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Abstract

Whenever the Fermi energy lies in a mobility gap, the Hall conductivity of a
2D system is quantized and is equal to the Chern number multiplied by the
conductance quantum. Due to bulk-edge correspondence, the Chern number is
also equivalent to the number of edge-states present at Fermi energy.
Typically, finding the Chern number of large disordered systems is done in-
directly through conductance calculations, as direct calculation of the Chern
number by definition requires full diagonalization of the system Hamiltonian.
In this project we hoped to obtain some characterization of the systems con-
duction properties by studying a different variable that is local in energy, and
hence only require some of the states near the Fermi energy. Unfortunately, the
proposed variable seems unable to describe the system Chern number, and is to
some extent, its properties are easily explained, yielding a negative result.
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Chapter 1

Introduction

A large part of physics is about categorizing things. The full state of a system is
in general, complicated to specify. Classically, we would need to track every sin-
gle particle in the system and its momentum. Quantum mechanically, we would
need to write down its decomposition in terms of the eigenstates of the system
Hamiltonian. Instead of dealing with properties at such a detailed level, we
look for similarities between states and group them accordingly. These groups
we call phases and states in different phases are sufficiently different such that
to transform one state to another would require a phase transition; a phase is
robust against small perturbations.
In the integer quantum Hall effect, described by non-interacting particle theory,
the quantized Hall conductivity defines different phases of conduction. Each
phase is characterized by a topological index called the Chern number. The fact
that the Chern number describes a phase means that the transition between
phases requires a phase transition, and this implies that small perturbations,
for example by a random disordered potential, will not change the conduction
properties of a system, that is, the perturbed system and the original system
are described by the same phase.
The calculation of the Chern number, is in general, not something that can be
done practically on a computer for large systems. Generally, to show that a
system is in a particular topological phase, numerical simulation of conduction
or measurements are performed, and if the conduction is quantized, then the
system is in a topological phase. Instead, we propose to study a different variable
that we call Q matrices, in hope of having a different way of obtaining the
conduction properties of a system, or at least providing a different perspective.
Unfortunately, it seems that such a variable is too simple for describing these
topological phases, and hence we only obtain a negative result.
The report is organized as follows. Chapter 2 reviews known ideas regarding
the Chern number and its relation to the Hall conductivity and the edge states
that show up when finite boundaries are imposed. Chapter 3 briefly covers the
numerical models used as well as disordered potential models. Chapter 4 is on
the results regarding the Q matrices for one particular model of a system with
non vanishing topological number. The section ends with a discussion of the
results and why we think the Q matrix variables may not be useful. Finally,
we conclude in Chapter 5 with a short discussion on the problems with defining
such a variable.
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Chapter 2

Background

2.1 Disorder and Localization in 2D
The theory of Anderson localization has the following statement about the be-
havior of electronic wave-functions in the presence of disorder. In 1D or 2D,
the conductance always decreases with the system size whenever a random po-
tential (randomly spaced scatterers, for example) is present. In 3D, there is a
critical ‘randomness strength’ beyond which a system would become insulting
in the infinite size limit, or remain a conductor. Fig. 2.1 shows the so-called β
function for the different dimensions. The β function is defined as

β = L
d ln g

dL
(2.1)

which describes the behavior of the dimensionless conductance g = T
1−T , T

being the transmission coefficient, as the system size L increases. Scaling argu-
ments lead to the behavior shown in Fig. 2.1. The main point is that random-
ness/disorder causes electronic states to localize in 2D or less.
However, we will be describing topological materials (in 2D) where conduct-
ing states exist that are robust against disorder. These states are said to be
‘topologically protected’ and hence resist localization by disorder.

2.2 Hall Conductivity: Linear Response to an
Electric Field

Suppose a system described by some Hamiltonian H currently in the ground
state |ψ0〉 is subject to an electric field perturbation along the y direction. We
write the total Hamiltonian as

HE = H + V

= H − eEy

The new ground state |ψ0,E〉 can be calculated to first order using standard
perturbation theory in terms of the eigenstates of H denoted by |ψn〉

|ψ0,E〉 = |ψ0〉+
∑
n>0

〈ψn| (−eEy) |ψ0〉
E0 − En

|ψn〉 (2.2)
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Figure 2.1: β Function for d = 1, 2, 3. Arrows indicate the change in conduc-
tance as the system size is increased. In d < 2, it is always negative.

We can then calculate the expectation of the current density along the x direc-
tion to first order in the electric field

〈ψ0,E | jx |ψ0,E〉 =
∑
n>0

〈ψn| (−eEy) |ψ0〉 〈ψ0| jx |ψn〉+ 〈ψ0| (−eEy) |ψn〉 〈ψn| jx |ψ0〉
E0 − En

+ 〈ψ0| jx |ψ0〉+O
(
E2
)

(2.3)

In 2D, ji = − e
Avi = i

~ [H,xi], where A is the area of the system. Using this
relation, we express the matrix elements of y in terms of vy to obtain

∆jx ≡ 〈ψ0,E | jx |ψ0,E〉 − 〈ψ0| jx |ψ0〉 (2.4)

∆jx = E
ie2~
A

∑
n>0

〈ψn| vy |ψ0〉 〈ψ0| vx |ψn〉 − 〈ψ0| vy |ψn〉 〈ψn| vx |ψ0〉
(E0 − En)

2 (2.5)

So the Hall conductivity, that is, the response of the current along x direction
to an electric field applied along the y direction is given by

σxy =
∆jx
E

=
ie2~
A

∑
n>0

〈ψ0| vx |ψn〉 〈ψn| vy |ψ0〉 − 〈ψ0| vy |ψn〉 〈ψn| vx |ψ0〉
(E0 − En)

2 (2.6)

This is known as Kubo’s formula for the DC Hall conductivity. A more general
formula for conductivity at other frequencies can be derived in similar fash-
ion, but is not necessary for our purposes. In the derivation, we assumed the
following:

• The ground state is non-degenerate

• The ground state is separated from the first excited state by a finite energy
gap
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2.3 Hall Conductivity as Topological Invariant:
Chern Number

2.3.1 The Flux Trick
We now discuss the so-called ‘flux trick’ first introduced in [1], which is to define
the Hall conductivity in terms of a topological invariant called the Chern number
which is an integer.
Consider the family of 2D Hamiltonians with an additional flux parameter κ on
a presumably large region of dimensions Lx by Ly

H (κ) =
1

2m

∑
i

(pi − eA (ri) + ~κ)
2

+ V (2.7)

The reason for doing so will become clearer in a moment. The potential V
represents in general 1-body (including disorder) or 2-body (interactions) con-
tributions. The many particle velocity operator becomes

v (κ) =
1

m

∑
i

pi − eA (ri) + ~κ (2.8)

=
1

~
∂H (κ)

∂κ

The solution to the time-independent Schrodinger equation in position basis is
then a function of all the single particle coordinates; (〈r1| ⊗ 〈r2| ⊗ ...⊗ 〈rN |) |ψ〉 =
ψ (r1, r2, ..., rN ). The presence of the vector potential in general forbids regular
periodic boundary conditions. Instead we impose magnetic periodic boundary
conditions of the form TLxx̂ |ψ〉 = |ψ〉, TLyŷ |ψ〉 = |ψ〉, where Ta are magnetic
translation operators.

