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Abstract

Self-calibrating quantum state estimation is the procedure of reconstructing

an unknown quantum state and certain properties of the measurement de-

vices from the same data. We apply self-calibration to the double crosshair

measurement of the BB84 scenario for reconstructing the state and detector

efficiencies simultaneously. When we perform maximum-likelihood estima-

tion, we observe multiple maxima in the likelihood function even when the

state parameters and detector efficiencies are uniquely determined by the de-

tection probabilities. This problem disappears when prior knowledge of the

ratios of detector efficiencies is taken into account. Finally, the maximum-

likelihood estimators are endowed with error regions to express the uncer-

tainties associated with them.
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Chapter 1

Introduction

1.1 Quantum state estimation

In the usual scheme of quantum state estimation, measurements with K dif-

ferent outcomes are performed on N identical copies of an unknown quantum

state ρ. The measurements are described by a set of positive operators Πj

which form a probability-operator measurement (POM) and satisfy

K∑
k=1

Πk = 1. (1.1)

The j-th operator Πj corresponds to the j-th outcome of the measurement

and the probability for the j-th outcome to occur is given by Born’s rule,

pj = tr{Πjρ} = 〈Πj〉 . (1.2)

For a state ρ to be physical, it must be positive semi-definite and have unit

trace. These two conditions with Born’s rule ensure that all the probabilities

are non-negative and they must be summed to one.

If one has the knowledge of the true probabilities, the linear relation in

(1.2) can be inverted directly to solve for the unknown state ρ. However,

1



2 CHAPTER 1. INTRODUCTION

the true probabilities cannot be known by performing measurements on any

finite number of copies. The only data one has is a set of counts,

D = {n1, ..., nK}, (1.3)

where nj denotes the number of times the j-th outcome occur. The relative

frequencies are defined as

fj =
nj
N
. (1.4)

With the measured data D or the relative frequencies, one can try to infer

the unknown state ρ using various reconstruction methods.

1.2 Linear inversion

The simplest reconstruction method is linear inversion. Since the relative

frequencies converge to the true probabilities when the number of copies, N ,

approaches infinity, the relative frequencies are good estimates of the true

probabilities when N is large. The true probabilities can thus be estimated

by the relative frequencies and the state can be solved directly by inverting

the linear relation in (1.2). By doing linear inversion, one tries to obtain an

estimator ρ̂LI which satisfy

tr{ρ̂LIΠk} = fk. (1.5)

The advantage of using linear inversion is that it is simple and intuitive. How-

ever, the estimator ρ̂LI is unphysical quite often especially when N is small.

The reason of getting an unphysical state is that the relative frequencies only

satisfy one constraint, ∑
k
fk = 1, (1.6)

whereas the probabilities that arise from a physical state satisfy further con-

straints due to the laws of quantum mechanics. In practice, we might not
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always have a large number of copies to perform the measurements. There-

fore, we need to use other reconstruction methods that always give us physical

states such as maximum-likelihood estimation.

1.3 Maximum-likelihood estimation (MLE)

The main idea of maximum-likelihood estimation is to always choose the state

which is most likely to generate the measured data D as our best guess. The

likelihood function L is defined as the conditional probability of getting data

D given that the true state is ρ

L(D|ρ) =
K∏
k=1

pk
nk , (1.7)

where pk = tr{ρΠk} is the probability of measuring the k-th outcome given

the state ρ. The maximum-likelihood estimator ρ̂MLE is obtained by maxi-

mizing the likelihood over the space of physical states,

max
ρ
L(D|ρ) = L(D|ρ̂MLE). (1.8)

In practice, it is more convenient to maximize the log-likelihood function

logL(D|ρ) =
K∑
k=1

nk log pk = N

K∑
k=1

fk log pk, (1.9)

instead of the likelihood function itself.

1.4 Incomplete tomography

For a d-dimensional Hilbert space, when the POM consists of at least d2

elements and d2 of the elements are linearly independent, the POM is said to
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be informationally complete. When the POM is informationally complete,

maximal information can be extracted from the state and thus a unique

estimator can always be found from the maximum-likelihood estimation. If

the POM is not informationally complete, some information about the state

will be unavailable and thus the state cannot be completely characterized. As

a result, the estimator from the maximum-likelihood estimation is not unique.

However, it is still possible to obtain a unique estimator by maximizing the

likelihood and von Neumann entropy functionals [17]. In this thesis, we will

only characterize the state partially for incomplete tomography by estimating

some of the state parameters, the ones that are determined by the data. We

do not intend to completely characterize the state for incomplete tomography.

1.5 Self-calibrating quantum state estimation

Quantum state estimation relies on the fact that the measurement setup is

well calibrated and all the properties of the measurement devices are known

exactly. In practice, it might not always be possible to calibrate the mea-

surement setup exactly. Self-calibrating quantum state estimation deals with

this situation where the quantum state and certain unknown properties of

the measurement devices are reconstructed using the same data from mea-

surement.

The first advance towards self-calibrating quantum state estimation was

done by Mogilevtsev et al. [8] where a scheme to reconstruct the states and

mismatch between signal and reference states simultaneously was proposed.

Later in [7], Mogilevtsev presented a way to reconstruct the state and cal-

ibrate single-photon detectors simultaneously with some partial knowledge

of the state. The first experimental realization was done by Braczyk et al.

[5] where an unknown rotation angle of measurement basis and the state pa-

rameters are reconstructed simultaneously. In [11], Quesada et al. developed

a full theoretical formalism to treat unknown parameters in the state and
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unitary operations on an equal footing.

In this thesis, we apply self-calibration scheme to the double crosshair

measurement of the BB84 [3] scenario of quantum key distribution to recon-

struct the state and detector efficiencies simultaneously.

1.6 Error regions

The estimators that we get from maximum-likelihood estimation are point

estimators in the state space which represents our best guess of the unknown

quantum state. Like other point estimators, the maximum-likelihood esti-

mators suffer from statistical noise. In order to express the uncertainties as-

sociated with the maximum-likelihood estimators, they have to be endowed

with error regions which are the generalization of error bars in higher di-

mensional space. Various methods to construct the error regions have been

proposed. However, they either requires a large number of data [2], involve

data bootstrapping [15], or consider all the data that one could possibly have

observed [4]. In [13], Shang et al. proposed the maximum-likelihood regions

(MLR) and smallest credible regions (SCR) as the optimal error regions. The

optimal error regions proposed do not have the problems stated above and

can be constructed only by the data that have actually been observed.

MLR and SCR are both proved to be bounded-likelihood regions (BLR)

which contains all the states with point likelihood larger than some threshold

value,

Rλ = {ρ | L(D|ρ) > λL(D|ρ̂MLE)} (1.10)

This simple characterization provides a simple way to report the error regions

which is just by reporting the value of λ.

SCR is the region with the smallest size for a given credibility. The most

natural way to define the size of an error region is by its prior probability i.e.

the probability of finding the true state in the region before any data was

taken. On the other hand, credibility is defined as the posterior probability
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Figure 1.1: Illustration of a BLR: The BLR Rλ contains all the states with
likelihood greater than λL(D|ρ̂MLE).

i.e. the probability that the true state is contained in the region, conditioned

on the measured data. In the next two subsections, we discuss how the size

and credibility of a region can be computed.

1.6.1 Probability space and reconstruction space

In aK-outcome measurement, the permissible probabilities p = (p1, p2, ..., pK)

are probabilities which there exist a state ρ such that Born’s rule (1.2) holds.

