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Abstract

We cover the steps involved in the study of the physics of an exact station-
ary asymptotically flat (4+1)-dimensional vacuum black hole solution de-
scribing the black Saturn system: a spherical (4+1)-dimensional black hole
surrounded by a (4+1)-dimensional black ring, balanced by angular momen-
tum. The black Saturn, discovered by Elvang and Figueras (2007), is the
very first balanced multiple-black-hole solution to be obtained. It exhibits
two-fold continuous non-uniqueness for fixed mass and angular momentum
measured at infinity as well as the General Relativistic phenomenon of ro-
tational frame-dragging by one black object on the other. Possible gener-
alisations include doubly spinning, charged as well as multiple-ringed black
Saturn configurations.
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Chapter 1

Introduction

1.1 Motivations

A black hole is a region of spacetime deformed by such a compact mass
that nothing, not even light, can escape it. Extensive research has been
done on black holes in (3+1)-dimensional General Relativity, given that we
live in an observably four-dimensional world. However, as it turns out, four-
dimensional spacetime has been restricting the possible solutions to Einstein’s
field equations, and in more recent years, attention has been turned to the
study of black holes in higher-dimensional spacetime. The motivation for
such an interest is the opportunity to analyse interesting physics phenomena
to give us a more comprehensive understanding of General Relativity and
other higher-dimensional theories, as well as the opportunity to study the
existence of various novel features of higher-dimensional black holes.

(i) Topologically non-spherical black holes
Hawking’s theorem of black hole topology (1972) [1] asserts that in the

case of four-dimensional asymptotically flat black holes satisfying the suit-
able energy conditions, the temporal cross-sections of the event horizon are
spherical, i.e., of topology S2. A few examples are the Schwarzschild (1916)
and Kerr (1963) black hole solutions. Generalising to n-dimensional space-
time, we get the Tangherlini (1963) and Myers-Perry (1986) black hole solu-
tions respectively, which have temporal cross-sections of higher dimensional
spheres. However, in 2002, Roberto Emparan and Harvey Reall discovered
the first black hole solution with a non-spherical event horizon, namely one
of topology S1 × S2: a (4+1)-dimensional black ring [2]. This solution will
be described in detail in Section 2.3.
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(ii) Violation of black hole uniqueness theorem
The uniqueness theorem of black holes [3] states that stationary, asymp-

totically flat vacuum black holes are uniquely determined by the asymptoti-
cally conserved physical quantities of mass, angular momentum and charge.
In other words, for every combination of mass, angular momentum and charge
measured at infinity, there is only one possible black hole solution. However,
in five dimensions and above, it has been proven that the uniqueness the-
orem holds only for static cases [4] and breaks down for stationary cases
[5]. Consequently, for the same mass, angular momentum and charge mea-
sured at infinity, there exist several black hole solutions. In addition, phase
transitions from one black hole to another are allowed, implying the clas-
sical instability of certain higher-dimensional black holes. Violation of the
uniqueness theorem will be further elaborated upon in Section 2.6.

(iii) Balanced multiple-black-hole solutions
Searching for balanced multiple-black-hole solutions has long been of in-

terest but also found to be difficult. In four-dimensional spacetime, the sim-
plest way to achieve a balanced static configuration between two Schwarzschild
black holes, for instance, is by adding enough electric charge to each hole
such that electromagnetic repulsion exactly cancels gravitational attraction.
Generalised to a multiple-black-hole solution, this gives the extremal multi-
Reissner Nordström non-vacuum black hole solution [6], where mass and
charge become equal, i.e., they are no longer independent of one another
but are subfamilies of the solution. For a vacuum solution, that is, without
charge, rotation is the only candidate for keeping black holes apart. How-
ever, for the four-dimensional double Kerr solution [7], spin-spin interaction
is not sufficiently strong to keep the system balanced; a topological defect is
required to keep the black holes apart and prevent collapse. The multi-Kerr
black hole spacetime thus suffers from conical singularities, either a rod or
strut between the holes providing pressure, or strings extending to infinity
providing tension. Such a solution is irregular which is undesirable.

In 2007, Elvang and Figueras superimposed two higher-dimensional black
hole solutions to obtain the very first exact balanced asymptotically-flat
multiple-black-hole solution known as the black Saturn solution [8]. The
black Saturn system comprises a five-dimensional Myers-Perry black hole and
a balanced five-dimensional Emparan-Reall black ring, which rotates such
that the overall angular momentum of the system generates the centrifugal
force necessary to keep the configuration in equilibrium. Black Saturn is thus
the first multiple-black-hole vacuum solution requiring no conical singularity
in order to achieve balance.
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1.2 Organisation of thesis

This thesis mainly studies the five-dimensional black Saturn solution. The
organisation of the thesis is as follows. Chapter 2 contains a review of two
well-known asymptotically flat vacuum black hole solutions in five dimen-
sions, namely the Myers-Perry black hole and the Emparan-Reall black ring,
with the focus being on the physical properties of these solutions. Chapter
3 introduces the black Saturn solution whereas Chapter 4 is an analysis of
the solution where the physics of the black Saturn metric is extracted and
accounted for. We end off with the future outlook for the study of black Sat-
urn solutions and other higher-dimensional black hole solutions in Chapter
5.
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Chapter 2

Known Five-Dimensional Black

Hole Solutions

2.1 Introduction

In this chapter, we will review two well-known asymptotically flat vacuum
black hole solutions, namely the five-dimensional singly rotating Myers-Perry
black hole and the Emparan-Reall black ring, which together form the black
Saturn system. Before that, however, there are several things to take note
of, as well as key ideas that need to be introduced.

Canonical form of a metric

The generic form for any metric is typically

ds2 =
D∑

a,b=1

gabdx
adxb . (2.1)

However, for vacuum solutions in stationary and axisymmetric spacetime [9],
we can find a coordinate system such that it takes the canonical form

ds2 =
D−2∑
i,j=1

Gijdx
idxj + f(dρ2 + dz2) , (2.2)

where

ρ =
√
|det(Gij)| , (2.3)

assuming that det(Gij) is not a constant. Gij and f are functions of only
ρ and z, which are called the Weyl coordinates [10], and f is known as the
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conformal factor. The canonical form of the metric is useful for calculating
rod structures.

Rod structures

The rod structure of a solution is characterised by rods, given by rod end-
points on the z-axis with ρ = 0, and the associated rod vectors. Let a solution
Gij(ρ, z) be given by N + 1 rods defined by N + 1 vectors v(k) which meet
in the z-values a1 < a2 < ... < aN . We introduce the notation a0 = −∞
and aN+1 = ∞ for the equations below to be more compactly written. The
solution Gij(ρ, z) thus has N + 1 rods [ak−1, ak] with k = 1, ..., N + 1 and
must satisfy this equation [9]:

Gij(0, z)v(k) = 0 for z ∈ [ak−1, ak], k = 1, ..., N + 1 , (2.4)

with v(k) 6= 0 for all k = 1, ...N + 1. In other words, the direction v(k) of
a given rod with rod interval [ak−1, ak] is the zero eigenvalue eigenvector of
Gij at ρ = 0. Since v(k) is defined as an eigenvector, it is only defined up
to a (non-zero) multiplicative factor. Both static and stationary black hole
solutions can be specified by rod structures but in this thesis we will focus
on the rod structures of stationary solutions.

There are two types of rods that are relevant to this thesis: spacelike rods
and timelike rods, which have positive and negative values, respectively, for
the following expression [11] that is a constant within the interior of each
individual rod:

|v(k)|2

ρ2f
. (2.5)

A spacelike rod represents an axis of rotation and is associated with the angle
swept out by an object orbiting around the black hole, i.e., the periodicity
of the solution:

4η = 2π lim
ρ→0

√
ρ2f

|v(k)|2
. (2.6)

The periodicity 4η of a regular solution is always 2π. The physical inter-
pretation for an irregular solution with non-2π periodicity is that black hole
configuration cannot be balanced without conical singularties appearing in
the spacetime. In addition, the direction of a spacelike rod must not contain
a time component, or else pathological closed timelike curves will be present.
We define the Euclidean surface gravity of a spacelike rod as

κE = lim
ρ→0

√
|v(k)|2
ρ2f

, (2.7)

5



such that 4η = 2π/κE. Correspondingly, we define the (non-Euclidean)
surface gravity of a timelike rod as

κ = lim
ρ→0

√
−
|v(k)|2
ρ2f

. (2.8)

A timelike rod represents the event horizon of a black hole and is associated
with the temperature measured at the event horizon, such that T = κ/(2π),
i.e.,

T =
1

2π
lim
ρ→0

√
−
|v(k)|2
ρ2f

. (2.9)

In the schematic diagrams of rod structures throughout this thesis, solid lines
denote spacelike rods and dotted lines denote timelike rods.

