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Abstract

Ever since its discovery, the optical process of spontaneous parametric down conversion

(SPDC) has been widely researched and has come to be extensively used, especially in

the design of entangled photon or single photon sources. Numerous models of SPDC have

been created over the years, with various assumptions and limitations to the applicability

of their results.

In this thesis, a particular SPDC source design is studied and ray tracing is performed to

model the coupling of the down-converted photons into the collection fibre. The optimal

parameters for the pump beam as well as the collection optics design are determined to

optimise the brightness of the source. The results are then compared with the collected

spectra reported from other sources.
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Chapter 1

Introduction

Spontaneous parametric down conversion (SPDC) is a nonlinear optical process in which

correlated photons are produced. It is the process at the heart of numerous single photon

sources or entangled photon sources. These sources have, in turn, enabled numerous

advances in fundamental physics and the field of quantum optics, such as tests of Bell’s

inequality [1] and implementations of a variety of quantum technologies, from quantum

teleportation [2] to quantum cryptography [3] and quantum imaging [4]. More recently,

generation of higher dimensional entangled states [5–7] have been explored.

1.1 Motivation

A workhorse process for generating single photons, SPDC has attracted intense theo-

retical interest [8–12] to better understand the down-conversion sources and to develop

optimisation methods. However, as a testament to the complexity of the system, no

complete theory accounting for every variable has been derived, nearly 50 years after its

discovery. An SPDC set up contains a myriad of variables, from the geometry and focus

of the beams to the thickness of the crystal and the type of pump beam used (pulsed

or continuous wave) giving rise to many different configurations to study and different

parameters to optimise for.

Instead of tackling the full complexity of the general derivations head on, a simplified

classical approach with geometric ray tracing is adopted to make it easier to account for

more variables of the set up. Although the results will only be approximate due to the

simplified treatment, it is hoped that the main features of the system will be retained

and that the model developed in this thesis can provide useful, albeit approximate,

suggestions for optimising a down-conversion source.
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Introduction 2

1.2 Scope

This thesis has two main parts. In the first part the theory of nonlinear optics will be

introduced with the relevant nonlinear processes and effects explained. The model of

the down-conversion source will then be developed in the following chapter and certain

interesting results highlighted. A comparison of the predicted spectrum will also be

done with measurements obtained from other sources and the use of a cylindrical lens

to compensate for spatial walk-off effects will be studied before the thesis is concluded.



Chapter 2

Nonlinear optics

Nonlinear optics is the study concerned with the effects caused by optical media that

have nonlinear response to applied electromagnetic (EM) fields. The basic principles of

nonlinear optics have already been established by the 1960s [13, 14] and experimental

progress closely followed advances in optical crystal fabrication and the newly invented

laser technology to provide the high intensity EM fields needed for the polarisation of

the optical crystals to enter the nonlinear regime. The nonlinear response of the optical

medium means that the superposition principle no longer applies which leads to a host of

nonlinear processes like frequency mixing that allows for applications like the generation

of frequencies not directly available from a laser source.

2.1 Nonlinear polarisation

In an isotropic dielectric medium, the polarisation density P, defined as the average

electric dipole moment per unit volume of the medium, can be expressed as a Taylor

series of the applied electric field E.

P = ε0( χ(1)E︸ ︷︷ ︸
linear term

+χ(2)E2 + χ(3)E3 + . . .︸ ︷︷ ︸
nonlinear terms

)

where ε0 is the permittivity of free space, χ(1) is the linear susceptibility and χ(2), χ(3)

are the second- and third-order nonlinear susceptibilities. The electric susceptibilities

here are just scalars due to the assumed isotropy of the medium.

Linear optics considers only the first term, which is a suitable approximation at low

optical intensities as the optical field is much weaker than that within the atoms and

molecules of the medium. This treatment is insufficient at higher intensities however,

3



Nonlinear optics 4

and higher order terms are included which leads to a rich and fascinating array of

nonlinear effects. Under non-resonant conditions, perturbation theory can be used to

derive the nonlinear susceptibilities [15]. It turns out that the nonlinear coefficients are

dependent on the frequencies of the participating fields and hence are not constants even

for processes of the same order.

2.2 Anisotropic medium

Generalising the treatment in the previous section to anisotropic media, the polarisation

P and applied field E are now vectors while the nth order susceptibilities are tensors of

rank n+ 1.

P = ε0(χ(1)E + χ(2)EE + χ(3)EEE + . . .) (2.1)

Substituting this expression into the constitutive relation for the electric displacement

D = ε0E + P and neglecting the higher order terms yields

D = ε0εE (2.2)

where ε = I + χ(1) is the dielectric tensor.

The ε tensor can be shown to be real and symmetric in a lossless medium [16], hence it

can be diagonalised with purely real eigenvalues. This simplifies the relation in matrix

form to 
Dx

Dy

Dz

 = ε0


εxx 0 0

0 εyy 0

0 0 εzz



Ex

Ey

Ez

 = ε0


n2
x 0 0

0 n2
y 0

0 0 n2
z



Ex

Ey

Ez

 (2.3)

and the orthogonal basis vectors are known as the principal axes and ni refers to the

refractive index of a light wave polarised along the i principal axis. Isotropic media will

have all three refractive indices equal, while media with two equal indices (εxx = εyy)

and all different indices are classified as uniaxial and biaxial respectively.
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2.3 Plane wave solutions

To study the propagation of light in birefringent media, we consider plane wave solutions

of the Maxwell equations for nonmagnetic media with no free changes

∇ ·B = 0 (2.4a)

∇ ·D = 0 (2.4b)

∇×E = −∂B
∂t

(2.4c)

∇×H =
∂D

∂t
(2.4d)

where B and H are the magnetic field with B = µ0H and all the four vectors have the

dependence ei(k·r−ωt).