The probability space comprises all the permissible probabilities. For a prob-

ability to be permissible, it must satisfy some basic constraints wbasic(p) and

some other constraints imposed by quantum mechanics wqu(p) which might

not be easy to find. Obviously, the basic constraint are given by

wbasic(p) = η(p1)η(p2)...η(pK)δ

(
1−

K∑
k=1

pk

)
. (1.11)

The full constraints are given by

wcstr(p) = wbasic(p)wqu(p). (1.12)
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In an informationally complete measurement, there is a one-to-one map-

ping from the probability space to state space. For informationally incom-

plete measurement (refer to section 1.4), each permissible p maps to a class

of states. A reconstruction space R0 which contains exactly one ρ for each

permissible p can be constructed by choosing a representative for each class

of states. The point estimators refer to states in R0 and error regions refer

to sets of states in R0.

1.6.2 Size and credibility

Let (dρ) denotes the volume element of infinitesimal vicinity of state ρ in the

reconstruction space R0. The state can be parametrized in any way although

it is most common to parametrize by the probabilities,

(dρ) = (dp)w0(p), (1.13)

where

(dp) = dp1dp2...dpKwcstr(p), (1.14)

and w0(p) is the unnormalized prior density. The choice of prior density

w0(p) is not unique and the simplest is the primitive prior,

wprimitive(p) = 1. (1.15)

By working with primitive prior, the density is uniform in the probability

space. The unnormalized posterior density wD(p) can be obtained by multi-

plying the likelihood with the prior density,

wD(p) = w0(p)L(D|p). (1.16)

The size sR and credibility cR of a region R can then be defined in terms
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of the prior and posterior density,

sR =

∫
R(dρ)∫
R0

(dρ)
=

∫
R(dp)w0(p)∫
R0

(dp)w0(p)
, (1.17)

cR =

∫
R(dp)wD(p)∫
R0

(dp)wD(p)
. (1.18)

An alternative way to compute credibility is given in [13]. Once the size is

known as a function of λ, credibility can also be computed as a function of

λ by

cλ =
λsλ +

∫ 1

λ
dλ′sλ′∫ 1

0
dλ′sλ′

. (1.19)

1.6.3 Reporting the SCRs

The SCRs with different credibility can be reported once the size and cred-

ibility are calculated by (1.17) and (1.18) or (1.19). To report a SCR with

credibility c, we first find the value λ0 such that cλ=λ0 = c. The SCR is just

the BLR with λ = λ0 and its size is given by sλ=λ0 .



Chapter 2

Double crosshair measurement

of BB84

Figure 2.1 shows the double crosshair measurement of the BB84 scenario

of quantum key distribution. In this measurement, a photon source emits

entangled pairs of photons and each of the photons passes through a 50-50

beam splitter. If the photon is transmitted, its polarization state will be mea-

sured in σz basis (horizontal-vertical or H/V basis). If the photon is reflected,

its polarization state will be measured in σx basis (diagonal-antidiagonal or

D/A basis). All the detectors in this measurement are imperfect and their

efficiencies are denoted by η. In this measurement, we can observe either

coincidence clicks or clicks on one side. It is also possible that detectors on

both sides do not click even when photon pairs are emitted. We assume that

the total number of photon pairs emitted is known so that the number of

undetected photon pairs is also known. Thus, this measurement can result

in twenty-five different outcomes. The probabilities of all the outcomes are

shown in table 2.1 and (2.1).

9
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Figure 2.1: Double crosshair measurement of BB84. Measurements are done
on two bases for both photons. All the detectors are imperfect and their
efficiencies are denoted by η.

PPPPPPPPPLeft
Right

H V D A no reading

H p(HH) p(HV ) p(HD) p(HA) p(H0) pL(H)
V p(V H) p(V V ) p(V D) p(V A) p(V 0) pL(V )
D p(DH) p(DV ) p(DD) p(DA) p(D0) pL(D)
A p(AH) p(AV ) p(AD) p(AA) p(A0) pL(A)

no reading p(0H) p(0V ) p(0D) p(0A) p(00) pL(0)
pR(H) pR(V ) pR(D) pR(A) pR(0) 1

Table 2.1: Detection probabilities for the double crosshair measurement. The
last column and last row are the marginal probabilities. The probabilities
of detecting no clicks on either side are not stated in (2.1) since they have
lengthy expressions. However, they can be deduced from the marginal prob-
abilities and the probabilities of coincidence clicks.
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Figure 2.2: Simplified version of the double crosshair measurement. Mea-
surements are done on one basis for both photons. All the detectors are
imperfect and their efficiencies are denoted by η.

p(HH) =
η1η
′
1

4
〈1 + σz

2
⊗ 1 + σz

2
〉 , p(HV ) =

η2η
′
1

4
〈1 + σz

2
⊗ 1− σz

2
〉 ,

p(HD) =
η3η
′
1

4
〈1 + σz

2
⊗ 1 + σx

2
〉 , p(HA) =

η4η
′
1

4
〈1 + σz

2
⊗ 1− σx

2
〉 ,

p(V H) =
η1η
′
2

4
〈1− σz

2
⊗ 1 + σz

2
〉 , p(V V ) =

η2η
′
2

4
〈1− σz

2
⊗ 1− σz

2
〉 ,

p(V D) =
η3η
′
2

4
〈1− σz

2
⊗ 1 + σx

2
〉 , p(V A) =

η4η
′
2

4
〈1− σz

2
⊗ 1− σx

2
〉 ,

p(DH) =
η1η
′
3

4
〈1 + σx

2
⊗ 1 + σz

2
〉 , p(DV ) =

η2η
′
3

4
〈1 + σx

2
⊗ 1− σz

2
〉 ,

p(DD) =
η3η
′
3

4
〈1 + σx

2
⊗ 1 + σx

2
〉 , p(DA) =

η4η
′
3

4
〈1 + σx

2
⊗ 1− σx

2
〉 ,

p(AH) =
η1η
′
4

4
〈1− σx

2
⊗ 1 + σz

2
〉 , p(AV ) =

η2η
′
4

4
〈1− σx

2
⊗ 1− σz

2
〉 ,

p(AD) =
η3η
′
4

4
〈1− σx

2
⊗ 1 + σx

2
〉 , p(AA) =

η4η
′
4

4
〈1− σx

2
⊗ 1− σx

2
〉 ,

pL(H) =
η′1
2
〈1 + σz

2
⊗ 1〉 , pL(V ) =

η′2
2
〈1− σz

2
⊗ 1〉 ,

pL(D) =
η′3
2
〈1 + σx

2
⊗ 1〉 , pL(A) =

η′4
2
〈1− σx

2
⊗ 1〉 ,

pR(H) =
η1
2
〈1⊗ 1 + σz

2
〉 , pR(V ) =

η2
2
〈1⊗ 1− σz

2
〉 ,

pR(D) =
η3
2
〈1⊗ 1 + σx

2
〉 , pR(A) =

η4
2
〈1⊗ 1− σx

2
〉 . (2.1)
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We could also consider a simplified version of the double crosshair mea-

surement of BB84 which is shown in figure 2.2. Similarly, entangled pairs of

photons are emitted by the source. However, polarization state of photons

is only measured in σz basis (horizontal-vertical or H/V basis). This mea-

surement can result in nine different outcomes. The probabilities of all the

outcomes are shown in table 2.2 and (2.2).

