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Abstract

It has been shown that there exist Bell inequalities constructed from symmetric one- and

two-body correlations that are violated by certain quantum states involving any number

of particles. However, the properties of such Bell inequalities have not been completely

characterised. In this study, we determine the behaviour of various classes of entangled

states with respect to these inequalities. It is shown that some Dicke states are able to vi-

olate such inequalities, and the robustness of the quantum violations against white noise

and thermal noise are investigated. Conversely, we show that GHZ states and Smolin

states cannot violate such Bell inequalities. We also proceed to develop an entanglement

witness based on symmetric two-body correlations, and describe some properties of this

entanglement witness. In particular, this entanglement witness is optimal for even num-

bers of particles. The possibility of relating violation of such inequalities to properties

such as entanglement distillation and the Peres-Horodecki criterion is considered.
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Chapter 1

Introduction

In 1964, John Bell developed a theorem that revealed some critical properties of the

theory of quantum mechanics [1]. Bell showed that certain results from quantum theory

would be incompatible with any physical theory that satisfied several seemingly-intuitive

assumptions, most notably those of locality and realism. His theorem took the form

of an inequality that had to be satisfied by all local realistic theories, but which would

be violated according to quantum mechanics. The finding was particularly significant

because many physicists at the time were uncomfortable with the existing interpretations

of quantum theory, and sought to disprove it or account for its results in terms of more

intuitive physical theories instead. Bell’s result showed that any attempt to do so via a

local realistic model would be unsuccessful, and also provided in principle an experimental

test to verify whether the predictions of quantum mechanics would be borne out.

Since the development of Bell’s theorem, a wide range of experiments have been con-

ducted to determine whether nature followed quantum-mechanical predictions or stayed

within the constraints of local realistic models [2–5]. Thus far, the results have proven

to be in favour of the former. There remains an issue of the fact that there exist sev-

eral loopholes which prevent one from conclusively ruling out all local realistic models,

with no experiment to date having simultaneously addressed all such loopholes. However,

these loopholes have been individually addressed in various experiments [3,4], and various

approaches have been suggested to achieve progress towards a loophole-free Bell exper-

iment [5]. Realisation of such an experiment would also help to pave the way towards

further development of some proposed applications of Bell inequality violation, such as

device-independent cryptography.

Depending on the system in consideration, a wide variety of Bell inequalities can be

developed [6–11]. While Bell’s original inequality considered a system of two qubits with

two possible measurement settings, these subsequent works have generalised the concept

to N -particle systems, qudits of dimension d > 2, and different types of measurement

settings. In a recent work, Tura et al. [12] derived a class of Bell inequalities based

on symmetric one- and two-body correlations. Our study aims to characterise some
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properties of such Bell inequalities, by determining which states are able to violate these

inequalities as well as the robustness of the violation against various forms of noise. We

also describe how it can be modified to form an operator able to detect entanglement,

known as an entanglement witness. Finally, we consider how violation of this class of Bell

inequalities is related to a number of other properties such as entanglement distillation.

1.1 Bell inequalities

Bell inequalities are constraints that must be satisfied by any physical model obeying

the assumptions of locality and realism, sometimes also referred to as a “classical” model

or local hidden variable model [1, 5]. The locality assumption means that if a pair of

parties carry out measurements separated by a spacelike interval, the outcome of one

party’s measurement cannot be influenced by the other party’s choice of measurement or

measurement outcome. As for the assumption of realism, this refers to the idea that any

observable quantity should have a pre-existing value or probability distribution of values

for any possible measurement before the choice of measurement is made. While these

might appear to be intuitive properties for a physical theory to possess, Bell’s theorem

showed that if quantum mechanics were correct, then at least one of these assumptions

would have to be abandoned.

Out of the various interpretations of quantum mechanics that have arisen, ranging

from the Copenhagen interpretation to the many-worlds hypothesis, some have allowed

non-locality while others discard the realism assumption. Another proposal referred to

as superdeterminism tackles a third assumption in the model, namely the assumption

that the parties are able to choose their measurement settings “freely” [13]. However,

superdeterminism is a less commonly accepted interpretation as compared to the others.

It is important to note that despite the locality assumption being forfeited in some

interpretations, quantum mechanics still does not allow for superluminal communica-

tion [14]. This is because the measurements made by one party are unable to affect the

conditional probabilities of the measurements made by a spacelike-separated party in a

manner that allows for communication of information, a condition more generally referred

to as no-signalling. It is only when the parties come together or otherwise communicate

classically that they are able to obtain the data required to show a violation of a Bell

inequality.

Bell’s inequality, as derived in his 1964 paper [1], considered a singlet state distributed

to pair of observers, each of whom performs a spin measurement along some axis. Only

three possible measurement axes need to be considered, which we can denote as
{
~a,~b,~c

}
,

with corresponding measurements {Ma,Mb,Mc}. The measurements are all taken to have

dichotomous outcomes, with values ±1. It is important to note that while these prop-

erties are characteristic of qubit measurements in the framework of quantum mechanics,
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the derivation of the Bell inequality itself does not make use of results from quantum

mechanics, merely requiring that the measurement choices and outcomes satisfy these

specific properties along with the assumptions of locality and realism. This therefore al-

lowed Bell to derive a constraint which had to hold for any local realistic physical theory,

completely independent of predictions from quantum mechanics.

Bell showed that if the outcomes of the observers’ measurements could be accounted

for by some local realistic model, their results would have to obey the inequality

1 +
〈
M

(1)
b M (2)

c

〉
≥
∣∣∣〈M (1)

a M
(2)
b

〉
−
〈
M (1)

a M (2)
c

〉∣∣∣ , (1.1)

where
〈
M

(1)
α M

(2)
β

〉
denotes the mean value of the product of the observers’ measurement

outcomes obtained when the first observer made a measurement along the ~α-axis and

the second observer made a measurement along the ~β-axis. In deriving Eq. (1.1), Bell

in fact made use of an additional assumption that the observers’ measurement outcomes

would be perfectly anticorrelated if both chose the same measurement axis. However, this

assumption is not required in general to obtain other bounds on local realistic models,

and subsequent works have derived inequalities not requiring this assumption [6]. Bell

then noted that for some choices of the directions
{
~a,~b,~c

}
, for instance such that ~a.~c = 0

and ~a.~b = ~b.~c = 1/
√

2, quantum mechanics predicted values that violated the inequality.

He hence concluded that quantum mechanics could not be compatible with local realistic

models.

Another important Bell inequality was derived by Clauser et al. in 1969, and is now

referred to as the Clauser-Horne-Shimony-Holt (CHSH) inequality [6]. It again concerns a

pair of observers, with dichotomous measurements having outcomes ±1. Unlike Eq. (1.1)

however, the CHSH inequality can be derived without assuming perfect anticorrelation.

The first observer is assumed to have a choice between two measurements M
(1)
0 and M

(1)
1 ,

and the second observer’s measurement choices are M
(2)
0 and M

(2)
1 . The CHSH inequality

then states ∣∣∣〈M (1)
0 M

(2)
0

〉
+
〈
M

(1)
0 M

(2)
1

〉
+
〈
M

(1)
1 M

(2)
0

〉
−
〈
M

(1)
1 M

(2)
1

〉∣∣∣ ≤ 2. (1.2)

Again, for particular choices of measurement settings and quantum states, this inequality

is violated by the predictions of quantum mechanics, with a maximum value of 2
√

2 on

the left-hand side.

As shown in Eqs. (1.3) and (1.2), Bell inequalities are statements about expectation

values, or in some cases probabilities. This therefore means that any experimental attempt

to detect violation of Bell inequalities is necessarily of a statistical nature. By conduct-

ing multiple trials, these expectation values or probabilities can be estimated from the

results. However, for any finite number of trials, it is in principle possible that a local
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realistic model could produce results violating a Bell inequality, simply by chance [15].

Experiments investigating Bell inequality violations need to gather enough data to reduce

the probability of this chance outcome to some acceptable threshold. The amount of data

required to achieve this is a question of finite statistics, which needs to be considered in

terms of the assumptions underlying the setup and the goal of the experiment.

We now consider more general Bell inequalities. In general, Bell inequalities may be

constructed based on the probabilities or correlations of various measurements and their

outcomes. However, in this study we focus only on correlation-based Bell inequalities.

Given an N -particle state and a choice of some measurement settings
{
M

(i)
0 ,M

(i)
1 , ...

}
on

each particle i, the one- to N -body correlations
{〈

M
(i)
0

〉
,
〈
M

(i)
1

〉
, ...,

〈
M

(i)
0 M

(j)
0

〉
, ...
}

can be computed. The one-body terms are not in fact “correlations” in the original sense

of the word, but it is expedient to refer to them as such and there is little danger of

confusion in doing so. The correlations can then be used to construct Bell inequalities,

with a general correlation-based Bell inequality taking the form

N∑
i=1

∑
a∈M

αai
〈
M (i)

a

〉
+

N∑
i,j=1
i 6=j

∑
a,b∈M
a≤b

βai,bj

〈
M (i)

a M
(j)
b

〉
+ ...+

∑
a,b,...∈M

ωa,b,...

〈
M (1)

a M
(2)
b ...M (N)

n

〉
≤ BC ,

(1.3)

where M is the set of labels for the measurement settings, αai, βai,bj, ..., ωa,b,... are coef-

ficients for the correlations and BC is a bound referred to as the classical bound. This

bound represents the maximum value that can be obtained in a local realistic model.

The ordered set of one- to N -body correlations
(〈
M

(1)
0

〉
, ...,

〈
M

(1)
a M

(2)
b ...M

(N)
n

〉)
can

be viewed as coordinates in a vector space. Eq. (1.3) then defines a region to one side of

a hyperplane in this correlation vector space, with the normal to the hyperplane being

specified by the coefficients αai, βai,bj, ..., ωa,b,.... It has been shown that the region defined

by all the Bell inequalities for a given system is a polytope in this space [5]; in other

words, it is a convex set with only a finite number of extremal points. A finite number of

Bell inequalities hence suffices to specify all facets of this polytope, which may be referred

to as the classical polytope or local polytope. A number of the facets may be trivial in

the sense that they arise merely due to the requirement that all probabilities must be

non-negative and sum to 1. For the two-qubit case with two measurement settings per

observer, the CHSH inequality is the only non-trivial correlation-based Bell inequality [5].

The vertices of the classical polytope correspond to deterministic local realistic models,

in which all correlations factorise and all expectation values
〈
M

(i)
a

〉
are equal to one of

the possible measurement outcomes [5]. For instance, in the case where all measurements

are dichotomous measurements with possible outcomes ±1, the vertices are given by

listing the possible combinations of expectation values such that
〈
M

(i)
a

〉
= ±1, with all
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higher-order correlations being specified by
〈
M

(i)
a M

(j)
b ...

〉
=
〈
M

(i)
a

〉〈
M

(j)
b

〉
... and so on.