Physical quantities

Throughout this thesis, unless otherwise stated, the quantities of mass M
and angular momentum J are measured at infinity, whereas the quantities
of angular velocity Ω and temperature T are measured at the event horizon,
which has an area of AH . The index i = BH,BR specifies the black object
to which the property belongs: BH refers to the Myers-Perry black hole
whereas BR refers to the Emparan-Reall black ring. For example, MBH

means ‘mass of Myers-Perry black hole measured at infinity’.
Mass M and angular momentum J can be calculated by applying the

asymptotic coordinate transformation ρ = ρ(r, θ) , z = z(r, θ) to the metric
and Taylor expanding for r → ∞. For solutions that asymptote to five-
dimensional Minkowski-space, the corrections to the metric are related to M
and J [9] as follows:

gtt = −1 +
8M

3π

1

r2
+O

(
1

r4

)
, (2.10)

gtψ = −4Jψ
π

sin2 θ

r2

(
1 +O

(
1

r2

))
, gtφ = −4Jφ

π

cos2 θ

r2

(
1 +O

(
1

r2

))
.

(2.11)
Event horizon area AH can be calculated using the metric gHor of a spatial

cross-section of the horizon of a solution, which may be obtained from the
complete metric by setting dt = dY = 0, where Y is the coordinate for which
an expression can be substituted to give the location of the event horizon,
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e.g. dt = dr = 0 and r = r+ (2.17) for the Myers-Perry black hole. We then
use

AH =

∫∫∫ √
|det(gHor)|dXdφdψ , (2.12)

integrating φ and ψ from 0 to 2π, and X over an appropriate range as well.

2.2 Myers-Perry black hole solution

The Myers-Perry (MP) solution is a generalisation of the four-dimensional
Kerr solution to arbitrary higher dimensions, and it is non-trivial due to the
possibility of rotation in different planes in higher-dimensional spacetimes.
This vacuum solution is asymptotically flat, non-static but stationary and
has an event horizon of topology S3 in five-dimensional (5D) spacetime. The
metric of the 5D MP black hole [11] is

ds2 = −dt2 +
2m

Σ
(dt− a sin2 θ dψ − b cos2 θ dφ)2 + Σ

(
dr2

∆
+ dθ2

)
+ (r2 + a2) sin2 θ dψ2 + (r2 + b2) cos2 θ dφ2 , (2.13)

where

Σ = r2 + a2cos2 θ + b2sin2 θ , ∆ = r2
(

1 +
a2

r2

)(
1 +

b2

r2

)
− 2m, (2.14)

with m being the parameter for mass and a and b being the parameters for
rotation in the azimuthal directions ψ and φ respectively.

For the purposes of this thesis, it is sufficient to focus on the singly ro-
tating MP black hole, i.e., b = 0 and the black hole is rotating only in the
ψ-direction. The metric (2.13) with (2.14) then becomes

ds2 = −dt2 +
2m

Σ
(dt− a sin2 θ dψ)2 + Σ

(
dr2

∆
+ dθ2

)
+ (r2 + a2) sin2 θ dψ2 + r2 cos2 θ dφ2 , (2.15)

where
Σ = r2 + a2cos2 θ, ∆ = r2 − 2m+ a2 . (2.16)

Note that a = 0 in addition to b = 0 reduces (2.15) to the 5D Tangherlini
solution, and setting m = 0 as well returns us 5D Minkowski spacetime.

The location of the event horizon of the MP black hole is given by the
expression of r for which the inverse metric component grr vanishes, i.e.,
∆(r+) = 0 [11]:

r+ =
√

2m− a2 . (2.17)
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2.2.1 Rod structure

To express the metric (2.15) with (2.16) in canonical form (2.2) with D = 5
and indices t = 1, φ = 2 and ψ = 3, the following transformation [9] is
needed:

ρ =
1

2
r sin 2θ

√
∆ =

1

2
r sin 2θ

√
r2 − 2m+ a2 , (2.18)

z =
1

4
(2r2 − 2m+ a2) cos 2θ with b = 0. (2.19)

The Weyl coordinate ρ (2.18) is determined by computing

det(Gij) = r2 sin2 θ cos2 θ(−r2 + 2m− a2)

= −1

4
r2 sin2 2θ(r2 − 2m+ a2) , (2.20)

and demanding that
det(Gij) = −ρ2 . (2.21)

The conformal factor for the metric is

f =
2[2r2 + a2(1 + cos 2θ)]

[(a2 − 2m)(1 + cos 2θ) + 2r2][(a2 − 2m)(1− cos 2θ) + 2r2]
. (2.22)

Solving for ρ = 0, we find that the rod structure for the MP black hole
has two turning points located at (ρ = 0, z = z1 ≡ −α) or (r = r+, θ = π/2)
and (ρ = 0, z = z2 ≡ α) or (r = r+, θ = 0), where

α =
2m− a2

4
, (2.23)

and r+ is defined in (2.17). The two turning points partition the z-axis into
three rods, whose directions v(k) , k = 1, 2, 3 can be obtained by substituting
θ = π/2, r = r+ and θ = 0 respectively into the matrix G and calculating
the null eigenvector for the resulting matrix.

Figure 2.1 is a schematic diagram representing the rod structure for the
MP black hole:

· Rod 1 (leftmost rod) is a semi-infinite spacelike rod at (ρ = 0, z ≤ z1) or
(r ≥ r+, θ = π/2) with direction v(1) = (0, 1, 0).

· Rod 2 is a finite timelike rod at (ρ = 0, z1 ≤ z ≤ z2) or (r = r+, 0 ≤ θ ≤
π/2) with direction v(2) = 1

κ
(1, 0,Ω). The surface gravity κ of Rod

2 and angular velocity Ω of the MP black hole are given by:

κ =
1

2m

√
2m− a2 , (2.24)
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Ω =
a

2m
in theψ-direction. (2.25)

· Rod 3 (rightmost rod) is a semi-infinite spacelike rod at (ρ = 0, z ≥ z2)
or (r ≥ r+, θ = 0) with direction v(3) = (0, 0, 1).

The Euclidean surface gravities κE (2.7) of the spacelike rods 1 and 3 are as
follows:

κE,1 = 1 , κE,3 = 1 . (2.26)

The unity of both values of κE implies that both the angular coordinates φ
and ψ have standard periodicities of 2π.

Figure 2.1: Schematic diagram of MP rod structure

2.2.2 Physical quantities

We have all we need to obtain the expressions for the physical quantities of
the MP black hole.

The timelike rod of the MP black hole, Rod 2, gives us the angular velocity
(2.25) as well as the temperature of the MP black hole, since T = κ/(2π):

T =
1

4πm

√
2m− a2 , (2.27)

whereas event horizon area can be found using (2.12) with Y = r and by
integrating X = θ from 0 to π/2:

AH = 4π2m
√

2m− a2 . (2.28)

In the asymptotic region, i.e.,
√
ρ2 + z2 → ∞, with z/

√
ρ2 + z2 being

finite, Taylor expansion of each non-zero component of the metric Gij gives:

Gtt = −1 +
2m

r2
+O

(
1

r4

)
, Gtψ = −2ma sin2 θ

r2
+O

(
1

r4

)
, Gtφ = 0 ,

(2.29)
hence the mass and angular momentum of the MP black hole can be calcu-
lated by equating (2.29) with (2.10) and (2.11):

M =
3πm

4
, (2.30)
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Jψ =
π

2
ma , Jφ = 0 . (2.31)

Note that Jφ = 0 since the MP black hole is singly rotating and b = 0.
We introduce fixed mass reduced parameters [8] computed as follows for

5D metrics, which allow us to compare physical properties of configurations
with the same mass M :

ω =

√
8M

3π
Ω , τ =

√
32πM

3
T ,

aH =
3

16

√
3

πM3
AH , j =

3

4

√
3π

2M3
J . (2.32)

Thus, we obtain, from (2.25), (2.27), (2.28) and (2.31):

ω =

√
a2

2m
, τ =

√
2m− a2

2m
, (2.33)

aH = 2

√
2m− a2

m
, j = jψ =

√
a2

2m
, jφ = 0 . (2.34)

The reduced angular velocity and temperature are normalised such that ω =
1 for the maximally rotating (singular) MP black hole (j = 1) and τ = 1 for
the 5D Tangherlini black hole (j = 0). In fact, we note that ω = j due to
the choice made for these reduced parameters [8].

2.3 Emparan-Reall black ring solution

The 5D Emparan-Reall (ER) black ring is a black hole with a horizon topol-
ogy of S1×S2. The metric of the S1 singly rotating solution (no S2 rotation)
[11] is given by:

ds2 = −F (y)

F (x)

[
dt− κ

√
2λ(λ− µ)(1 + λ)

1− λ
1 + y

F (y)
dψ

]2
+

2κ2F (x)

(x− y)2

{
− G(y)

F (y)
dψ2 +

G(x)

F (x)
dφ2

+
(1− µ)2

1− λ

[
dx2

G(x)
− dy2

G(y)

]}
, (2.35)

where

F (x) = 1 + λx , G(x) = (1− x2)(1 + µx) ,

F (y) = 1 + λy , G(y) = (1− y2)(1 + µy) . (2.36)
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The parameters λ and µ are dimensionless and must lie in the range

0 ≤ µ ≤ λ < 1 . (2.37)

When λ = µ = 0, (2.35) with (2.36) becomes

ds2 = −dt2 +
2κ2

(x− y)2

[
(y2−1)dψ2 +(1−x2)dφ2 +

dx2

1− x2
− dy2

1− y2

]
, (2.38)

which is the metric for flat spacetime in the so-called ring coordinates [11].
The parameter κ > 0 has dimensions of length and sets the scale of the
solution. The coordinates x and y take the values

−1 ≤ x < 1, −∞ < y ≤ −1 , (2.39)

and hence ensure that gψψ > 0. The location of the event horizon of the ER
black ring is at y = −1/µ, where G(y) = 0.