For such waves to satisfy the Maxwell equations, Fresnel’s equation(
1

n2
y

− 1

n2

)(
1

n2
z

− 1

n2

)
k2
x+

(
1

n2
x

− 1

n2

)(
1

n2
z

− 1

n2

)
k2
y+

(
1

n2
x

− 1

n2

)(
1

n2
y

− 1

n2

)
k2
z = 0

must hold [17], which shows that two refractive indices n are allowed for any direction

of k̂. For example, for k̂ = (1, 0, 0), n = ny or nz.

To determine the refractive index for an arbitrary direction of k, we introduce the index

ellipsoid. Consider the surface of constant energy density U = E ·D. Using Equation

(2.3),

U =
D2
x

ε0n2
x

+
D2
y

ε0n2
y

+
D2
z

ε0n2
z

Let U = 1/ε0, then

D2
x

n2
x

+
D2
y

n2
y

+
D2
z

n2
z

= 1

which specifies an ellipsoid with semi-axis lengths of nx, ny and nz. The intersection

between the ellipsoid and the plane perpendicular to the k vector forms an ellipse, which

can be shown [18] to have several useful properties.

First, the major and minor axes of the ellipse gives the two allowed orthogonal directions

of D. For a birefringent medium, where nx = ny, one of the allowed directions of D

always lies on the x-y plane, while the other allowed direction depends on the angle

between k and the z-axis.

Second, the lengths of the axes of the ellipse gives the refractive indices for the wave

with that D and k vector directions. For a birefringent medium, since one of the allowed

directions of D lies in the x-y plane, which intersects the ellipsoid in a circle, the refractive
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index no(= nx = ny) for this polarisation is the same for all directions of k and is called

the ordinary-, or o-wave. The other allowed polarisation is called the extraordinary-, or

e-wave and its refractive index ne is given by

ne(θ) =

(
cos2 θ

n2
x

+
sin2 θ

n2
z

)−1/2

(2.5)

where θ is the angle between the k vector and the z-axis. Note that when θ = 0 (k

lies along the z-axis), ne = no which means that the refractive index is independent of

polarisation. Thus the z-axis is known as the optic axis.

2.4 Walk-off effect

We shall now proceed to get a better picture of the directions of the electric and mag-

netic field vectors involved and understand the walk-off effect, which is an important

phenomenon for propagation of light in nonlinear media.

Without loss of generality, we set the z-axis along the k vector. Equation (2.4a) then

becomes
∂Bz
∂z

= 0 (2.6)

which implies that Bz = 0 and hence B (and H) lies in the x-y plane. In the same way,

Equation (2.4b) implies that D also lies in the x-y plane.

Now let the y-axis be along the B and H vectors, so that H = Hŷ and B = Bŷ.

Equation (2.4d) thus becomes

− ∂H

∂z
x̂ =

∂D

∂t
(2.7)

which implies that D lies along the x-axis.

Similarly, Equation (2.4c) simplifies to

− ∂Ey
∂z

x̂ +
∂Ex
∂z

ŷ = −∂B
∂t

ŷ (2.8)

which implies that Ey = 0 and hence E lies in the x-z plane. The precise direction of D

is specified by the constitutive relation (Equation (2.2)) and is in general not parallel to

E.

The results of these deductions are shown in the Figure 2.1. We see that H, D and k

are mutually orthogonal and the Poynting vector S = E×H does not coincide with the

k vector. The Poynting vector gives the direction of energy flow of the wave, hence an
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extraordinary wave will walk away from an ordinary wave with the same k vector, as

shown in Figure 2.2.

,

Figure 2.1: Directions of the various fields of an EM plane wave

In birefringent media, the walk-off effect only occurs for extraordinary waves as ordinary

waves have D vectors in the x-y plane (Dz = 0) and thus from Equation (2.3), D is

parallel to E, so the k and S vectors are collinear.

,

Figure 2.2: Spatial walk-off of e-wave in birefringent crystal

The walk-off angle ρ is typically on the order of several degrees and is given by

ρ(θ) = tan−1

(
n2
o

n2
e

tan(θ)

)
− θ (2.9)

where θ is the angle between ke and the optic axis.

The spatial walk-off effect has important consequences for nonlinear processes involving

interactions between multiple waves of different polarisations as the waves gradually get

physically separated from each other which reduces their effective interaction distance

within the crystal. This is more pronounced when working with focused beams with

small spot sizes and methods to minimise the effect include using two or more crystals

with different orientations to allow the beams to walk back and continue their interaction

[19, 20].
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2.5 Nonlinear processes

The origin of nonlinear optical processes is the nonlinear terms in the polarisation (Equa-

tion (2.1)) which allows for frequency mixing between the input waves to occur. As an

example, we consider the interaction of two linearly polarised one-dimensional plane

waves. The input to the crystal is then

E =
1

2
A1e

i(k1z−ω1t) +
1

2
A2e

i(k2z−ω2t) + cc.

The second order polarisation is then

P (2) =
1

2
ε0χ

(2)
(
A2

1e
i(2k1z−2ω1t) +A2

2e
i(2k2z−2ω2t)

+A∗ 2
1 e−i(2k1z−2ω1t) +A∗ 2

2 e−i(2k2z−2ω2t)

+ |A1|2 + |A2|2

+A1A
∗
2e
i((k1−k2)z−(ω1−ω2)t) +A∗1A2e

i((k2−k1)z−(ω2−ω1)t)

+ A1A2e
i((k1+k2)z−(ω1+ω2)t) +A∗1A

∗
2e
−i((k1+k2)z−(ω1+ω2)t)

)

The interaction between the two waves produces optical fields where the frequencies are

the possible sums and differences of the input waves.