Ta = exp

(
i

(
p + e

2 (r ∧B)
)
· a

~

)
(2.9)

In doing so, we assume that Lx and Ly are large enough that the magnetic flux
through the region is a rational number of flux quanta. From now on, whenever
we refer to periodic boundary conditions, we mean magnetic periodic boundary
conditions if a vector potential is present.
Substituting (2.8) into (2.6) we obtain a κ dependent Hall conductivity

σxy (κ) =
ie2

A~
∑
n>0

〈ψ0| ∂H∂κx
|ψn〉 〈ψn| ∂H∂κy

|ψ0〉 − 〈ψ0| ∂H∂κy
|ψn〉 〈ψn| ∂H∂κx

|ψ0〉

(E0 − En)
2

(2.10)
For brevity we leave out the κ dependence of the Hamiltonian, the states and
the energy eigenvalues. Using the identities

〈ψ0|
∂H

∂κ
|ψn〉 = (E0 − En) 〈∂ψ0

∂κ
|ψn〉 (2.11)∑

n

|ψn〉 〈ψn| = 1 (2.12)

we can rewrite the Hall conductivity as
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σxy (κ) =
ie2

A~

(
〈∂ψ0

∂κx
|∂ψ0

∂κy
〉 − 〈∂ψ0

∂κy
|∂ψ0

∂κx
〉
)

(2.13)

Suppose |ψ0 (κ0)〉 is the ground state of H (κ0), that is

H (κ0) |ψ0 (κ0)〉 = E0 (κ0) |ψ0 (κ0)〉 (2.14)

and satisfies the boundary conditions. Then while exp (−κ ·R) |ψ0 (κ0)〉 satis-
fies

H (κ + κ0) (exp (−κ ·R) |ψ0 (κ0)〉) = E0 (κ0) (exp (−κ ·R) |ψ0 (κ0)〉) (2.15)

it does not in general satisfy the boundary conditions, except at κ = 2π
(
n
Lx

x̂ + m
Ly

ŷ
)
.

So we notice that the ground state |ψ0 (κ)〉 returns to itself up to a phase fac-
tor whenever κx and κy vary by 2π

Lx
and 2π

Ly
respectively. Defining θx = κxLx,

θy = κyLy we obtain that σxy (θx, θy) is a periodic function of θx and θy, i.e. it
is a function on the unit torus parametrized by θx and θy.
Now we consider what happens when κ is slowly varied in time. Glancing back
at the Hamiltonian (2.7), we see that this corresponds to having a time varying
vector potential, i.e. an electric field. In particular, we consider the case where
~κ (t) = eEtŷ. In the limit of vanishing electric field E, the parameters κ (t)
vary slowly in time such that the system remains in the ground state of the time
dependent Hamiltonian H (κ (t)) via the adiabatic theorem. Let T be the time
interval for ϕ to vary from 0 to 2π. Then the average current is the total charge
transported divided by T . The average conductivity is then the average current
divided by the electric field

σ̄ =
1

E

1

T

ˆ T

0

jxdt

=
1

2π

ˆ 2π

0

σ (θy) dθy (2.16)

So far we have only averaged over one angle. If we were to average over both
angles (θx, θy) then

σ̄ =
1

4π2

ˆ 2π

0

ˆ 2π

0

ie2

~
〈∂ψ0

∂θx
|∂ψ0

∂θy
〉 − 〈∂ψ0

∂θy
|∂ψ0

∂θx
〉 dθxdθy

= −e
2

h

1

2πi

ˆ 2π

0

ˆ 2π

0

〈∂ψ0

∂θx
|∂ψ0

∂θy
〉 − 〈∂ψ0

∂θy
|∂ψ0

∂θx
〉 dθxdθy

= −e
2

h
C (2.17)

where the quantity

C =
1

2πi

ˆ 2π

0

ˆ 2π

0

〈∂ψ0

∂θx
|∂ψ0

∂θy
〉 − 〈∂ψ0

∂θy
|∂ψ0

∂θx
〉 dθxdθy (2.18)

is an integral of the Berry Curvature of the ground state in the parameter space
(θx, θy). It is called the first Chern number and is an integer (the integral of
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Berry Curvature over a closed surface is always an integer multiple of 2π. This
follows from single valuedness of the wavefunction). It is well defined as long
as the assumptions used in the non-degenerate perturbation derivation of the
Hall conductivity holds for all (θx, θy). Berry Curvature is undefined when two
energy levels become degenerate.
It will be useful later to write the Chern number in the form

C =
1

2πi

ˆ 2π

0

ˆ 2π

0

Tr
{
P
[
∂θxP, ∂θyP

]}
dθxdθy (2.19)

P (θx, θy) = |ψ0 (θx, θy)〉 〈ψ0 (θx, θy)|

where P (θx, θy) is the ground state projector.

2.3.2 Non-Interacting Case
Consider the case of non-interacting electrons. Then the many particle Hamilto-
nian becomes a direct sum of single particle Hamiltonians h (θ, ϕ). The ground
state is then the Slater determinant of lowest energy occupied single particle
states.
We can then express then Chern number in (2.19) by simply changing the ground
state projector P to the projector onto the N lowest occupied single particle
states

P (θx, θy) =

N∑
n=1

|n (θx, θy)〉 〈n (θx, θy)| (2.20)

The condition that the many particle ground state be separated from the first
excited state by a finite energy gap translates to the Nth single particle state
being separated from the (N + 1)th state by a finite energy gap.