For any given set of coefficients in Eq. (1.3), it is possible in principle to obtain

the classical bound BC by enumerating all the vertices and taking the maximum over

the vertices. However, this method is computationally inefficient since the number of

vertices increases rapidly with N . For instance, for an N -particle system with m choices

of measurement settings each with d possible outcomes, a direct enumeration of all the

deterministic local realistic models yields dmN combinations. Therefore, the wide variety

of Bell inequalities that have been studied [6–11] typically focus on cases where a simple

expression or value can be found for the bound, usually with the coefficients and bound

defining some facet of the classical polytope.

If a Bell inequality is violated by a quantum state that gives some value Q on the

left-hand side of Eq. (1.3), the quantity (Q− BC)/BC = Q/BC − 1 expresses how much

the quantum value exceeds the classical bound, relative to the classical bound. This shall

be referred to as the relative quantum violation. If the measurement settings are chosen

such that the expectation values of all correlations for the maximally mixed state I/2N

are zero, the relative quantum violation provides a measure of the robustness of the Bell

inequality violation against white noise, in that if some state ρ has a relative quantum

violation of q, then adding white noise to the state ρ in the form

ρwhitenoise = Pρ+ (1− P )
I

2N
(1.4)

causes it to no longer violate the Bell inequality when (1−P ) > q
q+1

. Therefore, the larger

the relative quantum violation q, the greater the fraction (1− P ) of white noise that can

be added before the state no longer violates the Bell inequality. In terms of the correlation

space, the quantum violation (Q − BC) for some state violating a Bell inequality gives

the distance between the state’s position in correlation space and the facet of the classical

polytope corresponding to that Bell inequality. Adding white noise causes the state’s

position to move linearly towards the origin, with the point where it enters the classical

polytope being the point where it ceases to violate that Bell inequality.

The set of points in correlation space that can be achieved by quantum states is also

demarcated by some bounds of its own, known as Cirel’son inequalities [16]. As previously

mentioned, although this set can violate the Bell inequalities constraining local realistic

models, it stays within bounds imposed by a requirement of no-signalling. It is interesting

to note, however, that it is strictly smaller than the set of points that can be attained by

no-signalling models. In some sense, quantum correlations do not explore the full extent

of correlations that would be accessible if one only requires that a physical theory be

non-signalling [14].

The fact that violation of a Bell inequality implies incompatibility with local realism

also has consequences that are not necessarily related to quantum mechanics. Apart from
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the fact that loophole-free experimental realisations of such violations would demonstrate

that nature cannot be described by any local realistic theory, Bell inequality violations

have also been considered in attempts to design device-independent protocols [17–19].

This refers to protocols for procedures such as key distribution or randomness generation

that can be proven to be secure or otherwise reliable, with only minimal assumptions about

the nature of the devices used to implement the protocol. The idea of such proofs broadly

relies on the concept that any deterministic non-local model necessarily violates the no-

signalling constraint. Therefore, any model that produces correlations incompatible with

local realism, but still obeys the no-signalling constraint, should possess some form of

intrinsic indeterminism regardless of the exact details of the devices used to implement

the protocol. In particular, quantum mechanics is just such a model.

Device-independent protocols hence attempt to use violation of Bell inequalities in

order to certify randomness or security, with quantum mechanics allowing such violation

to be achieved. A wide variety of such protocols have been developed, using different

assumptions for their purposes. An adversary attempting to obtain information from the

protocol may be assumed to be constrained either by quantum mechanics or merely by the

no-signalling requirement, depending on the procedure in question [17, 19]. Some of the

protocols are designed to be secure even if the devices were constructed by the adversary,

as long as the devices satisfy some constraints such as not being able to simply broadcast

the measurement outcomes to the attacker. The initial results along these lines required

some practically infeasible assumptions such as unrealistically low noise levels [17,18], but

subsequent works have generalised these procedures to more realistic assumptions such as

only restricting the adversary to have limited quantum memory [19].

1.2 Entanglement

Not all quantum states are able to violate Bell inequalities. A necessary but not sufficient

condition for a state to violate a Bell inequality is for it to be an entangled state, meaning

a state that is not separable. For pure states, a separable state is defined as one that can

be expressed as a product of subsystem states,

|ψsep〉 =
∣∣ψ(1)

〉
⊗
∣∣ψ(2)

〉
⊗ ...⊗

∣∣ψ(N)
〉
. (1.5)

For mixed states, a separable state is one that can be expressed as a convex combination

of product states,

ρsep =
k∑
i=1

pi ρ
(1)
i ⊗ ρ

(2)
i ⊗ ...⊗ ρ

(N)
i , where

M∑
i=1

pi = 1. (1.6)
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Without loss of generality, all the ρ
(j)
i subsystem states can be taken to be pure. This

mixed-state definition encompasses the pure-state definition under the case where M = 1

and all the ρ
(j)
i subsystem states are pure.

In the case of pure states, it has been shown that a state is entangled if and only

if it violates a Bell inequality [20, 21]. On the other hand, there exist entangled mixed

states which do not violate any Bell inequalities of the form in Eq. (1.3) by themselves.

Techniques such as joint measurements [22] or using a sequence of measurements [23] can

sometimes be used to cause such entangled states to violate Bell inequalities, but the

exact nature of the relation between entanglement and Bell violations remains elusive. A

result by Liang et al. also shows that any entangled state that does not violate a given

Bell inequality can be made to violate that inequality by appending an auxiliary state

which does not violate that inequality by itself [24].

Apart from Bell inequality violation, entangled states may be useful in a variety of

protocols that have been proposed based on quantum theory. For instance, some en-

tangled states can be used for quantum cryptography [25], teleportation [26], or error

correction [27]. However, determining whether an arbitrary state is entangled or separa-

ble may not be an easy task, as it is not always obvious whether a given state expressed

with respect to some basis can be rewritten as a convex combination of product states.

Two methods which shall now be described are the use of entanglement witnesses and the

Peres-Horodecki criterion. Attempting to find some way to quantify the extent to which

a state is entangled has also proven to be a difficult problem, giving rise to a number of

entanglement measures which are often related but not equivalent to each other. Some

such measures include distillable entanglement and the entanglement of formation, which

shall be briefly discussed.

1.2.1 Entanglement witnesses

One method which may be useful in detecting entanglement is the concept of an entan-

glement witness. An entanglement witness refers to an operator W that has non-negative

expectation value Tr(Wρsep) ≥ 0 for all separable states ρsep, and negative expectation

value Tr(Wσ) < 0 for at least one quantum state σ, which thereby has to be entan-

gled [28,29]. This can then be used to test for entanglement, in that if W has a negative

expectation value with respect to some state, then that state must be entangled. On the

other hand, if W has a non-negative expectation value for a state, then this entanglement

witness is inconclusive on whether the state is entangled.

In terms of the correlation space described in Section 1.1, if W is written as a linear

combination of correlations between some measurements, then it defines a hyperplane in

the correlation space as well, with all separable states lying to one side of this hyperplane.

It has been shown that the set of all points in correlation space that can be achieved by
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separable states forms a convex set, though unlike the case of local realistic models, this

set is not a polytope. The existence of entanglement witnesses essentially follows from

this point and the geometric Hahn-Banach theorem [28].

An entanglement witness is referred to as optimal if there exists a separable state

ρsep such that Tr(Wρsep) = 0. An optimal entanglement witness is essentially one that

specifies a hyperplane tangent to the region where the separable states lie, with the set of

all optimal entanglement witnesses defining the boundary of this region. Because a state

can violate a Bell inequality only if it is entangled, this region must lie inside the classical

polytope. Similarly to the case of relative quantum violation of Bell inequalities, the

magnitude of a negative expectation value Tr(Wσ) < 0 for some entanglement witness

W and entangled state σ indicates the distance between the entangled state and the

hyperplane specified by the entanglement witness, and is thus related to the robustness

of the entanglement detection against white noise.

1.2.2 Peres-Horodecki criterion

Another important test for separability is known as the Peres-Horodecki criterion or non-

positive partial transpose (NPPT) criterion [30]. This theorem states that for a bipartite

separable state ρsep =
k∑
i=1

pi ρ
(1)
i ⊗ ρ

(2)
i , if the partial transpose of its density matrix is

taken with respect to one subsystem, the resulting operator

(ρsep)T2 =
k∑
i=1

pi ρ
(1)
i ⊗

(
ρ
(2)
i

)T
(1.7)

is still a positive operator, where without loss of generality we have taken the partial

transpose with respect to the second system. This can be seen by noting that for some

bipartite separable state, the subsystem density matrices ρ
(2)
i are Hermitian operators

with positive eigenvalues. As eigenvalues are preserved when the transpose is taken, their

transposes also have real positive eigenvalues, and thus it can be concluded that (ρsep)T2

is still a positive operator.

By taking the contrapositive of this implication, this is equivalent to the statement

that if a bipartite state has a non-positive partial transpose, it must be entangled. The

converse statement is also true when the subsystem dimensions are 2 × 2 or 2 × 3, but

not for any higher dimensions [28]. This essentially arises from the fact that in the

2× 2- and 2× 3-dimensional cases, any positive map can be decomposed as the sum of a

completely positive map and the composition of another completely positive map with the

transposition map. Hence if a bipartite state is instead found to have a positive partial

transpose, this theorem shows that it must be separable if the dimensions are 2 × 2 or

2× 3, but the test is inconclusive if the dimensions are higher.
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1.2.3 Entanglement distillation

For the purposes of some techniques such as the quantum teleportation protocol proposed

by Bennett et al. [26], it is assumed at the beginning of the protocol that a pure singlet

state is distributed between two parties. However in practical implementations, it may be

difficult to distribute a perfect singlet state to the two parties, as some degree of mixing is

likely to be introduced by noise in the communication channel. The question then arises

as to whether it is still possible to use such states to implement the desired protocol. One

approach to this problem, now referred to as entanglement distillation, was studied by

Bennett et al. [31]. They considered a situation where the two parties are provided with

multiple copies of the state

ρF = F |Ψ1〉 〈Ψ1|+
1− F

3

4∑
µ=2

|Ψµ〉 〈Ψµ| , (1.8)

where |Ψµ〉 with µ = 1, 2, 3, 4 denote the four Bell states. This state is parametrised by

F , which gives its fidelity with respect to a pure singlet state, 〈Ψ1| ρF |Ψ1〉 = F . Bennett

et al. showed that given two copies of ρF with F > 1/2, it is possible to perform local

operations and classical communication (LOCC) to obtain, with probability greater than

1/4, a state ρF ′ of the form in Eq. (1.8) with F ′ > F . Local operations refer to operations

that each party can carry out on their own qubit without needing access to the other

qubit, while classical communication refers to sending information via classical channels.

