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Abstract

Boltzmann's formula for entropy in statistical mechanics can give rise to neg-

ative absolute temperatures. A recent paper by Dunkel and Hilbert1 claims that

Boltzann's formula is inconsistent with thermostatistics, and hence negative abso-

lute temperatures do not exist. We show, by means of an alternative formulation

to obtain the absolute temperature scale of a spin paramagnet, that Boltzmann's

formula for entropy remains the correct de�nition of entropy instead of the �Gibbs�

volume entropy proposed by Dunkel and Hilbert.

We simulate a modi�ed one dimensional Ising model using the Metropolis algo-

rithm in MATLAB to investigate the system's behaviour in response to the variation

of some governing parameters. We �nd evidence to suggest the existance of negative

total pressure for systems in positive temperature, in contrast to a paper by Braun

et al2 that negative pressure only exists in system with negative temperature.
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Part I

Introduction

In thermodynamics, entropy S is a measure of order and disorder in a system and was de-

veloped to explain experimental observations of the loss of functional energy in combustion

reactions. Scientists that contributed to the theory of entropy in thermodynamics include

Rudolf Clausius (1822-1888) and Sadi Carnot (1796-1832). The statistical de�nition of

entropy was developed by Ludwig Boltzmann (1844-1906) in 1877 as part of his formu-

lation on statistical mechanics. In Section 1, we explain how Boltzmann's formulation of

entropy gives rise to the existance of negative temperature, and also brie�y cover recent

papers in academia regarding the existance (or lack thereof) of negative temperatures.

1 Boltzmann entropy to negative temperatures

Boltzmann's entropy formula in statistical mechanics is an equation that relates the en-

tropy S of a system in thermodynamic equilibrium to the number of microstates Ω that

corresponds to a macrostate:

SB = kB lnΩ, (1)

where kB is the Boltzmann's constant. Absolute temperature can be de�ned from the

Boltzmann entropy function as follows:

1

T
=

(
∂S

∂U

)
V,N

. (2)

One of the earliest papers that postulates the existance of negative temperature due to

Boltzmann's equation was N.F Ramsay3. He postulates that the only requirement for the

existance of negative temperature is that the entropy S should not be a monotonically

increasing function of the internal energy U . We can show this with a simple application

of Boltzmann's formula to a two-level spin system.

1.1 Two-level system

We can consider a system of N particles which can take two spin values: spin up with

energy +ε or spin down with energy 0. If there are N+ particles with spin up, the total

energy of the system is

E = εN+. (3)

We apply Boltzmann's formula by counting the number of microstates in the system to

obtain a function for entropy:
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SB (N+, N) = kB ln

(
N !

N+! (N −N+)!

)
. (4)

We can plot SB (N+, N) for some particle number N to observe the shape of the entropy

function in Figure 1. The lowest possible energy state is achieved when all particles are

spin down, which is clearly a highly ordered state and corresponds to S = 0. When

the energy of the system (proportional to N+) is increases, it is clear from Figure 1 that

at a certain energy level, there exists more spin up particles than spin down particles

(population inversion) which leads to a decrease in the number of microstates for that

energy. Similarly the highest energy state with all particles spin up is also a highly ordered

state, S = 0.

Figure 1: SB for a two level spin system, N = 100. For N+ > 50 the energy
decreases with increasing N+.

Following the de�nition of temperature in Eq. (2) we obtain the temperature scale

as a function of energy and we see in Figure 2 that the region with decreasing entropy

corresponds to a negative temperature.
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Figure 2: Temperature scale according to Boltzmann's formula. The system in
a negative temperature state has more energy.

1.2 Properties of negative absolute temperatures

From the de�nition of absolute temperature in Eq. (2) we have a numerical scale of

absolute temperature3:

+0◦K < +300◦K < +∞◦K < −∞◦K < −300◦K < −0◦K. (5)

Essentially this means the negative temperatures are always �hotter� than positive tem-

peratures; if two objects of negative temperature and positive temperature come into

contact, heat will �ow from the negative temperature object to the positive temperature

object. We can intuitively see how this is consistent with the two-level system in Section

1.1, as negative temperatures will correspond to systems with higher energy than positive

temperatures.

Negative temperatures cannot exist for system where the upper bound of energy is

unbounded. This means that most real world system, such as the classical ideal gas, do not

have negative temperatures as kinetic motion of particles usually do not have an upper

energy bound. Negative temperatures have been realized in localized spin systems4�6

where an upper bound of the system energy exists due to its �nite, discrete spectrum.

However, a recent paper by Braun et al 7 in 2013 also established the real world existance

of negative temperatures in motional degrees of freedom.

1.3 Dunkel & Hilbert: Negative temperatures do not exist

A paper was recently published by Jörn Dunkel and Stefan Hilbert1 that made the claim

that the Boltzmann de�nition of entropy is inconsistent both mathematically and ther-
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modynamically. The implications of such a claim would be that negative temperatures

are invalid and do not exist. Since the Boltzmann formula not the correct thermodynamic

formula, Dunkel and Hilbert proposed an alternate �Gibbs� volume entropy formula (not

to be confused with the well-known Gibbs formula, S = −kB
∑

i pi ln pi):

SG (E,N) = kB ln

(∑
i≤E

ω (i, N)

)
. (6)

The di�erence between the �Gibbs� formula (SG) and Boltzmann formula (SB) is that

while SB at a particular energy E is determined by counting the number of microstates

at that energy E, the entropy in SG is determined by counting the number of microstates

at that energy E and all other energies below that. If we revisit the two-level system and

plot the entropy again, using the proposed Gibbs formula (Figure 3), we see that entropy

is now a strictly monotonically increasing function of energy; negative temperature no

longer exists following the de�nition in Eq. (2).

Figure 3: SB for a two-level spin system, N = 100. For N+ > 50 the energy
decreases with increasing N+.

The question now raised is whether this �Gibbs� formula is indeed the correct formula

to use to describe entropy, or does Boltzmann formula remain the correct, consistent

thermodynamic formula to use? We attempt to answer this question by looking at how

entropy and temperature is de�ned. We have been starting with the de�nition of entropy

in order to de�ne our absolute temperature scale, but is there a way to de�ne our absolute

temperature scale without refering to any de�nition of entropy? It turns out that accord-

ing to a formulation of thermodynamics by A. B. Pipard8, we can de�ne the absolute

temperature scale by the construction of Carnot cycles.
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Part II

Boltzmann entropy and Carnot cycle

Pipard's formulation of thermodynamics outlines a method to obtain an absolute tem-

perature scale via the construction of Carnot cycles. In order to do so, one must de�ne

isotherms and adiabat curves of the system, so as to be able to construct a Carnot cycle

consisting of isothermal and adiabatic processes. In Section 2, we apply Pipard's formu-

lation to a paramagnet to obtain an absolute temperature scale of the system without

reference to the Boltzmann formula for entropy.

2 Absolute temperature scale from Pipard formulation

2.1 Empirical temperature: An Ising thermometer

We start by considering how to �rst obtain some form of empirical temperature of a

system. Empirical temperatures are based on the measurement of physical properties

one can observe from the system. For example, using an ideal gas thermometer, we can

measure the volume or the pressure of the ideal gas when it is in thermal equilibrium

contact with the system in question. With the empirical temperature scale, one obtains

the absolute temperature scale by a matter of a �xed reference point (for ITS-909, 273.16K

de�ned at the triple point of water).

2.1.1 One dimensional (1D) Ising model

In our thesis, we use a 1D Ising chain as our empirical thermometer. The 1D Ising model

consists of a number of spins NB, each with a spin value σi = ±1 attached, which can

either be spin up or spin down. Each spin interacts with its neighbour such that the

energy of the system depends of each spin-spin con�guration:

EB = −J

NB∑
i

σiσi+1 − h′
NB∑
i

σi, (7)

where conventionally periodic boundary conditions are applied to the �rst and last spin:

σNB+1 = σ1. J represents the interaction strength and h′ represents the strength of an

external magnetic �eld. For this part we assume the absence of an external magnetic �eld

(h′ = 0). We can de�ne an observable property of the Ising model that is a representation

of the average energy of the system:

θ ≡ 〈σ1σ2〉EB
, (8)
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where the ensemble average 〈θ〉EB
means that we take the mean of the quantity θ over

all possible con�gurations while keeping the energy constant at EB. If we write out all

possible spin con�gurations of the Ising model for a small value of NB and compute θ and

EB for each con�guration, we can see that θ is a function of the average energy 〈EB〉 of
the system:

〈EB〉 = −JNBθ. (9)

This can justify our de�nition of the empirical temperature. We note the range of the

empirical temperature: −1 ≤ θ ≤ 1. Also, we note that the energy of the Ising model is

related to the number of domain walls1 i present in the con�guration: EB(i) = −JNB +

2Ji. This can be illustrated in Figure 4: counting 6 domain walls we obtain an energy

of EB (6) = −10J + 12J = +2J , which is our expected result if we calculated the energy

using Eq. (7).