To find the wave equation for three-wave processes in birefringent media, we consider

linearly polarised ordinary and extraordinary waves and begin from Maxwell’s equations

by taking the curl of Equation (2.4b) and using Equation (2.4d):

∇× (∇×E) = −µ0
∂D2

∂t2
(2.10)

From Equation (2.3),

∇ ·D = ε0(n2
x

∂

∂x
Ex + n2

y

∂

∂y
Ey + n2

z

∂

∂z
Ez)

= ε0n
2
x[∇ ·E + (

n2
z

n2
x

− 1)
∂

∂z
Ez]

But since ∇ ·D = 0 (Equation (2.4a)),

∇ ·E = (1− n2
z

n2
x

)
∂

∂z
Ez ≈ 0

for weak birefringence (nx ≈ nz). This approximation becomes exact for ordinary waves

since Ez,ord = 0.
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Finally, applying the vector identity ∇× (∇×E) = ∇(∇ ·E)−∇2E on the left side of

Equation (2.10), we get

∇2E = µ0
∂2D

∂t2

= µ0

(
ε0
∂2E

∂t2
+
∂2PL

∂t2
+
∂2PNL

∂t2

)
(2.11)

where the constitutive relation for the electric displacement was used and the polarisation

was split into linear and nonlinear terms.

Each frequency will now be considered separately. The nonlinear polarisation will con-

tain frequencies not present in the inputs as shown in the example earlier in this section,

however we shall consider only the nonlinear polarisation term for the frequencies of

interest. This is permissible as the weak nonlinear polarisations will not interact signif-

icantly with each other.

Let us choose the difference frequency generation (DFG) process as an example. This

process involves two input waves of frequencies ω1 and ω2 producing a wave of frequency

ω3 = ω1 − ω2. The fields for frequency ω3 are

E =
1

2
A′3e

−iω3t + cc.

PL =
1

2
ε0χ

(1)A′3e
−iω3t + cc.

PNL =
1

2
P(2)e−iω3t + cc.

which, by substituting into Equation (2.11), yields

∇2A′3 = −ω
2
3n

2
3

c2
A′3 − ω2

3µ0P
(2) (2.12)

We now separate the complex amplitude A′(r) = A(r)eik·r into its envelope A(r) and

the oscillating factor eik·r to get the ith component of ∇2A′3

(∇2A′3)i = eik·r(∇2A3,i + 2ik · ∇A3,i − k2A3,i) (2.13)

Combining Equation (2.12) and (2.13), the equation for a linearly polarised wave can

be simplified to

2ik3 · ∇A3,ie
ik3·r = −ω2µ0P

(2)
i (2.14)

where the equation now applies for plane waves of a given frequency, and the slowly

varying envelope approximation (SEVA) which assumes A varies slowly over a wave-

length and so |k · ∇Ai| � |∇2Ai| has been applied. To carry on the calculation further
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requires the nonlinear polarisation P(2) to be determined.

2.6 Second-order nonlinear polarisation

In the general treatment for second order processes involving three waves, the second

order nonlinear susceptibility χ(2) is a third rank tensor and so the polarisation is given

by

P
(2)
i (ωm, ωn) =

ε0
4

∑
m,n

∑
j,k

χ
(2)
ijk(ωm + ωn;ωm, ωn)A′j(ωm)A′k(ωn)e−i(ωm+ωn)t

where A(ω) is the electric field complex amplitude of the wave with frequency ω and

the input frequencies are ωm and ωn.

This is a complicated equation with 27 components of the susceptibility tensor, multi-

plied by 2 for the complex conjugate terms. But it turns out that the expression can

be greatly simplified through the exploitation of various symmetries. For frequencies

far away from resonances, the medium is lossless and so the susceptibility components

are real and the complex conjugate terms simply requires a negation of the frequencies.

Thus the summation indices m and n include only the negative and positive of each

frequency involved in the process.

Next, keeping only the terms with frequencies relevant to the chosen process, neglecting

the dispersion of χ(2), and applying various permutation symmetries, the details of

which are covered in numerous textbooks [15, 17], we arrive at an expression involving

a process-specific column vector multiplied by a d-tensor. For a DFG process, written

in a contracted notation, the result is

P(2)(ω1−ω2) = 2ε0


d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14





A′x(ω1)A′∗x (ω2)

A′y(ω1)A′∗y (ω2)

A′z(ω1)A′∗z (ω2)

A′y(ω1)A′∗z (ω2) +A′z(ω1)A′∗y (ω2)

A′x(ω1)A′∗z (ω2) +A′z(ω1)A′∗x (ω2)

A′x(ω1)A′∗y (ω2) +A′y(ω1)A′∗x (ω2)


(2.15)

where the d-tensor components dijk = 1
2χ

(2)
ijk and the contracted index notation is given

in Table 2.1.

The number of independent components of the d-tensor have thus been reduced to

10. This can be further reduced through the consideration of crystal symmetry, which

depends of the point group that the crystal belongs to. For example, beta barium borate
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Contracted index j, k

1 xx
2 yy
3 zz
4 yz, zy
5 xz, xz
6 xy, yx

Table 2.1: Contracted notation for j, k index of d-tensor

(BBO) is a uniaxial crystal with the point group 3m which has the d-tensor

dBBO =


0 0 0 0 d31 −d22

−d22 d22 0 d31 0 0

d31 d31 d33 0 0 0

 .

with the non-linear optical components d22 and d31 of about 2.1 and 0.15 pm/V respec-

tively [21].

The components of the electric field complex amplitudes can be determined since typi-

cally only the ordinary ô and extraordinary ê directions are used. In the principal-axis

coordinate system of the crystal, with the optic axis along the z-axis, the unit wave

vector k̂, ô and ê can be determined with the help of Figure 2.3 to be

k̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ

ô = sinφx̂− cosφŷ

ê = − cos(θ + ρ) cosφx̂− cos(θ + ρ) sinφŷ + sin(θ + ρ)ẑ

where θ, φ are the spherical coordinates of k̂ and ρ is the walk-off angle, which is added

since the amplitudes in the column vector of Equation (2.15) are of the electric field.

Figure 2.3: Direction of e- and o-waves
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With the complex amplitudes of the o- and e- polarised input electric fields A1,2 = A1,2ô

or ê, we can now rewrite Equation (2.15) in the form

P
(2)
i (ω1 − ω2) = 2ε0deff,i(θ, φ)A1(ω1)A∗2(ω2)

in terms of a geometry-dependent effective nonlinearity column vector deff.

