
1 +

1

2

(
m2c2

|P |2
+
β

3
|P |2

))
. (5.19)

In obtaining the above, we have made several assumptions. Firstly, m2c2 <<

|P |2 and keeping up to second order approximation. In addition, we also

kept terms of order β. Secondly, we have assumed that m2c2

|P |2 and β
3
|P |2 has

the same order. Hence, in keeping to first order approximation, we arrived

at the last line of the above equation.

We can now insert Eqn.(5.19) into Eqn.(5.17) and assuming that they
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have the same |P | and |P |c ≈ E as mentioned in Ref.[9].

Pνe→νµ =

(
sin(2θ) sin

(
E2 − E1

2~
t

))2

=

sin(2θ) sin

 |P |c
((

(m2
2−m2

1)c
2

|P |2 + β2−β1
3
|P |2

))
4~

t

2

≈
(

sin(2θ) sin

[(
(m2

2 −m2
1)c

4

4~E
+

(β2 − β1)E3

12~c2

)
t

])2

. (5.20)

This is the probability/neutrino oscillation under the modified dispersion

relation. From Eqn.(5.20), we see that there are two cases in which neutrino

oscillation is possible. First, for massless or degenerate mass neutrinos,

the neutrino oscillation is possible by the difference in the deformation

parameters β1 and β2 as seen by each of the eigenstates. In this case,

the term (β2−β1)E3

12~c2 , corresponding to
((m2

2−m2
1)c

4)
4~E in the original case, is

responsible for the neutrino oscillation. Thus,

(m2
2 −m2

1)c
4

4~E
=

(β2 − β1)E3

12~c2

β2 − β1 =
3(m2

2 −m2
1)c

6

E4
. (5.21)

Experimentally, m2
2 −m2

1 = 8.0 ∗ 10−5eV 2 and E=1 GeV as mentioned by

[10]. Using this values, then we see that β2− β1 (in (kg−2m−2s2)) is of the

order 10−23.

Secondly, if the deformation parameters are constant, neutrino oscil-

lation will be possible by difference in masses since Eqn.(5.20) has the

same form as Eqn.(5.17) up to the first order approximation. We see that

Eqn.(5.19) does contain higher order terms involving the deformation pa-

rameter. The next leading order correction will then turn up as the uncer-

tainty in the experimental measurements. This then allow us to work out
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the bound on the deformation parameter, which can be done by demanding

that this leading correction is smaller than the experimental uncertainty.
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Chapter 6

Future Direction

We have seen that the relativistic landau problem under Synder’s and anti-

Synder’s algebra lead to different results. One result is the modified energy

spectrum. Under Synder’s algebra, there is an additional spectrum that

does not exist in the usual problem. On the other hand, under the anti-

Synder’s algebra, similar appearance of additional spectrum is observed

with the non-hermitian Hamiltonian. In the latter case, a constrained

spectrum is observed by demanding a hermitian Hamiltonian. Further-

more, under anti-Synder’s algebra, there is an existence of an upper bound

state. Such a modified energy spectrum along with its characteristics has

not been studied in literature. The possible uses of these spectrum are

unclear. What is interesting, however, is that such energy spectrum can be

extended to graphene and hence, the study of these energy spectrum may

lead to more potential uses of graphene.

Secondly, many MCRs have been proposed to introduce the idea of min-

imum length and maximum momentum into quantum mechanics. These

MCRs would lead to different results of the same problem even though

the deformation parameters are typically small. Hence, it is conceivable

that in time to come, experiment can be used to determine the value of
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deformation parameter. In this way, we can then also compare the different

MCRs to check which agrees best with experiment. Furthermore, the MCR

that best agrees with experiment will indicate whether minimum length or

maximum momentum or both exist.

Lastly, in the application of MCR to neutrino physics, the deformation

parameter is seen to be of the order 10−23. Here we have shown that,

apart from mass differences, neutrino oscillations may also be accounted

for by the deformation parameters. It would be interesting to investigate

this possibility in the context of experimental work. In addition, we have

only considered two types of neutrinos. We can extend this analysis to

oscillations involving more neutrino flavours.
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Chapter 7

Conclusion

Various quantum theories have predicted the existence of minimum length

or maximum momentum. GUP has been developed in an attempt to study

these effects in the context of quantum mechanics. In order to do this,

the Heisenberg Uncertainty Principle has been modified by generalizing

the right hand side of the underlying commutator relation. We have seen

that different classes of MCRs, resulting from various constraints, do allow

a minimum length; here interpreted as minimum uncertainty in position.

Maximum momentum is also a feature of some of the theories. The latter

is being introduced through a singularity in the weight function or the

commutator relation.