2.3.3 Relation to Brillouin Zone and Crystal Momentum
in non-Disordered Systems

Consider now the case where we deal with non-interacting electrons in a periodic
potential, that is, the single particle Hamiltonian is given by

h =
p2

2m
+ V (2.21)

where V (x, y) = V (x+ a, y) = V (x, y + b). Bloch’s theorem states that a basis
for the eigenfunctions of the single particle Hamiltonian are given by

|ψn,k〉 = eik·r |un,k〉 (2.22)

where |un,k〉 are periodic functions in position with same periodicity as the
potential energy and are solutions of

h (k) |un,k〉 = En,k |un,k〉 (2.23)
h (k) = e−ik·rheik·r

=
(p + ~k)

2

2m
+ V (2.24)
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with periodic boundary conditions un,k (x, y) = un,k (x+ a, y) = un,k (x, y + b).
The states are labeled by the crystal momentum k ∈ BZ , and band index n ,
where BZ refers to the first Brillouin Zone.
This is similar to the κ dependent Hamiltonian introduced earlier without in-
teractions, disorder and magnetic field, except that instead of solving for states
periodic over Lx and Ly, we are solving for states periodic over a and b. To
see the relation between the two, we notice that solving for eigenstates on the
larger unit cell Lx and Ly is simply folding the Brillouin Zone into a smaller
region, from 2π

a by 2π
b to 2π

Lx
by 2π

Ly
. The higher k states in the full Brillouin

Zone show up as states in another band in the folded Brillouin Zone (Fig. 2.2).
Hence the projector onto the occupied states is the same for the full Brillouin
Zone or the folded Brillouin Zone, that is, the Chern number can be expressed
equivalently as an integral over the Brillouin Zone.

C =
1

2πi

ˆ
BZ

Tr
{
P (k)

[
∂kxP (k), ∂kyP (k)

]}
dk (2.25)

The constraint that the Nth occupied state is separated from the (N + 1)th
state by a finite energy means that the single-particle states are occupied up to
the bottom of a band gap in the spectrum, i.e. there are n filled bands, and the
nth band is separated from the (n+ 1)th band by a finite energy gap. This is
why the Chern number is said to describe the momentum space topology.

2.4 Bulk-Edge Correspondence: Edge States
So far, the type of boundary conditions we have been using (periodic or magnetic
periodic boundary conditions) are used to model systems without boundaries or
infinite systems. The Chern number defined is a bulk property, and connected
to the Hall conductivity.
In this section, we will relate the Chern number to the number of gap-less edge
excitations that exist within the bulk gap when open boundary conditions are
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Figure 2.3: Solid torus on which the ground-states are defined on

imposed along one direction, giving the system a strip geometry. The ‘edge
states’ on opposite sides of the system carry current in opposite directions.
What the Chern number does is count the number of gap-less edge states on
side edge of the strip at each energy in the bulk gap.
A rigorous proof of the statement for a general system is only available for lattice
model Hamiltonians and is discussed in [2]. We will provide a short sketch of
the proof in the context of continuous systems which we believe holds.
Before showing that, we need to understand that varying the flux parameters
is equivalent to varying the boundary conditions while keeping the Hamiltonian
fixed. We introduce the so-called ‘twisted boundary conditions’ where translat-
ing over the system size returns the state back to itself with an additional phase
factor

ψ (x1, ..., xi = Lx, ..., xN ,y) = e−iθxψ (x1, ..., xi = 0, ..., xN ,y) (2.26)
ψ (x, y1, ..., yi = Ly, ..., yN ) = e−iθyψ (x, y1, ..., yi = 0, ..., yN ) (2.27)

then we see that we can either solve for the ground-state of H (κ) in (2.7),
under standard periodic boundary conditions, or solve for the ground-state of
H (κ = 0) under twisted boundary conditions (2.26) and (2.27).
Now we go one step further by introducing a parameter r into the twisted
boundary conditions

ψ (x1, ..., xi = Lx, ..., xN ,y) = e−iθxψ (x1, ..., xi = 0, ..., xN ,y) (2.28)
ψ (x, y1, ..., yi = Ly, ..., yN ) = re−iθyψ (x, y1, ..., yi = 0, ..., yN ) (2.29)

Clearly r = 0 corresponds to the specific case of open boundary conditions along
y direction. The three parameters (r, θx, θy) now form a solid torus(Fig. 2.3)
over which the Berry curvature F = −iTr

{
P
[
∂θxP, ∂θyP

]}
is defined at each

point. Integrating at constant r = 1 recovers the bulk Chern number

C =
1

2π

ˆ 2π

0

ˆ 2π

0

F (r = 1, θx, θy) dθxdθy (2.30)
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In [2], the boundary conditions were added as tunneling terms between lattice
points at the boundaries of the sample. Hence the flux angles θx and θy become
actual parameters in the Hamiltonian that can be varied, and a Berry Curvature
of the ground state can then be associated with them. Here, the Berry Curvature
is due to the variation of the ground state due to changes in the boundary
conditions.
Now the Berry curvature F in terms of a Berry connection Aµ reads

F (1, θx, θy) =

(
∂Ay
∂θx

− ∂Ax
∂θy

)
|r=1

(2.31)

The fact that the Chern number is non-zero means that Aµ cannot be single-
valued and smooth on r = 1 or the integral would vanish via Stokes’s theorem.
The easiest way to express Aµ is to use two overlapping patches. For simplicity,
we choose the gauge where

A(1)
x (r, θ, ϕ) = −

ˆ ϕ

0

F
(
r, θx, θ

′
y

)
dθ′y, 0 < θ < 2π (2.32)

A(2)
x (r, θ, ϕ) = −

ˆ ϕ

−π
F
(
r, θx, θ

′
y

)
dθ′y,−π < θ < π (2.33)

Ay = 0 (2.34)

Then we can write the Chern number as

C = lim
ε→0+

− 1

2π

ˆ 2π−ε

ε

dθy

ˆ 2π

0

dθx
∂A(1)

x

∂θy

= lim
ε→0+

− 1

2π

ˆ 2π−ε

ε

dθy
∂

∂θy

(ˆ 2π

0

dθxA(1)
x

)
(2.35)

if we define

φ (r, θy) = −
ˆ 2π

0

dθxA(1)
x (r, θx, θy) (2.36)

Φ (r, θy) = exp (iφ (r, θy)) (2.37)

then we obtain

C =
1

2π

ˆ 2π−

0+

dθy
∂φ (1, θy)

∂θy

=
1

2πi

˛
r=1

Φ−1dΦ (2.38)