Given enough copies of such ρF , it is hence possible to distil a state of arbitrarily

close fidelity to the pure singlet state |Ψ1〉. This provides a possible way to cope with

noisy quantum channels. The asymptotic number of singlet states that can be distilled

from some given state can be used as a measure of entanglement, known as its distillable

entanglement. This can be contrasted with another entanglement measure known as the

entanglement of formation, which essentially describes the asymptotic number of singlet

states required to prepare some given state via LOCC [31]. However, it has been shown

that while every bipartite qubit state is distillable [32], in some higher dimensions there

exist entangled states that are not distillable [33]. Such states are referred to as bound

entangled states, and are examples of states where the entanglement of formation exceeds

the distillable entanglement.

We have now discussed some general concepts regarding Bell inequalities and entan-

glement, and described some of the existing literature concerning their implications and

potential applications. In the following chapters, we will proceed to focus more specifically

on how the one- and two-body correlations of a quantum state can supply information

about these properties. Chapter 2 investigates a Bell inequality recently proposed by

Tura et al. [12] which is constructed from such correlations. We study the properties of

9



this Bell inequality with respect to Dicke states, W states, GHZ states and Smolin states,

and compare it to an entanglement witness proposed by Krammer et al. [34] as well as

the Werner-Wolf-Żukowski-Brukner inequality [10]. In Chapter 3, we show how we may

construct an entanglement witness instead of a Bell inequality from symmetric two-body

correlations, and characterise some properties of this entanglement witness. Finally, in

Chapter 4 we return to a discussion of some of the entanglement-related properties we

have previously highlighted, and consider the Bell inequalities we have investigated in the

context of these properties.

10



Chapter 2

Bell inequalities using one- and

two-body correlations

In the previous chapter, we have considered general correlation-based Bell inequalities, as

shown in Eq. (1.3). However, not all the correlation terms are necessary to construct a

Bell inequality. In particular, in Ref. [12] Tura et al. develop a class of Bell inequalities

involving only one- and two-body correlations. Such correlations are more experimentally

accessible than higher-order correlations [35], and hence such a Bell inequality may be

easier to investigate experimentally. Expressed in the form shown in Eq. (1.3), a Bell

inequality constructed from such correlations can be written as

N∑
i=1

∑
a∈M

αai
〈
M (i)

a

〉
+

N∑
i,j=1
i 6=j

∑
a,b∈M
a≤b

βai,bj

〈
M (i)

a M
(j)
b

〉
≤ BC , (2.1)

in other words with all the three-body and higher correlations removed. In particular,

the paper investigates Bell inequalities that have only two measurement settings and are

symmetric under permutations of the particles. The latter condition implies that the

choices of measurement settings are the same across all particles, and that for every fixed

a, b, the coefficients αai and βai,bj with different i, j are all equal. With these restrictions,

the general form of the Bell inequality can be simplified to

α 〈S0〉+ β 〈S1〉+
γ

2
〈S00〉+ δ 〈S01〉+

ε

2
〈S11〉 ≤ BC , (2.2)

where the symmetric correlation operators are defined as

Sa =
N∑
i=1

M (i)
a , Sab =

N∑
i,j=1
i 6=j

M (i)
a M

(j)
b . (2.3)

For brevity, we shall refer to such a Bell inequality, constructed from symmetric one- and

11



two-body correlations with two measurement settings, as an S2C2M inequality. A slightly

different sign convention has been used here as compared to Ref. [12].

In the case where the measurement settings have only two possible outcomes with

values ±1, the particles can essentially be treated as qubits. Since the two choices of

measurement setting must be the same across all particles, they can be parametrised as

M
(i)
0 = sin θ0 cosφ0 σ

(i)
x + sin θ0 sinφ0 σ

(i)
y + cos θ0 σ

(i)
z ,

M
(i)
1 = sin θ1 cosφ1 σ

(i)
x + sin θ1 sinφ1 σ

(i)
y + cos θ1 σ

(i)
z .

(2.4)

We note that when N = 2, an S2C2M qubit inequality does not reduce exactly to the

CHSH inequality, despite the fact that the latter is the only non-trivial Bell inequality for

two qubits. This is because an S2C2M inequality requires that the choices of measure-

ments are to be the same across all particles, while the CHSH inequality allows them to

be different. In fact, for maximal violation of the CHSH inequality to occur, the possible

measurement settings on the two qubits must be different from each other.

Tura et al. focus on the case where θ0 = φ0 = φ1 = 0 in Eq. (2.4), leaving only θ1 as a

free parameter, henceforth abbreviated as simply θ. The Bell inequality in Eq. (2.2) can

then be expressed concisely as 〈B(θ)〉 ≥ 0, where we define B(θ) as

B(θ) = BCI− αS0 − βS1 −
γ

2
S00 − δS01 −

ε

2
S11. (2.5)

A negative expectation value 〈B(θ)〉 < 0 then constitutes a violation of this Bell inequality.

This also allows it to serve as an entanglement witness, since a state can violate a Bell

inequality only if it is entangled. However, it is not necessarily an optimal entanglement

witness, in that there may not exist any separable states that saturate the inequality in

Eq. (2.2).

In the following sections, we characterise some properties of S2C2M qubit inequalities

by studying several classes of entangled states and determining whether they can violate

such inequalities. As a comparison, we also investigate the behaviour of these entangled

states with respect to an entanglement witness based on two-body correlations studied

by Krammer et al. [34], as well as a Bell inequality based on N -body correlations known

as the Werner-Wolf-Żukowski-Brukner (WWZB) inequality [10,11].

2.1 Entanglement witness using structure factors

In Ref. [34], Krammer et al. developed an entanglement witness based on structure

factors. Structure factors are constructed from two-body correlations as well, and can be

12



measured via scattering experiments. This entanglement witness is defined as

W (k) = I− 1

2

(
Σ̄(k) + Σ̄(−k)

)
, (2.6)

where Σ̄(k) is defined in terms of structure factors,

Σ̄(k) =

(
N

2

)−1
(cxSxx(k) + cySyy(k) + czSzz(k)) , (2.7)

with ci ∈ R, |ci| ≤ 1. The structure factors were defined as

Sαβ =
N∑

i,j=1
i<j

eik(rj−ri)σ(i)
α σ

(j)
β , (2.8)

with the inter-spin distances taken to be normalised to unit length so that rj − ri = j − i
for all i, j. This operator has positive expectation value on all separable states, and for

appropriate choices of {cx, cy, cz, k}, it can have negative expectation values for some

entangled states. This allows it to act as an entanglement witness.

2.2 Werner-Wolf-Żukowski-Brukner inequalities

The Werner-Wolf-Żukowski-Brukner (WWZB) inequalities are an important class of Bell

inequalities based on N -body correlations [10, 11]. They involve two choices of measure-

ment settings per qubit,

M
(i)
0 = sin θ

(i)
0 cosφ

(i)
0 σ(i)

x + sin θ
(i)
0 sinφ

(i)
0 σ(i)

y + cos θ
(i)
0 σ(i)

z ,

M
(i)
1 = sin θ

(i)
1 cosφ

(i)
1 σ(i)

x + sin θ
(i)
1 sinφ

(i)
1 σ(i)

y + cos θ
(i)
1 σ(i)

z .
(2.9)

This resembles the measurement settings given in Eq. (2.4), but for the WWZB inequality,

the values of θ
(i)
a and φ

(i)
a can differ across the qubits, as opposed to the measurement

settings used in B(θ) which are identical for all qubits. In the form described by Żukowski

and Brukner [11], the WWZB inequalities can be written as∣∣∣∣∣ ∑
si=±1

S(s1, ..., sN)
∑
ki=0,1

sk11 ...s
kN
N

〈
M

(1)
k1
...M

(N)
kN

〉∣∣∣∣∣ ≤ 2N , (2.10)

where S(s1, ..., sN) is any function that takes on only the values ±1. In the case where

S(s1, ..., sN) =
√

2 cos
(
−π

4
+ (s1 + ...+ sN −N)π

4

)
, it reproduces the Mermin-Ardehali-

Belinskĭı-Klyshko (MABK) inequalities [7–9]. When N = 2, this reduces to the CHSH

inequality as well.

We shall focus on the category of WWZB inequalities defined by this choice of function

13



S(s1, ..., sN), and analogously to Eq. (2.5), we define

BW = 2NI−
∑
si=±1

S(s1, ..., sN)
∑
ki=0,1

sk11 ...s
kN
N M

(1)
k1
...M

(N)
kN

. (2.11)

Again, a negative expectation value 〈BW 〉 < 0 is equivalent to a violation of the WWZB

inequality. We also restrict our study to the case where all the φ
(i)
a parameters are set to

zero, leaving 2N parameters
{
θ
(i)
a

}
.

2.3 Dicke states

Dicke states are symmetric pure states, defined as

∣∣Dk
N

〉
= s(|N − k, k〉),

where |N − k, k〉 denotes a pure product vector of N − k qubits in the |0〉 state and k

qubits in the |1〉 state, and the function s denotes symmetrization over all particles along

with appropriate normalisation. Tura et al. showed [12] that by setting the coefficients

in Eqs. (2.2) and (2.5) to be

α = −N(N − 1)(dN/2e −N/2),

β = α/N,

γ = −N(N − 1)/2,

δ = −N/2,

ε = 1,

(2.12)

the classical bound has the value BC = N/2(N − 1)dN/2 + 1e. This choice of coefficients

detects Bell violations by the Dicke states
∣∣∣DdN/2eN

〉
and

∣∣∣DbN/2cN

〉
.

In particular, for
∣∣∣DdN/2eN

〉
the expectation value of the B(θ) operator has the analytic

expression〈
D
dN/2e
N

∣∣∣B(θ)
∣∣∣DdN/2eN

〉
= 4bN/2c sin2(θ/2)

(
(dN/2e+ 1) sin2(θ/2) + 1

)
. (2.13)

This attains a minimum value of −bN/2c/(dN/2e+ 1) at

θmin = cos−1
dN/2e
dN/2e+ 1

, (2.14)

corresponding to the maximal violation of local realism. As for the entanglement witness

by Krammer et al., W (k) also has negative expectation values on the Dicke states
∣∣∣DdN/2eN

〉
when k = 0, (cx, cy, cz) = (1, 1,−1) are chosen to be the parameter values [34].
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Such Dicke states can arise as the ground states of the isotropic Lipkin-Meshkov-Glick

(LMG) Hamiltonian [36]

HLMG = − λ
N

N∑
i,j=1
i<j

(
σ(i)
x σ

(j)
x + σ(i)

y σ
(j)
y

)
+ h

N∑
i=1

σ(i)
z , (2.15)

which has ground state
∣∣∣DdN/2eN

〉
when λ/N ≥ h > 0 [37]. λ represents the strength

of the couplings between the particles, while h can represent the strength of a magnetic

field. As evidenced from the coupling term in the expression, all N particles are coupled

to each other under this Hamiltonian, with equal strength for all couplings. It hence

involves long-range interactions rather than nearest-neighbour or next-nearest-neighbour

interactions. Originally introduced in nuclear physics as a test model for various approx-

imation methods [36], it has since been used to investigate some properties such as phase

transitions [37].