We have also looked at various implications of MCR to quantum me-

chanics formalism. These include, among others, the introduction of the

weight function in the completeness relationship, implying that the eigen-

functions are no longer orthonormal. In addition, the eigenstates may no

longer be a physical state as seen in the case of relations that admit mini-

mum length. Furthermore, several examples of deformed quantum mechan-

ics from literature are discussed to show the different features that emerge

under the conditions of minimum length and maximum momentum.
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In the project, we have examined solutions to the relativistic Lan-

dau problem under the anti-Synder’s algebra. In an attempt to solve the

problem, we are forced to complexify the momentum. As a result, the

Schrodinger-like equation consists of a complex potential. Here, by appeal-

ing to generalizations of the standard formalism of quantum mechanics

(in the form of Non-Hermitian QM), we obtain solutions to this otherwise

difficult problem. In this approach, the equation turns out to be exactly

solvable. The resulting energy spectrum is shown to consists of an upper

bound, which results from the finite orthogonality properties of the Ro-

manovski polynomials. It is also observed that the energy spectrum results

in four distinct bands, in which two bands have states that do not exist in

the undeformed case. These states also vanishes in the β → 0 limit, re-

ducing them to the original state of the undeformed case. We have further

examined the corresponding wavefunctions that are associated with these

complex potential.

We have also applied the modified energy dispersion relation, arising

from MCR, to neutrino physics. It is found that under the modified energy

dispersion relation, neutrino oscillations are possible through two cases:

difference in deformation parameters seen by each particle or difference

in masses. In that section, we have also obtained an estimation of the

deformation parameter as shown that it is of order 10−23.
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Appendix A

G(P) in the proposed MCR

Substituting Eqn.(1.3) into Jacobi identity,

[F (P )δjk +G(P )PjPk, Xi]− [F (P )δik +G(P )PiPk, Xj] = 0

[F (P ), Xi]δjk + [G(P )PjPk, Xi]− [F (P ), Xj]δik − [G(P )PiPk, Xj] = 0.

From Eqn.(1.3), the operators in the momentum representation are

Pi = pi, Xi = i~
(
F (p)

∂

∂pi
+G(p)pipl

∂

∂pl

)
. (A.1)

Using these, the Jacobi identity becomes

[F (p), F (p)
∂

∂pi
+G(p)pipl

∂

∂pl
]δjk + [G(p)pjpk, F (p)

∂

∂pi
+G(p)pipl

∂

∂pl
]

−[F (p), F (p)
∂

∂pj
+G(p)pjpl

∂

∂pl
]δik − [G(p)pipk, F (p)

∂

∂pj
+G(p)pjpl

∂

∂pl
] = 0
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[F (p)
∂F (p)

∂pi
+G(p)pipl

∂F (p)

∂pl
]δjk − [F (p)

∂F (p)

∂pj
+G(p)pjpl

∂F (p)

∂pl
]δik

+[F (p)
∂(G(p)pjpk)

∂pi
+G(p)pipl

∂(G(p)pjpk)

∂pl
]

−[F (p)
∂(G(p)pipk)

∂pj
+G(p)pjpl

∂(G(p)pipk)

∂pl
] = 0.

(A.2)

We can make use of the fact that p2 = pipi, then ∂p
∂pi

= pi
p

.

F (p)
∂F (p)

∂p
[
pi
p
δjk −

pj
p
δik] +G(p)p

∂F (p)

∂p
[piδjk − pjδik]

+F (p)G(p)[pjδik − piδjk] = 0

F (p)G(p)−G(p)p
∂F (p)

∂p
= F (p)

∂F (p)

p∂p

G(p) =
2F (p)dF (p)

dp2

F (p)− 2p2 dF (p)
dp2

. (A.3)

This is the constraint that is shown in the thesis.
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Appendix B

Wavefunction of 1D Harmonic

Oscillator

After the change of variables, the equation becomes

[
ξ2
∂2

∂ξ2
+ ξ

∂

∂ξ
−

(1− δ2

2
ξ)2

δ4
+ ε

]
Ψ(ξ) = 0. (B.1)

For ξ → 0,

[
ξ2
∂2

∂ξ2
+ ξ

∂

∂ξ
− k2

]
Ψ(ξ) = 0 (B.2)[(

ξ
∂

∂ξ

)2

− k2
]

Ψ(ξ) = 0 (B.3)[(
ξ
∂

∂ξ
− k
)(

ξ
∂

∂ξ
+ k

)]
Ψ(ξ) = 0 (B.4)

where

k =

√
1

δ4
− ε > 0. (B.5)

This gives

Ψ(ξ) = aξk + bξ−k (B.6)
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where the term x−k do not allow normalizability when ξ → 0 and hence,

not included. Thus, when ξ → 0, Ψ(ξ)→ ξk.

On the other hand, for ξ →∞,

[
ξ2
∂2

∂ξ2
+ ξ

∂

∂ξ
− ξ2

4

]
Ψ(ξ) = 0 (B.7)[(

ξ
∂

∂ξ

)2

− ξ2

4

]
Ψ(ξ) = 0 (B.8)[(

ξ
∂

∂ξ
− ξ

2

)(
ξ
∂

∂ξ
+
ξ

2

)]
Ψ(ξ) = 0. (B.9)

This gives

Ψ(ξ) = aeξ/2 + be−ξ/2. (B.10)

Similarly, eξ/2 do not allow normalizability when ξ → ∞ and hence, not

included. Thus, when ξ →∞, Ψ(ξ)→ e−ξ/2.