+ + + 8 − 8 + 8 − 8 + + + 8 −8

Figure 4: 10 particle Ising model. Energy is a function of the number of do-
main/domain walls (represented as 8).

2.1.2 Paramagnet system

The system of which we want to obtain the absolute temperature scale of is the spin

paramagnet. The paramagnet consists a number of spins N , each with a spin value

αi = ±1. The energy of the paramagnet system is simply the sum of its spin value:

EP = −h
N∑
i

αi. (10)

If we de�ne the number of spin up particles in the paramagnet to be N+ and spin down

N− we have an alternate expression for the energy of the paramagnet:

EP = −hN+ + hN− = −hM, (11)

with the magnetization de�ned as M ≡ N+ − N−. We also note that the energy of the

paramagnet is related to the number of spin up particles present in the con�guration:

EP = h (N − 2N+).

2.1.3 Heat and work in the paramagnet system

We would like to de�ne heat and work in a paramagnet system. From the First Law of

Thermodynamics, the internal energy E of a system can be increased by either letting

1A domain wall exists between two neighbouring particles with opposite spins.
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the system absorb heat Q or do work W :

dE = δQ+ δW. (12)

For the paramagnet with energy EP = −hM , its total di�erential is

dEP = −hdM −Mdh. (13)

We de�ne work done on the paramagnet10: δW ≡ −Mdh. Correspondingly, heat �ow

into the system is δQ ≡ −hdM . An adiabatic process (δQ = 0) of the paramagnet is

hence the change in the system energy as a result of changing the external magnetic �eld

h, while keeping the magnetization M constant.

2.1.4 Coupled system: Ising thermometer and paramagnet

Our next objective is to obtain the paramagnet isotherm curves by using the Ising model

as our thermometer. The Ising thermometer has an empirical property known to be a

function of its average energy (Eq. (8)), and we would like to use it to measure the

unknown empirical temperature of the paramagnet system which is at some energy EP1

(Figure 5).

Figure 5: The Ising thermometer has a measurable empirical temperature θ1.
There is no heat transfer between the systems.

We now allow heat transfer to occur between the Ising thermometer and the param-

agnet (coupling the systems together) and observe the empirical temperature of the Ising

thermometer, θ. Measuring the empirical temperature of the Ising themometer is the

same (summing over the spins of the Ising thermometer only), but now the total energy

of the two systems E is kept constant:

θ =

〈
1

NB

NB∑
i=1

σiσi+1

〉
E=EB+EP

. (14)

If it turns out that θ at some value (e.g. θ2) does not change before and after allowing heat

transfer between the systems, we can say that the Ising thermometer and the paramagnet
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are in thermal equilibrium (Figure 6). At this point we can conclude that the paramagnet

possesses the same temperature θ2 as the Ising model.

Figure 6: Allowing heat transfer between the two systems; if no heat transfer is
observed the paramagnet is in thermal equilibrium with the Ising thermometer.

All possible con�gurations of a coupled system, at some energy values of the ther-

mometer and the paramagnet, can be written in the form of combinatorial formulas.The

average energy of the Ising thermometer in the coupled system is then:

〈EB (i)〉 =
∑

i EB (i)nB (i)n (N+)∑
i n

B (i)n (N+)
. (15)

The number of possible con�gurations the Ising thermometer has at some energy: nB (i) =
NB !

i!(NB−i)!
, i = 0, 2, ...NB, the number of possible con�gurations the paramagnet has at some

energy: n (N+)=
N !

N+!N−!
,

Figure 7: nB (i)n (N+) for various NB, where N+ = 25
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Figure 8: nB (i)n (N+) for various N , where N+ = 25

Figures 7 and 8 show the e�ects of varying particle numbers N and N+ on the number

of possible states nB (i)n (N+). We �rst note that the peaks of the curves, which is the

largest value of nB (i)n (N+), represent the most probable values of i of the system. We

see that as the particle number of either the bath NB or the paramagnet N increase, the

number of possible states increases exponentialy, while the widths of the curves do not

increase.

If we consider the thermodynamic limit (NB → ∞, N → ∞) we can see that the curves

would �sharpen� similar to a dirac delta curve: the largest weight (and hence the most

probable value) that contributes to the ensemble average 〈EB (i)〉 comes from the largest

value of nB (i)n (N+). Hence, we need only consider the most probable value of EB (i) to

determine the ensemble average 〈EB (i)〉 . We can take the log of nB (i)n (N+) as we are

not concerned with actual values, allowing us to simplify using Stirling's approximation:

ln
(
nB (i)n (N+)

)
= ln

(
NB!

i! (NB − i)!

N !

N+!N−!

)
=NB lnNB +N lnN − i ln i

− (NB − i) ln (NB − i)

−N+ lnN+ +N+ −N− lnN− +N−.

(16)

We take its derivative and set it equal to 0, corresponding to a state where nB (i)n (N+)

is a maximum:

d

di

(
ln
(
nB (i)n (N+)

))
= 0 =− ln i+ ln (NB − i)

− dN+

di
lnN+ − dN−

di
lnN−.

(17)

Rearranging, we have:

ln

(
i

NB − i

)
=

J

h
ln

(
N−

N+

)
. (18)
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Using the relations θ = 1− 2i
NB

and N (orM) = N+ ±N− we obtain an equation of state

for the paramagnet system:

M

N
= tanh

(
h

J
tanh−1 θ

)
. (19)

This equation of state describes the isothermal curves of the paramagnet system using

the empirical temperature scale of the Ising thermometer θ.

2.2 Absolute temperature: Carnot cycles

2.2.1 Carnot cycle of the paramagnet

A Carnot cycle is constructed by �rst considering two isotherms of a system which cor-

respond to temperatures θ1 and θ2. Two adiabatic2 lines are constructed which cut the

θ1 line at points A and B, and the θ2 line in C and D. The Carnot cycle then consists of

an isothermal process along temperature θ1, changing the state of the system from A to

B, an adiabatic process from B to C (which changes the temperature from θ1to θ2), an

isothermal process along θ2 from C to D and �nally an adiabatic process from D to A.

If during the isothermal change from A to B the system takes in an amount of heat Q1

from the reservoir at θ1 and along the isothermal process C to D the heat Q2 is taken in

from the reservoir at θ2, with the completion of the Carnot cycle the system must have

performed Q1 +Q2 amount of work.

Pipard uses Kelvin's law8 to show that for given values of θ1 and θ2 the ratio of −Q1

Q2

is the same for all Carnot cycles. More speci�cally, he justi�es the introduction of the

absolute temperature scale T (θ) having the property:

−Q1

Q2

=
T (θ1)

T (θ2)
, (20)

for any Carnot cycle. Once the absolute temperature scale is de�ned for the system the

entropy can be simply found using the Clausius theorem:

ˆ
dS =

ˆ
δQrev

T
. (21)

Going back to the coupled Ising-paramagnet system, we can use the equation of state of

the paramagnet derived earlier to draw isothermal curves. We can rede�ne the empirical

temperature θ in order to make the plot simpler:

β̃ ≡ 1

J
tanh−1 θ. (22)

2From our de�nition of heat and work in Section 2.1.3, the adiabatic curves are straight lines in a M-h

graph where the magnetization M is held constant and the external magnetic �eld h changes.
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Keeping in mind that β̃ is still the empirical temperature measured from the Ising ther-

mometer. Since −1 ≤ θ ≤ 1, we have −∞ ≤ β̃ ≤ +∞. The equation of state of the

paramagnet is now:

M = N tanh
(
β̃h
)
. (23)

We construct the Carnot cycle of the paramagnet system using two arbitrary empirical

temperatures of the system (Figure 9)

Figure 9: Carnot cycle (ABCD) of the paramagnet at two empirical isotherms,
β̃1 and β̃2.