We compare the effects of thermal noise under this Hamiltonian on the expectation val-

ues of B(θ), W (k) and BW , by plotting their expectation values with respect to the mixed

state ρT = e−HLMG/kBT/Z. As the temperature tends toward infinity, this approaches the

maximally mixed state, on which all the correlations are zero. For simplicity, units are

chosen such that kB = 1. The coupling constant and magnetic field were set to be λ = 10

and h = 0.1 respectively.

To compare the entanglement witnesses, we need to normalise them to some common

standard. We choose to normalise them such that as the temperature goes to infinity and

the correlations go to zero, the expectation values of the operators go to 1. We see from

Eqs. (2.5), (2.6) and (2.11) that when all correlations go to zero, we have 〈B(θ)〉 = BC ,

〈W (k)〉 = 1 and 〈BW 〉 = 2N . Hence in the following analysis, we compare 〈B(θ)〉 /BC ,

〈W (k)〉 and 〈BW 〉 /2N . This choice of normalisation also gives the relative quantum

violation of the Bell inequalities; namely, when the value of 〈B(θ)〉 /BC or 〈BW 〉 /2N is

negative, the relative quantum violation is simply the magnitude of this negative value.

For 〈B(θ)〉 /BC and 〈W (k)〉, if the coefficients {α, β, γ, δ, ε} and {cx, cy, cz} are fixed

as described previously, there remains one free parameter θ and k respectively. Shown

in Fig. 2.1 is an example of 〈B(θ)〉 /BC plotted as a function of θ and T , as well as

〈W (k)〉 plotted as a function of k and T . The graphs suggest that even when the ther-

mal state is not at zero temperature, the most negative value still occurs at θmin =

cos−1(dN/2e/(dN/2e + 1)) and k = 0 respectively, the parameter values which minimise

the expectation value for the ground state
∣∣∣DdN/2eN

〉
. Therefore, in the subsequent analysis,

〈B(θ)〉 /BC and 〈W (k)〉 are considered at these values of θ and k respectively.

Fig. 2.2 shows the values of 〈B(θmin)〉 /BC , 〈W (0)〉 and 〈BW 〉 on the thermal state

ρT as a function of temperature. The values for 〈BW 〉 were obtained by minimising over

the 2N angular parameters
{
θ
(i)
a

}
. In all cases, the most negative value occurs at T = 0,
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Figure 2.1: Comparison of 〈B(θ)〉/BC and 〈W (k)〉 for the four-qubit Dicke state |D2
4〉. One

horizontal axis on each plot indicates the temperature T , while the other indicates θ and
k respectively. Planes are plotted in blue at 〈B(θ)〉/BC = 0, 〈W (k)〉 = 0 to more clearly
show which regions are negative. Note that the temperature scales on the two graphs
are different, due to the substantially higher robustness of 〈W (k)〉 against temperature
increase. It can be seen that both graphs have regions where the expectation values are
negative, but 〈W (k)〉 remains negative up to higher temperatures than 〈B(θ)〉/BC .

and increases towards 1 as the temperature is increased, as expected. Another quantity

of interest that can be obtained from these graphs is the critical temperature Tc at which

the expectation value becomes non-negative. These values are summarised in Table 2.1.

We note that the critical temperatures are independent of the choice of normalisation, as

they only depend on the sign of the expectation values.

Several trends can be noted from the values in Table 2.1. Firstly, the most negative

minimum value was attained by 〈BW 〉/2N in all cases other than N = 3, followed by

〈W (0)〉, with 〈B(θmin)〉/BC being the least negative. Also, the minimum value of 〈BW 〉/2N

becomes increasingly negative as N increases, while that of 〈W (0)〉 and 〈B(θmin)〉/BC

instead decreases in magnitude. This is consistent with the fact that the maximum

quantum violation of the WWZB inequality increases exponentially with N for specific

states. Recalling that the magnitude of the negative expectation value corresponds to

a measure of robustness against white noise as described in Section 1.1, these results

indicate that out of these three cases, violation of the WWZB inequality by the ground

state
∣∣∣DdN/2eN

〉
is the most robust against white noise.

It can also be seen that for any N , 〈W (0)〉 is the most robust against thermal noise,

in the sense of having the highest critical temperature. It is followed by 〈BW 〉/2N , then

〈B(θmin)〉/BC . There also appears to be a general decreasing trend in the critical tem-

peratures as N increases. For 〈BW 〉/2N and 〈B(θmin)〉/BC however, there is a noticeable

difference between the even-N and odd-N cases. The even-N cases appear to be more

robust against thermal noise as compared to the odd-N cases, with critical temperatures

approximately ten times higher. This could be due to the fact that the ground state of the
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Figure 2.2: Comparison of the effects of temperature on 〈B(θmin)〉/BC , 〈W (0)〉 and

〈BW 〉/2N for Dicke states
∣∣∣DdN/2eN

〉
with N = 5, 6. These expectation values increase

as the temperature T increases, starting from some negative value and approaching 1 at
high temperatures. Noting that the scales on the graphs are different, it can be seen that
the critical temperatures where the value becomes positive are lower for 〈B(θmin)〉/BC as
compared to 〈W (0)〉 and 〈BW 〉/2N . In addition, there is a substantial difference between
the N = 5 (odd) and N = 6 (even) cases for 〈B(θmin)〉/BC and 〈BW 〉/2N , which can
be seen in more detail in Table 2.1. It can also be seen that in these graphs, the most
negative values are obtained at zero temperature by 〈BW 〉/2N .
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Table 2.1: Minimum values and critical temperatures for 〈B(θmin)〉/BC , 〈W (0)〉 and
〈BW 〉/2N with varying N . The critical temperature Tc refers to the temperature at which
the expectation value becomes positive. It can be seen that while the magnitudes of the
minimum values for 〈B(θmin)〉/BC and 〈W (0)〉 are decreasing with N , it instead increases
with N for 〈BW 〉/2N . As for the critical temperatures, there is a general decreasing trend
for larger N , though for 〈B(θmin)〉/BC and 〈BW 〉/2N there is a clear difference between
the cases of odd and even N .

〈B(θmin)〉/BC

N Minimum Tc
3 −1/27 0.07
4 −1/27 1.28
5 −1/80 0.05
6 −1/80 0.72
7 −1/175 0.05
8 −1/175 0.48

〈W (0)〉
N Minimum Tc
3 −2/3 8.48
4 −2/3 7.21
5 −2/5 6.52
6 −2/5 6.08
7 −2/7 5.79
8 −2/7 5.57

〈BW 〉/2N
N Minimum Tc
3 −0.52 0.13
4 −1.12 3.47
5 −1.51 0.24
6 −2.53 3.20
7 −3.38 0.43
8 −5.19 3.15

LMG Hamiltonian is near-degenerate when N is odd, because the
∣∣∣DdN/2eN

〉
and

∣∣∣DbN/2cN

〉
states have an energy separation of only 2h. Therefore, mixing of the ground state with

the first excited state as temperature is increased may occur more rapidly when N is odd.

However, there does not appear to be a similar trend for 〈W (0)〉, so this may not be

the only factor involved. Perhaps another relevant point is the fact that for the choice

of coefficients specified in Eq. (2.12), the one-body coefficients α and β are non-zero only

when N is odd. This may arise from or lead to different behaviour for the even-N and

odd-N cases. In the case of 〈BW 〉/2N , it can also be noted that the critical temperature

appears to decrease with N when N is odd, yet increase with N when N is even. These

trends noted for the WWZB inequality may possibly reflect some known differences in its

properties between even and odd N [11, 38].

Overall, 〈BW 〉/2N appears to be the most robust against white noise, while 〈W (0)〉
is the most robust against thermal noise. 〈B(θmin)〉/BC is the least robust against both

thermal noise and white noise. To some extent, its low robustness as compared to 〈W (0)〉
may arise from the fact that referring back to Eq. (2.2), we note it was constructed as

a Bell inequality rather than an optimal entanglement witness, and hence may lie some

distance away from the set of separable states. In Chapter 3, we develop an entanglement

witness based on symmetric two-body correlations that is optimal when N is even.

2.4 W states

The W states |WN〉 are a subset of the Dicke states, namely those of the form

|WN〉 =
∣∣D1

N

〉
=

1√
N

(|10...0〉+ |01...0〉+ ...+ |00...1〉) . (2.16)
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They possess entanglement that is robust against particle loss when N is large, in that

tracing out any one particle from the state results in a state of the form

ρN−1 =
N − 1

N
|WN−1〉 〈WN−1|+

1

N
|00...0〉 〈00...0| , (2.17)

which for large N simply approaches the W state with one less particle, |WN−1〉. In the

case N = 3, the W state is equivalent to the
∣∣∣DdN/2eN

〉
state considered in Section 2.3,

up to unitary rotations. For larger numbers of particles, however, the W states are not

equivalent to the
∣∣∣DdN/2eN

〉
states.

We study the expectation values of B(θ), W (k) and BW with respect to W states of

N = 3 to N = 6 particles to determine if W state entanglement can be detected by these

operators. The authors of the references describing these Bell inequalities and entangle-

ment witnesses do not give the optimal parameters for these operators to be applied to W

states [11,12,34], so in each case we numerically minimise the expectation value over the

various parameters of the operators. 〈B(θ)〉 is minimised over {α, β, γ, δ, ε, θ}, 〈W (k)〉 is

minimised over {cx, cy, cz, k}, and 〈BW 〉 is minimised over the set of 2N angles
{
θ
(i)
a

}
.

For the |W3〉 state, both 〈B(θ)〉 and 〈W (k)〉 can indeed be negative, with the same

minimum values of −1/27 and −2/3 as found in Section 2.3. This is as expected from

the fact that |WN〉 is essentially equivalent to the
∣∣∣DdN/2eN

〉
state when N = 3. For N ≥ 4

however, the numerically-obtained minimum values of 〈B(θ)〉 and 〈W (k)〉 were instead

found to be non-negative, suggesting that the entanglement of such W states cannot

violate S2C2M inequalities of the form described by B(θ), or be detected by W (k).

However, B(θ) does not describe the most general form of S2C2M qubit inequal-

ity, as it is subject to the constraints θ0 = φ0 = φ1 = 0 in the measurement settings

shown in Eq. (2.4). By allowing these parameters to be nonzero, the minimum value

of 〈B(θ0, φ0, θ1, φ1)〉 was found to be negative in the N ≥ 4 cases as well, indicating a

violation of the inequality. Similarly, the minimum value of 〈BW 〉 was also found to be

negative for W states. The results are summarised in Fig. 2.3.