This leads to the wavefunction to be

Ψ(ξ) = e−ξ/2f(ξ) (ξ)k (B.11)

where f(ξ) is the connection function of the asymptotic behaviour when ξ

is not near the boundary.
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Appendix C

Hypergeometric Equation

All classical orthogonal polynomials appear as solutions of the hypergeo-

metric equation as shown below:

σ(x)y′′n(x) + τ(x)y′n(x)− λnyn(x) = 0 (C.1)

where

σ(x) = ax2 + bx+ c (C.2)

τ(x) = dx+ e (C.3)

λn = n(n− 1)a+ nd. (C.4)

The solution denoted by

yn(x) = Pn

 d e
x

a b c

 (C.5)

where a, b, c, d and e are the parameters of the polynomial and n (=0,1,2,...)

is the order of the polynomial. The solution can be found using different

methods [7]. The polynomials can be built from Rodrigues representation
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and are classified according to their weight functions w(x) as shown below:

Pn =
1

W

 d e
x

a b c


∗ dn

dxn

(ax2 + bx+ c)nW

 d e
x

a b c




(C.6)

w(x) = W

 d e
x

a b c

 = exp

(∫
(d− 2a)x+ (e− b)

ax2 + bx+ c
dx

)
.

(C.7)

For different parameters, the above solutions will yield the corresponding

polynomials. For example, in Eqn.(3.10), the parameters correspond to

that of Laguerre polynomial, a=0, b=1, c=0, d=-1 and e=2k+1. Hence,

the solution to the equation is an associated Laguerre polynomial.
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Appendix D

Romanovski Polynomial

Another set of parameters of the polynomial will be looked at since in this

paper, the main solution consists of this class of polynomial: Romanovski

polynomials. The corresponding set of parameters are a=1, b=0, c=1,

d=2(1-p) and e=q where p > 0. Such a set of parameters results in the

following weight function that belongs to this class of polynomial.

w(x) = (x2 + 1)−peq tan
−1 x (D.1)

The orthogonality properties of the Romanovski polynomials are discussed

in the main text. In Ref.[7] it is shown that Schrodinger equation with

hyperbolic scarf potential(Eqn.(4.34)) reduces to the differential equation

satisfied by the Romanovski polynomial. We shall discuss on the reason on

the transformation of p to p’. Starting from the Schrodinger equation in

Eqn.(4.26), a substitution of x = sinh q yield
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(1 + x2)
d2ϕ

(i)
m (x)

dx2
+ x

dϕ
(i)
m (x)

dx
+

1

x2(1 + x2)

[(
1

4
−m′2

)
−2x2

βλ

[
(m′ ± 1) + βλ

(
∓m′ + 1

2

)]
− x4

β2λ2

]
ϕ(i)
m (x)

+
ε2

βλ2
ϕ(i)
m (x) = 0.

(D.2)

This equation is similar to the polynomial that has the weight function in

Eqn.(D.1). Thus, it suggests the following substitution

ϕ(i)
m (x) = (1 + x2)

µ
2 e−

ν
2
tan−1 xD(µ,ν)(i)

n (x), (D.3)

obtaining

{
(1 + x2)

d2

dx2
+ [(2µ+ 1)x− ν]

d

dx

+
1

x2(1 + x2)

[(
1

4
−m′2

)
+ x2

(
ν

2
+
ν2

4
+ µ− µ2

− 2

βλ

[
(m′ ± 1) + βλ

(
∓m′ + 1

2

)])
+ µνx3 − x4

β2λ2

]
+

(
µ2 +

ε2

βλ2

)}
D(µ,ν)(i)
n (x) = 0.

(D.4)

The coefficient of the terms involving the factor 1
x2(1+x2)

has to vanish,

leading to

1

β2λ2
= 0. (D.5)

This is approximately true only if β, λ → ∞, which is not the case since

in literature, β is a small value(<< 1). Recall also the definition of λ, B0

has to be infinitely large in order for the above to hold approximately true.

Hence, we see that by purely a change of variable to the q domain do not

yield a solution, which in turn require us to perform a transformation of p

to p’.
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Appendix E

Dirac equation

Dirac equation is an equation for describing particles of spin 1
2
. It is a rel-

ativistic equation but is in contrast to the Klein-Gordon equation in which

it is first order in time. Dirac’ strategy [8] is to factorize the relativis-

tic energy-momentum relation, which introduce the Dirac matrices in the

process. Hence, the energy-momentum relation can be written as:

pµpµ −m2c2 = (γkpk +mc)(γλpλ −mc) = 0 (E.1)

γ0 =

 1 0

0 −1

 γi =

 0 σi

−σi 0

 (E.2)

where σi is the Pauli matrices. Thus, the Dirac equation by convention

will be

i~γµ∂µψ −mcψ = 0, where ψ =



ψ1

ψ2

ψ3

ψ4


. (E.3)

The wavefunction now is a four-vector and is called the Dirac spinor.
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