PPPPPPPPPLeft
Right

H V no reading

H p(HH) p(HV ) p(H0) pL(H)
V p(V H) p(V V ) p(V 0) pL(V )

no reading p(0H) p(0V ) p(00) pL(0)
pR(H) pR(V ) pR(0) 1

Table 2.2: Detection probabilities for the simplified measurement. The last
column and last row are the marginal probabilities. The probabilities of de-
tecting no clicks on either side are not stated in (2.2) since they have lengthy
expressions. However, they can be deduced from the marginal probabilities
and the probabilities of coincidence clicks.

p(HH) = η1η
′
1 〈

1 + σz
2
⊗ 1 + σz

2
〉 , p(HV ) = η2η

′
1 〈

1 + σz
2
⊗ 1− σz

2
〉 ,

p(V H) = η1η
′
2 〈

1− σz
2
⊗ 1 + σz

2
〉 , p(V V ) = η2η

′
2 〈

1− σz
2
⊗ 1− σz

2
〉 ,

pL(H) = η′1 〈
1 + σz

2
⊗ 1〉 , pL(V ) = η′2 〈

1− σz
2
⊗ 1〉 ,

pR(H) = η1 〈1⊗
1 + σz

2
〉 , pR(V ) = η2 〈1⊗

1− σz
2
〉 . (2.2)
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2.1 Determining the feasibility of self-

calibration

The first step to determine whether the self-calibration scheme is feasible

is to find out whether it is possible to solve for all the unknowns uniquely

given that the exact detection probabilities are known. The expressions of all

the detection probabilities for the double crosshair measurement are shown in

(2.1). All the state parameters can then be expressed in terms of the detection

probabilities and the detector efficiencies in (2.4). These expressions could

then turn into some linear equations of reciprocal of efficiencies. For example,

from the first and fifth expression of 〈1⊗ σz〉 in (2.4a), we get

2
p(HH)

η′1
+ 2

p(V H)

η′2
= pR(H). (2.3)

All these linear equations can be written in matrix forms in (2.5).

< 1⊗ σz > =
8p(HH)

η1η′1
+

8p(V H)

η1η′2
− 1

=
8p(DH)

η1η′3
+

8p(AH)

η1η′4
− 1

= 1− 8p(HV )

η2η′1
− 8p(V V )

η2η′2

= 1− 8p(DV )

η2η′3
− 8p(AV )

η2η′4

=
4pR(H)

η1
− 1

= 1− 4pR(V )

η2
, (2.4a)

< 1⊗ σx > =
8p(HD)

η3η′1
+

8p(V D)

η3η′2
− 1

=
8p(DD)

η3η′3
+

8p(AD)

η3η′4
− 1

= 1− 8p(HA)

η4η′1
− 8p(V A)

η4η′2

= 1− 8p(DA)

η4η′3
− 8p(AA)

η4η′4

=
4pR(D)

η3
− 1

= 1− 4pR(A)

η4
, (2.4b)
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< σz ⊗ 1 > =
8p(HH)

η1η′1
+

8p(HV )

η2η′1
− 1

=
8p(HD)

η3η′1
+

8p(HA)

η4η′1
− 1

= 1− 8p(V H)

η1η′2
− 8p(V V )

η2η′2

= 1− 8p(V D)

η3η′2
− 8p(V A)

η4η′2

=
4pL(H)

η′1
− 1

= 1− 4pL(V )

η′2
, (2.4c)

< σx ⊗ 1 > =
8p(DH)

η1η′3
+

8p(DV )

η2η′3
− 1

=
8p(DD)

η3η′3
+

8p(DA)

η4η′3
− 1

= 1− 8p(AH)

η1η′4
− 8p(AV )

η2η′4

= 1− 8p(AD)

η3η′4
− 8p(AA)

η4η′4

=
4pL(D)

η′3
− 1

= 1− 4pL(A)

η′4
, (2.4d)

< σz ⊗ σz > =
8p(HH)

η1η′1
+

8p(V V )

η2η′2
− 1

= 1− 8p(HV )

η2η′1
− 8p(V H)

η1η′2
,

(2.4e)

< σz ⊗ σx > =
8p(HD)

η3η′1
+

8p(V A)

η4η′2
− 1

= 1− 8p(HA)

η4η′1
− 8p(V D)

η3η′2
,

(2.4f)

< σx ⊗ σx > =
8p(DD)

η3η′3
+

8p(AA)

η4η′4
− 1

= 1− 8p(DA)

η4η′3
− 8p(AD)

η3η′4
,

(2.4g)

< σx ⊗ σz > =
8p(DH)

η1η′3
+

8p(AV )

η2η′4
− 1

= 1− 8p(DV )

η2η′3
− 8p(AH)

η1η′4
.

(2.4h)

2


p(HH) p(V H)

p(HV ) p(V V )

p(HD) p(V D)

p(HA) p(V A)

pL(H) pL(V )


(

1
η′1
1
η′2

)
=


pR(H)

pR(V )

pR(D)

pR(A)

1

 , (2.5a)
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2


p(DH) p(AH)

p(DV ) p(AV )

p(DD) p(AD)

p(DA) p(AA)

pL(D) pL(A)


(

1
η′3
1
η′4

)
=


pR(H)

pR(V )

pR(D)

pR(A)

1

 , (2.5b)

2


p(HH) p(HV )

p(V H) p(V V )

p(DH) p(DV )

p(AH) p(AV )

pR(H) pR(V )


(

1
η1
1
η2

)
=


pL(H)

pL(V )

pL(D)

pL(A)

1

 , (2.5c)

2


p(HD) p(HA)

p(V D) p(V A)

p(DD) p(DA)

p(AD) p(AA)

pR(D) pR(A)


(

1
η3
1
η4

)
=


pL(H)

pL(V )

pL(D)

pL(A)

1

 . (2.5d)

At first glance, it seems that we have more equations than unknowns i.e.

an overdetermined system. However, this overdetermined system is consis-

tent if the probabilities in this system of linear equations are the exact detec-

tion probabilities. Thus, all the detector efficiencies can be solved uniquely.1

Once the detector efficiencies are known, all the state parameters can then be

solved uniquely using (2.4) or treating (2.1) as a system of linear equations

of the state parameters.

For the simplified measurement, all the state parameters and detector ef-

ficiencies can also be solved using the same approach. From the expressions

of the detection probabilities in (2.2), the expressions for the state param-

eters, and the system of linear equations of reciprocal of efficiencies can be

derived in (2.6) and (2.7).

1The solution of (2.5) is not unique if the two columns of the coefficient matrix are
parallel to each other. In practice, the two columns will not be exactly parallel to each
other. Thus, we can safely assume that the solution is unique.
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We have thus shown that the state parameters and the detector efficien-

cies can be solved uniquely for both measurements if the exact detection

probabilities are known. This implies that the self-calibration scheme for

both measurements is feasible theoretically. However, we do not know the

exact detection probabilities in practice. Thus, we would need to use recon-

struction methods such as those stated in sections 1.2 and 1.3 to estimate

the state parameters and detector efficiencies.

< 1⊗ σz > =
2p(HH)

η1η′1
+

2p(V H)

η1η′2
− 1

= 1− 2p(HV )

η2η′1
− 2p(V V )

η2η′2

=
2pR(H)

η1
− 1

= 1− 2pR(V )

η2
, (2.6a)

< σz ⊗ 1 > =
2p(HH)

η1η′1
+

2p(HV )

η2η′1
− 1

= 1− 2p(V H)

η1η′2
− 2p(V V )

η2η′2

=
2pL(H)

η′1
− 1

= 1− 2pL(V )

η′2
, (2.6b)

< σz ⊗ σz > =
2p(HH)

η1η′1
+

2p(V V )

η2η′2
− 1

= 1− 2p(HV )

η2η′1
− 2p(V H)

η1η′2
.