It can be seen from the figure that as the number of particles increases, the relative

violation of the S2C2M inequality described by B(θ0, φ0, θ1, φ1) is decreasing, similar to

the trend found for the
∣∣∣DdN/2eN

〉
Dicke states in the previous section. This trend is

consistent with the findings by Tura et al. that for the choice of coefficients given in

Eq. (2.12), the relative quantum violation of the S2C2M inequality by
∣∣∣DdN/2eN

〉
Dicke

states decreases with N . However, we note that Tura et al. also found that for specific

choices of coefficients and quantum states, the maximum possible relative violation of

S2C2M inequalities can in fact increase with N instead [12]. Our results hence indicate

that the trend for W states is similar to that of the
∣∣∣DdN/2eN

〉
Dicke states, rather than

the states which give the maximal relative violation of S2C2M inequalities.

As for the relative violation of the WWZB inequality, it can be seen that it still
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Figure 2.3: Values of 〈B(θ0, φ0, θ1, φ1)〉 /BC and 〈WZ〉 /2N for various values of N , corre-
sponding to the relative violations of the inequalities. It appears that the relative violation
of the former is decreasing with N , while the latter increases slowly with N .

increases with N , which is somewhat similar to the trend found for the
∣∣∣DdN/2eN

〉
Dicke

states. However, it differs in that the increase appears to be quite slow, which is also in

contrast to the fact that the maximal relative violation of the WWZB inequality increases

exponentially with N . Overall, these results suggest that for the Bell inequalities or

entanglement witnesses studied in this section, the entanglement of W states is relatively

difficult to detect and does not scale well with N . In particular, it seems to be difficult

to detect using only two-body correlations, though not impossible as shown by the small

negative values of 〈B(θ0, φ0, θ1, φ1)〉.

2.5 Greenberger-Horne-Zeilinger states

Greenberger-Horne-Zeilinger (GHZ) states are states of the form

|GHZ〉 =
1√
2

(
|0〉⊗N + |1〉⊗N

)
.

They possess a number of interesting entanglement properties, and maximally violate

certain classes of Bell inequalities [11, 38, 39]. However, we shall now show that it is

not possible for GHZ states with N > 2 to violate any Bell inequality constructed from

one- and two-body correlations. Physically, this arises from the fact that tracing out any

number of particles from the GHZ state results in states that are indistinguishable from

those obtained by tracing out particles from the state ρ = 1
2

(
(|0〉 〈0|)⊗N + (|1〉 〈1|)⊗N

)
,

which is separable.

2.5.1 Two-body correlations

We first consider anN -qubit Bell inequality involving only two-body correlations, with two

measurement settings M
(i)
0 = cos θ

(i)
0 σ

(i)
z + sin θ

(i)
0 σ

(i)
x and M

(i)
1 = cos θ

(i)
1 σ

(i)
z + sin θ

(i)
1 σ

(i)
x

for each qubit. Using the notation of Eq. (2.1), such a Bell inequality can be expressed
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in the form

N∑
i,j=1
i 6=j

∑
a,b∈{0,1}

βai,bj

〈
M (i)

a M
(j)
b

〉
≤ BC . (2.18)

As described in Section 1.1, the classical bound can be found by taking the largest value

over the vertices of the classical polytope, namely the deterministic local realistic mod-

els such that
〈
M

(i)
a M

(j)
b

〉
=
〈
M

(i)
a

〉〈
M

(j)
b

〉
with

〈
M

(i)
a

〉
= ±1. For brevity, we shall

subsequently refer to such an assignment of values as a “vertex strategy”. We then have

BC = max


N∑

i,j=1
i 6=j

∑
a,b∈{0,1}

βai,bj
〈
M (i)

a

〉 〈
M

(j)
b

〉∣∣∣∣∣∣∣∣
〈
M (i)

a

〉
= ±1

 . (2.19)

We now consider an N -qubit GHZ state with N > 2. By viewing σ
(i)
x as a bit-flip on the

ith site, it can be seen that for N > 2 and i 6= j , we always have 〈GHZ|σ(i)
x σ

(j)
z |GHZ〉 = 0

and 〈GHZ|σ(i)
x σ

(j)
x |GHZ〉 = 0. Therefore,

〈GHZ|M (i)
a M

(j)
b |GHZ〉 = 〈GHZ| cos θ(i)a cos θ

(j)
b σ(i)

z σ
(j)
z |GHZ〉

= cos θ(i)a cos θ
(j)
b . (2.20)

Hence for a GHZ state, the left-hand side of Eq. (2.18) simplifies to the following

expression, which we shall denote as QGHZ:

QGHZ =
N∑

i,j=1
i 6=j

∑
a,b∈{0,1}

βai,bjCiaCjb, (2.21)

where Cia = cos θ
(i)
a ∈ [−1, 1]. The form of this expression is very similar to the values

taken at the vertices of the classical polytope, except that the {Cai} can take values in

the whole interval [−1, 1] rather than only the extremal values ±1. We shall now show

that QGHZ can never exceed the classical bound BC given by maximising over the vertices

of the classical polytope, and hence the GHZ state cannot violate such a Bell inequality.

We first consider the case where none of the coefficients {βai,bj} are zero. It suffices to

show that QGHZ in Eq. (2.21) attains its maximum when the values of {Cia} are extremal,

since this corresponds to a value at one of the vertices of the classical polytope and the

classical bound is the maximum of all such values.

Suppose to the contrary that QGHZ is maximised when at least one of the Cia, hence-

forth denoted as x, is not extremal. Looking at the form of the expression, because the

summation excludes all terms with i = j, it can be seen to be linear with respect to x.
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Since it is linear and x is not extremal, the value of QGHZ can be further increased by

either increasing or decreasing the value of x, contradicting the hypothesis that QGHZ was

already maximal. Hence by contradiction, QGHZ can only attain its maximum when the

values of {Cia} are extremal.

For the case where some of the {βai,bj} are zero, we have to consider the possibility

that the {βai,bj} with value zero are such that all terms involving some of the Cia’s are

eliminated from the expression. However, a similar argument can still be applied simply

by setting the values of such Cia to arbitrary extremal values, since QGHZ is independent of

the values of these Cia in such a case. We have thus shown that the GHZ state with N > 2

particles cannot violate Bell inequalities constructed from only two-body correlations.

2.5.2 One- and two-body correlations

Using the result from the previous section, we can now also consider Bell inequalities

involving both one- and two-body correlations, the general form shown in Eq. (2.1). We

first note that for the GHZ state, 〈GHZ|σ(i)
x |GHZ〉 = 0 holds for similar reasons as in

the previous section. In addition,

〈GHZ|σ(i)
z |GHZ〉 =

1

2
(〈00...0|+ 〈11...1|) (|00...0〉 − |11...1〉)

= 0. (2.22)

Therefore, the one-body correlations 〈GHZ|M (i)
a |GHZ〉 are all zero. Hence for the GHZ

state, the vector of one- and two-body correlations has entries(〈
M

(1)
0

〉
,
〈
M

(1)
1

〉
, ...,

〈
M

(1)
0 M

(2)
0

〉
,
〈
M

(1)
0 M

(2)
1

〉
, ...
)
GHZ

= (0, 0, ..., C01C02, C01C12, ...) , (2.23)

where Cai ∈ [−1, 1] as before.

From the result of the previous section, we know that the vector of two-body correla-

tions for the GHZ state lies within the classical polytope, and can hence be expressed as

a convex combination of the vertices,

(C01C02, C01C12, ...) =
∑
k

pk (V01kV02k, V01kV12k, ...) (2.24)

for some set of non-negative pk summing to 1 with Vaik = ±1 being the vertex strategies.

We now note that for each vertex P of the classical polytope, there is a corresponding

vertex P ′ in which all the one-body correlations have the opposite sign from P but all the

two-body correlations are the same as P . This is obtained simply by flipping all signs in

the vertex strategy corresponding to P , which causes the one-body correlations to change
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sign while the sign changes cancel on the two-body correlations. The vector of one- and

two-body correlations for the GHZ state can thus also be written as a convex combination

of the vertices of the classical polytope by using the same set of pk as in the decomposition

of the vector of two-body correlations,

(0, 0, 0, ..., C01C02, C01C12, ...) =
∑
k

pk
2

(Pk + P ′k) , (2.25)

since the one-body correlations for Pk and P ′k have opposite sign and cancel each other

out. This hence shows that the vector of one- and two-body correlations for the GHZ

state also lies within the classical polytope, i.e. the GHZ state cannot violate such a Bell

inequality either.

The argument is easily generalised to the case where the measurements are allowed

to take arbitrary directions, M
(i)
a = sin θ

(i)
a cosφ

(i)
a σ

(i)
x + sin θ

(i)
a sinφ

(i)
a σ

(i)
y + cos θ

(i)
a σ

(i)
z ,

because σ
(i)
y behaves similarly to σ

(i)
x for the purposes of this argument. In addition,

it can also be generalised to show that an N -qubit GHZ state cannot violate any Bell

inequality constructed using only one- to M -body correlations with M < N . This holds

because by similar reasoning as before, it can be shown that for the GHZ state, the M -

body correlations with odd M all have value 0, while those with even M all take the form

CiaCjbCkcCld... with Cia ∈ [−1, 1]. The argument for two-body correlations can then be

used to show it that cannot violate Bell inequalities with any combination of M -body

correlations where M is even and less than N , while the argument for one- and two-body

correlations completes the proof by showing that it cannot violate Bell inequalities for

any combination of one- to M -body correlations with M < N .

On the other hand, the reason that a Bell inequality involving N -body correlations

can be violated by an N -qubit GHZ state is because for N -body correlations, the terms

that are products of all σx and σy operators can be non-zero, as they flip all the bits

in the GHZ state rather than only some of them. This leads to an expression with a

different form from those discussed above – for instance, in the two-qubit case it gives the

cos
(
θ
(i)
a − θ(j)b

)
terms in the CHSH inequality.

2.6 Smolin state

The Smolin state [40] is a four-particle state of the form

ρSmolin =
1

4

4∑
µ=1

∣∣Ψ(1,2)
µ

〉 〈
Ψ(1,2)
µ

∣∣⊗ ∣∣Ψ(3,4)
µ

〉 〈
Ψ(3,4)
µ

∣∣ , (2.26)

where
∣∣∣Ψ(i,j)

µ

〉
with µ = 1, 2, 3, 4 refer to the four Bell states with respect to particles i

and j. The state is symmetric with respect to any of the particles, though this may not
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be immediately apparent from the form in Eq. (2.26). The Smolin state possesses bound

entanglement in that despite being an entangled state, it does not allow entanglement

to be distilled between any pair of particles unless the other two particles are brought

together [40].

However, it turns out that the Smolin state is also unable to violate any S2C2M in-

equalities, because the expectation values of all its one- and two-body correlations are

simply zero. This can be quickly seen from the fact that tracing out all but one or two of

the particles from the Smolin state results in a maximally mixed state. More generally,

the Smolin state’s entanglement cannot be detected by using only one- and two-body cor-

relations, due to a similar line of reasoning as in the beginning of Section 2.5; namely, the

set of one- and two-particle reduced states obtained by tracing out from the Smolin state

is indistinguishable from that obtained by tracing out from the four-particle maximally

mixed state. This may however have some possible implications regarding the types of

entanglement that can be detected by S2C2M inequalities, since the Smolin state pos-

sesses a specific form of bound entanglement. This is also discussed in Chapter 4.