Finally, we project the polarisation P(2) onto the polarisation direction of the third field,

ô or ê, to give the final result

P
(2)
DFG(ω1 − ω2) = 2ε0deff(θ, φ)A1(ω1)A∗2(ω2)ei((k1−k2)·r (2.16)

2.7 Coupled amplitude equations

Continuing where we left off at Equation (2.14), we use the nonlinear polarisation from

Equation (2.16) and arrive at

2ik3 · ∇A3,ie
ik3·r = −2ω2

3

c2
deffA1A

∗
2e
i(k1−k2)·r,

which depends on the amplitudes of the two input fields A1 and A2. A1 and A2 are

themselves functions of A3 and each other, and have to be found by following a similar

procedure as that used for A3. We thus obtain the three coupled amplitude equations

∇k̂1
A1 = i

ω1

n1c
deffA3A2e

−i∆k·r

∇k̂2
A2 = i

ω2

n2c
deffA1A

∗
3e
i∆k·r

∇k̂3
A3 = i

ω3

n3c
deffA1A

∗
2e
i∆k·r

where ∆k = k1 − k2 − k3 which is known as the phase matching condition.

We now make the assumption that A1 and A2 are constants. This is valid for small

conversion efficiency such that there is no appreciable change to the input fields. This

leaves us with just one differential equation that can be integrated directly:

A3 = i
ω3

n3c
deffA1A

∗
2

∫ L

0
ei∆k·rdk̂3

= i
2ω3

∆kn3c
deffA1A

∗
2e
i∆k·k̂3L/2 sin

(
∆k · k̂3L/2

)
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In terms of intensities, using I = n
2µ0c
|A|2 for a plane wave,

I3 =
2µ0ω

2
3L

2

n1n2n3c
d2

effI1I2 sinc2

(
∆k · k̂3L

2

)
(2.17)

The intensity of the difference frequency wave is thus proportional to sinc2(∆k·k̂3L
2 ),

which is called the phase matching efficiency term and varies from 0 to 1. The output

intensity is thus critically dependent on maximising this term.

2.8 Phase matching

Phase matching is the attempt to ensure ∆k = 0 so that the phase matching efficiency

becomes as close to 1 as possible. Early observations of nonlinear processes [22] had

extremely weak intensities due to the set up not being phase matched. For a three-wave

process, phase matching is not easy to achieve. For example, in a normally dispersive

media, where n1 > n2 > n3 for waves of frequency ω1 > ω2 > ω3, phase matched

collinear three-wave processes are impossible since

∆k = 1
c [n1ω1 − n2ω2 − n3ω3]

= 1
c [ω2(n1 − n2) + ω3(n1 − n3)] > 0. (2.18)

For non-zero ∆k, after propagating a distance Lc = π/∆k, known as the coherence

length, the generated field becomes π out of phase with the input fields and destruc-

tive interference occurs, which causes the nonlinear process to go into reverse until the

generated field gets depleted at 2Lc before the process reverses again.

There are several methods for achieving the phase matching conditions. In birefringent

phase matching, a birefringent crystal is used and careful selection of the polarisation

(ordinary or extraordinary) and propagation directions of the waves involved is done.

There is an extra degree of freedom in changing the refractive indices since the refractive

index of an extraordinary wave is a function of the angle formed by the wave vector with

the optic axis. If a collinear geometry is desired, the directions of the waves are fixed

but the crystal can still be rotated to change the refractive index of the extraordinary

waves and phase matching can be achieved for certain frequency combinations.

The three types of birefringent phase matching are type 0, type I and type II. In type 0

phase matching, all three fields are polarised along the same direction, ordinary or ex-

traordinary, while Type I phase matching has only the two output fields being polarised
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along the same direction (example: e → o + o), and Type II phase matching involves

two oppositely polarised output fields (example: e→ e+ o).

The phase matching diagram for non-collinear interaction is shown in Figure 2.4. In

the diagram, the propagation direction of the signal field k2 forms an angle ψ with the

pump beam direction k1. The direction of k3 is assumed to be such that the magnitude

of ∆k is minimised, thus ∆k · k̂3 = ∆k. Using various trigonometric relations, we can

solve for the magnitude of ∆k:

∆k = (k2
1 + k2

2 − 2k1k2 cosψ)1/2 − k3 (2.19)

Figure 2.4: Phase matching diagram

There are also other methods of phase matching, including quasi phase matching which

involve multiple crystal segments of alternating orientation (periodically poled crystals).

The reversal of the orientation reverses the phase velocity of the generated field at regular

intervals, thus ensuring that the destructive interference does not occur [23].

2.9 Spontaneous parametric down conversion

SPDC is the process by which a photon undergoes spontaneous disintegration into a

pair of photons under the conditions of conservation of energy and momentum (Figure

2.5). First observed in the mid 1960s [24–26], theoretical studies rapidly followed [27–30]

which developed the understanding of the fundamental processes behind SPDC and is

still an active area of research today.

SPDC is widely used in many quantum optics experiments in entangled photon sources,

which rely on the correlations between the two down-converted photons. The down-

converted photons have spatial, spectral, temporal and polarisation correlations, and

photons entangled in every degree of freedom (hyperentanglement [31]) have been pro-

duced [32]. The spatial and energy-time correlations come from the momentum and

energy conservation laws respectively, while the polarisation correlation is due to the

birefringent phase matching.
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Energy Conservation 

k k

k

Momentum Conservation 

Figure 2.5: Energy and momentum conservation

The basic SPDC set up (Figure 2.6) is made of an input beam, called the pump beam,

impinging onto a birefringent crystal with χ(2) nonlinearity. The pump beam couples

with the vacuum modes of the crystal and two daughter beams are created, called the

signal for the beam with the target frequency and the idler for the other beam.