(2.6c)

p(HH) p(V H)

p(HV ) p(V V )

pL(H) pL(V )

( 1
η′1
1
η′2

)
=

pR(H)

pR(V )

1

 , (2.7a)

p(HH) p(HV )

p(V H) p(V V )

pR(H) pR(V )

( 1
η1
1
η2

)
=

pL(H)

pL(V )

1

 . (2.7b)



Chapter 3

Point estimators

3.1 Linear inversion

As stated in section 1.2, linear inversion is the simplest reconstruction method

that one could use. In doing linear inversion, all the detection probabilities

in (2.5) and (2.7) are estimated by the relative frequencies measured and

the state parameters and detector efficiencies are solved directly using the

same method in last chapter. When the detection probabilities are estimated

by the relative frequencies, the overdetermined systems of linear equations

in (2.5) and (2.7) are inconsistent. However, an approximate solution can

still be obtained using the least-square method. For example, let’s denote

the leftmost matrix and the matrix on right hand side in (2.7a) as A and B

respectively,

A


1
η′1

1
η′2

 = B, (3.1)

17
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the least-square solution1 is given by
1
η′1

1
η′2

 = (ATA)−1ATB. (3.2)

As stated in section 1.2, the estimated state and the detector efficiencies

from linear inversion might be unphysical sometimes. Figure 3.1 shows the

result from doing linear inversion for 1000 simulations with different number

of photon pairs measured, N . From the figure, the estimated state is un-

physical quite often when N is small. The percentage discrepancies of the

estimated efficiencies are also quite large when N is small because we often

get some unphysical values for the estimated efficiencies when N is small.

Since we might not always have a large of number of photon pairs to perform

the measurements, linear inversion might not be the suitable reconstruction

method to use.

3.2 Maximum-likelihood estimation

Maximum-likelihood estimation which is introduced in section 1.3 is a recon-

struction method which guarantees to give a physical estimated state and

physical detector efficiencies. In this self-calibration scheme, the likelihood

function in (1.7) is now defined as a function of both state and efficiencies

since the detection probabilities depend on both state and efficiencies. The

maximum-likelihood estimator for state ρ̂MLE and efficiencies η̂MLE are ob-

tained by maximizing the log-likelihood over the space of physical states and

efficiencies,

max
ρ,η

logL(D|ρ,η) = logL(D|ρ̂MLE, η̂MLE). (3.3)

In general, it is hard to find a closed formula for the maximum-likelihood

1The derivation of this expression is given in appendix A.
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(a)

(b)

Figure 3.1: Result from doing linear inversion for the double crosshair mea-
surement in 1000 simulations with different number of photon pairs measured
N .
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estimator ρ̂MLE and η̂MLE. In the case of ideal detectors, the log-likelihood

function is concave and thus the problem of finding the maximum of the

log-likelihood function is a convex optimization problem which can be solved

by the direct gradient method. The algorithm to find the maximum of the

log-likelihood function using direct gradient method has been developed by

Hradil [6, 16].

When the detectors have imperfect efficiencies, the likelihood function

have a much more complicated expression and it is very hard to determine

whether the log-likelihood is concave. At this stage, we develop the algorithm

to find the maximum-likelihood estimator using direct gradient method even

though we are not sure whether the log-likelihood is concave. There are only

slight modifications to the algorithm in [16].

All the efficiencies are parametrized by some parameters y to guarantee

that they are always some values between zero and one. For the simplified

measurement,

η = (η1, η2, η
′
1, η
′
2)
T = (sin2(y1), sin

2(y2), sin
2(y3), sin

2(y4))
T , (3.4)

whereas for the double crosshair measurement,

η = (η1, ..., η4, η
′
1, ..., η

′
4)
T = (sin2(y1), ..., sin

2(y4), sin
2(y5), ..., sin

2(y8))
T . (3.5)

The derivatives of log-likelihood with respect to the y parameters for sim-

plified measurement and double crosshair measurement are derived in (3.6)

and (3.7) respectively.

∂ logL
∂y1

= 2 cot y1

(
nHH+nV H+n0H−

nH0

pH0

pHH−
nV 0

pV 0

pV H−
n00

p00
p0H

)
, (3.6a)

∂ logL
∂y2

= 2 cot y2

(
nHV +nV V +n0V −

nH0

pH0

pHV −
nV 0

pV 0

pV V −
n00

p00
p0V

)
, (3.6b)
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∂ logL
∂y3

= 2 cot y3

(
nHH+nHV +nH0−

n0H

p0H
pHH−

n0V

p0V
pHV −

n00

p00
pH0

)
, (3.6c)

∂ logL
∂y4

= 2 cot y4

(
nV H +nV V +nV 0−

n0H

p0H
pV H−

n0V

p0V
pV V −

n00

p00
pV 0

)
. (3.6d)

∂ logL
∂y1

= 2 cot y1

(
nHH + nV H + nDH + nAH + n0H −

nH0

pH0

pHH

− nV 0

pV 0

pV H −
nD0

pD0

pDH −
nA0
pA0

pAH −
n00

p00
p0H

)
, (3.7a)

∂ logL
∂y2

= 2 cot y2

(
nHV + nV V + nDV + nAV + n0V −

nH0

pH0

pHV

− nV 0

pV 0

pV V −
nD0

pD0

pDV −
nA0
pA0

pAV −
n00

p00
p0V

)
, (3.7b)

∂ logL
∂y3

= 2 cot y3

(
nHD + nV D + nDD + nAD + n0D −

nH0

pH0

pHD

− nV 0

pV 0

pV D −
nD0

pD0

pDD −
nA0
pA0

pAD −
n00

p00
p0D

)
, (3.7c)

∂ logL
∂y4

= 2 cot y4

(
nHA + nV A + nDA + nAA + n0A −

nH0

pH0

pHA

− nV 0

pV 0

pV A −
nD0

pD0

pDA −
nA0
pA0

pAA −
n00

p00
p0A

)
, (3.7d)

∂ logL
∂y5

= 2 cot y5

(
nHH + nHV + nHD + nHA + nH0 −

n0H

p0H
pHH

− n0V

p0V
pHV −

n0D

p0D
pHD −

n0A

p0A
pHA −

n00

p00
pH0

)
, (3.7e)
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∂ logL
∂y6

= 2 cot y6

(
nV H + nV V + nV D + nV A + nV 0 −

n0H

p0H
pV H

− n0V

p0V
pV V −

n0D

p0D
pV D −

n0A

p0A
pV A −

n00

p00
pV 0

)
, (3.7f)

∂ logL
∂y7

= 2 cot y7

(
nDH + nDV + nDD + nDA + nD0 −

n0H

p0H
pDH

− n0V

p0V
pDV −

n0D

p0D
pDD −

n0A

p0A
pDA −

n00

p00
pD0

)
, (3.7g)

∂ logL
∂y8

= 2 cot y8

(
nAH + nAV + nAD + nAA + nA0 −

n0H

p0H
pAH

− n0V

p0V
pAV −

n0D

p0D
pAD −

n0A

p0A
pAA −

n00

p00
pA0

)
. (3.7h)

The full algorithm is stated as follows:

MLE algorithm using direct gradient method

Start from the maximally mixed state ρ0 = 1/4 and y0 = (π/4, ..., π/4)T

with j = 0, and a small fixed value of ε,

1. Calculate Rj according to

R =
K−1∑
k=0

fk
tr(Πkρ)

Πk, (3.8)

where Πk is the measurement operator for the k-th outcome which

satisfy (1.2). k = 0 denote the event where there are no clicks on both

side.