So the Chern number becomes a winding number of a φ (r, θy) field on the loop
r = 1. Looking back at (2.36), the phase field φ (r, θy) is simply the Berry Phase
associated with the flux θx being varied at constant r and θy.
If C 6= 0, it means that the phase field φ has to have vortex-like singularities
within the unit disk r ∈ [0, 1] , θy ∈ (0, 2π). Since the Berry Phase φ is always
well defined as long as the ground-state is non-degenerate and separated from
the first excited state by a finite energy gap, this means that the singularity has
to occur at a point where the ground state acquires degeneracy or the spectrum
becomes gap-less.
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In [2], it was shown that in general, the point where this singularity occurs
need not be at r = 0, which corresponds to open boundary conditions. This is
because they were working in the setting where at each point in space, there
were internal degrees of freedom (e.g. spin, amplitude in different orbitals)
for internal generators were introduced that coupled these internal degrees of
freedom across the boundary. In the simplified setting above, there were no such
internal degrees of freedom, and the singularity point always occurs at r = 0.
For a fixed r and θx, the parameter θy can be put back into the Hamiltonian as
a parameter rather than as a parameter in the boundary conditions. Then two
Hamiltonians H (θy) and H

(
θ′y
)
are unitarily equivalent

H
(
θ′y
)

= UH (θy)U† (2.39)

U = e
−i(θ′y−θy) y

Ly (2.40)

Therefore, we expect the two spectra of H (θy) and H
(
θ′y
)
to be equivalent. If

the spectrum were to become gap-less at some non-zero value r0, this would
imply that the spectrum is gap-less for all θy, and the phase field φ would have
a ring of singularities which would give a divergent Chern number. Hence the
spectrum has to become gap-less at a single point, and the only possibility is at
r = 0.

2.5 Relaxing the Constraint of Ground-State De-
generacy and Gapped Spectrum

The arguments above hold whenever the spectrum is gapped, and the many
particle ground-state is non-degenerate. This constraint is actually quite a se-
rious one, as it implies that in the non-interacting case, the Fermi energy has
to be in an energy gap of the single particle spectrum (or at the bottom of a
gap, depending on how we define Fermi energy). This means that perturbations
of the Hamiltonian that break these conditions would make the Chern number
ill-defined, and the whole idea of a topological invariant that is robust against
perturbations would fail.
For non-interacting particles, it can be shown under the framework of Non-
Commutative Geometry that the requirement for the Fermi energy to be in a
gap of the spectrum can be relaxed to the Fermi energy being in a mobility
gap. Physically, what this means is, as long as the Fermi energy is at a point
where the electronic states do not conduct, the Chern number is well defined and
robust against perturbations that do not suddenly introduce/remove conducting
electronic states, in particular, it is well defined in the presence of spatially
homogeneous random disorder where the spectrum could very easily be gap-less,
but mobility gaps where only localized states exist due to Anderson localization.
The existence of edge states robust against disorder can also be described in such
a picture.
The non-commutative Chern number coincides with the Chern number for a
clean system defined as an integral over the Brillouin Zone in the absence of
disorder. Unfortunately, a full discussion of the mathematical framework is far
beyond the scope of this report; we will simply list some of the more recent
reviews for the interested reader. [3, 4, 5]
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Figure 2.4: Density of States and Chern numbers for IQHE. Chern number is
undefined whenever the Fermi Energy is in a region of extended states, but well
defined otherwise.

2.6 Examples of Topological Hamiltonians

2.6.1 Integer Quantum Hall Effect(IQHE)
The first example of a Hamiltonian with non-zero Chern number is the integer
Quantum Hall effect, or simply, non-interacting charged particles in a uniform
magnetic field

h (κ) =
1

2m
(p− eA + ~κ)

2
+ V (2.41)

V is a possible random disordered potential. In the absence of disorder, the
problem can be exactly solved for example, in the Landau gauge A = −Byx̂.
Introducing the cyclotron frequency and magnetic length

ωc =
eB

n
(2.42)

lB =

√
~
eB

(2.43)

The result is energy levels(called Landau levels) given by En = ~ωc
(
n+ 1

2

)
.

For a system of size Lx, Ly = p
2πl2B
Lx

, there are p degenerate states for each level
n, which gives a degeneracy per unit area equal to 1

2πl2B
.

In the presence of disorder, the Landau levels are broadened into Landau bands,
which comprise of localized states in the band tails. Whenever the Fermi energy
lies in a region of localized states, the Chern number is well defined and is equal
to the number of Landau levels below the Fermi energy (Fig. 2.4).
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2.6.2 Chern Insulators
Chern insulators are a generalization of the IQHE, in the sense that instead of
having an infinite number of energy bands, we only consider a n level (band)
system in k space in the clean system limit without disorder. The simplest
Chern insulator would be a two-level system in k where the Hamiltonian is
given by

h (k) = ε (k) I + d (k) · σ (2.44)

where σ is the Pauli vector of Pauli matrices. Using (2.25), the Chern number
for this system can be computed as

C =
1

4π

ˆ
BZ

d̂ ·
(
∂kx d̂ ∧ ∂ky d̂

)
dk (2.45)

d̂ = d
|d| . Chern insulators have not be found experimentally to date; however,

topological insulators which are just a direct sum of two time-reversed copies of
a Chern insulator have been realized experimentally [4].
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Chapter 3

Numerical Methods and
Models

3.1 Disordered Potentials
The simplest disordered potential would be an additional random on site en-
ergy drawn from the interval

[
−W2 ,

W
2

]
, which is the most common form of a

disordered potential found in numerical studies. However, one might want to
generate a disordered potential with spatial correlations. For completeness, this
is discussed in the next section.

3.1.1 Numerical Generation of Correlated Disorder
The goal is to generate a random potential with a particular probability distri-
bution function at a point D (x)

P (V (r) = x) = D (x) (3.1)

and with an imposed spatial correlation

〈V (r)V (r′)〉 = C (r, r′) (3.2)

As we are dealing with a discrete set of grid points, it is more relevant to
formulate in terms a discrete field rather than a continuous one, i.e.

P (Vi = x) = D (x) (3.3)
〈ViVj〉 = Cij (3.4)

where each point is labeled by an index. Suppose we begin with generating a
set of uncorrelated random numbers with equal variance at a point V 2

0

〈ViVj〉 = V 2
0 δij (3.5)

now if we perform a (circular) discrete convolution with some kernel ui, the
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(a) Correlated Disorder with Wx = Wy = 2 (b) Correlated Disorder with Wx = Wy = 5

Figure 3.1

covariance matrix transforms as

〈
(V ⊗ u)i (V ⊗ u)j

〉
=

〈(
N∑
i′=1

u(i−i′)Vi′

) N∑
j′=1

u(j−j′)Vj′

〉

=

N∑
i′=1

N∑
j′=1

u(i−i′)u(j−j′) 〈Vi′Vj′〉

= V 2
0

N∑
i′=1

N∑
j′=1

u(i−i′)u(j−j′)δi′j′

= V 2
0

N∑
i′=1

u(i−i′)u(j−i′)