Pump 

Nonlinear (2) crystal 

s (signal) 

i (idler) 

Figure 2.6: SPDC

This process is somewhat similar to DFG where two beams, the pump and the signal, are

present at the input to the crystal and the pump get split into a beam with the frequency

of the signal and another beam with the frequency equal to the difference between the

pump and the signal, thus amplifying the signal in the process. The difference between

the two processes is that for SPDC, the input signal beam has zero amplitude, thus

the frequency of the signal beam is not fixed and the pump can be split into a range

of frequency combinations as long as frequency and momentum are conserved. The

process occurs due to the coupling of the pump beam with the vacuum modes in the

crystal. Modes which are better phase matched will have a higher transition amplitude

and hence have higher intensity. Due to the lack of a strong signal beam for the pump

beam to couple with, the conversion efficiency is very low at about 10−9 [9]. This down-

conversion occurs spontaneously and randomly throughout the crystal and thus can only

approximate a deterministic photon source [33].

SPDC sources can be classified according to their geometry, down-converted frequencies

and phase matching type. There are two types of geometries, collinear and non-collinear,
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which refer to the spatial modes of the signal and idler beams. For instance, the geom-

etry shown in Figure 2.6 is non-collinear. Non-collinear geometry has the advantage of

differentiable spatial modes for the signal and idler beams to be separated, however pho-

ton sources that have collinear geometry have a simpler set up. The frequencies of the

signal and idler can either be degenerate (having the same frequency) or non-degenerate

(different frequencies), while for the phase matching type, there are three possibilities,

type 0, type I or II which are described earlier in Section 2.8.

The SPDC source design that will be the focus of this study is taken from Trojek

[34]. This source produces polarisation-entangled photon pairs and is based on the two-

crystal design first implemented in 1999 [35] and was chosen due to its compactness and

simplicity afforded by the collinear geometry as well as its high brightness compared

to other conventional crystal designs. The conceptual layout of the source is shown in

Figure 2.7.

Pump 

45° 

Crystal Lens Dichroic 

mirror 

1 

2 

Fiber 

Figure 2.7: Simple, compact and robust polarisation-entangled photon source

A pump beam linearly polarised at 45° is incident onto two BBO crystals placed adjacent

to each other. The BBO crystals are oriented such that both crystals satisfy the type I

collinear phase matching conditions for the desired down-converted frequencies λ1 and

λ2 but with the optic axis of one of the crystals in the horizontal direction while the

optic axis of the other crystal lies in the vertical direction. This allows down-conversion

to occur in either crystal with equal probability and thus an polarisation-entangled

state |ψ〉 = |H〉1 |H〉2 + eiφ |V 〉1 |V 〉2, where |H〉 and |V 〉 are the horizontal and vertical

polarisation states, is produced. The down-converted photons are then collected into a

single mode fiber which directs the light to a dichroic mirror that separates the path of

the two photons to their respective detectors.
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Model

We seek now to create a mathematical model of the chosen down-conversion source

described in the previous chapter. The main modification that will be made to the

design is the use of only one BBO crystal instead of two adjacent crystals. This means

that the source will not produce polarisation-entangled photons but only polarisation-

correlated photons. We shall begin by making certain simplifying assumption while

still preserving the main features of the physical process. There will be two parts to

the modelling – the SPDC process itself that occurs within the BBO crystal and the

collection optics that couples the down-converted light into the fiber. A possible method

to compensate for the walk-off effect of the pump beam is then examined.

3.1 Crystal

A classical treatment is used for the down-conversion in the crystal. Although SPDC is

a process stimulated by quantum vacuum fluctuations and so a full quantum mechanical

treatment is needed to find the absolute brightness of the source, it turns out that the

classical treatment leads to the same dependence on the phase matching efficiency for

the simplified model that is developed here. The pump, signal and idler beams are

approximated as monochromatic plane waves with the pump beam normally incident

onto the crystal. Under the weak signal assumption, where the intensity of the pump

and idler beams are undepleted, the intensity of the signal I3 is given by Equation (2.17):

I3,abs =
2µ0ω

2
3L

2

n1n2n3c
d2

effI1I2 sinc2

(
∆k · k̂3L

2

)

17
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and the intensity relative to the maximum

I3 =
I(∆k)

I(∆k = 0)
= sinc2

(
∆k · k̂3L

2

)
. (3.1)

In this section and the next, we will be using a pump frequency λ1 = 405 nm, signal

frequency λ2 = 785 nm and idler frequency λ3 = 837 nm. To ensure the phase matching

condition for type I (e→ o+ o) collinear down-conversion, the tilt angle θ, which is the

angle between the wave vector of the pump beam and the optic axis of the crystal, such

that ∆k = 0 had to be determined. From Equation (2.19)

∆k = 2π

(
ne(λ1, θ)

λ1
− no(λ2)

λ2
− no(λ3)

λ3

)
(3.2)

where no and ne are the refractive indices for the ordinary and extraordinary fields.

The refractive indices were determined as follows: the ordinary refractive index no = nx

and the extraordinary index ne is given by Equation (2.5), which is a function of nx,

nz and θ, the angle between the optic axis of the crystal and the z-axis (pump beam

direction). nx and nz are functions of wavelength and are obtained from the Sellmeier

equations for BBO [17]

nx =

√
2.7359 +

0.01878

λ2 − 0.01822
− 0.01354λ2

nz =

√
2.3753 +

0.01224

λ2 − 0.01677
− 0.01516λ2

where the wavelength λ is given in µm.

The Newton-Raphson method was then used to numerically solve for ∆k = 0 and the

appropriate value of θ was found to be 28.8048°.

With the crystal fixed at the collinear phase matching conditions, we can now determine

the relative intensity of signal at non-collinear conditions. Since the signal and idler

beams are of ordinary polarisation, the non-collinear emission for each emission angle

will be in cones with the axis collinear with the propagation direction of the pump beam.

The procedure to find the signal intensity is similar to the collinear case, just with a

change of the equation for momentum mismatch ∆k to

∆k = 2π

(ne(λ1, θ)

λ1

2

+
no(λ2)

λ2

2

− 2
ne(λ1, θ)

λ1

no(λ2, θ)

λ2
cosφ

)1/2

− no(λ3)

λ3

 (3.3)

and then using (3.1) to find the relative intensity as a function of emission angle.
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3.2 Collection beam

To couple the emitted light to the single-mode fiber, an achromatic doublet lens was

used to reduce chromatic aberrations from the two non-degenerate emission wavelengths.