From the isotherm curves we have the following relationships:

β̃1hA = β̃2hD = tanh−1

(
MA

N

)
, (24)

β̃1hB = β̃2hC = tanh−1

(
MB

N

)
. (25)

We can compute the heat �ow along the isotherm β̃1 from A to B:

Q1 =

B̂

A

−hdM = −hM |hB ,MB

hA,MA
+

hBˆ

hA

Mdh = −hBMB + hAMA +
N

β̃1

ln
cosh

(
β̃1hB

)
cosh

(
β̃1hA

) ,
which can be simpli�ed using Eqs. 24 and 25:
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Q1 =
1

β̃1

(
−MB tanh−1 MB

N
+MA tanh−1 MA

N
+

N

β̃1

ln
cosh

(
tanh−1 MB

N

)
cosh

(
tanh−1 MA

N

)) . (26)

Similarly, the heat �ow along the isotherm β̃2 from C to D:

Q2 = − 1

β̃2

(
−MB tanh−1 MB

N
+MA tanh−1 MA

N
+

N

β̃1

ln
cosh

(
tanh−1 MB

N

)
cosh

(
tanh−1 MA

N

)) . (27)

We can compute the ratio:

−Q1

Q2

=
β̃2

β̃1

=
1
J
tanh−1 θ2

1
J
tanh−1 θ1

. (28)

We can then introduce the absolute scale according to Pipard:

−Q1

Q2

=
1
J
tanh−1 θ2

1
J
tanh−1 θ1

≡ T (θ1)

T (θ2)
, (29)

where the absolute temperature scale,

T (θ) = K
1

tanh−1 θ
, (30)

is a function of the emprical temperature θ with an arbitrary constant K. K can be

determined (according to ITS-90) by requiring that the absolute temperature be T (θtp) =

273.16K at the empirical temperature of the triple point of water θtp. With the absolute

temperature scale of the paramagnet de�ned we can then determine the entropy function.

From the absolute temperature scale (Eq. (30)) we have the relation:

T β̃ =
K

J
. (31)

The entropy can be determined using Clausius theorem (Eq. (21)). If we consider a

reversible process along the isotherm from A to B,

SB − SA =
1

T1

−hBMB + hAMA +
N

β̃1

ln
cosh

(
β̃1hB

)
cosh

(
β̃1hA

)
 . (32)

We see that entropy is a function:

Spipard = −hN

T
tanh

(
h
J
K
T

)
+

J

K
N ln cosh

(
h
J
K
T

)
+ const. (33)

We can compare this with the entropy function of the paramagnet system derived from
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canonical ensemble (see Appendix A):

Scanon = −hN

T
tanh

(
h

kBT

)
+ kBN ln cosh

(
h

kBT

)
+ kBN ln 2. (34)

We see that the entropy functions obtained have the same form, and they are equivalent

if the arbitrary constants are equal, kB ≡ J
K
. We also see that the canonical derivation of

paramagnet entropy gives a value of the unknown constant obtained following Pipard's

formulation. In the thermodynamic limit, the microcanonical ensemble and the canonical

ensemble are equivalent. Appendices A and B show that we obtain the same expression

for energy of the paramagnet when we consider the system in both the canonical and

microcanonical ensembles.

2.2.2 Carnot cycle in negative and positive temperature reservoirs

This formulation also works if we consider a Carnot cycle between a positve temperature

reservoir and a negative temperature reservoir (Figure 10). Consider an isotherm curve

of the paramagnet at temperature β̃′
2 ≡ −β2 which is of opposite sign to β̃2. It is clear

that hC′ = −hC and hD′ = −hD.

Figure 10: Carnot cycle (ABC'D') with negative and positive temperature reser-
voirs, β̃1 and β̃′

2.

The heat �ow along the isotherm β̃′
2 from C' to D' is then:

Q′
2 = − 1

β̃′
2

(
−MB tanh−1 MB

N
+MA tanh−1 MA

N
+

N

β̃1

ln
cosh

(
tanh−1 MB

N

)
cosh

(
tanh−1 MA

N

)) = −Q2.

(35)
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Since heat �ows into the system for both isothermal curves, the left term of Eq. (20) does

not have a negative sign. The derivation onwards is equivalent to the rest of Section 2.2.1.

2.2.3 A note on Carnot e�ciency

The Carnot e�ciency equation places a limit to the thermal e�ciency of heat engines:

ηcarnot =
W

QH

= 1− TL

TH

, (36)

where QH is the heat absorbed by the system at the hot reservoir, TL and TH are the

temperatures of the cold and hot reservoirs respectively, and W the total work done by

the system. One notes that if a Carnot cycle is performed with negative temperature

TH < 0 and positive temperature TL > 0, substituting the values into Eq. (36) results

in a Carnot e�ciency of more than 1. However, one should not confuse this as a proof

of free energy generation, and this is explained in a reply by Daan Frenkel and Patrick

Warren11 (summarized below).

Consider a Carnot cycle of a spin system between a �hot� negative temperature reser-

voir and a �cold� positive temperature reservoir. The Carnot cycle consists of two isother-

mal processes and two adiabatic processes. We �rst consider the spin system in an inverted

population state (thus having negative temperature), and connect it to the �hot� reservoir.

We then perform an isothermal process that decreases the entropy of the spin system by

some value ∆S . Since the spin system is an inverted population, by Figure 1 we see that

heat must �ow from the �hot� reservoir into the spin system to decrease its entropy. Next

we remove contact from the reservoir and perform an adiabatic process that inverts the

spin population to a normal populatation state (thus having positive temperature) whilst

maintaining no change in entropy of the spin system. We then connect the spin system

to a �cold� reservoir. In order to be considered a cycle there must be no net change in

entropy; we hence perform an isothermal process that increases the entropy of the spin

system by the same value in the �rst step: ∆S. Here we note that since the spin system

(at positive temperature) is not an inverted population, by Figure 1 we see that heat must

also �ow from the �cold� reservoir into the spin system to increase its entropy.

The de�nition of the Carnot e�ciency in Eq. (36) is calculating the net work done

per heat absorbed by the system, but we see that the heat absorbed by the system is no

longer QH only, as the heat also �ows into the system during the isothermal process at

the cold reservoir. A more correct de�nition of the e�ciency of a Carnot cycle between

positive and negative temperature would be:

ηcarnot =
W

QH +QC

. (37)
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3 Conclusion

We obtained an expression of entropy for a paramagnet system without using the Boltz-

mann's formula for entropy. Instead, we construct an empirical temperature scale and

used the general property of Carnot cycles to de�ne the absolute temperature scale, from

which we use Clausius theorem to obtain the entropy function Spipard. We compared it

with the entropy obtained from the canonical ensemble Scanon and note that they have

the same form. Since the canonical ensemble and the microcanonical ensemble are equiv-

alent in the thermodynamic limit, we claim that our entropy function Spipard is consistent

with the entropy function Sboltz of the microcanonical ensemble (which was obtained using

Boltzmann's formula). As the Pipard formulation of entropy is consistent with the Boltz-

mann formulation of entropy, this provides support that the Boltzmann entropy formula

remains the correct entropy formula to use, instead of the Dunkel Hilbert �Gibbs� volume

entropy.

Part III

Random walk Ising model

In this next part, we investigate a modifed Ising model by means of computational simula-

tion in the canonical ensemble. We would like to investigate the properties of a modi�ed

Ising model; in which particles are allowed to move freely (i.e. as a �uid), with their

energy also dependant on the distance between neighbours. In particular, we will focus

on the concept of �pressure� that can be calculated if we model the Ising model as a �uid

(Section 6.2). We can also look at how the canonical ensemble behaves when the system

has negative temperature. The computer simulation will be carried out in MATLAB using

the Metropolis algorithm.

In Section 4 we introduce the properties of the Metropolis algorithm and its relevance

in computational statistical mechanics. In Sections 5 and 6 we cover the realization of

the modi�ed Ising model as a computer simulation. Section 7 shows the results obtained

from the simulations and we talk about any interesting phenomena observed.

4 Markov Chain Monte Carlo: Metropolis algorithm

In the canonical ensemble in statistical mechanics, the partition function Z describes the

statistical properties of a system in thermodynamic equilibrium. For a discrete system

we have
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Z =
∑
{s}

e
− E

kBT , (38)

where we sum over all the possible microstates {s} of the system, each having energy

Es. However when we study systems with many particles or systems with many degrees

of motion, it is clear the number of possible con�gurations become extremely large very

quickly. Furthermore, for continous systems (for example ideal gas) the partition function

becomes a multidimensional integral. It is usually impossible to evaluate such integrals

analytically or computationally. To approximate the partition function we hence use

Markov chain Monte Carlo (MCMC) methods12. MCMC is a computing technique that

allows for sampling of a Markov chain whose stationary probability distribution state is the

desired probabilty. MCMC is used particularly when the desired probability distribution

is di�cult to sample directly or too complex to decompose into simple (few variable)

probability functions.