A commonly used geometric visualisation for the ER black ring is the
toroidal shape of a donut, with the circular cross-section of the toroid not
comprised of a continuous set of points but a sequence of S2 spheres. Rotating
about the axis running through the hole in the toroid represents S1 rotation;
rotation of the sequence of spheres about their own individual axes represents
S2 rotation. Another way to visualise the black ring is by using the ring
coordinate diagram as in Figure 2.2: S1 rotation is given by selecting a pair
of circles symmetric in the y-axis and rotating them out of the plane of the
page.
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Figure 2.2: Emparan-Reall ring coordinate diagram

2.3.1 Rod structure

To express the metric (2.35) in canonical form (2.2) with D = 5 and indices
t = 1 , φ = 2 and ψ = 3, the following transformation [9] is needed:

ρ =
2κ2

√
−G(y)G(x)

(x− y)2

=
2κ2

√
(1− x2)(y2 − 1)(1 + µx)(1 + µy)

(x− y)2
, (2.40)

z =
κ2(1− xy)[2 + µ(x+ y)]

(x− y)2
. (2.41)

The Weyl coordinate ρ is determined by computing

det(Gij) = −4κ4(1− x2)(y2 − 1)(1 + µx)(1 + µy)

(x− y)4
, (2.42)

and demanding that
det(Gij) = −ρ2 . (2.43)
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The conformal factor for the metric is

f =
2(x− y)

κ2(µxy + µx+ µy − µ+ 2)(µxy − µx− µy − µ− 2)

× (1 + λx)

µxy + µ+ x+ y
. (2.44)

Solving for ρ = 0, we find that the rod structure for the ER black ring
has three turning points located at (ρ = 0, z = z1 ≡ −µκ2) or (x = −1, y =
−1/µ), (ρ = 0, z = z2 ≡ µκ2) or (x = 1, y = −1/µ), and (ρ = 0, z = z3 ≡
κ2) or (x = 1, y = −1). These three turning points partition the z-axis into
four rods, whose directions v(k), k = 1, 2, 3, 4 can be obtained by substituting
x = −1, y = −1/µ, x = 1 and y = −1 respectively into the matrix G and
calculating the null eigenvector for the resulting matrix.

Figure 2.3 is a schematic diagram representing the rod structure for the
ER black ring:

· Rod 1 (leftmost rod) is a semi-infinite spacelike rod at (ρ = 0, z ≤ z1) or
(x = −1, −1/µ ≤ y < −1) with direction v(1) = (0, 1, 0).

· Rod 2 is a finite timelike rod at (ρ = 0, z1 ≤ z ≤ z2) or (−1 ≤ x ≤ 1, y =
−1/µ) with direction v(2) = 1

κ
(1, 0,Ω). The surface gravity κ of

Rod 2 and angular velocity Ω of the S1-rotating ER black ring are
given by:

κ =
(1− λ)(1 + µ)

4κ(1− µ)

√
2

λµ(1 + λ)
, (2.45)

Ω =
1

2κ(1− µ)

√
2(1− λ)(λ− µ)

λ(1 + λ)
in theψ-direction. (2.46)

· Rod 3 is a finite spacelike rod at (ρ = 0, z2 ≤ z ≤ z3) or (x = 1, −1/µ ≤
y ≤ −1) with direction v(3) = 1

κE,3
(0, 1, 0). The Euclidean surface

gravity κE,3 of Rod 3 is given by:

κE,3 =
1 + µ

1− µ

√
1− λ
1 + λ

. (2.47)

· Rod 4 (rightmost rod) is a semi-infinite spacelike rod at (ρ = 0, z ≥ z3)
or (−1 < x ≤ 1, y = −1) with direction v(4) = (0, 0, 1).

The Euclidean surface gravities κE (2.7) of the spacelike rods 1 and 4 are
as follows:

κE,1 = 1 , κE,4 = 1 , (2.48)

13



thus both the angular coordinates φ and ψ have standard periodicities of 2π.

Figure 2.3: Schematic diagram of ER black ring rod structure

To eliminate the possibility of the solution bearing conical singularities,
we need to ensure that Rods 1 and 3, which have the same direction, have the
same Euclidean surface gravities, i.e., κE,1 = κE,3. We thus impose κE,3 = 1
to obtain the balance condition

λ =
2µ

µ2 + 1
. (2.49)

2.3.2 Physical quantities

We have all we need to obtain the expressions for the physical quantities of
the ER black ring.

The timelike rod of the ER black ring, Rod 2, gives us the angular velocity
(2.46) and the surface gravity associated with it gives the temperature of the
ER black ring because of the relation T = κ/(2π):

T =
1

8κπ
1− µ
µ

. (2.50)

Using (2.12) with Y = y and by integrating X = x from −1 to 1, the event
horizon area of the black ring is found to be

AH =
32κ3πµ2

1− µ
. (2.51)

In the asymptotic region, i.e.,
√
ρ2 + z2 → ∞, with z/

√
ρ2 + z2 being

finite, Taylor expansion of each non-zero component of the metric Gij gives:

Gtt = −1 +
8κ2µ

(1− µ)r2
+O

(
1

r4

)
,

Gtψ =
−8κ3µ sin2 θ

r2

(
1 + µ

1− µ

)3/2

,

Gtφ = 0 . (2.52)
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Note that the balance condition (2.49) has been imposed. By equating (2.29)
with (2.10) and (2.11), the mass and angular momentum in the ψ-direction
are

M =
3κ2πµ

1− µ
, (2.53)

J = 2κ3πµ

(
1 + µ

1− µ

)3/2

. (2.54)

Using (2.32), the fixed mass reduced parameters for (2.46), (2.50), (2.51)
and (2.54) are:

ω =

√
2µ

1 + µ
, τ =

√
1− µ

2µ
,

aH = 2
√
µ(1− µ) , j =

1

2

√
(1 + µ)3

2µ
. (2.55)

Plotting reduced event horizon area aH against reduced angular momen-
tum j in Figure 2.4, we see that the ER black ring has two types, as shown by
the two branches in the ‘phase diagram’: fat rings and thin rings; fat rings
are on the lower branch while thin rings are on the upper branch. Their
shapes can be visualised as in Figure 2.5.

Figure 2.4: Violation of Uniqueness Theorem by ER black rings
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Figure 2.5: Visualisation of fat and thin rings [12]

If we include the graph for the MP black hole as well, we can see in Figure
2.6 that for a given range of parameters for angular momentum, there exist
3 different black hole solutions: two 5D black ring solutions: a fat black ring
and thin black ring solution, and a 5D MP solution. At infinity, there is no
way to differentiate these solutions.

Figure 2.6: Violation of Uniqueness Theorem by MP black hole alongside

ER black rings: The solid black line represents the MP black hole and the

dashed black line represents the ER black rings.
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Chapter 3

Black Saturn solution

In this chapter, we introduce and analyse the ψ-rotating black Saturn solution
comprised of an MP black hole and an ER black ring, in order to extract
expressions for the physical quantities of black Saturn.

3.1 The metric

The black Saturn metric written in canonical form [8] is given as

ds2 = −Hy

Hx

[
dt+

(
ωψ
Hy

+ q

)
dψ

]2
+Hx

{
k2P (dρ2 +dz2)+

Gy

Hy

dψ2 +
Gx

Hx

dφ2

}
.

(3.1)
Note that the conformal factor f has been written as k2HxP , where k is a
constant and Gx,y, Hx,y and P are functions of the Weyl coordinates ρ and
z. The metric (3.1) involves the functions

Gx =
ρ2µ4

µ3µ5

, (3.2)

Gy =
µ3µ5

µ4

, (3.3)

P = (µ3µ4 + ρ2)2(µ1µ5 + ρ2)(µ4µ5 + ρ2) , (3.4)

and

Hx = F−1[M0 + c21M1 + c22M2 + c1c2M3 + c21c
2
2M4] ,

Hy = F−1
µ3

µ4

[
M0

µ1

µ2

− c21M1
ρ2

µ1µ2

− c22M2
µ1µ2

ρ2
+ c1c2M3 + c21c

2
2M4

µ2

µ1

]
,

(3.5)
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where

M0 = µ2µ
2
5(µ1 − µ3)

2(µ2 − µ4)
2(ρ2 + µ1µ2)

2(ρ2 + µ1µ4)
2(ρ2 + µ2µ3)

2 ,

M1 = µ2
1µ2µ3µ4µ5ρ

2(µ1 − µ2)
2(µ2 − µ4)

2(µ1 − µ5)
2(ρ2 + µ2µ3)

2 ,

M2 = µ2µ3µ4µ5ρ
2(µ1 − µ2)

2(µ1 − µ3)
2(ρ2 + µ1µ4)

2(ρ2 + µ2µ5)
2 ,

M3 = 2µ1µ2µ3µ4µ5(µ1 − µ3)(µ1 − µ5)(µ2 − µ4)(ρ
2 + µ2

1)(ρ
2 + µ2

2)