From the results of this chapter, we see that S2C2M inequalities can be violated by

certain quantum states such as
∣∣∣DdN/2eN

〉
Dicke states and W states, but also that there

exist important classes of pure entangled states that do not violate these inequalities,

such as GHZ states. In addition, the relative quantum violations of the S2C2M inequality

tend to be relatively weak compared to entanglement detection by W (k) or violation of

the WWZB inequality. However, if we choose to focus on entanglement detection rather

than violation of local realism, it may perhaps be possible to construct an entanglement

witness using symmetric one- and two-body correlations that detects entanglement more

robustly than B(θ). In the following chapter, we show that this is indeed possible, and

investigate some properties of the entanglement witness we derive.
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Chapter 3

Entanglement witness using

two-body correlations

As previously discussed, the entanglement witness defined by Eq. (2.5) may not be opti-

mal, because it is not known whether the inequality can be saturated by any separable

state. This arises from the fact that it was initially constructed to be a Bell inequality

rather than an entanglement witness. We now construct an entanglement witness using

the symmetric two-body correlation terms in Eqs. (2.2) and (2.5), which lies closer to the

set of separable states than the classical bound in an S2C2M inequality. For the case

where N is even, the entanglement witness thus constructed is in fact optimal.

3.1 Construction of entanglement witness

Such an entanglement witness can be constructed by finding the maximum of the expres-

sion on the left-hand side of Eq. (2.2) over all separable states instead of over all vertices

of the classical polytope. Essentially, if a function F can be found such that

γ

2
〈S00〉+ δ 〈S01〉+

ε

2
〈S11〉 ≤ F (γ, δ, ε, θ) (3.1)

for all separable states, then we can construct an entanglement witness

A(θ) = I−
γ
2
S00 − δS01 − ε

2
S11

F (γ, δ, ε, θ)
, (3.2)

since the expectation value of this operator is positive for all separable states. This

expression is chosen such that its expectation value is 1 for the maximally mixed state,

matching the choice of normalisation convention used in earlier sections. Again, such a

normalisation convention implies that the magnitude of a negative expectation value gives

the relative quantum violation of the bound F (γ, δ, ε, θ) and corresponds to robustness

against white noise. The entanglement witness is optimal if the inequality in Eq. (3.1) is
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saturated by some separable state, which occurs if F (γ, δ, ε, θ) is precisely the maximum

of the left-hand side over all separable states.

We begin by noting that it suffices to find the maximum of the expression for all pure

separable states, rather than having to consider mixed separable states as well. This is

because as previously stated regarding Eq. (1.6), any separable mixed state ρsep can be

written as a convex combination of product states such that all the subsystem states ρ
(j)
i

are pure. Hence if the inequality in Eq. (3.1) is satisfied for all pure separable states, then

any mixed separable state ρsep also satisfies the inequality, since〈γ
2
S00 + δS01 +

ε

2
S11
〉
ρsep

= Tr
((γ

2
S00 + δS01 +

ε

2
S11
)
ρsep

)
= Tr

((γ
2
S00 + δS01 +

ε

2
S11
) m∑
i=1

pi ρ
(1)
i ⊗ ρ

(2)
i ⊗ ...⊗ ρ

(N)
i

)

=
m∑
i=1

pi Tr
((γ

2
S00 + δS01 +

ε

2
S11
)
ρ
(1)
i ⊗ ρ

(2)
i ⊗ ...⊗ ρ

(N)
i

)
≤

m∑
i=1

pi F (γ, δ, ε, θ), by choosing all ρ
(j)
i to be pure

= F (γ, δ, ε, θ). (3.3)

For a pure separable state ρsep = ρ(1) ⊗ ρ(2) ⊗ ...⊗ ρ(N), the state ρ(i) of each qubit is

characterised by a Bloch vector n̂i of norm 1,

ρ(i) =
I + n̂i · ~σ

2
, (3.4)

where ~σ is the Pauli vector (σx, σy, σz). Using the fact that 〈~σ〉ρ(i) = n̂i, the expectation

values of the symmetric two-body correlations can be expressed in terms of the Bloch

vector components n̂i = (xi, yi, zi):

〈S00〉 =
N∑

i,j=1
i 6=j

〈
σ(i)
z σ

(j)
z

〉
=

N∑
i,j=1
i 6=j

zizj, (3.5)

〈S01〉 =
N∑

i,j=1
i 6=j

〈
σ(i)
z

(
sin θ σ(j)

x + cos θ σ(j)
z

)〉
=

N∑
i,j=1
i 6=j

(sin θ zixj + cos θ zizj) , (3.6)

〈S11〉 =
N∑

i,j=1
i 6=j

(
sin2 θ xixj + cos2 θ zizj + 2 cos θ sin θ zixj

)
, (3.7)

using the measurement settings given in Eqs. (2.4) with θ0 = φ0 = φ1 = 0 and θ1 = θ.

The third expression was simplified slightly by noting that
∑
i,j

xizj =
∑
i,j

zixj.
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In addition, we note that

N∑
i,j=1
i 6=j

zizj =

(
N∑
i=1

zi

)(
N∑
j=1

zj

)
−

N∑
i=1

z2i = N2z2 −Nz2, (3.8)

where we introduce the notation f(z) = 1
N

∑N
i=1 f(zi) for any function f . Essentially, this

is an average over the Bloch components of the individual qubits. A similar result holds

for x and x2, as well as z x and zx. Combining these results, we find that

〈γ
2
S00 + δS01 +

ε

2
S11
〉

=
N∑

i,j=1
i 6=j

(Azzzizj + Azxzixj + Axxxixj)

= N2
(
Azzz

2 + Azxz x+ Axxx
2
)
−N

(
Azzz2 + Azxzx+ Axxx2

)
,

(3.9)

where Azz = γ
2

+ δ cos θ + ε
2

cos2 θ, Azx = δ sin θ + ε sin θ cos θ, Axx = ε
2

sin2 θ have been

introduced for conciseness.

We now make use of the fact that any quadratic form can be diagonalised with an

orthogonal transformation (z x)T = M(z′ x′)T where M is a 2 × 2 orthogonal matrix,

yielding

Azzz
2 + Azxzx+ Axxx

2 = λzz
′2 + λxx

′2, (3.10)

with λz, λx given by

λz =
1

2

(
Azz + Axx −

√
A2
zz + A2

zx + A2
xx − 2AzzAxx

)
,

λx =
1

2

(
Azz + Axx +

√
A2
zz + A2

zx + A2
xx − 2AzzAxx

)
.

(3.11)

Hence by introducing a change of coordinates (zi xi)
T = M(z′i x

′
i)
T on the individual

Bloch vectors, it can be shown that

Azzz2 + Azxzx+ Axxx2 = λzz′2 + λxx′2, (3.12)

Azzz
2 + Azxz x+ Axxx

2 = λzz′
2

+ λxx′
2
. (3.13)

We hence wish to maximise〈γ
2
S00 + δS01 +

ε

2
S11
〉

= N2
(
λzz′

2
+ λxx′

2
)
−N

(
λzz′2 + λxx′2

)
, (3.14)

subject to the constraints z2i + x2i ≤ 1. Because the transformation was orthogonal, we

have z′2i +x′2i = z2i +x2i and thus the constraints can be equivalently stated as z′2i +x′2i ≤ 1.
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Noting that z′2 − z′2 is essentially the variance of the set {z′i} and thus z′2 − z′2 ≥ 0 with

equality if and only if all z′i have the same value, we see that

N2z′
2 −Nz′2 ≤ (N2 −N)z′2,

N2z′
2 −Nz′2 ≥ −Nz′2.

(3.15)

The upper bound is achieved if and only if all z′i have the same value, while the lower

bound is achieved if and only if z′ = 0. These bounds can be summarised as stating

that for any λz, we have λz

(
N2z′

2 −Nz′2
)
≤ max {λz(N2 −N),−λzN} z′2. A similar

statement holds for the x′ terms, leading to the final bound on Eq. (3.14),〈γ
2
S00 + δS01 +

ε

2
S11
〉

= λz

(
N2z′

2 −Nz′2
)

+ λx

(
N2x′

2 −Nx′2
)

≤ max
{
λz(N

2 −N),−λzN
}
z′2 + max

{
λx(N

2 −N),−λxN
}
x′2

≤ max
{
λz(N

2 −N),−λzN, λx(N2 −N),−λxN
}
. (3.16)

The last step is achieved by noting that Czz
′2
i +Cxx

′2
i ≤ max {Cz, Cx} under the constraint

z′2i + x′2i ≤ 1, which can be proven by Lagrange multipliers or by viewing it as essentially

finding the extremal points of an ellipse.

We have thus found that F (γ, δ, ε, θ) = max {λz(N2 −N),−λzN, λx(N2 −N),−λxN}
is a function that satisfies the condition in Eq. (3.1), and can thus be used to construct

an entanglement witness A(θ) as in Eq. (3.2). When N is even, this bound is optimal, as

we now show by explicitly constructing a separable state that saturates this inequality.

For the case where the maximum of the quantities in Eq. (3.16) is λz(N
2−N), the bound

is achieved by the state with z′i = 1, x′i = 0 for all the qubits. This can then be converted

back into values for the original Bloch components zi and xi by inverting the orthogonal

transformation (zi xi)
T = M(z′i x

′
i)
T . For the case where the maximum is −λzN , the

bound is achieved by the state with z′i = 1, x′i = 0 for half the qubits and z′i = −1, x′i = 0

for the remaining half, yielding z′2 = 1 and z′ = 0. The cases where the maximum is

λx(N
2 −N) or −λxN are similar.

If N is odd, the conditions z′2 = 1 and z′ = 0, or similarly for x′, cannot be fulfilled

simultaneously, and thus the inequality cannot be saturated for certain combinations of

values for λz, λx. However, we note that for increasing values of odd N , the bound

becomes increasingly tight, because when N is large it is possible to approach z′2 ≈ 1 and

z′ ≈ 0 even when N is odd. This entanglement witness thus becomes closer to optimal

for odd N when N is large.
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3.2 Characterisation of entanglement witness

The expression in Eq. (3.1), constructed from symmetric two-body correlations with two

measurement settings, only has three correlation terms 〈S00〉, 〈S01〉 and 〈S11〉. Therefore,

this correlation space effectively has only three dimensions and can be represented graph-

ically on a three-dimensional plot. Some such plots, for the N = 4 case, are shown in

Fig. 3.1. The region defined by the entanglement witness was plotted approximately by

finding the tangent planes specified by the entanglement witness in 50 directions, then

displaying the polytope defined by these tangent planes, shown in blue in Fig. 3.1. Due

to this plotting method, the blue polytope is not an exact depiction of the true region de-

fined by the entanglement witness. As the blue polytope is constructed by finding a finite

number of tangent planes, the true region is strictly contained within the blue polytope,

with each facet being tangent to that region at some point. However by finding a suffi-

ciently large number of tangent planes in approximately uniformly distributed directions,

it should be a reasonably good depiction. Also shown in the plots is the classical polytope

in yellow, obtained by explicitly enumerating the vertices as described in Section 1.1.