Ray tracing was done to trace the propagation of the emitted light. This is justified

as although the fiber guides a Gaussian transverse mode, at distances beyond several

Rayleigh lengths from the focus, the Gaussian beam closely resembles a circular wave

with the point source at the center of the focus. Another issue is that the achromatic

doublet lens, being made of two lenses joined together, is quite thick and the thin lens

approximation that simplifies the calculation cannot be applied. Thus ray tracing is

performed for the light path within the lens as well.

Determining whether a ray gets coupled into the fiber can be done by checking that it

lies within the acceptance cone of the fiber, given the distances between the crystal, lens

and fiber. However this procedure is not used in practice as it is difficult to measure

accurately the distance between the crystal, the lens and the fiber. The usual experi-

mental method of maximising the collection efficiency is to match the emitted light to

the mode of the fiber. This is done by shining light out from the fiber and through the

lens, noting the position and size of the beam waist, and then positioning the center of

the crystal at that point. Instead of using the acceptance angle of the fiber, we could

use the divergence angle φ = λ/πω0, where ω0 is the radius of the beam waist and λ is

the frequency of the Gaussian beam, to determine the acceptance cone for the emissions

from the crystal. The beam radius is measured to the distance where the intensity of

the beam is 1/e2, or 13.5%, of the maximum intensity.

Fiber

Pump

BBO Crystal

Figure 3.1: Model of SPDC set up

The diagram of the model is shown in Figure 3.1. A point source is assumed at the

center of the BBO crystal. Since the center of the crystal coincides with the position of

the collection beam waist, the acceptance of an emitted ray can be determined simply

by checking if the emission angle is within the divergence angle of the collection beam.

For example, the orange arrows in the figure represent rays that are accepted into the
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fiber while the red arrow is not accepted as it lies beyond the divergence angle of the

beam, marked by the dashed blue line.

3.3 Results

The results of Section 3.1 allows us to find the joint spectrum which is the relative inten-

sities of the various wavelengths and emission angles. For a crystal of length 15.76mm

oriented for optimal collinear down-conversion of 405 nm light to 785 nm and 837 nm,

the plot of the joint spectrum is shown in Figure 3.2.

Figure 3.2: Joint spectrum at collinear phase matching conditions for 405 nm down-
converted to 785 nm and 837 nm, crystal cut at 28.8048°

From the model developed in Section 3.2, in addition to the collinear emissions, light

emitted at an angle up to the divergence angle of the collection beam will be accepted

into the fiber. Thus to determine the relative total intensity, we perform an integration

of the phase matching efficiency over emission angle φ within the maximum admission

angle φ0

Itotal(λ) =

∫ φ0

−φ0
sinc2(∆kL/2) dφ (3.4)
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The integration was done numerically using the trapezoid rule (refer to the appendix

for details) and the result is shown in Figure 3.3 for various integration limits.
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Figure 3.3: Relative brightness (arbitrary unit) integrated over emission angles of
0.1° (blue), 0.2° (yellow), 0.3° (green) and 0.4° (red)

The figure shows three effects as the acceptance angle of the collection fiber increases:

the increase of intensity, shifting of wavelength at maximum intensity and broadening

of the peaks. The intensity increase is due to the additional acceptance of light emitted

at larger angles. As the maximum accepted emission angle increases, the increase in

intensity gets smaller, thus there will be a maximum acceptance angle beyond which the

collected intensity saturates.

The broadening and shift of the peaks can be explained by the shape of the joint spec-

trum where the peak wavelengths at non-zero emission angles shift away from the peak

wavelengths at the collinear case. The full width at half maximum (FWHM) of the

signal and idler peaks in the collected spectrum are shown in Figure 3.4. The FWHM of

the signal (785 nm) is consistently smaller than that of the idler (837 nm) beam, which

is also to be expected from the asymmetric shape of the joint spectrum.

The shift of the signal peak wavelength compared to that of the collinear emission is

plotted as a function of acceptance angle in Figure 3.5. Similar to the increase of inten-

sity, the shift of the peak collected wavelength reaches a maximum beyond a acceptance

angle of about 0.36°.

There is another interesting implication of this result. The experimental procedure that

is used to adjust the crystal to satisfy the collinear phase matching conditions for the

desired wavelengths is to position the crystal at the waist of the collection beam and

then place a spectral filter in the path of the collection beam after the crystal that
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Figure 3.4: Full width at half maximum of signal (blue) and idler (yellow) beam
spectrum

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Maximum emission angle (deg)

Δ
λ
(n
m
)

Figure 3.5: Shift in signal peak collected wavelength as acceptance angle increases
becomes roughly constant at about 0.36°

allows only the signal wavelength to pass. The crystal is then carefully tilted until the

maximum intensity is detected. If we assume that only the signal wavelength gets passed

through the filter and that only the collinearly emitted light is collected, this approach

will allow the crystal to be positioned at the precise phase matching angle that is desired.

However, in practice the filter has a finite bandwidth and some of the non-collinearly

emitted light is collected as well. Thus there is a shift in the intensity profile of the

collected spectrum as established previously. We shall now examine the significance of

this effect. We assume a constant detection efficiency for wavelengths within the filter

bandwidth. The divergence angle of the collection beam is set at 0.4° and the filter

is assumed to transmit perfectly only wavelengths from 780nm to 790nm. The total
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relative collected intensity as a function of crystal tilt angle θ is given by

Itotal(θ) =

∫ 790nm

780nm

∫ 0.4°

-0.4°

sinc2(∆kL/2) dφ dλ (3.5)

The maximum collected intensity was determined by finding the root of the derivative of

Equation (3.5) and the corresponding tilt angle was 28.8094°. This differs from the target

tilt angle of 28.8048° by 0.0046° which has an appreciable impact on the joint spectrum.