= V 2
0

N∑
k=1

u(k)u(j−i+k) (3.6)

where indices in brackets e.g. (i− i′) are to be taken modulo N due to circular
convolution. This means we can generate a grid of correlated numbers with
the desired covariance matrix Cij if the matrix is expressible in terms of a
circular autocorrelation of some kernel ui. It is also clear that if the kernel ui
is normalized such that

N∑
i=1

uiui = 1 (3.7)

the individual point variance 〈ViVi〉 is preserved.
To efficiently implement convolution numerically, we use FFTs and the convo-
lution theorem. In particular for Gaussian correlated disorder, we consider the
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normalized Gaussian kernel

u (x) =
1√√
πw

e−
x2

2w2 (3.8)

ũ (fx) =

ˆ ∞
−∞

u (x) e−i2πxfxdx

=

√
2
√
πwe−2w2π2f2

x (3.9)ˆ ∞
−∞

u (x)
2
dx = 1 (3.10)

C (x, x′) = V 2
0 e
− (x−x′)2

4w2 (3.11)

which results in a covariance function with correlation length 2w. The convo-
lution of two functions using Fourier transforms is just the inverse transform of
the products of the transforms

(g ⊗ h) (x) = F−1
[
g̃ (fx) h̃ (fx)

]
(3.12)

On the grid, the discretized Fourier transform will be given by

ũn =

√
2
√
πwe−2w2π2(n∆fx)2 (3.13)

if we consider the width w in units of the grid spacing ∆x,

w = Wx∆x (3.14)

and the fact that the spatial frequency grid spacing is equal to

∆fx =
1

Nx∆x
(3.15)

we get

ũn =

√
2
√
πWx∆xe−2π2(Wx

Nx
)
2
n2

(3.16)

We still need to impose that
∑Nx

n=1 unun = 1. From the continuous versions, we
get

1

Nx

Nx∑
n=1

ũnũn∆fx =

Nx∑
n=1

unun∆x

≈
ˆ ∞
−∞

u (x)
2
dx

= 1

⇒
N∑
n=1

ũnũn =
1

Nx∆fx

= ∆x

where the first equality follows from the discrete Parseval’s theorem for FFTs.
Hence the extra factor of ∆x in normalization factor for ũn under the root
should be removed, and the true frequency transfer function is given by

ũn =

√
2
√
πWxe

−2π2(Wx
Nx

)
2
n2

(3.17)
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(c) Typical Bulk State from lowest LL (d) Typical Bulk State from lowest LL

(e) Typical Edge State from lowest LL (f) Typical Edge State from lowest LL

Figure 3.2: Eigenenergies, Bulk state and Edge State densities, |ψ (r)|2 with
(left) and without (right) disorder for IQHE

In summary, firstly, a grid of uncorrelated (Gaussian) random numbers Vn with
a particular variance V 2

0 is generated. The FFT of Vn is multiplied by the
frequency transfer function ũn and the correlated field is obtained from the
IFFT of the product.
Fig. 3.1 shows two examples of correlated disorder generated by this algorithm
on a 100 by 100 grid.

3.2 Continuous Model: IQHE
For charged particle in a magnetic field we have the single particle Hamiltonian
given by

H =
1

2m
(p− eA)

2 (3.18)

Under the Landau gauge for magnetic field along z direction, A = −yBx̂. We
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obtain

H =
1

2m

(
−~2

(
∂2

∂x2
+

∂2

∂y2

)
+ (eB)

2
y2 − i2~eB ∂

∂x
y

)
= ~ωc

(
1

2

(
∂2

∂X2
+

∂2

∂Y 2

)
+

1

2
Y 2 − i ∂

∂X
Y

)
(3.19)

where the energy scale is now in units of ~ωc, ωc = eB
m and the length scale is

in units of the magnetic length X = x
lB
, lB =

√
~
eB .

Using central differences to express the derivatives, i.e.

d

dz
|i,i′ =

δi+1,i′ − δi−1,i′

2h
+O

(
h2
)

= Dz
i,i′ +O

(
h2
)

(3.20)

d2

dz2
|i,i′ =

δi+1,i′ − 2δi,i′ + δi−1,i′

h2
+O

(
h2
)

= Dzz
i,i′ +O

(
h2
)

(3.21)

We have the discretized Hamiltonian as

Hi,i′,j,j′ = ~ωc
(
−1

2

(
Dxx
i,i′δj,j′ + δi,i′D

yy
j,j′

)
+

1

2
Y 2δi,i′δj,j′ − iDx

i,i′Y δj,j′

)
(3.22)

This four index matrix can then be reshaped and diagonalized numerically on
a grid to obtain eigenvectors.
Boundary conditions depend on the matrix terms which join grid points within
the grid to points ‘outside’ of the grid, for example if the number of points along
x direction is Nx, given a term δNx,Nx+1, the point Nx + 1 is not a point on
the computational grid. Setting δNx,Nx+1 → δNx,1 results in periodic boundary
conditions, while setting δNx,Nx+1 = 0 gives open boundary conditions. From
this we can have three different types of geometries:

• Rectangular geometry, where we have open boundaries along both X and
Y

• Periodic strip geometry, where we have open boundaries along one direc-
tion, and periodic along the other

• Torus geometry, where we have periodic boundaries along both X and Y

In identifying the dominant numerical error term, we note that in the analytical
solution for infinite system, the variation along the Y direction is a Hermite
polynomial weighted Gaussian, while the variation along the X direction is an
oscillating plane wave with wave-number increasing linearly to the edge of the
grid. The numerical error stems from taking finite differences, hence we can
quantify the error term using the error bound on the approximation of the
derivative at the edge of the grid where the variation is the greatest. Hence we
expect the numerical error to be dominated by the finite difference approxima-
tion along X direction.
In order to get an estimate of the associated numerical error, we use the fact
that the analytical solution along the X direction is simply a plane wave. Errors
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associated with the central difference approximation are

E1 = −h
2f (3) (ξ)

6
(3.23)

E2 = −h
2f (4) (ξ)

12
(3.24)

for first and second order derivatives, where ξ is any value in the interval. Since
we are considering plane wave behavior, i.e. f (X) = exp (ikX), the magnitude
is bounded by unity, so the upper bound for the absolute errors are

E1 =
h2k3

6
(3.25)

E2 =
h2k4

12
(3.26)

At the edge of the grid, the wave number k =
Ly

2 , and the grid spacing h = Lx

Nx

where Nx is the number of grid points along the X direction. Hence we obtain

E1 =
L2
xL

3
y

48N2
x

(3.27)

E2 =
L2
xL

4
y

192N2
x

(3.28)

which gives an error estimate in terms of the size of the region and the number
of grid points used. It is obvious that the second error term scales very poorly
with the size of the system, hence such a continuous model is impractical on
very large computational domains.
Fig. 3.2 shows an example of a result using this method, for periodic strip
geometry for states close to the first Landau Level. In particular, we see that in
the absence of disorder, states in the center of the strip, the bulk states, are just
the typical Landau Level(LL) states, that is, localized Gaussians along Y , and
plane waves along X with energy eigenvalues

(
n+ 1

2

)
~ωc. For states near the

edge, the edge states, the energy eigenvalues are found in the gap between LLs.
In the presense of disorder with disorder strength W = 0.5~ωc, and correlation
lengths Wx = Wy = 0.2lB , we see that bulk states no longer behave like plane
waves along X. Edge states, however, remain extended along the edge, and
retain quasi-plane wave character along X. It should be noted that near the
center of the LL, extended bulk states are present, but these do not have plane
wave character along X.