× (ρ2 + µ1µ4)(ρ
2 + µ2µ3)(ρ

2 + µ2µ5) ,

M4 = µ2
1µ2µ

2
3µ

2
4(µ1 − µ5)

2(ρ2 + µ1µ2)
2(ρ2 + µ2µ5)

2 , (3.6)

and

F = µ1µ5(µ1 − µ3)
2(µ2 − µ4)2(ρ2 + µ1µ3)(ρ

2 + µ2µ3)(ρ
2 + µ1µ4)

× (ρ2 + µ2µ4)(ρ
2 + µ2µ5)(ρ

2 + µ3µ5)
5∏
i=1

(ρ2 + µ2
i ) . (3.7)

The off-diagonal part of the metric contains

q = k
c2
c1

a2 − a1
a2 − a4

√
2(a3 − a1)(a4 − a1)

a5 − a1
, (3.8)

and

ωψ = 2
c1R1

√
M0M1 − c2R2

√
M0M2 + c21c2R2

√
M1M4 − c1c22R1

√
M2M4

F
√
Gx

,

(3.9)
where

Ri =
√
ρ2 + (z − ai)2 , i = 1, 2, 3, 4, 5 (3.10)

and c1, c2 > 0 are to be fixed in Section 3.4 for the desired physical conditions.
Finally, we have

µi =
√
ρ2 + (z − ai)2 − (z − ai) , i = 1, 2, 3, 4, 5 (3.11)

where a1 < a5 < a4 < a3 < a2.

3.2 Rod structure

We now analyse the rod structure of black Saturn at ρ = 0.

Figure 3.1: Schematic diagram of black Saturn rod structure
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Figure 3.1 is a schematic diagram representing the rod structure for the
black Saturn. With t = 1, φ = 2, ψ = 3, we have:

· Rod 1 (leftmost rod) is a semi-infinite spacelike rod at (ρ = 0, z ≤ a1)
with direction v(1) = 1

κE,1
(0, 1, 0).

· Rod 2 is a finite spacelike rod at (ρ = 0, a1 ≤ z ≤ a5) with direction
v(2) = 1

κE,2
(0, 1, 0).

· Rod 3 is a finite timelike rod at (ρ = 0, a5 ≤ z ≤ a4) with direction
v(3) = 1

κ3
(1, 0,ΩBR), where ΩBR is the angular velocity of the ER

black ring in the ψ-direction and will be given in Section 4.3.1.

· Rod 4 is a finite spacelike rod at (ρ = 0, a4 ≤ z ≤ a3) with direction
v(4) = 1

κE,4
(0, 1, 0).

· Rod 5 is a finite timelike rod at (ρ = 0, a3 ≤ z ≤ a2) with direction
v(5) = 1

κ5
(1, 0,ΩBH), where ΩBH is the angular velocity of the MP

black hole in the ψ-direction and will be given in Section 4.3.1 as
well.

· Rod 6 (rightmost rod) is a semi-infinite spacelike rod at (ρ = 0, z ≥ a2)
with direction v(6) = 1

κE,6
(0, 0, 1).

The surface gravities κ (2.8) of the timelike rods 3 and 5, and the Eu-
clidean surface gravities κE (2.7) of the spacelike rods 1, 2, 4 and 6 are as
follows:

κE,1 =
2(a2 − a4)(a3 − a1)

k[c1c2(a5 − a1) + 2(a2 − a4)(a3 − a1)]
, (3.12)

κE,2 =

√
2(a2 − a4)

√
a3 − a1

√
a4 − a1

k
√
a5 − a1[c1(a2 − a4) + c2(a4 − a1)]

, (3.13)
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κ3 =

[(
c21c

2
2(a2 − a4)2(a5 − a1)2(a2 − a5)(a3 − a1)(a3 − a5)(a4 − a1)

+ 4c1c2(a2 − a4)3(a3 − a1)2(a2 − a5)(a3 − a5)(a4 − a1)(a5 − a1)
+ 4(a2 − a4)4(a3 − a1)3(a2 − a5)(a3 − a5)(a4 − a1)

)/(
2k2[c21c

2
2(a2 − a1)2(a2 − a4)2(a3 − a4)2(a4 − a5)(a5 − a1)2

− 2c1c
3
2(a2 − a1)2(a2 − a4)(a2 − a5)(a3 − a1)(a3 − a4)

× (a4 − a1)(a4 − a5)(a5 − a1)
− 4c1c2(a2 − a1)2(a2 − a4)3(a3 − a1)(a3 − a4)(a4 − a1)

× (a4 − a5)(a5 − a1)
+ c42(a2 − a1)2(a2 − a5)2(a3 − a1)2(a4 − a1)2(a4 − a5)
+ 4c22(a2 − a1)2(a2 − a4)2(a2 − a5)(a3 − a1)2(a4 − a1)2(a4 − a5)

+ 4(a2 − a1)2(a2 − a4)4(a3 − a1)2(a4 − a1)2(a4 − a5)]
)]1/2

,(3.14)

κE,4 =

√
a2 − a4

√
a2 − a5

√
a3 − a1

√
a3 − a5

k(a3 − a4)(a2 − a1)
, (3.15)

κ5 =

[[
c21c

2
2(a2 − a3)(a2 − a4)(a2 − a5)(a5 − a1)2

+ 4c1c2(a2 − a3)(a2 − a4)2(a2 − a5)(a3 − a1)(a5 − a1)
+ 4(a2 − a3)(a2 − a4)3(a2 − a5)(a1 − a3)2

]/[
2k2c42(a2 − a1)2(a2 − a5)2(a3 − a1)2

+ 8k2c22(a2 − a1)2(a2 − a3)(a2 − a4)(a2 − a5)(a3 − a1)2

+ 8k2(a2 − a1)2(a2 − a3)2(a2 − a4)2(a3 − a1)2
]]1/2

, (3.16)

κE,6 =
2(a2 − a4)(a3 − a1)

k[c1c2(a5 − a1) + 2(a2 − a4)(a3 − a1)]
. (3.17)

3.3 Asymptotic behaviour

The Weyl coordinates of the black Saturn solution in terms of the asymptotic
coordinates [8] are

ρ =
1

2
r2 sin 2θ, z =

1

2
r2 cos 2θ , (3.18)

where we have
dρ2 + dz2 = r2(dr2 + r2dθ2) (3.19)
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when r →∞. Taylor expansion near the asymptotic limit of r2 = 2
√
ρ2 + z2 →

∞ gives the asymptotic conformal factor f → finf and the asymptotic metric
components:

finf =
k2

r2

[
1 +

c21c
2
2(a5 − a1)2 + 4c1c2(a2 − a4)(a3 − a1)(a5 − a1)

4(a2 − a4)2(a3 − a1)2

]
, (3.20)

g11,inf = −1 +
[
2c21c

2
2(a5 − a1)2(a1 − a2 − a3 + a4)

− 8c1c2(a2 − a4)(a3 − a1)(a3 − a4)(a5 − a1)
+ 4c22(a2 − a1)2(a3 − a1)2

− 8(a2 − a4)2(a3 − a1)2(a1 − a2 + a3 − a4)
]

/[
r2(c21c

2
2(a5 − a1)2 + 4c1c2(a2 − a4)(a3 − a1)(a5 − a1)

+ 4(a2 − a4)2(a3 − a1)2)
]
, (3.21)

g12,inf = 0 , (3.22)

g13,inf =
sin2 θ

r2
[
4c31c

2
2(a2 − a1)(a2 − a4)(a5 − a1)3

− 4c21c
3
2(a2 − a1)(a3 − a1)(a5 − a1)2

× (a1 − 2a2 − a3 + a4 + a5)

+ 16c21c2(a2 − a1)(a2 − a4)2(a3 − a1)(a5 − a1)2

+ 8c1c
2
2(a2 − a1)(a2 − a4)(a3 − a1)2(a5 − a1)

× (a1 + a2 + 2a3 − 2a4 − 2a5)

+ 16c1(a2 − a1)(a2 − a4)3(a3 − a1)2(a5 − a1)
− 8c32(a2 − a1)3(a3 − a1)3

+ 16c2(a2 − a1)(a2 − a4)2(a3 − a1)3

× (2a1 − a2 + a3 − a4 − a5)
]/[

c31c
3
2(a5 − a1)3 + 6c21c

2
2(a2 − a4)(a3 − a1)(a5 − a1)2

+ 12c1c2(a2 − a4)2(a3 − a1)2(a5 − a1)
+ 8(a2 − a4)3(a3 − a1)3

]
, (3.23)

g22,inf = r2 cos2 θ , (3.24)

g23,inf = 0 , (3.25)

g33,inf = r2 sin2 θ . (3.26)
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Since the asymptotic conformal factor (3.20) is, to leading order, 1
r2

, we
demand

k =
2(a2 − a4)(a3 − a1)

c1c2(a5 − a1) + 2(a2 − a4)(a3 − a1)
, (3.27)

so that the asymptotic metric takes the form

ds2 = −dt2 + dr2 + r2dθ2 + r2 cos2 θdφ2 + r2 sin2 θdψ2 , (3.28)

and the solution is asymptotically flat as long as the angles φ and ψ have
periodicities:

4φ = 4ψ = 2π . (3.29)

3.4 Regularity and balance

The black Saturn metric components gtt and gψψ at ρ = 0 are found to
contain a (z − a1)−1 divergence which implies the presence of naked conical
singularities in the rod structure around z = a1. To eliminate them, we set

c1 =

√
2(a3 − a1)(a4 − a1)

a5 − a1
. (3.30)

The metric at ρ = 0 thus becomes completely smooth across z = a1, and
κE,1 = κE,2.