2. Break the loop and jump to step 5 if tr{|Rjρj − ρj|} ≤ ε.

3. Choose a small step εj and update ρj and yj according to

ρj+1 =

[
1 +

εj
2

(Rj − 1)
]
ρj
[
1 +

εj
2

(Rj − 1)
]

tr
{[

1 +
εj
2

(Rj − 1)
]
ρj
[
1 +

εj
2

(Rj − 1)
]} , (3.9)
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yj+1 = yj + εj∇y logL, (3.10)

where∇y logL = (∂ logL
∂y1

, ..., ∂ logL
∂yk

)T and the derivatives of log-likelihood

for double crosshair measurement and simplified measurement are stated

in (3.7) and (3.6) respectively.

4. Set j = j + 1 and start from step 1 again.

5. η is calculated from yj. Return ρj as ρ̂MLE and η as η̂MLE.

The small step ε in step 3 can be chosen to be a fixed value. ε = 0.6

works quite well for most cases. Alternatively, one could perform a line

search procedure to search for the optimal ε such that the increase in logL is

largest. By adopting the line search method, the number of iterations needed

can be decreased. However, each iteration is computationally more expensive

and thus it is less efficient overall. Therefore, it is more preferred to choose

a fixed value for ε.

If the log-likelihood is indeed not concave and has multiple maxima, the

algorithm that was just stated can be used to provide evidence for that. For

instance, one might start at different starting points and perform the iterative

algorithm. Since the direct gradient method will search for the nearest local

maxima, it might converge to different local maxima from different starting

points if the log-likelihood have multiple maxima.

3.3 Multiple maxima in the likelihood func-

tion

For both measurements, we found that in some cases, the direct gradient

method converges to different local maxima from different starting points.

This shows that the log-likelihood for both measurements might not be con-

cave and might have multiple maxima. When the likelihood function has

multiple maxima, it might still be possible to find the global maximum of
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the likelihood function using other methods and take the global maximum

as the maximum-likelihood estimator ρ̂MLE. However, ambiguity might arise

when the likelihood function has multiple maxima with approximately the

same height. All the maxima with approximately the same height are equally

good as estimator and there is no reason to choose one over another. Be-

sides, the global maximum might change from one maxima to another when

there is slight change in the measured data. This means that the estimator

is extremely sensitive to changes in the measured data if we naively choose

the global maximum as the estimator.

Let us look at an example where there are multiple maxima in the like-

lihood function for the simplified measurement. The relative frequencies

measured are

f = (fHH , fHV , fH0, fV H , fV V , fV 0, f0H , f0V , f00)

= (0.0782, 0.0553, 0.1461, 0.0346, 0.0245, 0.0655, 0.1679, 0.1151, 0.3128)

In this case, hundreds of different maxima have been observed and we will

only list out three of them.

First maximum:2

η1 = 0.03712, η2 = 0.7991, η′1 = 0.9777, η′2 = 0.1745,

ρ =


0.2152 ∗ ∗ ∗
∗ 0.0708 ∗ ∗
∗ ∗ 0.5409 ∗
∗ ∗ ∗ 0.1731

 ,

log-likelihood = −1.938179;

2Note that we can only deduce the diagonal components of the density operator since
this is an incomplete tomography.
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second maximum:

η1 = 0.5622, η2 = 0.3893, η′1 = 0.4344, η′2 = 0.3497,

ρ =


0.3214 ∗ ∗ ∗
∗ 0.3223 ∗ ∗
∗ ∗ 0.1780 ∗
∗ ∗ ∗ 0.1784

 ,

log-likelihood = −1.938189;

third maximum:

η1 = 0.8638, η2 = 0.2887, η′1 = 0.3289, η′2 = 0.8314,

ρ =


0.2768 ∗ ∗ ∗
∗ 0.5734 ∗ ∗
∗ ∗ 0.0482 ∗
∗ ∗ ∗ 0.1017

 ,

log-likelihood = −1.938186.

We could also calculate the detection probabilities from these three maxima.

From the first maximum:

p = (pHH , pHV , pH0, pV H , pV V , pV 0, p0H , p0V , p00)

= (0.0781, 0.0553, 0.1462, 0.0350, 0.0241, 0.0654, 0.1675, 0.1155, 0.3128);

from the second maximum:

p = (0.0785, 0.0545, 0.1466, 0.0350, 0.0243, 0.0653, 0.1672, 0.1161, 0.3124);
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from the third maximum:

p = (0.0786, 0.0544, 0.1465, 0.0346, 0.0244, 0.0656, 0.1675, 0.1160, 0.3123).

The three maxima are equally good as the estimator since they have

approximately the same height (log-likelihood). However, the three maxima

give us very different information since they are very far away from each

other in the space of states and efficiencies. The fidelity of the three states

are calculated to be as such:

F (ρ1, ρ2) = 0.90, F (ρ1, ρ3) = 0.74, F (ρ2, ρ3) = 0.96.

The distance between the estimated efficiencies are calculated to be as such:

|η1 − η2| = 0.73, |η1 − η3| = 1.16, |η2 − η3| = 0.59.

On the other hand, the detection probabilities calculated from the three

maxima are very close to each other and the relative frequencies. The prob-

lem arises when we transform from probabilities to state and efficiencies.

Small changes in the probabilities might lead to large changes in state and

efficiencies.

In the rest of this section, we provide a possible explanation of having

multiple maxima which are very far apart and yet have detection probabilities

which are so close. Equation (2.7b) can be expressed as | |~a ~b

| |

( 1
η1
1
η2

)
=

|~c
|

 . (3.11)
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Figure 3.2: ρ1, ρ2, and ρ3 are the three maxima. The graph of log-likelihood
of convex combinations of the three maxima is plotted. It is clear from the
graph that the log-likelihood function is not a concave function.

Expression of η1 can be derived as

η1 =
(~b× ~a) · (~b× ~a)

(~b× ~a) · (~b× ~c)
, (3.12)

and the fractional uncertainty of η1 can be derived as

δη1
η1

=
2(~b× ~a) · δ(~b× ~a)

(~b× ~a) · (~b× ~a)
− δ((~b× ~a) · (~b× ~c))

(~b× ~a) · (~b× ~c)
. (3.13)

From (3.13), we conclude that even when the variation in probabilities is

small, the fractional uncertainty of η1 can be quite large if (~b × ~a) is quite

small or ~b is almost parallel to ~a. For all the cases with multiple maxima

in the likelihood, we notice that ~b is indeed almost parallel to ~a. The angle

between them, θ~a,~b is smaller than 0.01 rad when multiple maxima were

observed. Typical values of θ~a,~b found in the simulations are listed below:

first quartile = 0.034 rad, median = 0.073 rad, third quartile = 0.13 rad.
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The tenth percentile of θ~a,~b is 0.013 rad which is about the value when we

start to observe multiple maxima. In our simulations, multiple maxima occur

in about 5% of the cases.

3.4 Ratios of detector efficiencies are known

The ambiguity we encounter in the previous section suggests that self-calibrat-

ion scheme for the double crosshair measurement and the simplified measure-

ment might not be feasible in practice although it can be done theoretically.

We can still extract some information about the detectors if we take the prior

knowledge of the ratios of detector efficiencies into account. In practice, the

ratios of detector efficiencies can be measured much more easily than the

absolute detector efficiencies. For instance, one could shine a laser on two

detectors for the same amount of time, the ratio of efficiencies of the two

detectors can be measured by measuring the ratio of counts detected on the

two detectors.

When the prior knowledge of the ratios of detector efficiencies is taken into

account, the number of unknowns to be determined are reduced significantly.

The unknowns to be determined are the state parameters and the largest

detector efficiency ηmax. All the detector efficiencies can be deduced from

the ratios once we know ηmax. For this new scheme, there are only minor

modifications to the algorithms for direct gradient method in section 3.2.