4.1 Markov Chain and the Metropolis algorithm

A Markov chain13 is a stochastic process that undergoes transition from one state to

another, and the probability of transition from one state to another only depends on the

current state (i.e. memoryless). By constructing a transition matrix P that represents

the probabilities of all possible state transitions, it is possible to calculate the long time

probability distribution of the states. We can use a simple weather model14 as an example

of a Markov chain. Figure 11 shows the probabilities of weather conditions (either rainy

or sunny), given the weather on the preceding day.

Figure 11: A simple weather model as an example of a Markov chain.

The simple weather system can also be represented as a transition matrix P :

P =

[
0.9 0.1

0.5 0.5

]
. (39)

The probability distribution of sunny and rainy weather on the next day xn, can be

calculated from the previous day xn−1:
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xn = xn−1P. (40)

The probability on the nth day xn, given the weather of the �rst day x1 can hence be

calculated using P :

xn = x1P
n−1. (41)

To obtain the steady state of the weather, we can solve P as an eigenvalue problem to

obtain the steady state solution:[
q1 q2

]
=
[
0.833 0.167

]
, (42)

which means that in the long term, 83.3% of the days are sunny.

The Metropolis15 algorithm is a MCMC method that uses random walk to obtain

random samples from a Markov chain whose long term probability distribution is equal to

the desired probability distribution. The Metropolis algorithm can draw samples from any

probability distribution P (x), if the value of a function f (x) that is proportional to the

density of P can be computed. The only requirement of the proportionality of f (x) makes

the Metropolis algorithm useful as the actual values of P (x) (whose normalization factor

may be di�cult to compute) need not be computed. The Metropolis algorithm generates

a sequence of sample values whose distribution converges to P (x). At each iteration, the

next sample is dependant only on the current sample (Markov chain property).

The Metropolis algorithm is outlined below:

1. Start at an initial state x0.

2. For each iteration t:

(a) Generate a candidate x′,

(b) Calculate the acceptance ratio α = f(x′)
f(x)

, where f (x)is proportional to the

probability density,

i. If α ≥ 1 accept the new state and set current state to the candidate state:

xt = x′

ii. If α < 1 accept the new state with the probability α: If the result is

rejected the current state remains the same: xt = x0.

When Metropolis algorithm randomly moves about the sample space, it sometimes accepts

the move and moves to a new sample state and sometimes it rejects the move and remains

in the current state. As the acceptance ratio α is an indication of how probable the new

candidate state is compared to the current state, the algorithm will tend to stay in high

probability density regions and occasionally visit low probability density regions. If the
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algorithm is allowed to iterate over a long enough period, the Markov chain distribution

enters a steady state where the resultant sampling of the Markov chain is equal to the

desired probability distribution.

5 The modi�ed 1D Ising model

The 1D Ising model16 was invented by the physicist Wilhelm Lenz (1888-1957) and solved

by Ernst Ising (1900-1998) in his 1920 thesis. In this project, we modify the 1D Ising

model to include distance-dependant interation between particles. The modi�ed 1D Ising

model consists of a set of particles N in a box of length L, where each particle possess

a spin: σi = ±1, as well as a position: 0 ≤ xi ≤ L. The system also has an external

magnetic �eld h interacting with it. The particles are allowed to move about the length of

the box subject to the random walk conditions speci�ed in the program (see ...). Figure

12 shows an example of the modi�ed 1D Ising model for N = 5.

Figure 12: The modi�ed 1D Ising model for N = 5 particles in a box of length
L.

For each particle-particle interaction not only is the interaction dependant on their

spins σiσi+1, but now it is also dependant on the distances between each neighbouring

particle, V (r). The energy of the modi�ed 1D Ising model is hence:

E = −
N∑
i

σiσi+1V (|ri − ri+1|)− h
N∑
i

σi. (43)

We note that the interaction parameter J present in the original Ising model (Eq. (7))

can be subsumed under the potential function V (|ri − ri+1|).

5.1 Periodic boundary conditions

To reduce edge e�ects and better observe bulk e�ects we can implement periodic boundary

conditions: the (n+ 1)th particle is equivalent to the 1st particle. Normally, for the 1D

Ising model we need only consider the spins: σN+1 = σ1; however since the particles

now have positions we need also consider the distance between the �rst and last particle.
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This can be easily determined if we consider the box to be in�nitely repeating end-to-end

(illustrated in Figure 13).

Figure 13: Periodic boundary conditions in a 5 particle modi�ed 1D Ising model.
The distance between the �rst and last particle can be calculated as X.

5.2 Distance dependant potential, V (r)

The interaction between the particles in this simulation is modeled as a parabola with a

cuto�:

V (r) ≡


(r−h−)(r−h+)
(h−h−)(h−h+)

k, h− dp ≤ r ≤ h+ dp,

0, otherwise,
(44)

where h− ≡ h− dp, h+ ≡ h+ dp.

The parameters h, k, dp, govern the shape of the parabola V (r). The stationary point

of V (r) is centered at h and has a value of V (h) = k. Langrangian interpolation ensures

that V (r) passes through three points: V (h) = k, V (h−) = 0 and V (h+) = 0. The cuto�

distance of the parabola refers to the variable dp: if r falls outside the region bounded by

(h−, h+), the potential curve evaluates to 0; there is no interaction between the particles.

This cuto� variable hence governs the range of the particle-particle interactions. Figure

14 illustrates V (r) and V ′ (r) for h = 1, k = −1, dp = 1.
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Figure 14: Potential curve V (r) is a parabola whose peak is located at (h, k)
with a cuto� distance dp such that V (h± dp) = 0.

5.2.1 Why implement a cuto� distance?

The decision to implement a cuto� distance was due to our choice of the potential in-

teration curve as a parabola; the large distances r the curve of the parabola means that

energy interaction exponentially increases as distance increases. Also, even inverting the

potential curve we expect no di�erence to the system as the particles can simply �ip

their spins to minimize energy. Without a cuto� distance implemented, quick simulations

showed that the spins tend to cluster together to maximize distance between domain walls

and spins orient between large distance spin-spin pairs to minimize energy.

Figures 15 and 16 show the behavior of the particle movements with and without a

cuto� distance in the potential curve V (r) .We can observe that without a cuto� distance,

the particles tend to drift together to maximize the distances between two anti-parallel

spins so as to minimize the total energy of the system. This is illustrated in Figure 15

as large spaces appearing for t > 6000, suggesting that the particles formed two distinct

clusters. Implementing a cuto� distance means that the distance dependant interaction

between neighbouring spins is relatively short ranged compared to the size of the box.



26 5 THE MODIFIED 1D ISING MODEL

Figure 15: Tracking particle positions for each iteration up till t = 10000. With-
out a cuto� distance, particles tend to stick together to minimize energy.

Figure 16: Tracking particle positions for each iteration up till t = 10000. With
a cuto�, particles no longer appear to stick together.
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5.3 Metropolis algorithm in the modi�ed 1D Ising model

We can simulate our modi�ed 1D Ising model in the canonical ensemble as a MCMC, using

the Metropolis algorithm. In this case, there is now two possible �moves� the system can

make during the random walk process. We can either: 1. Flip the spin, or 2. Move the

particle. The pseudo-code for the Metropolis algorithm is then as such:

1. Initialize the Ising model at a state x0 according to program parameters: Each

particle i is assigned a spin σi = ±1 and a position 0 ≤ xi ≤ L.

2. For each iteration t:

(a) Do either a spin �ip or a position move. In all simulations run we alternate

between a spin move and a position move.

i. Spin �ip: Generate a candidate state x′ by �ipping the spin of a random

particle.

ii. Position move: Generate a candidate state x′ by moving a random particle

a small distance no larger than dx.

(b) Calculate the new energy of the system, E ′ and calculate the acceptance ratio

α = e
−
(

E′−E
kBT

)
.

i. If α ≥ 1 accept the new state and set current state to the candidate state:

xt = x′.

A. If α < 1 accept the new state with the probability α: If the result is

rejected the current state remains unchanged: xt = xt−1.

5.4 MATLAB implementation

The modi�ed 1D Ising model was simulated in MATLAB. The program is seperated into

multiple .m script �les, each with a speci�c function for ease of readability and debugging.

A list of parameters that govern the Ising system can be found in Table 1. In addition,

the MATLAB code in Appendix C is able to iterate over an array of values var containing

a range of values to observe the varying of certain parameters (e.g. temperature, length

of box, magnetic �eld strength).
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Parameter Description

type Spin initialization type (see initialize.m)
N Number of particles
L Size of 1D box
T Temperature

h, k, dp Potential curve parameters (see Section 5.2)
bf Strength of magnetic �eld (h in Eq. (43))
dx Random walk limit (see move.m)
t Number of iterations

Table 1: Parameters governing the modi�ed 1D Ising model.

main.m

Main script that performs initialization of the system and iteration of the Metropolis

algorithm by calling the following listed functions. The Metropolis algorithm is run for t

iterations, and the �rst 50% of sampled observables are discarded (resulting in t
2
samples),

assuming that the system enters a steady state equilibrium by then.

initialize.m

Initializes the modi�ed 1D Ising model. Inputs: Number of particles N , Length of box

L, type of spin initialization (1, 2 or 3). Output: 1. A position array consisting of N

elements, each element pi corresponding to the x coordinate of the ith particle. The

positions are initialized such that each particle is equidistance from its neighbours. 2.