To ensure a periodicity 4η = 2π/κE of 2π for every angle in the solution,
or in other words, to ensure regularity on every spacelike rod, κE must be
equal to 1. The expressions for k and c1 respectively given by (3.27) and
(3.30) guarantee that κE,1 = κE,2 = κE,6 = 1, i.e., 4φ = 2π for Rods 1 and
2; 4ψ = 2π for Rod 6. For κE,4 = 1, however, we additionally require

c2 = −
√

2
(√

a2 − a4
√
a3 − a1(a1a3 − a1a4 − a2a3 + a2a4)

−
√
a2 − a5

√
a3 − a5(a1a2 − a1a4 − a2a3 + a3a4)

)
/(√

a2 − a5
√
a3 − a1

√
a3 − a5

√
a4 − a1

√
a5 − a1

)
.(3.31)

It is convenient to redefine the parameter c2 by introducing the dimen-
sionless parameter c2 [8] as

c2 =
c2

c1(1− a4−a1
a2−a1 )

, (3.32)
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and with (3.30) and (3.31), we have the balancing or equilibrium condition:

c2 =
[√
a2 − a5

√
a3 − a5(a1a2 − a1a4 − a2a3 + a3a4)

−
√
a2 − a4

√
a3 − a1(a1a3 − a1a4 − a2a3 + a2a4)

]/[√
a2 − a5

√
a3 − a5(a4 − a1)(a3 − a1)

(
1− a4 − a1

a2 − a1

)]
.(3.33)

3.5 Horizons

The metric of the spatial cross-sections of the ER black ring and MP black
hole horizons can be obtained from the rod structure of black Saturn by
Taylor expanding the metric components of black Saturn about ρ = 0, since
the horizons are located at ρ = 0 for certain ranges of z. The Taylor expan-
sion of the gφφ and gψψ components give the gHorφφ and gHorψψ components of
the near-horizon metric, whereas that of the conformal factor gives the gHorzz

component.

ER black ring horizon geometry

The ER black ring horizon is located at ρ = 0 for a5 ≤ z ≤ a4. The spatial
cross-section of the near-horizon metric is

ds2BR =
2(a4 − z)(z − a5)

a3 − z
dφ2 + s2BRf(z)(a3 − z)dψ2 +

dz2

(a4 − z)(z − a5)f(z)
,

(3.34)
where the constant sBR is, in terms of k, c1, c2 and ai,

sBR =

[
k2(a4 − a5)

[
c41c

4
2(a2 − a5)2(a3 − a1)2(a4 − a1)2

− 2c41c
3
2(a2 − a1)(a2 − a5)(a3 − a1)(a3 − a4)(a4 − a1)(a5 − a1)

+ c41c
2
2(a2 − a1)2(a3 − a4)2(a5 − a1)2

+ 4c21c
2
2(a2 − a1)2(a2 − a5)(a3 − a1)2(a4 − a1)2

− 4c21c2(a2 − a1)3(a3 − a1)(a3 − a4)(a4 − a1)(a5 − a1)
+ 4(a2 − a1)4(a3 − a1)2(a4 − a1)2

]/[
(a2 − a5)(a3 − a5)(a3 − a1)(a4 − a1)

×
(
c41c

2
2(a5 − a1)2 + 4c21c2(a2 − a1)(a3 − a1)(a5 − a1)

+ 4(a2 − a1)2(a3 − a1)2
)]]1/2

, (3.35)
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and the function f(z) is

f(z) = 4(z − a1)(a2 − z)(a2 − a1)2(a2 − a5)(a3 − a1)(a3 − a5)(a4 − a1)/[
k2(a4 − a5)

(
c21(a2 − z)2(a4 − z)(a2 − a1)2(a5 − a1)2

+ 2c21c2(z − a1)(a2 − z)(a4 − z)(a2 − a1)(a2 − a5)(a4 − a1)(a5 − a1)
+ c21c

2
2(z − a1)2(a4 − z)(a2 − a5)2(a4 − a1)2

− 2(a3 − z)(z − a5)(a2 − a1)4(a4 − a1)2
)]

. (3.36)

Note that sBR ≥ 0 and that f(z) is positive for a5 ≤ z ≤ a4. The coordinate
ψ parametrises a circle whose radius is a function of z, and the coordinates
(z, φ) parametrise a two-sphere deformed by the presence of the MP black
hole. Nevertheless, the topology of the horizon is S1 × S2.

MP black hole horizon geometry

The MP black hole horizon is located at ρ = 0 for a3 ≤ z ≤ a2. The spatial
cross-section of the near-horizon metric is

ds2BR =
2(z − a3)(z − a5)

z − a4
dφ2 + s2BHg(z)(a2 − z)dψ2

+
(z − a4)dz2

(a2 − z)(z − a3)(z − a5)g(z)
, (3.37)

where the constant sBH is

sBH =

[
k2(a3 − a1)2

[
c41c

4
2(a2 − a4)2(a2 − a5)2

+ 4c21c
2
2(a2 − a1)2(a2 − a3)(a2 − a4)(a2 − a5)

+ 4(a2 − a1)4(a2 − a3)2
]/[

(a2 − a3)(a2 − a4)(a2 − a5)

×
(
c41c

2
2(a5 − a1)2 + 4c21c2(a2 − a1)(a3 − a1)(a5 − a1)

+ 4(a2 − a1)2(a3 − a1)2
)]]1/2

, (3.38)
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and the function g(z) is

g(z) = 4(z − a1)(z − a4)(a2 − a1)2(a2 − a3)(a2 − a4)(a2−5)(a3 − a1)2/[
k2
(
c21(a2 − z)2(z − a3)(a2 − a1)2(a2 − a3)2(a5 − a1)2

+ 2c21c2(z − a1)(z − a3)(a2 − z)(a2 − a1)(a2 − a3)(a2 − a4)
× (a2 − a5)(a3 − a1)(a5 − a1)

+ c21c
2
2(z − a1)2(z − a3)(a2 − a4)2(a2 − a5)2(a3 − a1)2

+ 2(z − a4)(z − a5)(a2 − a1)4(a2 − a3)2(a3 − a1)2
)]

. (3.39)

Note that sBH ≥ 0 and that g(z) is positive for a3 ≤ z ≤ a2, so for sBH > 0,
the horizon is topologically a distorted S3 due to rotation as well as the
presence of the ER black ring.

3.6 Physical quantities

We have all we need to obtain the expressions for the physical quantities of
black Saturn in terms of k, c1, c2 and ai.

3.6.1 Angular velocity

The directions of the timelike rod vectors in Section 3.2, namely v(3) =
1
κ3

(1, 0,ΩBR) and v(5) = 1
κ3

(1, 0,ΩBH), give the individual angular velocities
of the ER black ring and MP black hole:

ΩBR =
[
2c1(a2 − a1)2(a3 − a1)(a5 − a1) + c31c2(a2 − a1)(a5 − a1)2

+ c2(a2 − a5)(a4 − a1)
]/[

2(a2 − a1)
(
c21c

2
2(a2 − a5)(a3 − a1)(a4 − a1)

− c21c2(a2 − a1)(a3 − a4)(a5 − a1)

+ 2(a2 − a1)2(a3 − a1)(a4 − a1)
)]
, (3.40)

ΩBH =
[
c21c2(a5 − a1) + 2(a2 − a1)(a3 − a1)

]
×
[
c1c2(a2 − a4)(a2 − a5)(a3 − a1)− c1(a2 − a1)(a2 − a3)(a5 − a1)

]/[
(a2 − a1)(a3 − a1)2

(
c21c2(a2 − a4)(a2 − a5)

+ 2(a2 − a1)2(a2 − a3)
)]
. (3.41)

In general, ΩBR 6= ΩBH .
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3.6.2 Temperature

The surface gravities of the timelike rods in Section 3.2, namely κ3 (3.14)
and κ5 (3.16), give the individual temperatures of the ER black ring and MP
black hole, since T = κ/(2π):

TBR =
1

4πk

[√
2(a2 − a5)(a3 − a1)(a3 − a5)(a4 − a1)

× [2(a1a2 + a1a3 − a2a3)− c21c2(a5 − a1)
]

/[√
a4 − a5

(
c21c

2
2(a2 − a5)(a3 − a1)(a4 − a1)

− c21c2(a2 − a1)(a3 − a4)(a5 − a1)

+ 2(a2 − a1)2(a3 − a1)(a4 − a1)
)]
, (3.42)

TBH =
1

4πk

[√
2(a2 − a3)(a2 − a4)(a2 − a5)

× [2(a21 − a1a2 − a1a3 + a2a3) + c21c2(a5 − a1)
]

/[
(a3 − a1)

(
c21c

2
2(a2 − a4)(a2 − a5)

+ 2(a2 − a1)2(a2 − a3)
)]
. (3.43)