Only the largest detector efficiency ηmax is parametrized by parameter y,

ηmax = sin2 y. (3.14)

All the other detector efficiencies can be deduced from the ratios of efficiencies

κ once we know ηmax,

η = ηmax κ = ηmax (κ1, κ2, κ
′
1, κ
′
2)
T , (3.15a)
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or

η = ηmax κ = ηmax (κ1, ..., κ4, κ
′
1..., κ

′
4)
T . (3.15b)

The derivatives of log-likelihood with respect to the parameter y in (3.6)

and (3.7) need to be modified as well. The new derivatives of log-likelihood

are stated in (3.16) and (3.17) for the simplified measurement and the double

crosshair measurement respectively.

∂ logL
∂y

= 2 cot y
(

2nHH + 2nHV + 2nV H + 2nV V

+
nH0

pH0
(pH0 − pHH − pHV ) +

nV 0

pV 0
(pV 0 − pV H − pV V )

+
n0H
p0H

(p0H − pHH − pV H) +
n0V
p0V

(p0V − pHV − pV V )

− n00
p00

(pH0 + pV 0 + p0H + p0V )
)
, (3.16)
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∂ logL
∂y

= 2 cot y
(

2nHH + 2nHV + 2nHD + 2nHA

+ 2nV H + 2nV V + 2nV D + 2nV A

+ 2nDH + 2nDV + 2nDD + 2nDA

+ 2nAH + 2nAV + 2nAD + 2nAA

+
nH0

pH0
(pH0 − pHH − pHV − pHD − pHA)

+
nV 0

pV 0
(pV 0 − pV H − pV V − pV D − pV A)

+
nD0

pD0
(pD0 − pDH − pDV − pDD − pDA)

+
nA0
pA0

(pA0 − pAH − pAV − pAD − pAA)

+
n0H
p0H

(p0H − pHH − pV H − pDH − pAH)

+
n0V
p0V

(p0V − pHV − pV V − pDV − pAV )

+
n0D
p0D

(p0D − pHD − pV D − pDD − pAD)

+
n0A
p0A

(p0A − pHA − pV A − pDA − pAA)

− n00
p00

(pH0 + pV 0 + pD0 + pA0 + p0H + p0V + p0D + p0A)
)
.

(3.17)

Similar to previous sections, we do not have a mathematical proof that the

log-likelihood function is a concave function because the likelihood function

for this case is still too complicated. However, in more than ten thousands

different simulations, we found that the direct gradient method always con-

verge to the same point no matter where the starting point is. This numerical

evidence suggests that either the likelihood function for this new scheme has

only one maximum or the case of having multiple maxima is extremely rare.

After taking the prior information of the ratios of the detector efficiencies

into account, the problem of having multiple maxima in the likelihood func-
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tion disappears and we can always find the unique estimator ρ̂MLE and η̂MLE.

From the same data in the example with multiple maxima in section 3.3, an

unique estimator ρ̂MLE can be found after considering the prior information

of the ratios of the detector efficiencies. Moreover, ρ̂MLE is very close to the

true state ρTrue. In particular, the fidelity of the two states F (ρ̂MLE, ρTrue) is

found to be 0.999995 which is very close to one.

3.5 Unknown total number of photons

So far, we have been assuming that we know the total number of photon

pairs emitted by the source and thus the number of undetected photon pairs,

n00 is known. This assumption is however not realistic. A more realistic

assumption is that the total number of photons emitted by the source is

unknown but it follows Poissonian distribution with mean ν and the mean

number of photons ν is known.

In this case, the measured data D for the double crosshair measurement

consists of twenty-four numbers instead of twenty-five numbers since we do

not know the number of undetected photon pairs, n00 now. For the simplified

measurement, D consists of eight number instead of nine. We now define a

new likelihood function where we sum over each cases with different number
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of photon pairs.

L(D|ρ,η, ν) =
∞∑
n=N

νn

n!
e−νL(n0, D|ρ,η), where N =

K−1∑
k=1

nk

=
∞∑
n=N

νn

n!
e−ν

n!

N !(n−N)!
p0
n−N

K−1∏
k=1

pk
nk

=
e−ν

N !

∞∑
n=N

νn

(n−N)!
p0
n−N

K−1∏
k=1

pk
nk

=
e−ννN

N !

∞∑
m=0

(νp0)
m

m!

K−1∏
k=1

pnk
k

=
e−ννN

N !
eνp0

K−1∏
k=1

pk
nk . (3.18)

Discarding an unimportant constant factor, we get

L(D|ρ,η, ν) = eνp0
K−1∏
k=1

pk
nk . (3.19)

The multinomial factor n!
N !(n−N)!

has to be included in second line of (3.18)

in order to take into account all possible sequences of having N detected

photon pairs out of a total of n photon pairs emitted by the source.

Similarly, the maximum-likelihood estimator is obtained by maximizing

the new log-likelihood function

logL(D|ρ,η, ν) = νp0 +
K−1∑
k=1

nk log pk. (3.20)

This new log-likelihood is slightly different from (1.9). Thus, there are also

minor modifications to the algorithms for the direct gradient method. The

modifications needed are
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1. Define a new R matrix

R =
K−1∑
k=1

nk
tr(Πkρ)

Πk + νΠ0. (3.21)

2. Modify the loop terminating criterion

tr

{∣∣∣∣ Rjρj
tr(Rjρj)

− ρj
∣∣∣∣} ≤ ε. (3.22)

3. Modify the change in ρ for each step

ρj+1 =

[
1 + ε

2 (Rj − tr(Rjρj))
]
ρj
[
1 + ε

2 (Rj − tr(Rjρj))
]

tr
{[

1 + ε
2 (Rj − tr(Rjρj))

]
ρj
[
1 + ε

2 (Rj − tr(Rjρj))
]} . (3.23)

4. Modify the derivatives of log-likelihood in (3.16) and (3.17) by replacing

the factor n00

p00
with ν.

We have thus shown a way to get rid of the unrealistic assumption that the

total number of photon pairs emitted is known. However, we will continue

to assume that the total number of photon pairs emitted is known when

constructing error regions in the next chapter. Only slight modifications are

needed if one choose to work with the more realistic case where the total

number of photons pairs emitted follows Poissonian distribution.
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Chapter 4

Constructing error regions

4.1 Monte Carlo integration

To report the error regions, it remains to calculate the multi-dimensional

integrals in (1.17) and (1.18). Both integrals are hard to be computed di-

rectly as the boundary in probability space can be very complicated due to

the nontrivial term wqu(p). Among all the numerical integration methods,

Monte Carlo integration suggests itself as its performance is determined by

the number of sample points taken and not the dimension of the problem.

Random samples are generated according to the distribution w0(p) and wD(p)

respectively, and the size sR and credibility cR are computed by calculating

the ratios of number of points lies within R to the number of points lies

within the reconstruction space R0.

The problem of computing the multi-dimensional integrals has thus been

reduced to generating random sample points according to a density distri-

bution w(p). This is however not trivial. In [14], Shang et al. discussed

the methods of importance sampling, rejection sampling, and Metropolis-

Hastings Monte Carlo sampling. Although the three methods are easy to

implement, they suffer from the problems of being costly in CPU time or

require a large number of points to get a good sample. In [12], Seah et al.

35
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discussed the Hamiltonian Monte Carlo (HMC) method [9] which is relatively

harder to implement but takes much shorter time. In this thesis, we adopt

the Hamiltonian Monte Carlo method.