As an illustration of this impact, the spectral profile of the collinearly-emitted light is

shown in Figure 3.6 and for the emission within 0.4° in Figure 3.7.
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Figure 3.6: Collinear emission at ideal crystal angle satisfying collinear phase match-
ing conditions (blue) and at crystal angle after the crystal alignment procedure (yellow)
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Figure 3.7: Integrated emission over 0.4° at ideal crystal angle satisfying collinear
phase matching conditions (blue) and at crystal angle after the crystal alignment pro-

cedure (yellow)
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The plots show a shift in the peak wavelengths and a broadening of the peaks in both

the collinear emission (Figure 3.6) and integrated emission (Figure 3.7) such that the

two peaks merge near the base between them and the intensity does not get quite close

to zero. This merging of the two peaks could reduce slightly the separability of the

signal and idler beams as the spectral separation of the two beams are reduced. The

result thus suggests that filter of smaller bandwidths and collection beams of smaller

divergence angles should be used during alignment of the crystal tilt to ensure that the

tilt angle gets adjusted as close to the target angle as possible.

3.4 Comparison

We shall now compare the results of the model to the measured spectrum from two

BBO, collinear, type I sources. The first source uses a 6 mm long BBO crystal and

has target wavelengths of 760 nm and 867 nm with pump wavelength of 405 nm. The

spectrum data was obtained from Tang ZK which was normalised separately for each

peak and plotted in Figure 3.8.
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Figure 3.8: Relative intensity of spectrum from Tang (dots) and the modeled spec-
trum with maximum emission angle 0.2° (line)

The crystal tilt angle that satisfies the collinear phase matching conditions for the target

wavelengths was first determined. The maximum accepted emission angle was then

varied while attempting to match the peak wavelength of the signal to that of the

measured data. From the data, the measured spectrum had peaks at roughly 759.5 nm

and 869.0 nm and for the model, a maximum emission angle of 0.2° was used to shift

the peaks to 759.4 nm and 868.1 nm. This is a reasonably good agreement with the

measured spectrum for the signal (760 nm) peak while the comparatively poorer fit for
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the idler (867 nm) peak can be explained by the lower sensitivity of the spectrometer at

that wavelength region.
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Figure 3.9: Relative intensity of spectrum from Trojek (dots) and the modelled spec-
trum with maximum angle 0.4° (line)

The second source that will be analysed is from Trojek [36], which has a crystal length

of 15.76 mm, target wavelength of 765 nm and 850 nm and pump wavelength of 403

nm. A similar treatment is used as in the first source and the measured data, the best

fit from the model is shown in Figure 3.9.

The fit was done with maximum emission angle of 0.4° which gave the peak wavelengths

of 763.1 nm and 853.9 nm, as opposed to the reported central wavelengths of 762.8±0.4

nm and 849.4 ± 0.6 nm. Although there is still a significant difference in the signal

wavelength that was measured and modeled, it was found that increases of the maxi-

mum emission angle beyond 0.4° did not significantly shift the peak wavelength. The

agreement between the model and measured value for the signal (765 nm) peak is again

better than the idler (850 nm) peak.

It was noticed that the width of the peaks from the model for both sources were smaller

than that suggested by the measured data. This could be due to the uncertainty from

the spectral resolution of the spectrometers used and can be taken into account by doing

a convolution of the modeled peaks f(x′) with an instrument response function g(x′).

The convolution integral is then given as

h(x) =

∫ ∞
−∞

f(x′)g(x− x′) dx′

For both sources we use a Gaussian response function with a standard deviation of 0.5

nm. The resulting peaks fit the experimental data better and are shown in Figure 3.10
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for the first source and Figure 3.11 for the second. This allows the uncertainty of the

spectrometer to be estimated.
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Figure 3.10: Relative intensity of spectrum from Tang (dots) and the convoluted
spectrum with a Gaussian function of standard deviation 0.5 nm (line)
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Figure 3.11: Relative intensity of spectrum from Trojek (dots) and the convoluted
spectrum with a Gaussian function of standard deviation 0.5 nm (line)

3.5 Extended source

One limitation of the model developed here is the assumption of a point source at the

center of the crystal. Using Equation (2.9), the walk-off angle is 3.632° which, for a

crystal of length 15.76 mm, translates to a transverse walk-off distance from the optical

axis of 1.0006 mm. This is a large distance considering that the waist of the pump beam
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can be on the order of about 0.1 mm or less and thus will need to be accounted and

compensated for. The down-converted light do not experience the walk-off effect as they

have ordinary polarisation.

15 mm

1 mm

0.1 mm

Figure 3.12: Down-converted beam (black arrows) gets generated throughout the
pump beam’s path (green arrow) in the crystal

The modified picture of the down-conversion in the crystal is shown in Figure 3.12.

As the spatial walk-off effect occurs only in one direction, the down-converted beam is

elongated in one transverse direction while the other remains unchanged. This suggests

that adding a cylindrical lens, which focuses light in a single direction, could be the

appropriate lens to use. Down-conversion occurs throughout the path of the pump

beam in the crystal, but it is sufficient to consider only the rays on both ends of the

elongated transverse direction of the down-converted beam at the exit face of the crystal

(the ray along the optic axis and another ray 1 mm away from the optic axis). For the

rays to be accepted into the fiber they have to end up within the acceptance cone of the

fiber. We will check this using the ray transfer matrix method.

The ray transfer matrix method allows ray tracing within a plane to be done quickly.

A ray is represented by a column vector consisting of its distance from the optical axis

x and the angle it makes with the optical axis θ. Each part of the path of the ray, for

example encountering a lens or just travelling through free space, is represented by a

matrix that acts on the column vector to give the resultant parameters of the ray. The

paraxial assumption is used and the matrices that will be used are:

Free space:

(
1 d

0 1

)
, Spherical boundary:

(
1 0

−n2−n1
n2R

n1
n2

)
, Thin lens:

(
1 0

−1/f 1

)

where d is the propagation distance, n1, n2 and R are the initial and final refractive

index and radius of curvature of the spherical boundary, and f is the focal length of the

cylindrical lens.