A spin array consisting of N elements, each element si = ±1 corresponding to the spin

of the ith particle. The spins are initialized depending on the type variable speci�ed (1:

Random, 2: Alternating, 3: All spin up,+1).

energy.m

Calculates the total energy sum of the system by summing spin-spin interaction and

spin-magnetic �eld interaction (Eq. (43)) by calling hamil.m function. Inputs: Position

array, spin array, potential curve parameters h, k, dp. Magnetic �eld strength bf , Box

size L. Output: total energy E.

hamil.m

Calculates the energy between A-th spin and B-th spin. Inputs: Position array, spin

array, A, B,h, k, dp, bf , L. Output: Energy between Ath spin and Bth spin.

metropolis.m

Generates a pass/fail on the candidate state based on the Metropolis algorithm by cal-

culating acceptance ratio α and drawing a random number. Inputs: Initial energy initE,

Final energy finalE, Temperature T . Output: 0 if the candidate state is to be rejected,

1 if the candidate state is accepted.
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move.m

Moves the nth particle to a new position by choosing a uniformly distributed random

value between (−dx, dx). The �rst and last particles are not allowed to move beyond

the box limits [0, L]. The particles are also not allowed to pass through one another.

Inputs: Position array, index of particle to be moved n, movement limit dx and box

size L. Output: Returns -1 if the new position is invalid, else returns the new proposed

position.

�ip.m

Flips the spin of the ath particle. Inputs: Spin array, index of particle to be moved a.

Output: The updated spin array.

potential.m

The potential curve representing distance dependent interaction between neighbour par-

ticles; in this simulation a parabola with a cuto� distance (Eq. (44)) is used. Inputs:

Distance between two spins r (x in the code), parabola parameters h, k, dp. Output: The

value of the potential curve at distance r.

dpotential.m

The derivative of the potential curve in potential.m. (Eq. (48)). Inputs: Distance between

two spins r (x in the code), parabola parameters h, k, dp. Output: The �rst derivative

of the potential curve at distance r.

virial.m

Calculates the virial term of the pressure equation (2nd term of Eq. (47) below). Inputs:

Position array, spin array, potential curve parameters h, k, dp. Box size L. Output: value

of the virial term of the system.

plotterv3.m

Script that assists in plotting the various observables of the system.

6 Observables

6.1 Heat capacity and magnetic susceptibility of the system

The observables in the system measurable in the MCMC are 〈E〉, 〈E2〉,〈M〉 and 〈M2〉.
From these we can also determine the heat capacity CV and magnetic susceptibility χ of

the system:
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CV =
∂ 〈E〉
∂T

=
1

kBT 2

(〈
E2
〉
− 〈E〉2

)
, (45)

χ =
∂M

∂h
=

1

kBT

(〈
M2
〉
− 〈M〉2

)
. (46)

6.2 Pressure

As we model the Ising model as a �uid (the particles are free to move about3) we can also

measure pressure if we keep temperature constant and vary the size of the box L (See

Appendix D for derivation):

〈P 〉 =

〈
−∂F

∂V

∣∣∣∣
T,N

〉
=

NkBT

L
− 1

L

〈
N−1∑
i=1

σiσi+1riV
′ (ri)

〉
T,N

, (47)

where ri = |xi − xi+1|, and V ′ (r) is the 1st derivative of the potential function V (r); for

the parabola potential this becomes:

V ′ (r) ≡

− k(r−+r+−2r)
(h−r−)(h−r+)

, h− dp ≤ r ≤ h+ dp,

0, otherwise.
(48)

Eq. (47) consists of two terms: an ideal gas term and a �virial� term, which can be

measured from observable values in our simulation. We are interested in the behavior

of 〈P 〉 and the virial term as we vary system parameters; in particular we would like to

know whether 〈P 〉 can be negative even for a system having a positive temperature.

Figure 17 shows an example calculated pressure of the system. We can see that the

total (red) pressure consists of the ideal gas term (blue) and the virial term (green).

3Not completely free due to coding, see Section 8.1



31

Figure 17: The total pressure (red) of the system is the sum of the ideal gas
term (blue) and the virial term (green) (Eq. (58)).

7 Results and observations

7.1 Default parameters

The behavior of the system is governed by a large number of variables (Table 1). To

observe the behavior of the system we choose to �x some of the less interesting parameters

and vary others parameters. Table 2 lists the default values used for simulations when

they are not explicitly stated and also when they are not being varied.

Parameter Description Default value

type Spin initialization type (see initialize.m) 3 (all spin up)
N Number of particles 20
L Size of 1D box 20
T Temperature 5

h, k, dp Potential curve parameters (see Section 5.2) 1, -1, 1
bf Strength of magnetic �eld (h in Eq. (43)) 0 (no �eld)
dx Random walk limit (see move.m) 1
t Number of iterations >10000

Table 2: Default parameters used in simulation of the modi�ed 1D Ising model.

Figure 18 shows a sample result of a MATLAB simulation, where the system observ-

ables are measured as we vary the box length L. Included is also a plot of rejection rates
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as a result of candidate rejection in the Metropolis algorithm. It is also broken down into

various sources of such a candidate rejection:

• Spin Metro: Rejection of a spin �ip move due to Metropolis algorithm.

• Random walk: Rejection of a position move due to the new position of the particle

being an invalid position (Out of the box or beyond a neighbour particle).

• Position Metro: Rejection of a position move due to Metropolis algorithm.

Figure 18: An example result of various observables of the system.

7.2 Checking the MATLAB code with an exact solution

The normal (spin interaction only) 1D Ising model (Eq. (7)) was solved analytically by

Ising himself, and we can use the exact solution to check part of our MATLAB code by

setting V (r) = 1 for all r and setting the Metropolis algorithm to iterate the �ipping of

spins only.

The exact solution for magnetization of the normal 1D Ising model as a function of

external �eld h and temperature T is known17:

M (h, T ) =
e

J
kBT sinh

(
h

kBT

)
√

e
2J

kBT sinh2
(

h
kBT

)
+ e

−2J
kBT

(49)
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Figure 19: Lines: Theoretical magnetization M as function of magnetic �eld H.
Dots: Magnetization obtained from simulation. For temperatures, T = 1, 3, 5.

Figure 19 shows the magnetization M of the system as a function of magnetic �eld h

for various temperatures. The solid lines represent the theoretical values from Eq. (49)

while the dots are the values obtained from the MATLAB code.

Similarly, the energy per spin E also has an exact solution18:

e (h, T ) = −

J +
h sinh

(
h

kBT

)
+ 1

f

(
h
2
sinh

(
2h
kBT

)
− 2J exp

(
−4J
kBT

))
cosh

(
h

kBT

)
+ f

 (50)

where the function f :

f =

√
cosh2

(
h

kBT

)
− 2e−

2J
T sinh

(
2J

kBT

)
(51)
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Figure 20: Lines: Theoretical energy per particle e as function of magnetic �eld h.
Dots: Energy per particle obtained from simulation. For temperatures, T = 1, 3, 5.

Figure 20 shows the energy per particle e of the system as a function of magnetic

�eld h for various temperatures. The solid lines represent the theoretical values from Eq.

(50) while the dots are the values obtained from the MATLAB code. We can see that

the observables obtained from the simpli�ed MATLAB code agrees well with theoretical

values of magnetization and energy.

7.3 Negative temperatures in the Ising models

As stated in Part I, Boltzmann's entropy formula allows for existance of negative tempera-

tures. We can also set the temperature in our canonical ensemble simulation to a negative

value and observe its e�ects on the system. We simulated the normal 1D Ising model using

the simpli�ed MATLAB code in Section 7.2, measuring 〈E〉 and 〈M〉 while varying the

temperature. The system was initialized in an all-spins-up con�guration (ferromagnetic),

corresponding to the lowest energy state.
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Figure 21: Energy and magnetization vs temperature in the simple 1D Ising
model.

Figure 21 shows the energy and magnetization of the system for varying tempera-

tures. We can see that for low positive temperatures, it is ferromagnetic and remains

ferromagnetic as it is di�cult to transition to a state with higher energy according to

the Metropolis algorithm. At higher positive temperatures it is easier to jump to higher

energy states, so the system becomes anti-ferromagnetic again.