3.3 Lattice Model: 1/2 BHZ Chern Insulator
The 1/2 BHZ Model is a Chern insulator model that comes from taking just one
spin component of a topological insulator model (the ‘full’ BHZ-Model). The
BHZ model is meant to describe the quantum spin Hall effect in HgTe/CdTe
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(a) Typical Bulk State, W = 0 (b) Typical Bulk State, W =
40

(c) Typical Edge State, W = 0 (d) Typical Edge State, W =
40

Figure 3.3: Bulk and Edge States |ψ (r)|2 without (left) and with (right) disorder

quantum wells. The Hamiltonian is given by the 4 by 4 matrix[6]

H (k) =

(
h (k) 0

0 h∗ (−k)

)
(3.29)

h (k) = ε (k) I + d (k) · σ (3.30)

ε (k) =
D

a2
(2− cos kxa− cos kya) (3.31)

d (k) =

 A
a sin (kxa)
A
a sin (kya)

M − 2B
a2 (2− cos kxa− cos kya)

 (3.32)

A,B,D,M are model parameters which depend on the width of the quantum
well, and a is the lattice constant. The four components of the wavefunction
represent the amplitudes in s↑, p↑, s↓, p↓ orbitals respectively. The spin up and
down blocks are decoupled and can be solved separately, each describes a Chern
insulator, hence the name ‘1/2 BHZ Model’.
The Hamiltonian h (k) has the following properties.

• There exists a bulk gap of width 2 |M | at k = 0

• The Chern number when the Fermi energy lies in the bulk gap is

C =


1 for 0 < M

B < 4

−1 for 4 < M
B < 8

0 otherwise

(3.33)
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The first can be seen from the fact that for any two level system, the energy
levels are given by

E± (k) = ε (k) + |d (k)|
⇒ E± (0) = ± |M | (3.34)

The second can be seen from (2.45). Hence it is the relative sign of M and B
that determine whether the system is in a topological phase or not.
In order to introduce boundaries and disorder, we need to transform to real
space. In real space representation, h takes the following form

h =
∑
i

εc†i ci +
∑
i

(
txc
†
i ci+x̂ + H.c

)
+
∑
i

(
tyc
†
i ci+ŷ + H.c

)
(3.35)

ε =

(
− 4(D+B)

a2 +M 0

0 − 4(D−B)
a2 −M

)
(3.36)

tx =

(
(D+B)
a2 −i A2a
−i A2a

(D−B)
a2

)
(3.37)

ty =

(
(D+B)
a2

A
2a

− A
2a

(D−B)
a2

)
(3.38)

where we have expressed h in terms of on-site creation and annihilation opera-
tions and matrices that act on the internal degrees of freedom that couple the
s and p orbitals.
Open boundary conditions are imposed by truncating the infinite lattice, while
periodic boundary conditions are imposed by joining the lattice sites on the
edge on the sample to sites on the opposite edge using the matrices tx or ty.
Numerically, we can solve for edge states in the gap and compare them with
bulk states. As in the IQHE, the edge states found in the gap remain as quasi-
plane waves along the boundary, while bulk states that are initially extended
through the sample become localized as shown in Fig. 3.3. In this example, we
have used open boundary conditions all around.
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Chapter 4

Q-Matrices in Real Space

4.1 Detection of Topological Materials through
Conductance Calculations

Although Chapter 2 described the characterization of topological materials
through the Chern number, direct calculation of the Chern number is in general
not practical numerically. For instance, a naive implementation would require
repeated diagonalization of the full Hamiltonian for multiple boundary condi-
tions, from which the projector P (θx, θy) can be calculated as a function of the
Fermi energy. For disordered simulations, the results would still require averag-
ing over disorder. Because the computational effort for numerical diagonaliza-
tion scales with V 3, where V is the volume of the sample, full diagonalization
is not a solution as for large samples.
However, due to bulk-edge correspondence, we know that the Chern number
gives the number of edge states in the bulk gap along each edge of the sample.
Because the counter-propagating edge states exist at the opposite edge of the
sample, whenever the Fermi energy lies in the bulk gap, the back scattering is
exponentially small for sufficiently wide sample, since in order for the electron
to scatter backward, it has to travel across the sample width to the other edge.
Since the transmission coefficient for each edge state is perfect, T = 1, the
Chern number is detected indirectly by calculating conductance and looking for
quantized values, for which efficient algorithms exist.

4.2 Q-Matrices

4.2.1 Definition of Proposed Variables
The idea proposed was the following: is there a way to observe a materials
topological behavior through the edge states.\? That is, other than measuring
conductance, which is somewhat indirect, or direct calculation of the Chern
number, which is numerically hopeless for large systems at present, is there
another variable that might give us some information on the Chern number?
The goal was to obtain characterization of the system only from states that are
close to the Fermi energy, instead of all states below Fermi energy.
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The proposed variables to study was a set of 2 by 2 matrices which we will call
Q-matrices. The inspiration for such a variable comes from the Caroli formula
for a two ideal lead conductance measurement[10]

G = −e
2

h
Tr ((ΣrL − ΣaL)GrLR (ΣrR − ΣaR)GaRL) (4.1)

Here Σr,aL,R are the retarded and advanced self-energies of the left and right leads,
and Gr,a are the Green’s functions connecting the left and right leads. Ignoring
the lead self-energies and focusing on the product

GrLRG
a
RL =

∑
n

n (xL)n∗ (xR)

EF − En + i0

∑
m

m (xR)m∗ (xL)

EF − Em − i0
(4.2)

=
∑
n

∑
m

[n (xL)m∗ (xL)] [n∗ (xR)m (xR)]

(EF − En + i0) (EF − Em − i0)
(4.3)

Here n (x) = 〈x|n〉 is the position representation of the nth single particle state.
Using