4.2 Hamiltonian Monte Carlo

The main idea of Hamiltonian Monte Carlo (HMC) is to apply Hamiltonian

dynamics by identifying the variables of interest as position variables q =

(q1, q2, ..., qK) and introducing fictitious momentum variables p = (p1, p2, ..,

pK). The Hamiltonian is defined in terms of the target distribution w(q),

H(q, p) =
1

2

∑
j

p2
j + U(q). (4.1)

The potential energy U(q) is given by

U(q) = − logw(q). (4.2)

By performing the HMC algorithm, we will obtain a set of sample points q

which follows the target distribution w(q). The HMC algorithm is stated as

follows:

HMC algorithm

1. Choose an arbitrary starting point q(1) and set j = 1.

2. Randomly generate p(j) from multivariate Gaussian distribution with

mean zero and variance one.

3. Evolve (q(j), p(j)) according to Hamiltonian equations of motion

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

(4.3)
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for a duration of T to get (q(j)(T ), p(j)(T )) and set (q∗, p∗) =

(q(j)(T ),−p(j)(T )).

4. Calculate the acceptance ratio1

a = min[1, eH(q(j),p(j))−H(q∗,p∗)]. (4.4)

5. Draw a random number b from uniform distribution U(0, 1). If b < a,

set q(j+1) = q∗; otherwise, set q(j+1) = q(j).

6. Set j = j + 1. If j equals to the desired number of samples, escape the

loop; otherwise, return to step 2.

For computer implementation of step 3 in HMC algorithm, the differential

equations in (4.3) must be discretized. This is done by the leapfrog method.

The total time duration T is divided into L sub-intervals τ = T/L. For each

of the sub-intervals τ , (q(t0 + τ), p(t0 + τ)) are obtained from (q(t0), p(t0))

by the leapfrog method which is stated as follows:

Leapfrog method

1. Let the potential energy govern (4.3) for a duration of τ
2
,

p
(
t0 +

τ

2

)
= p(t0) +

τ

2
u(q(t0)), (4.5)

where u(q) = −∇H = w(θ)−1∇w(θ) is the force.

2. Let the kinetic energy govern (4.3) for a duration of τ ,

q(t0 + τ) = q(t0) + τp
(
t0 +

τ

2

)
. (4.6)

1The acceptance ratio is always equals to one if the evolution in step 3 is exact due to
conservation of energy.
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3. Let the potential energy govern (4.3) for a duration of τ
2
,

p(t0 + τ) = p
(
t0 +

τ

2

)
+
τ

2
u(q(t0 + τ)). (4.7)

4.3 State parametrization

All the sampling methods in [14] are done by parametrizing the state by prob-

abilities as in (1.13). This will requires a physicality check for the constraints

in (1.12) which is computationally expensive. As a result, all those sampling

methods are costly in CPU time. In [12], the HMC sampling are done by

parametrizing all the physical states in the state space or reconstruction

space directly. By doing this, the physicality check which is computationally

expensive can be avoided since all the constraints in (1.12) are automatically

satisfied.

For informationally complete POM, a d × d density operator can be

parametrized by d2 − 1 real parameters. This can be done by any upper-

triangular matrix A with real diagonal entries such that

ρ = A†A, and tr{A†A} = 1. (4.8)

For the case when d = 4, A is given by

A =


C1 C2E10 C3E11 C4E12

0 C5 C6E13 C7E14

0 0 C8 C9E15

0 0 0 S9

 , (4.9)

where

C1 = cos θ1, S1 = sin θ1; Ck = Sk−1 cos θk, Sk = Sk−1 sin θk, (4.10)
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and

Ek = e−iθk . (4.11)

4.3.1 Simplified measurement

In the simplified measurement, the three state parameters : 〈1⊗ σz〉, 〈σz ⊗ 1〉,
and 〈σz ⊗ σz〉 fully characterize the diagonal entries of the state ρ. Therefore,

the reconstruction space can be chosen to be the set of all the states with

vanishing non-diagonal components. The parametrization of A is given by

A =


cos θ1 0 0 0

0 cos θ2 sin θ1 0 0

0 0 cos θ3 sin θ2 sin θ1 0

0 0 0 sin θ3 sin θ2 sin θ1

 , (4.12)

or

A =


C1 0 0 0

0 C2 0 0

0 0 C3 0

0 0 0 S3

 , (4.13)

where Ck and Sk are given in (4.10). We are now left with the last parameter

corresponding to ηmax. This can be done in the similar way as in section 3.4,

ηmax = sin2(θ4). (4.14)

After reparametrization, the prior or posterior density in terms of θ are

given by

w(θ) = w(p)

∣∣∣∣∂p∂θ
∣∣∣∣ , (4.15)

where
∣∣∂p
∂θ

∣∣ is the determinant of the Jacobian. With the choice of primitive
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prior (1.15), the prior density is given by

w0(θ) =

∣∣∣∣∂p∂θ
∣∣∣∣ , (4.16)

whereas the posterior density is given by

wD(θ) = L(D|ρ,η)

∣∣∣∣∂p∂θ
∣∣∣∣ . (4.17)

After the force components,

us(θ) =
∂

∂θs
logw(θ) (4.18)

are calculated, the HMC algorithm can now be performed to sample the prior

or posterior.

Note that ∂p
∂θ

must be a square matrix, otherwise its determinant cannot

even be defined. Not all of the probabilities are independent to each other

and the dimension of the probability space must be equal to the number of

parameters θ. Thus, a set of independent probabilities must be chosen to

compute ∂p
∂θ

. For the case of perfect detectors, it is obvious that pHH , pHV ,

and pV H form such a set as they must be summed to one with pV V . For the

case of imperfect detectors with known ratios of efficiencies, the expressions

of probabilities are given by (2.2) (with efficiencies given by (3.15a)). With

the extra factors of κ and ηmax, it might not be obvious which probabilities

are independent to each other. The set of independent probabilities is found

by finding a minimal set of probabilities that is sufficient to solve for all the

state parameters and ηmax. One such choice is the set {pHH , pHV , pV H , pV V }.
For instance, one could use the first two expression of 〈1⊗ σz〉 in (2.6a) to

first solve for ηmax. All the other state parameters in (2.6) can then be solved

easily.

In figure 4.1, we show the size and credibility as a function of λ for the

data D = {3, 4, 3, 6, 2, 1, 10, 4, 2}. The sample size used for Monte Carlo
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Figure 4.1: Size and credibility as a function of λ. Blue dots is sλ from
prior sampling, green line is cλ from posterior sampling, red line is cλ from
computing (1.19)

integration is 50000 points. The credibility was calculated by two different

methods, the first being sampling from posterior and compute (1.18), the

second is by computing (1.19) after we have obtained size as a function of λ.

The credibility obtained from both methods agree with each other, as they

should. This also indicates that the sample of 50000 points is sufficiently

large to get an accurate result in this case.

The value of λ that corresponds to credibility c = 0.9 is found to be

0.0430. Thus, the SCR with credibility c = 0.9 is the BLR with λ = 0.0430

and its size s is 0.1177. The true state is contained in the SCR with credibility

c = 0.9.

4.3.2 Double crosshair measurement

In this scenario, there is no easy way to parametrize the reconstruction
space. The eight state parameters: 〈1⊗ σx〉, 〈1⊗ σz〉, 〈σx ⊗ 1〉, 〈σx ⊗ σx〉,
〈σx ⊗ σz〉, 〈σz ⊗ 1〉, 〈σz ⊗ σx〉, and 〈σz ⊗ σz〉 plus an unknown parameter
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Q = 〈σy ⊗ σy〉 fully characterize the real part of ρ.