We see that the system is anti-ferromagnetic for negative temperatures. Calculating

the acceptance ratio α in the Metropolis algorithm, a negative temperature value in the

canonical ensemble would give more probability weightage to a state of higher energy

than lower energy. We can see that for the region of negative temperature, the total

energy of the system is larger than the region of positive temperature. This is consistent

with our intuitive understanding of negative temperatures outlined in Section 1.2, where

a system with negative temperature always possesses more energy than a system with

positive temperature.

We can do the same for the modi�ed Ising model. Figure 22 plots the energy and

magnetization of the system for varying temperatures. For the modi�ed Ising model to

be consistent with the simple Ising model, we choose a positive value for the spin-spin

interaction, k = +1. This means that according to Eq. (43) a ferromagnetic state

corresponds to a higher energy level than an anti-ferromagnetic state, which is consistent

with the simple 1D Ising model. We see similar behavior at low positive temperatures; the

system remains ferromagnetic (due to being initially ferromagnetic), which then becomes

anti-ferromagnetic as the temperature increases.
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Figure 22: Energy and magnetization vs temperature in the modi�ed 1D Ising
model.

7.4 Spin-spin interaction strength k

The parameter k changes the y-coordinate of the peak of the distance potential V (r)

(Refer to Figure 14). A larger magnitude of k would increase the interaction strength

between neighbour spins due to distance. Simulations are run in the absence of an external

magnetic �eld (h = 0). Figure 23 shows the e�ects of di�erent negative k values on the

virial term as we vary the box length, and Figure 24 shows the e�ects of di�erent positive

k values on the virial term as we vary the box length.

Figure 23: Virial pressure term vs Box size for negative k. A larger k results in
a larger virial term.
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Figure 24: Virial pressure term vs Box size for positive k. The virial term does
not change signs.

We note that changing the sign of k does not cause the virial term to change signs4.

We can observe that a larger |k| would make the virial term of the pressure larger in

magnitude. If the interaction strength is large enough, the negative contribution by the

virial term to the pressure equation can be larger than the ideal gas term, resulting in

a negative value for total pressure (See Figure 25). In the paper by Braun et al, they

determined that �absolute pressure and temperature necessarily have the same sign in

equilibrium, P/T ≥ 0� 2. In our simulation of the 1D Ising �uid, however, we can see that

we can obtain a negative total pressure even when the system has a positive temperature:

4In fact, positive k curves look very similar to negative k curves.
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Figure 25: Pressure vs Box length for k = −30, T = 5. In the region 3 < L < 15
the total pressure is negative.

7.5 Aligning the particle spins with an external magnetic �eld

In the previous section, we noted that the virial term is becomes more negative when

we decrease box size L and spin interaction strength k in the absence of an external

magnetic �eld. For those results, we also measured the magnetization of the system and

realized that the magnetization is constantly near 0, as it seems that anti-parallel spins

result in the system having lower energy as a result of Eq. (43). If we now introduce an

external magnetic �eld, we can cause the particles to align in a speci�c direction. Similar

simulations to Section 7.4 are run where the box size is varied, but this time we �x the

interaction strength, k = −10, and vary the value of the external magnetic �eld h.

If the external magnetic �eld h is large enough, one expects that the system would

prefer to align as parallel spins as it would be a state with lower energy. Figure 26 shows

the e�ects of an external magnetic �eld that was large enough to align the particle spins

(|h| large enough that magnetization M is ±1 for all values of L). We see that as the

box size decreases, the viral term becomes more positive for both positive and negative

magnetic �elds. We also observe that the virial curves coincide for both a positive and

negative external magnetic �eld h. This suggests that the system does not distinguish

between a postive and a negative external magnetic �eld.
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Figure 26: Virial term (left) and magnetization (right) vs Box length for k = −10.
The virial curves for +1 and −1 magnetization coincide.

8 Further work/Issues

8.1 Random walk conditions

To make the code simple we do not allow particles to move past each other during the

Metropolis position move: this means that the positions of the spins are all ordered:

xi < xi+1. However, this means that there is a �pseudo� in�nitely repulsive potential

interaction between particles when the distance is 0 (pseudo because �ipping spins does

not result in in�nitely attractive interaction). Similarly, the code does not allow the �rst

and last particles to move beyond the box limits, although ideally periodic boundary

conditions would mean that a particle moving past the edges of the box would simply

wrap around to the other edge of the box. The illegal moves are considered a rejection

of the candidate state according to Metropolis algorithm. This would a�ect the sampling

of observables, as they are rejected not because of a higher energy state according to the

Metropolis algorithm.

Further work can be done in the MATLAB code to allow for particles to freely move

past one another, where the particle indexing updates itself to re�ect the correct neigh-

bours.

8.2 Potential curve alternatives: Linear, Gaussian potential

The potential curve used for the distance dependant interaction was a parabola; this

introduced the problem of particles clumping together as mentioned in Section 5.2.1. The

implementation of a cuto� distance dp is another parameter that makes the system more

complicated to manage. To avoid the need to implement a manual cuto� distance in our

code, we can consider di�erent choices of the potential curve.
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The parabola potential increases exponentially in value as distance increases, and this

is likely the cause of clumping as particles tend to maximize distances between each other.

If we choose a linear curve as our potential curve, since the sum distance between particles

always equal to box size, particles may no longer seek to maximize distances.

We can also consider using a Gaussian curve; as the curve (and also its derivative)

tends to 0 as r is further from the Gaussian peak, this means that the particle interaction

becomes negligible for larger distances; there is no need to manually implement a cut o�.

We can modify the Gaussian width instead to change the range of the particle interactions.

Also, the parabola potential curve is not a realistic potential that represents interac-

tions between actual physical atoms and molecules. Is it possible to simulate this modi�ed

Ising model with a more realistic potential curve? The Lennard Jones potential does not

seem to be viable as the strength approaches in�nity when r approaches 0; in our Ising

�uids the particles can change spins to change the sign of the interaction strength.

8.3 Absolute magnetization |〈M〉|

In Section 7.4 we saw that the pressure virial curves remain negative for both positive k

and negative k values. Also, in Section 7.5 we found that the pressure virial curves of the

system coincide when the magnetization of the system is M = +1 and M = −1. It seems

that the modi�ed Ising model does not distinguish between spin-up and spin-down states.

In that case, for simulations where we set the potential curve parameter k to be

negative (i.e. anti-ferromagnetic has a lower energy state) we may run into issues with

the calculation of average magnetization 〈M〉, if the temperature of the system allows it

to jump between large energy levels (i.e. high positive temperature). For system that

favors ferromagnetism, a spin up con�guration or a spin down con�guration are equally

favorable conditions. If the temperature is large enough, the system can jump from a +1

magnetization to a −1 magnetization easily if the iteration is large enough. If the system

then spends signi�cant time in both +1 and −1 con�gurations, the average magnetzation

can end up near zero (indicating anti-ferromagnetism), even though the sample is in reality

ferromagnetic.

When doing simulations without an external magnetic �eld h, the absolute magnetiza-

tion |M | should hence be sampled instead for a more accurate indication of ferromagnetic

behavior.

8.4 E�ects of other parameters not investigated in the simula-

tions

The modi�ed 1D Ising model is governed by many parameters. In our simulations, we

only varied a few choice parameters (k, bf , T , L) whilst keeping other parameters as

default values. For our simulations the graphs plotted are either for varying temperature
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T or varying box size L. For future analysis, other parameters of the system such as

cuto� distance dp, number of particles N and spin initialization type could also be varied

to observe their e�ect on the system.

8.5 Extending to 2D Ising model

The Ising models simulated in this thesis only involve particles in 1D. Since the spin-only,

square lattice Ising model has been solved analytically for both 1D and 2D, we know that

there exists a phase transition17 between the ferromagnetic and paramagnetic phases for a

2D spin-only Ising model. Further work on the modi�ed Ising model could be extended to

higher dimensions, where the particles are allowed to freely move in a 2D box. However,

one must then consider what meaning nearest neighbour interactions has when particles

can move freely in space. In a spin-only 2D Ising model, particles are �xed in a lattice

and spin-spin interactions for any one particle is equivalent to considering only nearest

neighbour interactions in the lattice. However, if we let particles move freely in 2D, it is

likely that two originally neighbouring particles (hence having spin-spin interaction) may

drift apart (from random walk) far enough that each particle has completely di�erent

nearest neighbours. One idea could be to recalculate the nearest neighbours of every

particle for every iteration, which can introduce large orders of computational complexity.