Since an even value of N is used in Fig. 3.1, the entanglement witness is optimal and

hence precisely demarcates the region in the correlation space where all separable states

lie. As stated in Section 1.2.1, this is supposed to be a convex set that is not a polytope,

though the plotting method used here creates an approximate depiction of it as the blue

polytope instead. Approximate plotting techniques aside, it can be seen from the plots

that this region is contained entirely within the classical polytope, as expected. As the

value of θ increases from 0 to π, this region moves across the polytope, and it narrows

into a line segment for the θ = 0 and θ = π degenerate cases. In contrast, Fig. 3.2 shows

an odd-N case, specifically N = 5. The non-optimality of the witness A(θ) can be seen

from the fact that the blue region protrudes slightly from the classical polytope. Since the

region where the separable states can lie should be contained strictly within the classical

polytope, this indicates that the bound is non-optimal for this case.

Fig. 3.3 shows the coordinates in correlation space of the thermal state of the LMG

Hamiltonian, ρT = e−HLMG/kBT/Z, for N = 4. The red dot indicates the ground state∣∣∣DdN/2eN

〉
and the blue line indicates the location of the thermal state as T increases.

Consistent with the results of Section 2.3, the ground state lies outside the classical poly-

tope, indicating that it can violate an S2C2M inequality. The set of coefficients shown

in Eq. (2.12) and the corresponding bound BC = N/2(N − 1)dN/2 + 1e in fact specify

precisely the facet of the polytope nearest to the red dot in the figure. As the tempera-

ture increases, the thermal state moves into the classical polytope, with the point where it

crosses the facet corresponding to the critical temperature Tc. There is a range of temper-

atures past Tc in which it remains outside the region defined by A(θ) and hence can still

be detected by this entanglement witness despite not violating any S2C2M inequalities.
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〈S00〉/2

〈S01〉

〈S11〉/2

(θ = 0.1)

〈S00〉/2

〈S01〉

〈S11〉/2

(θ = π /3)

〈S00〉/2

〈S01〉

〈S11〉/2

(θ = π /2)

〈S00〉/2

〈S01〉

〈S11〉/2

(θ = 2π /3)

Figure 3.1: Plots of the region in correlation space defined by the entanglement witness
A(θ) for N = 4 with various values of θ. The blue region is an approximate depiction of
the region defined by A(θ), while the yellow region shows the classical polytope. To reduce
clutter, numerical values have been suppressed on the axes, and instead ticks have been
placed at unit intervals. Since the value of N is even, A(θ) is an optimal entanglement
witness for this case, and thus the blue region lies entirely within the classical polytope
as expected.
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〈S00〉/2

〈S01〉

〈S11〉/2

(N = 3)

〈S00〉/2

〈S01〉

〈S11〉/2

(N = 5)

Figure 3.2: Plots of the region in correlation space defined by the entanglement witness
A(θ) for odd values of N with θ = π/3. The blue region is an approximate depiction of the
region defined by A(θ), while the yellow region shows the classical polytope. To reduce
clutter, numerical values have been suppressed on the axes, and instead ticks have been
placed at intervals of 1 for the N = 3 case and intervals of 2 for the N = 5 case. It can
be seen that the blue region exceeds the boundaries of the classical polytope, indicating
that the entanglement witness is nonoptimal for these cases.

The magnitude of the relative quantum violation is also larger for A(θ) than B(θ), since

A(θ) is an optimal witness for even N and the region it defines lies strictly inside the

classical polytope.

Due to the reasons discussed in Sections 2.5 and 2.6, it is not possible to detect the

entanglement of GHZ states and Smolin states using the entanglement witness A(θ).

Therefore, we investigated its expectation value for Dicke states of the form
∣∣∣DdN/2eN

〉
as

well as W states. It was found that similar to B(θ) and W (k) discussed in Section 2.4,

A(θ) is also unable to detect the entanglement of W states for N > 3, with an expectation

value that is always non-negative for such states. Given that B(θ0, φ0, θ1, φ1) was able to

detect W state entanglement, it may be possible that generalising A(θ) to allow the other

measurement angles θ0, φ0, φ1 to be nonzero may allow it to detect such entanglement.

As for the
∣∣∣DdN/2eN

〉
Dicke states, A(θ) was able to detect such entanglement, with

negative expectation values that are larger in magnitude than those of the Bell opera-

tor B(θ). The minimum expectation values for such Dicke states are shown in Fig. 3.4.

From the figure, it can be seen that for even values of N , the magnitude of the negative

expectation value appears to be decreasing, while the opposite trend appears to hold for

odd N . This may be a result of the fact that the entanglement witness is not optimal

for odd N , and thus the relative quantum violation of the bound F (γ, δ, ε, θ) is smaller.

The increasing trend for such N may be due to the fact that as described in the previous
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〈S00〉/2

〈S01〉

〈S11〉/2

Figure 3.3: Plot of the coordinates in correlation space of the thermal state ρT =
e−HLMG/kBT/Z for N = 4, along with the region defined by the entanglement witness
A(θ) with θ = cos−1(dN/2e/(dN/2e+ 1)) in blue and the classical polytope in yellow. To
reduce clutter, numerical values have been suppressed on the axes, and instead ticks have
been placed at unit intervals. The red dot denotes the point corresponding to T = 0.
As the temperature increases, the state’s position in correlation space moves towards the
origin. It first enters the classical polytope at the critical temperature Tc, then enters the
region defined by A(θ).

3 4 5 6 7 8 9 10
N

-0.6

-0.4

-0.2

0.0

〈A(θ)〉

Figure 3.4: Values of 〈A(θ)〉 for the
∣∣∣DdN/2eN

〉
Dicke states with various values of N . For

even N , the magnitude of the values is decreasing, while for odd N the magnitude is
increasing. This may reflect the increasing optimality of the entanglement witness A(θ)
for large odd N , and suggests that the trends may converge as N increases further.
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section, the bound F (γ, δ, ε, θ) for odd N becomes tighter for large values of N . From the

graph, it appears possible that this will cause the trends for odd and even N to converge

as N increases, with the overall long-term trend likely being a decrease in magnitude

similar to the trend for B(θ).

Overall, in this chapter we have derived an entanglement witness based on two-body

correlations, and shown that it can detect the entanglement of
∣∣∣DdN/2eN

〉
Dicke states.

While it is unable to detect W state entanglement, it is possible that a slight generalisation

to allow arbitrary measurement directions may allow it to do so. We have also discussed

its relation to the classical polytope, as well as its increasing optimality for odd N as N

increases. The following chapter returns to S2C2M inequalities and some of the concepts

discussed in Chapter 1, discussing how the former may be put into the context of the

latter.
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Chapter 4

Bell violations, distillability and the

Peres-Horodecki criterion

Thus far, we have discussed several properties related to Bell inequalities and entangle-

ment. The necessity or sufficiency of such properties with respect to entanglement are

rather complex, with some statements being general while others only apply in specific.

In this chapter, we shall discuss how some of these conditions relate to each other, as well

as how it may be applied to the results found in previous chapters.

In Chapter 1, it was stated that Bell violation implies entanglement, and that a bi-

partite state having a non-positive partial transpose implies that it is entangled, but the

converses of these statements are not true [28,30]. It is also clear that a state that is dis-

tillable has to be entangled, but conversely, it has been shown that there exist entangled

states that are not distillable [33]. It is of interest to study the remaining relationships

between these properties for bipartite states, which are summarised in Fig. 4.1.

To begin with, a recent result by Vértesi and Brunner showed that there exists a

state which violates a Bell inequality but has a positive partial transpose and is not

distillable [41], thus Bell violation does not imply either NPPT or distillability. As for

the converses of these statements, the two-qubit Werner state P |Ψ〉〈Ψ| + (1 − P ) I/2N

where |Ψ〉 is the singlet state has a range of values of P for which it is distillable and has

non-positive partial transpose, but does not violate any Bell inequality [28,32,42]. Finally,

Horodecki et al. showed that any distillable state must satisfy the NPPT criterion [33],

while the converse remains an important open question in entanglement theory [41].

This covers all the relationships shown in Fig. 4.1, from which it can be seen that many

of these conditions do not imply each other. However, these statements are concerning

bipartite states of arbitrary dimension, and it is possible to make some stronger statements

when considering specific dimensions. For instance, the counterexample given by Vértesi

and Brunner [41] is a two-qutrit state, and hence it would not serve as a counterexample

in the 2 × 2-dimensional case. On the other hand, some other counterexamples such as

the Werner state would remain valid in these dimensions.
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Figure 4.1: Relations between various entanglement-related properties for bipartite states.
Whether all bipartite states having non-positive partial transpose are distillable is cur-
rently an open question. In the bipartite qubit case, the bottom three conditions of
entanglement, distillability and NPPT criterion are all equivalent, and it still holds that
Bell violation implies entanglement but not vice versa.

For the case of a two-qubit system, it turns out that these relations are greatly simpli-

fied. As stated in Section 1.2.2, a 2×2 state is entangled if and only if it has non-positive

partial transpose. Horodecki et al. [32] also showed that any two-qubit entangled state is

distillable, and hence distillability is equivalent to entanglement in this case. Therefore,

for two-qubit systems the conditions of entanglement, distillability and the NPPT crite-

rion are all equivalent. As for the relation to Bell violations, it still holds that violation of

a Bell inequality implies that the state is entangled, and the converse is also still false due

to the Werner state P |Ψ〉〈Ψ|+ (1−P ) I/2N providing a counterexample [42]. Therefore,

in the two-qubit case, entanglement, distillability and the NPPT criterion are equivalent,

and are a weaker condition than Bell inequality violation.

In light of our earlier observation that the entanglement of GHZ states and Smolin

states cannot be detected by one- and two-body correlations, it may be interesting to con-

sider what relationships might hold between these properties and the S2C2M inequalities

we have considered. For instance, the fact that Bell inequality violation implies entangle-

ment immediately shows that violation of an S2C2M inequality must imply entanglement

as well, since violation of some S2C2M inequality is a stronger condition than violation of

some Bell inequality in general. Similarly, the fact that entanglement does not imply Bell

inequality violation lets us conclude that it does not imply S2C2M inequality violation

either, which can also be explicitly seen from the examples of the GHZ state and Smolin

state considered earlier. The case of the Smolin state may also lead to further implications

due to the form of bound entanglement that it possesses.