3.6.3 Mass and angular momentum

The asymptotic metric (3.21) given in Section 3.3 allows us to compute the
mass and angular momentum of black Saturn, as measured at infinity, using
(2.10) and (2.11):

M =
3π

4

[
c41c

2
2(a5 − a1)2(a1 − a2 − a3 + a4)

+ 2c21c
2
2(a2 − a1)2(a3 − a1)2

− 4c21c2(a2 − a1)(a3 − a1)(a3 − a4)(a5 − a1)

− 4(a2 − a1)2(a3 − a1)2(a1 − a2 + a3 − a4)
]

/[
c21c2(a5 − a1) + 2(a2 − a1)(a3 − a1)

]2
, (3.44)
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J =
π(a2 − a1)

(c21c2(a5 − a1) + 2(a2 − a1)(a3 − a1))3

×
[
c41c

3
2(a3 − a1)(a5 − a1)2(a1 − 2a2 − a3 + a4 + a5)

− c41c22(a2 − a1)(a5 − a1)3

+ 2c21c
3
2(a2 − a1)2(a3 − a1)3

− 2c21c
2
2(a2 − a1)(a3 − a1)2(a5 − a1)(a1 + a2 + 2a3 − 2a4 − 2a5)

− 4c21c2(a2 − a1)2(a3 − a1)(a5 − a1)2

− 4c2(a2 − a1)2(a3 − a1)3(2a1 − a2 + a3 − a4 − a5)

− 4(a2 − a1)3(a3 − a1)2(a5 − a1)
]
. (3.45)

3.6.4 Horizon area

The near-horizon metrics (3.34) and (3.37) given in Section 3.5 allow us to
compute the individual event horizon areas of the ER black ring and MP
black hole, using (2.12) and by integrating X = z from one endpoint of their
respective timelike rods to the other endpoint1, giving:

AH,BR = 4π2k

√
2(a4 − a5)3

(a2 − a5)(a3 − a1)(a3 − a5)(a4 − a1)
×
[
2(a2 − a1)2(a3 − a1)(a4 − a1)
− c21c2(a2 − a1)(a3 − a4)(a5 − a1)
+ c21c

2
2(a2 − a5)(a3 − a1)(a4 − a1)

]/[
c21c2(a5 − a1) + 2(a2 − a1)(a3 − a1)

]
, (3.46)

AH,BH = 4π2k

√
2(a2 − a3)

(a2 − a4)(a2 − a5)
(a3 − a1)

× 2(a2 − a3)(a2 − a1)2 + c21c
2
2(a2 − a4)(a2 − a5)

2(a2 − a1)(a3 − a1) + c21c2(a5 − a1)
. (3.47)

It is easy to see that the expressions for temperature, mass and event
horizon area are all real and positive for a1 < a5 < a4 < a3 < a2 for all real
c1 and c2.

1Y is irrelevant here, since the near-horizon metric was obtained from the black Saturn

rod structure instead of the complete black Saturn metric.
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Chapter 4

The physics of black Saturn

4.1 Introduction

In this chapter, we will study the physical properties of black Saturn and how
they vary with angular momentum, but not before reviewing the properties
of the MP black hole and ER black ring solutions, which will be helpful for
understanding the physics of black Saturn.

4.2 MP black hole and ER black ring physics

The behaviour of the MP black hole and ER black ring properties: event hori-
zon area, angular velocity and temperature, as angular momentum squared
is varied, are respectively shown in Figures 4.1 to 4.3. The graphs for the
MP black hole are given by the solid black lines whereas the graphs for the
ER black ring are given by the dashed black lines. We study these physical
quantities against j2 instead of j in order to better understand the near-j = 1
behaviour of each system.

Figure 4.1 demonstrates that as j → 1, the reduced event horizon area
of the MP black hole decreases and becomes 0 at j = 1, i.e., the solution
becomes nakedly singular. This is because the horizon of the MP black hole
flattens out into a pancake in the plane of rotation as its angular momentum
increases [8]. Similarly, the S2 of the fat ER black rings flattens out in the
plane of rotation, and because the inner S1 radius gets smaller while the outer
S1 radius grows, the fat rings approach the same naked ring singularity of
the j = 1 MP solution. On the other hand, the S2 of the thin black rings
is nearly round and get smaller as j → 1, thus the S1 radius becomes much
larger than the S2 radius and the ring gets thinner.
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Figure 4.1: Graph of aH against j2

In Figure 4.2, the reduced angular velocity of the MP black hole grows
linearly with reduced angular momentum because the normalisation done in
Section 2.2.2 is such that ωBR = jBR. The reduced angular velocity of the fat
ER black rings also increases with reduced angular momentum, its branch
approaching the graph of the MP black hole, but the thin ER black rings
instead spin slower with increasing j.

Figure 4.2: Graph of ω against j2
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Figure 4.3 shows that the MP black hole gets colder as j → 1, much like
the fat ER black rings, while the thin ER black rings get hotter instead.

Figure 4.3: Graph of log τ against j2

We shall see the ‘phase diagrams’ of black Saturn also have ‘fat’ and ‘thin’
black ring branches which have properties mimicking those of both the MP
black hole and ER black rings.

4.3 Black Saturn physics

4.3.1 Physical quantities

So far, we have been using z = ai, i = 1, 2, 3, 4, 5, to describe the locations
of the turning points or rod endpoints in the black Saturn rod structure.
However, it turns out that the whole rod configuration can be shifted along
the z-axis without changing the solution, which means that instead of using
five dimensionful parameters, we may use three dimensionless parameters
and an overall scale to describe the rod structure of the solution.

Following [8], we choose the overall scale L to be

L2 = a2 − a1 (4.1)

and introduce three dimensionless parameters bi as

bi =
ai+2 − a1

L2
, for i = 1, 2, 3 (4.2)
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such that
0 ≤ b3 ≤ b2 < b1 ≤ 1 . (4.3)

We also shift and scale the z coordinate using

z = L2z̄ + a1 , (4.4)

such that z̄ is dimensionless. This new parameterisation effectively corre-
sponds to taking

a1 → 0, a5 → b3, a4 → b2, a3 → b1, a2 → 1 , (4.5)

so from this point onwards, we shall treat the following to be true:

L = 1 , z = z̄ . (4.6)

Note that b1 6= b2, otherwise (3.33), which can now be expressed as

c2 =
1

b2

[
b1 − b2√

b1(1− b2)(1− b3)(b1 − b3)
− 1

]
, (4.7)

would give c2 = − 1
b2

, which causes the physical parameters M , J , and AH
listed below as well as k (3.27) under the new parameterisation:

k =
1

1 + b2c2
, (4.8)

to diverge. Thus it is clear that b1 6= b2 in order for c2 6= − 1
b2

.
We can now express the physical quantities of the black Saturn solution

in a significantly simpler form, upon substituting the expressions for c1 and
k given by (3.30) and (4.8).

Angular velocity

ΩBR =
[
1 + b2 c2

]√b1b3
2b2

b3 − b2(1− b3)c2
b3 − b3(b1 − b2)c2 + b1b2(1− b3)c22

, (4.9)

ΩBH =
[
1 + b2 c2

]√b2b3
2b1

b3(1− b1)− b1(1− b2)(1− b3)c2
b3(1− b1) + b1b2(1− b2)(1− b3)c22

. (4.10)

Temperature

TBR =
1

2 π

√
b1(1− b3)(b1 − b3)

2b2(b2 − b3)

(
1 + b2 c2

)2
1− (b1 − b2)c2 + b1b2(1−b3)

b3
c22
, (4.11)

,

TBH =
1

2π

√
(1− b2)(1− b3)

2(1− b1)

(
1 + b2 c2

)2
1 + b1b2(1−b2)(1−b3)

b3(1−b1) c22
. (4.12)
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Mass and angular momentum

M =
3π

4

b3(1− b1 + b2)− 2b2b3(b1 − b2)c2 + b2
[
b1 − b2b3(1 + b1 − b2)

]
c22

b3
[
1 + b2c2

]2 ,

(4.13)

J =
π

b3
[
1 + b2c2

]3√ b2
2b1b3

[
b23 − c2b3

[
(b1 − b2)(1− b1 + b3) + b2(1− b3)

]
+ c22b2b3

[
(b1 − b2)(b1 − b3) + b1(1 + b1 − b2 − b3)

]
− c32b1b2

[
b1 − b2b3(2 + b1 − b2 − b3)

]]
. (4.14)

Horizon area

AH,BR = 4π2

√
2b2(b2 − b3)3

b1(b1 − b3)(1− b3)
1− (b1 − b2)c2 + b1b2(1−b3)

b3
c22(

1 + b2 c2
)2 , (4.15)

AH,BH = 4π2

√
2(1− b1)3

(1− b2)(1− b3)
1 + b1b2(1−b2)(1−b3)

b3(1−b1) c22(
1 + b2 c2

)2 . (4.16)

Now, using (2.32), the fixed mass reduced parameters for the quantities in
Section 4.3.1 can be found easily, albeit they are too lengthy to be presented
explicitly in this thesis.

Komar integrals

We introduce Komar integrals [8] which measure mass and angular momen-
tum not at infinity but on the horizon Hi of each black hole in the black
Saturn system.