1

x− x0 ± i0
= P 1

x− x0
∓ iπδ (x− x0) (4.4)

and neglecting the principal value, we get

GrLRG
a
RL = π2

∑
n

∑
m

[n (xL)m∗ (xL)] [n∗ (xR)m (xR)] δ (EF − En) δ (EF − Em)

(4.5)
Firstly, the delta functions suggest that only states that are close to the Fermi
energy, and also close in energy contribute to the sum. Secondly, we have
grouped terms that are different eigenstates evaluated at the same position.
Hence the proposed variable to study is the set of 2 by 2 hermitian Q matrices

Qnm (r) =

(
n (r)n∗ (r) m (r)n∗ (r)
n (r)m∗ (r) m (r)m∗ (r)

)
(4.6)

that is, matrices formed by pairing up different eigenstates at the same position.
When we write m (r)n∗ (r), we mean

∑
imi (r)n∗i (r), where the sum over i

denotes summing over internal degrees of freedom such as spin or orbitals. Since
Qnm is hermitian, it can always be parametrized by a unitary matrix

Qnm (r) = U (r)D (r)U† (r)

U (r) =

(
cos θ2 i sin θ

2e
−iχ

i sin θ
2e
iχ cos θ2

)
that maps Qnm (r) to the unit sphere parametrized by θ (r) and χ (r). This is
equivalent to writing Q (r) = ε (r) I + d (r) · σ, where d̂ (r) would then give the
coordinates θ (r) and χ (r) on the unit sphere that Qnm (r) has been mapped
to.
The question now is where the eigenstates n (r) should come from. Since edge
states are present whenever a material has non-trivial topology, the proposal
was to begin with open boundary conditions on a rectangular sample and look
at the behavior of the vector d̂ along the sample boundary for pairs of edge
states that are close in energy found in the bulk gap in the presence of disorder.
These Q matrices exist in real space unlike the Fermi projector that exists in k
space or (θx, θy) space.
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(a) Infinite Strip (b) Finite Disk (c) Finite Rectangle

Figure 4.1: Different Geometries Considered. Arrows indicate edge states. First
two have analytic solutions in the clean limit.

4.2.2 Preliminary Problems
The first obvious problem with such a variable is that it is not gauge invariant,
multiplying either one of the eigenfunctions by a phase factor eiδ shifts the angle
χ by δ. Hence any physics we hope to obtain from Qnm or equivalently dnm
cannot depend on χ at a particular point in space, but should it exist, must
depend on some collective behavior of χ over all the space for example.
Secondly, the Qnm matrix is clearly not basis independent when there are de-
generate states. Unitary rotations in a degenerate subspace will produce cross
terms in Qnm (r). It is then clear that if there exists any physics related to these
variables when degeneracy is present, they have to come from some measure that
comes from the collection of all the Q matrices formed from all possible states
from the degenerate subspace that is invariant under unitary rotations.
Despite these problems, a study of these variables is still carried out in the next
section.

4.3 Results
We study the Q matrices formed from eigenstates of the 1/2-BHZ Chern insu-
lator. For numerical calculations, the following parameters are used

A = 364.5 meV nm

B = −686 meV nm2

D = −512 meV nm2

M = −10 meV

which correspond to a Chern number of C = 1.

4.3.1 Q-Matrices in the Clean Limit for Exactly Solvable
Geometry

Before introducing disorder, we first study the behavior of the Q matrices in the
clean limit, for which we have some analytic results. For analytic manipulation,
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we consider the small k approximation (continuum limit) of (3.30).

h (k) = ε (k) I + d (k) · σ
ε (k) = −Dk2

d (k) =

 Akx
Aky

M −Bk2


By making the Peierls substitutions kµ → −i∂µ, we can exactly solve the fol-
lowing situations

• Infinite strip geometry −L2 < y < L
2

• Finite disk geometry 0 < r < R

where in accordance with open boundary conditions, the wave function is set
to vanish at the boundaries. Analytically, a finite rectangular domain has no
closed form solution. A derivation of the eigenstates and eigenenergies can be
found in [7, 8]. We simply list the results that are relevant.

1. For infinite strip geometry, kx is still a good quantum number, and there
are two linear dispersions E± (kx) = −MD

B ± A
B

√
B2 −D2kx in the bulk

gap that correspond to the edge states on each side of the strip. In partic-
ular, at each E, there are two degenerate states propagating in opposite
directions, localized spatially at each edge.

2. The edge eigenstates found in the bulk gap for a finite disk geometry

take the form m (r, ϕ) = eimϕ
(
NmCm (r)
Cm+1 (r) eiϕ

)
, and are labeled by an

‘angular momentum’ index m. Here Cm (r) is some radial function and
Nm is a normalization factor.

3. The energy level spacing for eigenstates on the disk is constant in the large
R limit and given by ∆E = A

B

√
B2 −D2 1

R . In particular, all states are
non-degenerate.

Since we are ultimately interested in studying the behavior on a rectangular
finite domain, we focus on the finite disk geometry which resembles this situa-
tion the most. Since there is no degeneracy, we can construct the d (r) vector
associated with two arbitrary edge states in the gap without any ambiguity to
obtain the following form as a result of point 2.

dnm (r, ϕ) =

 Fnm (r) cos (n−m)ϕ
Fnm (r) sin (n−m)ϕ

Gnm (r)


Fnm = NnCn (r)NmCm (r) + Cn+1 (r)Cm+1 (r)

Gnm =
(

(NnCn (r))
2

+ Cn+1 (r)
2
)
−
(

(NmCm (r))
2

+ Cm+1 (r)
2
)

Hence at constant r = r0, the dnm vector precesses (n−m) times about the z-
axis as ϕ goes from 0 to 2π. In particular, we focus on the dnms that correspond
to (n−m) = 1, that is, nearest neighbors in energy. The d vector formed from
edge states that are nearest neighbors in energy precess once as we go around
the boundary of the sample.
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Figure 4.2: Examples of dnm precession about sample boundary

4.3.2 Q-Matrices on Rectangular Geometry
For the finite rectangular geometry, we diagonalize the Hamiltonian in (3.30)
numerically. In particular we present results for the Q matrices for eigenstates
on a square of 100 by 100 lattice points with a lattice constant of a = 5nm in
the next sections.