9 Conclusion

In Part III, we constructed a Monte Carlo simulation of a modi�ed version of the 1D Ising

model, where particles also interact with a distance dependant potential. The computer

simulation was carried out in MATLAB and the code allows for one to describe the

system with a number of parameters. The MATLAB code was veri�ed and is consistent

with exact known solutions for the simple 1D Ising model. We observed that if distance

interaction is strong enough, the system can exhibit negative total pressure even for

positive temperatures. This is in contrast to the statement by Braun et al that negative

pressures only exist for positive temperatures. We also observed systems in the absence of

a magnetic �eld do not distinguish between+1magnetization states and−1magnetization

states. The computer simulation allows for us to obtain a general intuition of the �uid

behavior of the modi�ed 1D Ising model. For future work, we could consider investigating

the e�ects of varying other system parameters. We can also consider using other potential

curves than the parabola to eliminate the problem of needing a cuto� distance. We can

also consider extending this modi�ed 1D Ising model into two or more dimensions.

We simulated a system of spin particles which move freely and have short ranged

distance-dependent interaction. This simulation of an Ising �uid is crudely similar to

ferro�uids, which are colloidal liquids which consists of particles possessing individual
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magnetic moments. Indeed, there have been work done in magnetic �uid simulations that

use an Ising spin �uid system19;20 that is similar to the modi�ed 1D Ising model that we

have set up. It may be possible in the future, with further work, to be able to simulate

the behaviour of real ferro�uids with our code.
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Appendix A Paramagnet in the canonical ensemble

The paramagnet has the Hamiltonian:

H = −h
N∑
j=1

σj

The partition function of a single spin:

Z1 = e
−h
kBT + e

+h
kBT = 2 cosh

(
h

kBT

)
So the combined partition function of N spins:

Z =

(
2 cosh

(
h

kBT

))N

(52)

We can obtain energy of the system:

E = − ∂

∂β
lnZ = −Nh tanh(βh) (53)

And entropy:

S =
E

T
+ kB lnZ

= −hN

T
tanh (βh) + kBN ln (2 cosh (βh))

= −hN

T
tanh

(
h

kBT

)
+ kBN ln cosh

(
h

kBT

)
+ kBN ln 2
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Appendix B Paramagnet in microcanonical ensemble

The number of states available in a N -particle paramagnet with N+ spins up is

Ω (N+) =
N !

N+! (N −N+)
(54)

Using Boltzmann's formula for entropy, and dividing Ω by 2N to account for correct

Boltzmann counting we obtain an entropy function:

Sboltz =kB (ln (N !)− ln (N+!)− ln ((N −N+)!)−N ln (2))

=kB

(
N lnN −

(
N

2
− E

2h

)
ln

(
N

2
− E

2h

)
−
(
N

2
+

E

2h

)
ln

(
N

2
+

E

2h

)
−N ln 2

)
(55)

where we have applied Stirling's approximation and made use of the relationships:

N+ = N
2
− E

2h
and (N −N+) =

N
2
+ E

2h
. Using the de�nition of absolute temperature in

Eq. (2):

1

T
=

∂S

∂E
=
kB
2h

[
ln

(
N − E

h

N + E
h

)]

=
kB
h

1

2

[
ln

(
1− E

Nh

1 + E
Nh

)]

=
kB
h

tanh−1

(
− E

Nh

)
.

(56)

We can rearrange this to obtain the energy of the system:

E = −Nh tanh

(
h

kBT

)
(57)

which is equivalent to the energy of the paramagnet obtained via the canonical en-

semble in Eq. 53.
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Appendix C MATLAB Code

The following pages are the MATLAB code of the modi�ed 1D Ising model as outlined

in Section 5.4.

The .m �les are listed in the following order:

1. main.m

2. initialize.m

3. energy.m

4. hamil.m

5. metropolis.m

6. move.m

7. �ip.m

8. potential.m

9. dpotential.m

10. virial.m

11. plotterv3.m



main.m

clear all;clf;clc;

global var % global vars for plotting

global varstr

global enmean

global magmean

global chi

global cv

global fail1mean

global fail2mean

global fail3mean

global pressure

global press1

global press2

tic

oldtime = 0;

%%%%%%%%% parameters %%%%%%%%%

type = 1; % type of initialization:

% 1 for random, 2 for alternating, 3 for all spins up

N = 20; % number of atoms

L = 20; % length of side of 1D box

T = 5 % temperature in units kbT

h = 1; % potential curve: parabola whose peak is centered at (h,k).

k = -10 % 

dp = 1; % potential = 0 if distance from potential peak curve is > dp

bf = 0 % external b field applied onto the system

dx = 1; % maximum move interval for Metropolis

t = 100000; % no of MC steps per var

var = 1:0.2:30; % variable to be varied

varstr = 'Box Length';

%%%%%%%% end parameters %%%%%%%%

%%%%%%%% begin simulation %%%%%%

for j = 1:length(var)

L = var(j); % variable is set here

fprintf('%s: %.3f\n',varstr,var(j));

[position spin] = initialize(N,L,type); % initialize system

fail1 = 0; % initialize fail counters

fail2 = 0;

-1-



main.m

fail3 = 0;

for i = 1:t % begin MCMC

switch mod(i,2) % alternete between spin flip and position move

case 1 % PARTICLE SPIN FLIP

initE = energy(position,spin,h,k,dp,bf,L); % calculate initial energy

ran = randi(N);

spin = flip(spin,ran); % flip a random spin

finalE = energy(position,spin,h,k,dp,bf,L); % calculate new system energy

pf = metropolis(initE,finalE,T); % metropolis pass/fail

if (pf == 0) % if fail

spin = flip(spin,ran); % flip back the spin

fail1 = fail1+1; % track failure count: SPIN FAIL

end

case 0 % PARTICLE POSITION MOVE

initE = energy(position,spin,h,k,dp,bf,L); % calculate initial energy

ran = randi(length(position)); % pick a random spin index

oldpos = position(ran); % store old position of spin

newpos = move(position,ran,dx,L); % generate new position of spin

% if new position invalid returns -1

if (newpos == -1) % if new pos is invalid

fail2 = fail2+1; % track failure count: MOVE FAIL

else

position(ran) = newpos; % if valid, update position of nth spin

end

finalE = energy(position,spin,h,k,dp,bf,L); % calculate final system energy

pf = metropolis(initE,finalE,T); % metropolis algorithm pass/fail

if (pf == 0) % if new system not accepted due to 

metropolis

position(ran) = oldpos; % move back the nth particle

fail3 = fail3+1; % track failure count: MOVE METROPOLIS FAIL

end

end

en(i) = energy(position,spin,h,k,dp,bf,L); % sample energy

mag(i) = sum(spin(:)); % sample magnetization

vir(i) = virial(position,spin,h,k,dp,L); % sample virial term

end

-2-



main.m

%%%%%%% processing of sampled values %%%%%%%

% the means of the sampled values are stored per var (temperature, length etc) value.

en(1:t/2) = []; % discard first 50% of the data

en = en./N; % energy per atom

enmean(j) = mean(en); % compute mean of the sampled energies

envar(j) = std(en); % variance of sampled energies: <E^2> - <E>^2

cv(j) = envar(j)./(T.^2); % compute heat capacity

mag(1:t/2) = []; % discard

mag = mag./N; % magnetization per atom

magmean(j) = mean(mag); % compute mean of the sampled magnetization

magvar(j) = std(mag); % variance of sampled magnetization: <M^2> - 

<M>^2

chi(j) = magvar(j)./T; % compute magnetic susceptibility

vir(1:t/2) = []; % discard

virmean(j) = mean(vir); % compute mean of the sampled virial term

press1(j) = (N .* T) ./ L;

press2(j) = -1*virmean(j) ./ L;

pressure(j) = press1(j) + press2(j); % calculate pressure from pressure equation

fail1mean(j)=fail1./t; % compute failure rates

fail2mean(j)=fail2./t;

fail3mean(j)=fail3./t;

% timer

time = toc;

expected = ((time-oldtime)*length(var));

timeleft = (expected - time)/(3600*24);

fprintf('Time left: %s\n\n',datestr(timeleft,'HH:MM:SS'));

oldtime = time;

end

%%%%%%%% end simulation %%%%%%

% plotting commands

subplot(2,3,1)

plotterv3(1)

subplot(2,3,2)

plotterv3(2)

subplot(2,3,3)

plotterv3(4)

subplot(2,3,4)

plotterv3(7)

subplot(2,3,5)

plotterv3(5)

subplot(2,3,6)

plotterv3(3)

-3-



initialize.m

function [pos spin] = initialize(N,L,type)