In 5D spacetime, the Komar mass, i.e., the mass contained within the
surface of an event horizon, can be given in terms of metric components [8]
such that:

MKomar,i =
3

32π

∫
Hi

dzdφdψ
1√
−detg

gzzgφφ[−gψψ∂ρgtt + gtψ∂ρgtψ] , (4.17)

and therefore, for the black Saturn solution,

MKomar,BR =
3π

4

b2[1− (1− b2)c2][b3 − b3(b1 − b2)c2 + b1b2(1− b3)c22
b3(1 + b2c2

,

(4.18)
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MKomar,BH =
3π

4

b3(1− b3) + b1b2(1− b2)(1− b3)c22
b3(1 + b2c2)

. (4.19)

We find that
M = MKomar,BR +MKomar,BH , (4.20)

even in the presence of a conical singularity, that is, even without imposing
(3.30). Recall that M refers to the total mass of black Saturn measured at
infinity.

The Komar angular momentum, i.e., the angular momentum contained
within the surface of an event horizon, is also called the ‘intrinsic’ angular
momentum of a black hole. It is given by [8]:

JKomar,i = − 1

16π

∫
Hi

dzdφdψ
1√
−detg

gzzgφφ[−gψψ∂ρgtψ + gtψ∂ρgψψ] , (4.21)

and therefore, for the black Saturn solution,

JKomar,BR = π

√
b2

2b1b3

1

b3(1 + b2c2)3
[b3 − b2(b1 − b3)c2 + b1b2(1− b2)c22]

× [b3 − b3(b1 − b2)c2 + b1b2(1− b3)c22] , (4.22)

JKomar,BH = −π
√
b1b2
2b3

c2[b3(1− b1) + b1b2(1− b2)(1− b3)c22]
b3(1 + b2c2)2

. (4.23)

We also find that
J = JKomar,BR + JKomar,BH , (4.24)

even without balancing the solution, that is, even without imposing (3.33).
Recall that J refers to the total angular momentum of black Saturn measured
at infinity.

Smarr relations

The Smarr formula

2

3
MKomar,i = TiSi + ΩiJKomar,i (4.25)

is a mathematical identity relating the physical quantities of a black hole
measured at its horizon and is obeyed by the MP black hole [13] and the ER
black ring [2], the individual black objects constituting the black Saturn sys-
tem, as well as multiple-black-hole systems in general [14]. S is the entropy
of a black hole which black hole thermodynamics has established is propor-
tional to event horizon area: S = AH/4 [17]. Hence, Ω, T , MKomar, JKomar
and AH are all inextricably related to one another via the Smarr relation.
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4.3.2 Black Saturn: JKomar,BH = 0 configuration

In this section, we study the subfamily of black Saturn where the intrinsic or
Komar angular momentum of the MP black hole vanishes: JKomar,BH = 0,
a property that is met when c2 = 0, as can be deduced easily from (4.23).
This choice will prove to be strategic in Section 4.3.3.

With c2 = 0, we can solve for b3 using (4.7): there will be two solutions,
namely:

(1) b3 =
1

2b1(1− b2)

[
b1 − b1b2 + b21 − b21b2

−
√
b1(1− b2)(b1 + 4b22 − 9b1b2 + 2b21 + 2b21b2 + b31 − b31b2)

]
,(4.26)

(2) b3 =
1

2b1(1− b2)

[
b1 − b1b2 + b21 − b21b2

+
√
b1(1− b2)(b1 + 4b22 − 9b1b2 + 2b21 + 2b21b2 + b31 − b31b2)

]
.(4.27)

but only one solution (4.26) satisfies the inequality constraint 0 < b3(b1, b2) <
b2 < b1 < 1. Finally, in order to obtain a 1-parameter family of solutions
for effective illustration of the physics of black Saturn, we must further fix
a physical quantity. Following [8], we have chosen to fix either the reduced
event horizon area of the ER black ring aH,BR or the reduced event horizon
area of the MP black hole aH,BH , as we shall see below.

4.3.3 Fixed aH,BR

In Figure 4.1, we saw that the reduced event horizon area aH,BR of the ER
black ring takes values 0 < aH,BR ≤ 1, thus aH,BR can be fixed at any
value between 0 (inclusive) and 1 (exclusive), and the MP black hole can
be ‘grown’ at the centre of the ER black ring, i.e., starting with a given
value of fixed aH,BR with a nakedly singular MP black hole in the centre,
aH,BH is gradually increased to give a black Saturn system. The cases of
aH,BR = 0 and aH,BR = 1 will be addressed later on in this section. Note
that the graphs for the MP black hole (solid black line) and the ER black
ring (dashed black line) are included for comparison in most, if not all, the
graphs in this section.

Non-uniqueness

The graphs shown in Figures 4.4 to 4.8 of reduced event horizon area aH
against reduced angular momentum-squared j2 for the black Saturn solution
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have two branches: an upper and lower branch, for any value 0 < aH,BR ≤ 1.
As such, for each aH,BR, a finite range of values of j2 admit two solutions
with different total aH , clearly exhibiting violation of the uniqueness theorem.
However, the phenomenon of non-uniqueness does not stop at being discrete
at certain regimes. Instead, the balanced black Saturn configuration exhibits
two-fold continuous non-uniqueness because the total mass M and angular
momentum J of the system can be distributed continuously between the MP
black hole and the ER black ring to resemble other 5D black hole solutions
when viewed at infinity. In particular, the continuous set of black Saturn
systems whose MP black hole and ER black ring counter-rotate to give zero
total angular momentum at infinity is asymptotically identical to the 5D
Tangherlini solution. Black holes in 5D thus have huge degeneracies.

We can theoretically plot graphs of reduced event horizon area against
angular momentum-squared for a continuous set of aH,BR values between 0
and 1 to accurately illustrate continuous non-uniqueness for certain regimes
of j2, but since this is highly impractical, Figure 4.4 uses only a representative
sample of black Saturn configurations: aH,BR = 0.10, 0.20, 0.30, 0.50, 0.90 to
show non-uniqueness. For instance, there exist ten different black Saturn
solutions with j2 = 0.85.

The reason for the two branches of the black Saturn is because the MP
black hole can be ‘grown’ from either the thin ring or the fat ring branch
of the ER black ring to give the balanced black Saturn system. This can
be more clearly seen for black Saturn configurations with larger values of
aH,BR: aH,BR = 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, in Figures 4.5 and 4.6, where
the branches of the black Saturn graphs are seen to ‘originate’ from the
respective branches of the ER black ring graph at various values of j2. Since
JKomar,BH = 0, the MP black hole contributes no angular momentum, and
hence j2 decreases as the MP black hole grows, until the cusp of the curve is
reached.
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Figure 4.4: Graphs of total aH against j2 for a range of fixed aH,BR values:

0.10 (teal), 0.20 (pink), 0.30 (brown), 0.50 (purple), 0.90 (orange).

Figure 4.5: Graphs of total aH against j2 for large aH,BR values: 0.50 (purple),

0.60 (dark blue), 0.70 (green), 0.80 (yellow), 0.90 (orange), 0.95 (red).
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Figure 4.6: Graphs of total aH against j2 for large aH,BR values: 0.50 (purple),

0.60 (dark blue), 0.70 (green), 0.80 (yellow), 0.90 (orange), 0.95 (red). The

MP black hole is being ‘grown’ at the centre of the ER black rings.

The same is true for black Saturn configurations with smaller values of
aH,BR: aH,BR = 0.05, 0.10, 0.20, 0.30, 0.40, in Figures 4.7 to 4.8, though the
MP black hole starts ‘growing’ only at much larger values of j2, as seen from
the point at which the tails of the black Saturn graphs end on the tails of the
ER black ring graphs. For such small fixed values of aH,BR, the MP black
hole is allowed to grow very large, and the black Saturn phases dominate the
ER black ring branches entropically.

It can be seen that increasing the fixed values of aH,BR causes the black
Saturn phase to become smaller. When fixed aH,BR = 1 is reached, there are
no black Saturn solutions, because growing the MP black hole from the ER

black ring decreases j, and for the black ring with j =
√

27
32

and aH,BR = 1,

there are no black ring solutions with less angular momentum. However, it is
possible to fix aH,BR = 0; this describes a nakedly singular black ring rotating
around an MP black hole which is also rotating as it is being dragged along
by the ring singularity. We will see this graph in Section 4.3.4.

It is interesting to note that the lowest of all the black Saturn graphs is
that of aH,BR = 0.50, i.e., as aH,BR increases from 0, the black Saturn reduced
event horizon area aH decreases dramatically until it reaches a minimum or
a turning point, aH,BR = 0.50, before increasing gradually to aH = 1.
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Figure 4.7: Graphs of total aH against j2 for small aH,BR values: 0.05 (light

blue), 0.10 (teal), 0.20 (pink), 0.30 (brown), 0.40 (grey).

Figure 4.8: Graphs of total aH against j2 for small aH,BR values: 0.05 (light

blue), 0.10 (teal), 0.20 (pink), 0.30 (brown), 0.40 (grey). The MP black hole

is being ‘grown’ at the centre of the ER black rings.
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Frame-dragging

The graph of reduced angular velocity ω against reduced angular momentum-
squared j2 in Figure 4.9 for the black Saturn solution includes ωBR as well as
ωBH , the former being above the latter, and both the ωBR and ωBH graphs
have a fat ring branch and a thin ring branch.