4.3.3 Clean Rectangular Geometry

For comparison with the finite disk, these are results for the rectangular geom-
etry without disorder.
Firstly, we numerically obtain 26 eigenstates in the gap. Labeling the eigenfunc-
tions from lowest to highest energy, the energies eigenvalues of the eigenfunctions
seem to increase linearly, similar to the case of the disk. Hence it makes sense
to label the eigenfunctions with an index n such that energy En ∝ n.
Next, we compute the vector dnm for pairs of eigenfunctions (n,m). Again,
similar to the disk case, dnm precesses about the z-axis (n−m) as it goes
around the boundary of the sample. This is calculated by summing the total
precession about the z-axis and divided by 2π, i.e. the winding number about
the z-axis. Fig. 4.2 shows some examples of the precession of dnm for particular
pairs of eigenstates.

4.3.4 Disordered Sample
The disorder model used was uncorrelated, uniformly generated random disorder
on the interval

[
−W2 ,

W
2

]
. In particular, we calculate the precession of dnm as a

function of En and W , for fixed (n−m) = 1. Hence, we get a phase diagram in
the (W,EF ) plane, that is, in the plane of the energy of one of the eigenstates
used to construct dnm, the disorder strength at a fixed level number difference
of 1. Fig. 4.3 shows this result, and the phase diagram of the conductance as
a function of the Fermi energy and disorder strength, obtained from previous
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(a) dnm Precession at fixed (n−m) = 1 in
(W,En) Plane

(b) Conductance Phase Diagram in (W,EF )
Plane

Figure 4.3

studies [9]. In other words, we form the Qnm matrices for states which are in
general, not edge states when the Fermi energy is not in the bulk gap.

4.4 Remarks and Discussion
The result above is that if we consider only nearest neighbors in energy, then the
dnm vector that characterizes theQnm matrix formed from these two eigenstates
would typically precess around the z-axis once whenever both states are edge
states around the boundary of the sample. So it looks as if there is some
winding number associated with this vector as we move around the boundary of
the sample. There is also some similarities at lower disorder between the phase
diagram for the winding number of dnm and the conductance phase diagram.
The question is whether this number is associated directly with some physical
property such as the Chern number, or is simply a re-statement of information
that we already know from bulk-edge correspondence. We argue that it is the
latter.
Let us look at the Qnm matrix decomposition more carefully. When character-
ized by the dnm vector, we decompose the Qnm matrix into components of a
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Pauli vector, so

d (r) =
1

2

 Q21 +Q12
1
i (Q21 −Q12)
Q11 −Q22


=

1

2

 n (r)m∗ (r) +m (r)n∗ (r)
1
i (n (r)m∗ (r)−m (r)n∗ (r))
n (r)n∗ (r)−m (r)m∗ (r)


=

 Re {n (r)m∗ (r)}
Im {n (r)m∗ (r)}

1
2

(
|n (r)|2 − |m (r)|2

)


≡ d

 sin θ cosχ
sin θ sinχ

cos θ


d = |d|

From which we can see that

tan θ =
|n (r)| |m (r)|

2
(
|n (r)|2 − |m (r)|2

)
tanχ =

Im {n (r)m∗ (r)}
Re {n (r)m∗ (r)}

So the angle θ is simply a measure of the ratio of the products of the amplitudes
to the difference of the amplitude squared, while the angle χ is a measure of
the phase difference between the two states. This explains the behavior of the
angle χ around the boundary when form Qnm from a pair of edge states.
From the infinite strip solution, we know that the edge states behave like quasi
one-dimensional channels, so we expect that when we put open boundary con-
ditions all around, only states that obey 1D ‘periodic boundary conditions’
around the perimeter of the sample will be allowed. So if we define a ‘wave-
number along the boundary’ k, it will be allowed to take values k = n2π

P , where
P is the sample perimeter. From the dispersion relation for the infinite strip,
this gives us that ∆E = A

B

√
B2 −D2∆k. This means that nearest neighbors in

energy will simply have a difference of wave-number of one unit. As a result, the
total phase difference along the boundary will just be 2π. This argument is con-
sistent with the energy eigenvalues of the finite disk geometry in the continuum
approximation.
The next question is why this remains true in the presence of disorder. We
use a somewhat semi-classical argument; that is, the length scale at which the
random disorder can be resolved by a particular edge state of wave-number k
depend on the wavelength associated with that k. Clearly, larger k states will
be able to resolve finer details and the reverse for smaller k states. Since the
dispersion is linear, this implies that states close in energy are also close in k, so
states that are close in energy ‘see’ the same details in the disordered potential.
As eigenstates close in energy are perturbed by the disordered potential in a
similar way, this explains why the total phase difference along the boundary
between neighboring states is resistant to disorder.
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Conversely, if the two states used are both bulk states, or if a bulk state is
paired with an edge state, there is no reason to expect any relationship between
the phases, hence the total phase difference along the sample boundary looks
random in the presence of disorder. In the presence of stronger disorder, the
bulk gap vanishes, and there are both edge states and bulk states coexisting at
similar energy levels. While coexistence of localized bulk states with extended
edge states does not affect the conductance, since localized states simply do not
contribute to conductance, the winding number of dnm is affected severely since
it becomes more likely to form ‘bulk state-bulk state’ pairs or ‘bulk state-edge
state’ pairs as opposed to only ‘edge state-edge state’ pairs.
Hence we reach the conclusion that the winding of dnm is simply a restatement
that for a non-trivial Chern number, there exist edge states that behave like
quasi one-dimensional channels which for this particular model, states close in
energy are perturbed in similar ways by the disordered potential due to the linear
dispersion. In general, this dnm winding number does not give the conductance,
and hence is not a measure of the Chern number.
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Chapter 5

Conclusion

From this perspective, it would seem almost certain that the original Q matrices
proposed are not good ‘topological variables’ to be used in characterizing the
conduction properties of a system. Although initially, it seemed that there
was some winding number associated with the angle χ, based on the argument
presented above, it is most likely a trivial effect due to the behavior of edge
states in such materials.
We revisit the original problem: is it possible to obtain the topological number
of a system simply by looking at some of the states close to the Fermi energy?
This question is clearly self-answering under the case of a restricted bulk-edge
correspondence setting, where edge states exist in the energy gap when open
boundaries are imposed when the material has non-vanishing Chern number,
but do not when the Chern number is zero. The problem then reduces to

1. Look for a bulk gap

2. Are there states in the gap after imposing open boundary conditions? If so,
count the number of edge states at each energy to obtain the topological
number.

However, the answer is not so clear in the more general setting where the Chern
number vanishes in a mobility gap rather than in a gap in the spectrum. In this
case there are always states present at all energies, but they are not necessarily
conducting. The Q matrices fail to have a winding number in such a regime,
where bulk and edge states coexist.
It is then clear that any proposed variable that is local in energy needs to have
the following property: it has to give the same results whether the Fermi energy
lies in a energy gap or a mobility gap, that is, it must treat localized bulk states
as equivalent to having no states at all.
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