The achromatic doublet can be considered as three spherical surfaces separated by a

short distance and the cylindrical lens treated as a thin lens. The ray tracing for the set
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up for our model is thus

(
x

θ

)
final

=

(
1 d4

0 1

)(
1 0

1−n3
R3

n3

)(
1 d3

0 1

)(
1 0

n3−n2
n3R2

n2
n3

)(
1 d2

0 1

)
(

1 0

−n2−n1
n2R1

1
n2

)(
1 d1

0 1

)(
1 0

−1/f 1

)(
1 d0

0 1

)(
x

θ

)
initial

with the various parameters defined in Figure 3.13.
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n2 n3

Figure 3.13: Diagram of extended source model showing the free parameters

We shall now find solutions using the AC080-020-B achromatic lens from Thorlabs that

have the parameters

R1 = 13.5mm, R2 = 10.6mm, R3 = 47.8mm

d2 = 2.3mm, d3 = 1.3mm

n2 = 1.6431(N-LAK22), n3 = 1.7853(N-SF6HT)

and with a cylindrical lens with refractive index n1 = 1.5111 (N-BK7). There is thus

d0, d1, d4 and f left to adjust.

We choose the parameters d0 = 5mm, d1 = 400mm, f = 4mm and solve for

M

(
1

0

)
=

(
0

k

)

where M is the matrix of the system, k is unrestricted and the unit of distance is mm. d4

is found to be 12.36 mm. To determine whether the rays lie within the acceptance cone

of the fiber, we simply check that the distance from the optical axis x and the angle θ are

less than the mode field diameter and the numerical aperture of the fiber respectively.

Given the parameters above, the calculations show that all rays emitted at 0.2° or less

will be accepted into a fiber of core diameter of 0.005 mm and numerical aperture of

0.15. We have thus shown that a cylindrical lens can provide some compensation for
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the walk-off of the pump beam. Further adjustments of the parameters and the focus

length of the cylindrical lens can be done to improve the maximum emission angle that

is accepted into the fiber.



Chapter 4

Conclusion

We have developed a model of a collinear type I non-degenerate SPDC correlated photon

source together with the collection optics that couple the down-converted light into a

fiber. A classical plane wave treatment was used in the derivation of the down-conversion

with the further assumption of a point source for the down-converted emission within

the crystal. These assumptions admittedly make the model a little unrealistic, however

the model is still able to capture several features of the source, such as the shift of peak

wavelengths with increasing collection beam divergence angle.

With this model, and given the pump and collection beam parameters, we can predict the

relative intensity of the wavelengths that are detected. A comparison was done with the

spectrum of two sources. Shifts of the peak wavelengths in the measured spectrum from

the targetted values were observed and matched with the peak wavelengths produced by

the model by changing the collection beam divergence angle. Thus the divergence angle

of the collection beam used in the sources could be estimated. Similarly, the widths of

the peaks were matched to that of the model by convoluting the modeled peaks with

a Gaussian function and varying the standard deviation of the response function, thus

allowing the estimation of the error of the spectrometer.

Spatial walk-off effects can be significant for tightly focused beams with small spot

sizes. This will reduce the coupling efficiency of the down-converted beam into the fiber.

To compensate for this, the addition of a cylindrical lens was studied and appropriate

parameters were found to correct for emission angles of up to 0.2°. Further efforts to

improve the model could focus on finding better methods of correction for the walk-off

effects to allow for a wider range of emission angles to be accepted. Another possible

area to work on is to allow for Gaussian pump beam modes. An approximate way of

achieving this is to treat the Gaussian beam as being made of many plane waves, each

within a small volume. The down-conversion spectrum can then be calculated at points

30
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within crystal and integrated together. With these modifications, the applicability of

the model to the experimental set up would be much improved.



Appendix A

Numerical methods

This section will provide brief descriptions of the numerical methods used in finding the

roots of equations and definite integral of a function that are used in this project.

A.1 Newton-Raphson method

The Newton-Raphson method is an iterative root-finding process for real-valued func-

tions. This method starts off with a guess of the root x0. The intersection between the

tangent line of the function at f(x0) and the x-axis is found, and this new guess for

the root x1 is used for the next iteration. In this way, successive guesses xn converge

towards the root and the iteration is ended when the f(xn) is smaller than a chosen

tolerance.

Assuming we start with a guess that is close to the root so that (x1−x0) is small, where

x1 is the next guess for the root of the function, and f(x1 − x0) can be expanded in a

Taylor series

f(x1) ≈ f(x0) + (x1 − x0)f ′(x0)

Since we require f(x1) = 0, we can solve for x1:

x1 = x0 −
f(x0)

f ′(x0)

For the ith iteration,

xi+1 = xi −
f(xi)

f ′(xi)
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and the derivative of a function f ′(x) can be found using the finite difference approxi-

mation

f ′(x) ≈ f(x+ h)− f(x)

h

where h is a small number.

This method does not necessarily converge to the root and so the starting guess should

be carefully chosen to be close to the actual root.

A.2 Trapezoid rule

The trapezoid rule is a method of approximating the definite integral of a function where

the area under the function is split into n equally spaced trapeziums of width h (Figure

A.1). The integral can then be approximated by adding up the area of all the trapeziums∫ b

a
f(x) dx ≈

∑
n

f(xn + h) + f(xn)

2
h

= h

(
1

2
f(x1) + f(x2) + . . .+ f(xn) +

1

2
f(xn + h)

)
where xn is the x-coordinate of the nth trapezium and h = (b− a)/n.

The accuracy of the integral increases with the number of trapeziums n and can be

estimated by recalculating the integral with double the number of trapeziums and then

checking the two calculated values for differences in the digits within the desired number

of significant figures.

. . .

𝑓𝑓(𝑥𝑥)

𝑥𝑥
𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛−1

ℎ

𝑥𝑥𝑛𝑛𝑥𝑥3

Figure A.1: Area under a function approximated by the sum of n equally spaced
trapeziums
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