ρ =
1

4


1 + S1z + Sz1 + Szz S1x + Szx Sx1 + Sxz Sxx −Q

S1x + Szx 1− S1z + Sz1 − Szz Sxx +Q Sx1 − Sxz

Sx1 + Sxz Sxx +Q 1 + S1z − Sz1 − Szz S1x − Szx

Sxx −Q Sx1 − Sxz S1x − Szx 1− S1z − Sz1 + Szz


(4.19)

where Sij = 〈σi ⊗ σj〉 and σ1 = 1. For the state to be positive semi-definite,

there is a range of permissible values of Q,

−1 ≤ Qmin(ρ) ≤ Q ≤ Qmax(ρ) ≤ 1. (4.20)

We could introduce extra parameter associated with Q, and thus have

the real part of ρ as the reconstruction space. The real part of ρ can be

parametrized using (4.9) with Ek = 0. The HMC sampling can be performed

on this higher dimensional space, and the extra parameter is then marginal-

ized to arrive at the proper sample. However, to marginalize the extra pa-

rameters due to Q, we need to have a closed formula of Qmax(ρ) − Qmin(ρ)

which we do not have. Instead, all the sample points that we obtained from

HMC sampling are supplied with a weight of 1
Qmax(ρ)−Qmin(ρ)

to account for

the extra parameter introduced during the sampling.

As stated in previous section, a set of independent probabilities has to

be chosen so that ∂p
∂θ

is a square matrix. The number of parameters θ is

ten. However, one of them is the additional parameter corresponds to Q =

〈σy ⊗ σy〉. We can take Q as one of the probabilities and find the remaining

nine independent probabilities.

For the case of perfect detectors, it is not hard to see from the expressions

of probabilities ((2.1) with all η equal to one) that {pHH , pHV , pHD, pV H ,

pV D, pDH , pDV , pDD} is a set of independent probabilities. For the case

of imperfect detectors with known ratios of efficiencies, the expressions of

probabilities are given by (2.1) (with efficiencies given by (3.15b)). With

the extra factor of κ and ηmax, it is again not obvious which probabilities
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are independent to each other. As in previous part, we obtain the set of

independent probabilities by finding a minimal set of probabilities which is

sufficient to solve for all the state parameters and ηmax. One such choice is

the set {pHH , pHV , pHD, pV H , pV V , pV D, pDH , pDV , pDD}. For instance, one

could use the first and third expression of 〈1⊗ σz〉 in (2.4a) to first solve for

ηmax. All the other state parameters in (2.4) can then be solved easily.

With the set of nine independent probabilities and Q, ∂p
∂θ

can be calculated

and so are (4.16), (4.17), and (4.18). We now have everything needed to

performed the HMC algorithm. However, each sample point that we obtained

from the HMC algorithm must be attached with a weight of 1
Qmax(ρ)−Qmin(ρ)

to account for the fact that Q is the external parameter we introduced.

In figure 4.2, we show the size and credibility as a function of λ for the

data D = {1, 2, 0, 0, 6, 3, 3, 3, 2, 3, 2, 3, 4, 1, 6, 0, 0, 1, 0, 0, 1, 10, 10, 1, 13}.
The sample size used for Monte Carlo integration is 250000 points and 750000

points. The credibility was also calculated by the two different methods.

We notice difference in the credibility from the two methods. However, the

credibility from the two methods become closer as the sample size increase.

The true value of sλ near λ = 1 is very small and thus sλ obtained from

Monte Carlo simulation can have high discrepancies from the true value if

the sample size is not large enough. This causes the calculated sλ to be not

smooth near λ = 1. This explains why the red curve (which is obtained from

integrating sλ) is not smooth and has a sharp decrease to zero near λ = 1. In

this case, the sample of 750000 points (which is very large in other situations)

is not good enough to have a smooth cλ from calculating (1.19) whereas the

cλ from posterior sampling is smooth even with a much smaller sample size.

Thus, the calculation of cλ from posterior sampling is preferred in this case.

The value of λ that corresponds to credibility c = 0.9 is found to be

3.85 × 10−4. Thus, the SCR with credibility c = 0.9 is the BLR with λ =

3.85 × 10−4 and its size s is 9.18 × 10−4. The true state is contained in the

SCR with credibility c = 0.9.
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(a)

(b)

Figure 4.2: Size and credibility as a function of λ. Blue dots is sλ from
prior sampling, green line is cλ from posterior sampling, red line is cλ from
computing (1.19). Plot (a) is obtained from sample of 250000 points, plot
(b) is obtained from sample of 750000 points.



Chapter 5

Conclusion

In chapter one, we give a brief introduction to quantum state estimation.

We first introduce two ways to find the point estimators i.e. linear inver-

sion and maximum-likelihood estimation. We then introduce self-calibrating

quantum state estimation for reconstructing the state and certain proper-

ties of measurement devices from the same data. Smallest credible regions

(SCR) is introduced as the optimal error regions. The fact that SCR is a

bounded-likelihood region (BLR) provides a simple way to report it. We end

this chapter by discussing the notions of size and credibility of a region.

In chapter two, we proceed to study the double crosshair measurement

and a simplified version of it. We prove that the state parameters and the

detector efficiencies can be uniquely determined if the exact detection prob-

abilities are known. This implies that self-calibration scheme for both mea-

surement is feasible theoretically.

In chapter three, we first discuss the use of linear inversion and maximum-

likelihood estimation to find the point estimator. We conclude that maximum-

likelihood estimation is more preferred as linear inversion might give us un-

physical states quite often. However, we face the problem of having multiple

maxima in the likelihood function which have approximately the same height.

This shows that our self-calibration scheme is not feasible in practice. Par-
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tial self-calibration can still be done if we take the prior knowledge of the

ratios of detector efficiencies into account. After taken the prior knowledge

of the ratios of detector efficiencies into account, the problem of having mul-

tiple maxima in the likelihood function disappears. We end chapter three by

showing a way to get rid of the unrealistic assumption that the total number

of photon pairs emitted is known.

Finally, we move on to construct an error region which will be attached

to the maximum-likelihood estimator to express the uncertainties associated

with it. To report error regions, the multidimensional integrals for size and

credibility have to be computed. Samples with prior and posterior density

have to generated to calculate the multidimensional integrals with Monte

Carlo integration. We introduce Hamiltonian Monte Carlo (HMC) sampling

to generate the sample. Although HMC is the most efficient way to do the

sampling, it requires us to parametrize the reconstruction space which is not

easy. With the sample in hand, the size and credibility can now be calculated

as a function of λ and the SCR can be reported concisely.

Future works

In the typical scenario of quantum key distribution, the two sets of detectors

on both sides are separated by a great distance. It might not be practical to

measure the ratios of efficiencies of all the detectors. A more practical way

to carry out the self-calibration scheme is to measure the ratios of efficiencies

of all detectors for each side. Hence, one possible future research direction is

to study this more practical scheme.



Appendix A

Least square solution

For an overdetermined system

Ax = b, (A.1)

define the error by

e = |Ax− b|. (A.2)

The square of the error is given by

e2 = xTATAx− xTAT b− bTAx+ bT b. (A.3)

We want to obtain a vector x such that it minimizes e2. The variation of e2

under infinitesimal change of x is given by

δe2 = δxT (ATAx− AT b) + (xTATA− bTA)δx

= 2δxT (ATAx− AT b). (A.4)

By demanding δe2 = 0, we obtain

ATAx = AT b. (A.5)

47
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As long as A has full column rank, ATA will be invertible [1]. Thus, the least

square solution of the overdetermined system is given by

x = (ATA)−1AT b. (A.6)
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