% this 1D function generates N atoms: each having an x coordinate and also a spin value

%

% the positions of the atom are evenly spaced from 0 to L (the length of the box) in two 

dimensions

% the spin of the atoms are randomly generated either +1 or -1

pos = zeros(1,N);

spin = zeros(1,N);

c = L./N; % "lattice constant"

pos = linspace(0,L,N+1);

pos = pos(1:end-1); % discard last position

pos = pos+(0.5*c); % skew by 0.5c to obtain evenly space lattice 

% according to periodic boundary conditions

switch type

case 1 % random spin initialization

for i=1:N

if (rand() < 0.5)

spin(i) = +1;

else

spin(i) = -1;

end

end

case 2 % checkerboard initialization

for i=1:N

if (mod(i,2))

spin(i) = +1;

else

spin(i) = -1;

end

end

case 3 % all spin up initialization

for i=1:N

spin = ones(1,N);

end

end

-1-



energy.m

function out = energy(position,spin,h,k,dp,bf,L)

% returns the total energy sum of the system

% by separately summing the contributions 

% due to spin - spin interaction and spin - magnetic field interaction

sum1 = 0;

sum2 = 0;

for i = 1:length(spin) % sum over all spin-spin interactions: including the 1st and last 

spin

sum1 = sum1 + hamil(position,spin,i,i+1,h,k,dp,L);

end

sum2 = -1 .* bf .* sum(spin); % magnetic field term

out = sum1 + sum2;

end

-1-



hamil.m

function out = hamil(position,spin,a,b,h,k,dp,L)

% returns the interaction energy of the Ath and Bth pair of spin.

n = length(spin);

if (a == length(spin)) % special case: if measuring hamil 

% between 1st and last spin (periodic 

conditions),

dist = position(1) + L - position(end); % sum the distances of (1st spin and left edge) 

% and (last spin and right edge)

b = 1; % set b to 1 to calculate 1st and last spins

else

dist = abs(position(b) - position(a));

end

out = -1 * spin(a) * spin(b) * potential(dist,h,k,dp);

end

-1-



metropolis.m

function pf = metropolis(initE,finalE,T)

% check whether a move passes or fails the Metropolis algorithm

% pf = 1 if pass, pf = 0 if fail.

prob = exp(-finalE/T) ./ exp(-initE/T);

if (rand() > prob ) % accept with probability Zfinal/Zinit. 

% this statement = 1 for spin not accepted.

% also if prob > 1 will accept 

always

pf = 0;

else

pf = 1;

end

end

-1-



move.m

function out = move(position,n,dx,L)

% do a move on the lattice in the box of size L, 

% where position is the array of positions, 

% n is the selected nth spin, 

% dx is the maximum move interval

%

% notes: if n is first or last spin, bef and aft are set to be the box edges respectively

%

% returns the new position of the nth atom (without updating position)

% returns -1 if invalid move

if(n == 1) % if move 1st atom, bef limit is L = 0, the left edge of the box

bef = 0;

else

bef = position(n-1);

end

if(n == length(position)) % if move last atom, aft limit is L = L, the right edge of the 

box

aft = L;

else

aft = position(n+1);

end

ran = unifrnd(-dx,dx); % random movement interval

out = position(n) + ran;

if (out < bef | out > aft) % check if new pos is beyond neighbour particle pos

out = -1; % if beyond, it is invalid position: return -1

end

end

-1-



flip.m

function out = flip(spin,a)

% flip spin a.

out = spin;

out(a) = out(a) .* -1;

end

-1-



potential.m

function out = potential(x,h,k,dp)

% returns the potential curve as a parabola centered at (h,k) with cutoff dp

% at position x.

x1 = h-dp;

x2 = h;

x3 = h+dp;

y2 = k;

if ( (x<x1) | (x>x3) )

out = 0;

else

out = (x-x1)*(x-x3)/( (x2-x1)*(x2-x3) ) * y2;

end

-1-



dpotential.m

function out = dpotential(x,h,k,dp)

% returns the differentiation of the potential curve as a parabola centered at (h,k) with 

cutoff dp

% at position x.

x1 = h-dp;

x2 = h;

x3 = h+dp;

y2 = k;

if ( (x<x1) | (x>x3) )

out = 0;

else

out = -1 .* ( x1 + x3 - 2.*x ) ./ ( (x2-x1)*(x2-x3) ) * k;

end

-1-



virial.m

function out = virial(position,spin,h,k,dp,L)

% returns the virial term of the pressure equation

sum = 0;

for i = 1:length(spin)

a = i;

b = i+1;

if (a == length(spin)) % special case: if measuring virial between 

1st 

% and last spin (periodic conditions),

r = position(1) + L - position(end); % sum the distances of (1st spin and left 

edge) 

% and (last spin and right edge)

b = 1; % set b to 1 to calculate 1st and last spin

else

r = abs(position(b) - position(a));

end

sum = sum + spin(a) .* spin(b) .* r .* dpotential(r,h,k,dp);

end

out = sum;

end

-1-



plotterv3.m

function plotterv3(type)

global var

global varstr

global enmean

global magmean

global chi

global cv

global fail1mean

global fail2mean

global fail3mean

global pressure

global press1

global press2

switch type

case 1 % plot energy vs varstr

plot(var,enmean,'.b','MarkerSize',10)

xlabel(varstr)

ylabel('Energy')

title(['Energy vs ' varstr])

case 2 % plot magnetization vs varstr

plot(var,magmean,'.r','MarkerSize',10)

xlabel(varstr)

ylabel('Magnetization')

title(['Magnetization vs ' varstr])

axis([-inf,inf,-1,1])

case 3 % plot rejection rates vs varstr

hold all

plot(var,fail1mean,'.r','MarkerSize',5)

plot(var,fail2mean,'+b','MarkerSize',5)

plot(var,fail3mean,'og','MarkerSize',5)

xlabel(varstr)

ylabel('Rejection rate')

legend('Spin Metro','Random walk','Position Metro')

hold off

case 4 % plot heat capacity vs varstr

plot(var,cv,'.b','MarkerSize',10)

xlabel(varstr)

ylabel('C_v')

title(['Heat capacity vs ' varstr])

case 5 % plot magnetic susceptibility vs varstr

plot(var,chi,'.b','MarkerSize',10)

xlabel(varstr)

ylabel('\chi')

title(['Specific magnetic susceptibility vs ' varstr])

-1-



plotterv3.m

case 7 % pressure

hold all

plot(var,pressure,'.r','MarkerSize',5)

plot(var,press1,'+b','MarkerSize',5)

plot(var,press2,'og','MarkerSize',5)

xlabel(varstr)

ylabel('Pressure')

title(['Pressure vs ' varstr])

legend('Total','Ideal gas term','Virial term')

hold off

end

-2-
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Appendix D Derivation of the pressure observable

As we simulate the Ising model as a �uid, we can obtain an expression of pressure from

the canonical ensemble21;22:

Starting with the themodynamic variable of pressure:

P = −∂F

∂V

∣∣∣∣
T,N

= kBT
∂ lnZ

∂V

∣∣∣∣
T,N

=
kBT

Z

∂Z

∂V

∣∣∣∣
T,N

=
kBT

V N
´ 1
0
dr1...

´ 1
0
drNe−βU

∂
(
V N
´ 1
0
dr1...

´ 1
0
e−βU

)
∂V

∣∣∣∣∣∣
T,N

,

where Z =
´ V
0
dr′1...

´ V
0
dr′Ne

−βU = V N
´ 1

0
dr1...

´ 1
0
drNe

−βU and

∂Z

∂V

∣∣∣∣
T,N

= NV N−1

ˆ 1

0

dr1...

ˆ 1

0

drNe
−βU − V N

kBT

ˆ 1

0

dr1...

ˆ 1

0

drNe
−βU ∂U

∂V
,

and using general dimensions, V ≡ rD so dri
dV

= 1
V D

ri,

∂U

∂V
=
∑
i

dU (ri)

dri

dri
dV

= −
∑
i

Fi
1

V D
ri

= − 1

V D

∑
i

Fi · ri.

If the interaction potential is pairwise, Fij = −Fji we can rearrange:

∑
i

Fi · ri =
1

2

∑
i

∑
j 6=i

(ri · Fij − rj · Fij)

=
∑
i

∑
j>i

rij · Fij

= −
∑
i

∑
j>i

rij
dv (rij)

drij
,

where rij = |rj − ri|(This means we need only sum over each pair interaction once).

Combining the terms we can express the average pressure as an ensemble average of
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the virial term:

〈P 〉 = NkBT

V
+

1

V D

〈∑
i

∑
j>i

rij
dv (rij)

dr

〉
. (58)