However, in order to discuss the NPPT criterion and distillability for N ≥ 3 particles,

it is necessary to consider how to generalise these concepts, as they originally apply only
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to bipartite systems. Some approaches to this include requiring that the NPPT criterion

be fulfilled between every pair of particles in the system, or for every possible cut across

the system separating it into two subsystems. Similar approaches can be considered for

distillability, for instance by defining “N -partite distillability” to mean that a singlet state

can be distilled between any pair of particles using LOCC. The relations between Bell

inequalities and such multipartite generalisations of these criteria have been studied in

some previous works [43], and different choices of generalisation may give rise to different

theorems.

We have hence discussed in more detail some of the properties described in Chapter 1,

as well as how they are related to each other. Using appropriate generalisations of the

NPPT criterion and entanglement distillability, the relations of S2C2M inequality viola-

tion with respect to these properties can be considered. In particular, it may be possible

that those generalisations requiring conditions to be fulfilled for every pair of particles in

the system could be more relevant, because two-body correlations are also obtained from

pairs of particles in the system. This would serve as a further development of some of the

points explored in this study.
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Chapter 5

Conclusion

In this study, we have considered a Bell inequality based on symmetric one- and two-body

correlations studied by Tura et al. [12]., comparing it to an entanglement witness W (k)

constructed by Krammer et al. [34] as well as the WWZB inequality. By investigating its

behaviour with respect to the thermal state of the LMG Hamiltonian, we have shown that

the violation of this inequality is relatively weak compared to entanglement detection by

W (k) as well as WWZB inequality violation, being less robust against both thermal noise

and white noise. As for W states, for the N > 3 cases, they do not violate the S2C2M

inequality proposed by Tura et al., nor can their entanglement be detected by W (k).

A slight generalisation of that S2C2M inequality to allow measurements along arbitrary

directions allows it to be violated by such W states, and the WWZB inequality is violated

by these states as well. However, the relative quantum violation scales poorly with N .

In addition, it was shown that the entanglement of GHZ states and Smolin states cannot

violate any Bell inequalities constructed by using only one- and two-body correlations.

We have also investigated the possibility of constructing an entanglement witness

based on symmetric one- and two-body correlations, deriving one that is optimal for even

numbers of particles. Some properties of this entanglement witness were characterised,

such as its detection of
∣∣∣DdN/2eN

〉
Dicke states. It was found that while the entanglement

witness is not optimal for odd N , it does become increasingly close to optimal when N is

large, apparently causing the trends for odd and even N to converge. As for W states, it

is unable to detect their entanglement, though the results from generalising the S2C2M

inequality given by Tura et al. suggest that it may be possible to do so by allowing this

entanglement witness to make use of measurements along arbitrary directions.

To further develop the results of this study, a number of avenues are possible. For in-

stance, considering the general relations between entanglement, Bell inequality violation,

entanglement distillation and the NPPT criterion, one can explore how S2C2M inequal-

ities fit into this framework. Doing so would require generalising the originally bipartite

criteria of distillability and the Peres-Horodecki criterion to a multipartite situation, which

may be done in several ways. The choice of generalisation used may affect the relations
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obtained. In addition, as the entanglement witness derived in this study is non-optimal

for odd values of N , it may also be interesting to attempt to improve it to an optimal

entanglement witness for such cases. Another way in which it can be generalised would

be to allow it to use measurements along arbitrary directions.

Since one- and two-body correlations are more experimentally accessible than higher-

order correlations, there is also the possibility of experimentally investigating S2C2M

inequalities and entanglement witnesses. Apart from such inequalities, there are also

other inequalities that can be constructed from only one- and two-body correlations, such

as the translationally invariant Bell inequalities based on such correlations also studied

by Tura et al. [35]. It is possible that these classes of inequalities can help to facilitate

progress towards further experimental exploration of Bell inequalities and entanglement

witnesses.
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Appendix A

Software and code

Numerical calculations were carried out using the following software:

• The MathWorks, Inc., MATLAB, Version 7.10.0.499, Natick, Massachusetts, United

States (2010).

• Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, Illinois, United

States (2014).

We also list here the code that was used to generate some of the key data for the figures

and tables in this report.

Shown below is the MATLAB code that was used to produce the data for the graphs

of 〈W (0)〉 in Fig. 2.2. Data for the graphs of 〈B(θmin)〉/BC and 〈BW 〉/2N were computed

similarly. The code makes use of a rescaling method we derived to compute the thermal

state when the value of T is small, as the exponent in ρT = e−HLMG/kBT/Z becomes very

large for such cases. To locate the critical temperatures, this code was first run with

the full temperature range for the graphs to identify approximate positions for the roots,

then run again with a finer interval spacing in a small range of temperatures near these

approximate positions to identify the critical temperatures to higher precision.

function krammer_witness()

global basis pauli N kB J B couplingterm fieldterm

basis = {[1; 0], [0; 1]};

pauli = {[0 1; 1 0], [0 -i; i 0], [1 0; 0 -1]};

N = 3; kB = 1; J = 10; B = -.1;

makeplot = 1; writedata = 0;

Tsmall = 0.05; Tmax = 20;

terms = zeros(2^N, 2^N, (N-1)*N/2);

for n = 1:N
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for m = 1:n-1

terms(:,:,(n-2)*(n-1)/2+m) = spinops({pauli{1},pauli{1}},[m,n],N)...

+ spinops({pauli{2},pauli{2}},[m,n],N);

end

end

couplingterm = sum(terms,3);

terms = zeros(2^N, 2^N, N);

for n = 1:N

terms(:,:,n) = spinops({pauli{3}},[n],N);

end

fieldterm = sum(terms,3);

H = Hlmg(J, B, N);

thmin = acos(ceil(N/2)/(ceil(N/2)+1));

if makeplot==1

data1name = horzcat(’krammer_dat_’, num2str(N), ’spin.txt’);

pts = 100;

left = 0;

right = Tmax;

xlist = left + (right-left)*(1:pts)/pts;

finer = (right-left)/pts*(1:10)/10;

xlist = [finer xlist];

ylist = -ones(1,length(xlist));

witness = wit(0, [1 1 -1], N);

ptssmall = find(xlist > Tsmall, 1, ’first’);

for n = 1:ptssmall

s = 1/xlist(n); s = 2*(floor(s/2)) + 1;

M = -H/(kB*xlist(n)*s);

eM = expm(M);

d = eig(eM);

trscaled = norm(d, s);

rho = (eM/trscaled)^s;

ylist(n) = trace(witness*rho);

end

for n = ptssmall+1:length(xlist)

rho = expm(-H/(kB*xlist(n)));

rho = rho/trace(rho);

ylist(n) = trace(witness*rho);

end

critT = xlist(find(ylist>0, 1, ’first’))
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fig = figure();

hold on;

plot(xlist,ylist);

plot(xlist,zeros(1,length(xlist)),’k’);set(gca,’FontSize’,16)

hold off;

xlabel(’T (Kelvin)’);

ylabel(’<W(0)>’);

if writedata == 1

dlmwrite(data1name, [xlist;ylist]’ , ’precision’, ’%.15f’)

end

end

fprintf(’End of run at %s \n’, mat2str(clock))

%___________________________________________________________________

function Hlmg = Hlmg(J, B, N)

global couplingterm fieldterm

Hlmg = -J/N*couplingterm - B*fieldterm;

function wit = wit(k, c, N)

sigma = (1/2)*(1/nchoosek(N,2))*(c(1)*(sfac(k, 1, 1, N) + sfac(-k, 1, 1, N))...

+ c(2)*(sfac(k, 2, 2, N) + sfac(-k, 2, 2, N))...

+ c(3)*(sfac(k, 3, 3, N) + sfac(-k, 3, 3, N)));

wit = eye(2^N) - sigma;

function sfac = sfac(k, alpha, beta, N)

global pauli

terms = zeros(2^N, 2^N, (N-1)*N/2);

for n = 1:N

for m = 1:n-1

terms(:,:,(n-2)*(n-1)/2+m) = exp(i*k*(n-m))*...

spinops({pauli{alpha},pauli{beta}},[m n],N);

end

end

sfac = sum(terms,3);

function otimes = otimes(matrices)

otimes = kron(matrices{1},matrices{2});

for n = 3:length(matrices)

otimes = kron(otimes,matrices{n});
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end

function ket = ket(bitlist)

global basis

qubits = cell(length(bitlist),1);

for n = 1:length(bitlist)

qubits{n} = basis{bitlist(n) + 1};

end

ket = otimes(qubits);

function spinops = spinops(ops, pos, N)

oplist = cell(N,1);

idenpos = 1:N; idenpos(pos) = [];

for n = idenpos

oplist{n} = eye(2);

end

for n = 1:length(pos)

oplist{pos(n)} = ops{n};

end

spinops = otimes(oplist);

Shown below is the Mathematica code that was used to create an approximate plot of the

region defined by A(θ) in correlation space. The number of directions in which it locates

a tangent plane can be specified, and it distributes these directions in an approximately

uniform fashion using a Fibonacci spiral on the surface of a sphere. The example shown

here displays the region for θ = π/3, N = 5 with 50 tangent planes.

fbound[c_, d_, e_, th_, n_] := Module[{a1, a2, a3, l1, l2},

a1 = c/2 + d*Cos[th] + e/2*Cos[th]^2;

a2 = d*Sin[th] + e*Sin[th]*Cos[th];

a3 = e/2*Sin[th]^2;

l1 = 1/2*(a1 + a3 - Sqrt[a1^2 + a2^2 + a3^2 - 2*a1*a3]);

l2 = 1/2*(a1 + a3 + Sqrt[a1^2 + a2^2 + a3^2 - 2*a1*a3]);

Max[{(n^2 - n)*l1, (n^2 - n)*l2, -n*l1, -n*l2}]

]

boundverts[th_, n_, numpts_] :=

Module[{t, phi, c, d, e, matvec, planetrips, nodes, boundpts},

matvec = Table[

phi = 1/GoldenRatio*Pi*m;

t = ArcCos[-1. + 2*m/numpts];

46



c = Sin[t]*Cos[phi]; d = Sin[t]*Sin[phi]; e = Cos[t];

{c, d, e, fbound[c, d, e, th, n]}

, {m, numpts}];

planetrips = Subsets[matvec, {3}];

nodes =

Table[Quiet[

LinearSolve[plane[[All, 1 ;; 3]], plane[[All, 4]]]], {plane,

planetrips}];

nodes =

Select[nodes,

NumberQ[#[[1]]] && NumberQ[#[[2]]] && NumberQ[#[[3]]] &];

nodes =

Transpose[

Append[Transpose[nodes], ConstantArray[-1, Length[nodes]]]];

boundpts =

DeleteDuplicates[(Select[nodes,

Chop[Max[matvec.Transpose[{#}]]] <= 0 &])[[All, 1 ;; 3]]];

Return[boundpts]

]

ConvexHullMesh[boundverts[Pi/3, 5, 50]]
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