It is interesting to note that the reduced angular velocity ωBH of the MP
black hole is non-zero, i.e., the MP black hole is rotating, despite having fixed
its intrinsic angular momentum JKomar,BH = 0, a strategic choice that gives
the cleanest possible illustration of the physical phenomenon of gravitational
frame-dragging: an effect of General Relativity whereby the azimuthally ro-
tating ER black ring drags the spacetime surrounding it, causing the MP
black hole horizon to rotate and ωBH to follow the behaviour of ωBR. This
interpretation is reasonable, since for any value of j2, the angular velocity
of the MP black hole ωBH is always smaller than that of the ER black ring
ωBR.

Note that the reduced angular velocity ωBH of the MP black hole is higher
along its fat ring branch than its thin ring branch, because a thin ring with
large S1 radius rotating relatively slowly can hardly be felt by the MP black
hole in the centre, whereas a flattened-out fast-rotating fat ring with small
S1 radius drags spacetime around much more significantly [8]. We imagine
the frame-dragging effect to be very small when the ER black ring is very far
from the MP black hole, i.e., (i) the larger the MP black hole grows (in the
direction of decreasing j2) or, in fact, (ii) the faster the MP black hole spins
and thus the more it flattens out in the plane of rotation, then the closer it
is to the ER black ring and the larger its angular velocity.

39



Figure 4.9: Graphs of ωBR and ωBH against j2 for a range of fixed aH,BR
values: 0.10 (teal), 0.20 (pink), 0.30 (brown), 0.50 (purple), 0.90 (orange).
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Temperature

The graph of the logarithm of reduced temperature log(τ) against angular
momentum-squared j2 in Figure 4.10 for the black Saturn solution includes
log(τBR) as well as log(τBH), the former being below the latter, and both the
log(τBR) and log(τBH) graphs have a fat ring branch and a thin ring branch.

Figure 4.11 shows only the graph of log(τBR) against j2 whereas Figure
4.12 shows only the graph of log(τBH) against j2. As the fixed value of aH,BR
is decreased, the MP black hole can take a larger and larger range of angular
momentum, over which its temperature becomes more or less constant.

Figure 4.10: Graphs of log(τBR) and log(τBH) against j2 for a range of fixed

aH,BR values: 0.10 (teal), 0.20 (pink), 0.30 (brown), 0.50 (purple), 0.90 (or-

ange).
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Figure 4.11: Graphs of log(τBR) against j2 for a range of fixed aH,BR values:

0.10 (teal), 0.20 (pink), 0.30 (brown), 0.50 (purple), 0.90 (orange).

Figure 4.12: Graphs of log(τBH) against j2 for a range of fixed aH,BR values:

0.10 (teal), 0.20 (pink), 0.30 (brown), 0.50 (purple), 0.90 (orange).
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4.3.4 Fixed aH,BH

In this section, we fix the reduced event horizon area aH,BH of the MP black
hole instead, remembering that the intrinsic angular momentum of the MP
black hole is still 0. By doing so, we are ‘growing’ an ER black ring around
MP black holes with different horizon areas instead. However, a balanced
black ring cannot exist for arbitrarily small angular momentum while keep-
ing the configuration in equilibrium, thus the black ring must grow from a
nakedly singular ring around an MP black hole, shown by the dotted curve,
which is essentially the black Saturn graph for aH,BR = 0.

Figure 4.13 displays a representative sample of black Saturn graphs with

aH,BH =
√

1
10
,
√

7
10
,
√

3
2
,
√

3,
√

6. Every graph has two branches, including

the graph for large aH,BH =
√

6, which we zoom into in Figure 4.14 to
ascertain that this is true. Black Saturn solutions with large aH,BH can
reach very small values of j, but we note that for c2 = 0, j will never reach 0
because, given (4.24) and the fact that JKomar,BR, JKomar,BH cannot both be
0 (the system must rotate to be balanced), j = 0 requires that the MP black
hole and ER black ring are counter-rotating, which is impossible: c2 = 0
gives a non-rotating MP black hole with JKomar,BH = 0 (4.23). We also note
that black Saturn solutions with small aH,BH approach the ER black ring
graph and eventually reduce to it when aH,BH = 0.

While the thin ring branch of the black Saturn graphs extends to infinity,
the fat ring phase stops upon intersecting with the graph of aH,BR = 0. The
large j-tails show that balanced thin-ring Saturn configurations can have
very large entropies [8] within the range 0 < aH,BH < 2

√
2, where 2

√
2 is

the y-intercept of the MP graph given by the solid black line, i.e. it is the
reduced event horizon area of the 5D Tangherlini solution. This means that
for any value of angular momentum, there exists black Saturn configurations
with total reduced event horizon area arbitrarily close to 2

√
2.
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Figure 4.13: Graphs of total aH against j2for a range of fixed aH,BH values:√
1
10

(red),
√

7
10

(yellow),
√

3
2

(green),
√

3 (blue),
√

6 (brown).

Figure 4.14: Cusp of graph of total aH against j2 for aH,BH =
√

6
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Chapter 5

Conclusion

5.1 Overview

In this thesis, we have presented and analysed an exact regular (4+1)-
dimensional asymptotically flat multiple-black-hole vacuum solution known
as the black Saturn: a Myers-Perry black hole surrounded by an Emparan-
Reall black ring balanced by rotation in the plane of the ring, i.e., S1 rotation.
Interesting physical properties such as non-uniqueness and frame-dragging
have been studied and can be summarised as follows:

· The uniqueness theorem is violated in higher-dimensional spacetime when
dealing with stationary solutions alongside static solutions. The black Sat-
urn solution contributes greatly to the non-uniqueness of (4+1)-dimensional
black holes due to the possibility of continuously distributing mass and
angular momentum between the two black objects constituting black Sat-
urn. The solution thus exhibits two-fold continuous non-uniqueness with
discrete non-uniqueness for ranges of angular momentum admitting both
thin and fat black Saturn solutions.

· Rotational frame-dragging is manifested in the gravitational interaction
between the MP black hole and ER black ring of the black Saturn solution.
While the phenomenon is most cleanly illustrated with the MP black hole
having non-zero angular velocity ωBH despite having zero intrinsic angular
momentum JKomar,BH , there are other ways to study frame-dragging, which
we elaborate upon below.
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5.2 Outlook

The focus of this thesis has been the study of a black Saturn system comprised
of an MP black hole and an ER black ring with rotation exclusively in the
same direction (identical signs of angular velocities) and in the same plane
(in the S1 or azimuthal ψ-direction). Clearly, the system can be generalised
in several ways:

· There are no restrictions stating that the MP black hole and ER black
ring must be co-rotating to maintain balance. Since they have independent
rotation parameters, they may counter-rotate in the same plane to produce
countering frame-dragging effects, that is, the intrinsic angular momentum
JKomar,BH of the MP black hole can be tuned such that it ‘cancels’ the
effect of dragging caused by the ER black ring surrounding it. This gives a
solution with the MP black hole having zero angular velocity ωBH despite
having non-zero intrinsic angular momentum JKomar,BH [8].

· The MP black hole and ER black ring may also rotate in orthogonal planes.
In such a scenario, on top of rotational dragging of the black ring on the
black hole, we expect there to be rotational dragging of the black hole
on the black ring, i.e., a φ-rotating MP black hole should result in a ψ-
rotating ER black hole having non-vanishing angular velocity on the S2.
This produces a coupling effect with regards to the frame-dragging between
the two black objects of the black Saturn system, since the rotation of one
body causes the other body to rotate, which in turn affects the rotation of
the former body.

· The highest level of generalisation for the black Saturn system involves
doubly spinning MP black holes and doubly spinning MP black rings, the
solution for which may be obtained using the techniques in [15]. It must
be checked that all possible singularities can be eliminated, after which the
physics of the system can be analysed.

Also, while the black Saturn system in this thesis is neutrally charged,
the following extensions are possible:

· Adding non-conserved dipole charge(s) [16] to the ER black ring in the
black Saturn system will give a dipole black Saturn solution.

· Adding conserved charge(s) to the vacuum black Saturn solution.

The black Saturn system is an example of a system at classical equilib-
rium, where the objects constituting it generally having different temper-
atures (and angular velocities). It will be interesting to impose thermody-
namic equilibrium and find the phases for so-called metastable black Saturns
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[18], which form a one-parameter family of solutions with only discrete non-
uniqueness [14], as opposed to the continuous family of black Saturns we
studied earlier.

Lastly, we note that the non-uniqueness of the black Saturns studied in
this thesis is two-fold because there are two free dimensionless parameters
in the solution, a reduction from the original six: b1, b2, b3 (where 0 ≤ b3 ≤
b2 < b1 ≤ 1), the scale L and the parameters c1 and c2 - by fixing c1 (3.30),
rescaling c2 to introduce c2 (3.32, 4.7), and fixing the conserved asymptotic
quantities mass M and angular momentum J . Generalising the ER black ring
of the black Saturn system to multiple rings involves more free dimensionless
parameters, such that a system of n black objects possesses 2(n − 1)-fold
continuous non-uniqueness [8].
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