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Abstract 
 

We wish to generate the CP-violating effects in neutrino oscillations. This is done by 

firstly constructing modified Lagrangians that break CP symmetry by imposing 

specific constraints. This violation in CP stems from the Lorentz-violating field that 

enters through the additional factor F that makes our Lagrangian different from that of 

the typical. This leads to a change in the energy dispersion relation and in turn affects 

the neutrino oscillation probability. With the aid of experimental results; we can give 

an upper bound to the background field. This limit on the background field is useful 

when analysing data that deviates from the conventional. These data can be fitted with 

our results to see if it agrees with our calculations. If it does, then CP violation in 

neutrino oscillations could be due to what we have proposed. 
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Chapter 1 

Introduction  
 

In Particle Physics, CP violation refers to the non-observance of CP-symmetry, which is 

essentially the combination of the charge conjugation (C) symmetry and parity (P) 

symmetry. It was first detected in 1964 by James Cronin and Val Fitch while they were 

studying the decay of neutral kaons. Since then, it has sparked the interest of particle 

physicists as it can hold key to solving fundamental problems that have been plaguing 

us, such as the fundamental issue of matter-antimatter asymmetry. CP violation arises 

naturally in the three-generation Standard Model but as mentioned in [1], it is not 

likely that it presents the description of CP violation in nature entirely. CP violation is 

observed in the decay of neutral kaons and B mesons, possibly in neutrinos as well. 

Physicists have an inkling where to find them: neutrino oscillations.  

The phenomenology of neutrino oscillations is one in which neutrinos of a particular 

flavour are observed to morph into another flavour after propagating a certain 

distance. CP violation enters neutrino oscillation through the third neutrino mixing 

angle,     and manifests itself as the CP violating phase,  . Today, there are many on-

going experiments that try to determine this parameter, such as the T2K (Tokai to 

Kamioka) experiment in Japan. However, it is unclear as to where CP violation 

originated in neutrino oscillations.  

CP violation arises naturally in the three-generation Standard Model but as mentioned 

in [1], it is not likely that it presents the description of CP violation in nature entirely. 

It is apparent that new physics exist beyond the Standard Model and such extensions 

often have ‘additional sources of CP-violating effects’. Lorentz violation, as suggested 
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by some quantum gravity model, belongs to such a framework which includes 

operators that break or preserve CPT. Thus, the breaking of Lorentz symmetry may 

imply the CPT violation and can hint at the breaking of CP symmetry. [2, 3, 4] Hence, 

our objective is to use the Standard Model Extension to generate CP-violating effects in 

neutrino oscillations.  

We wish to construct CP-violating Lagrangians of the form  

 
   ̅(       )    

 
(1.1) 

where F contains the Lorentz-violating background field. The Lagrangians are 

constructed by imposing constraints similar to the typical Dirac Lagrangian; but with 

the additional condition that they must break CP symmetry. These modified 

Lagrangians are interpreted as new physics that are yet unbeknownst to us. They will 

lead to a change in the energy dispersion relation as well, thereby affecting the 

neutrino oscillation probabilities. With values of the various parameters that were 

already measured from experiments, we can determine bounds of the background 

field, which will be useful in the future when we compare with new experimental data.  

This thesis is outlined as follows. In Chapter 2, we describe the axiomatic approach to 

construct the desired modified Lagrangians and look at the specific constraints that 

were applied. In Chapter 3, we give the description of discrete symmetries and how 

each modified Lagrangian transforms under the different symmetry. Moving on to 

Chapter 4, we will be deriving the plane-wave solutions of the Dirac Lagrangian and 

thereafter derive the modified energy dispersion relations. In Chapter 5, we delve into 

neutrino oscillations where we first look at the conventional theory, and apply the 

modified dispersion relations to see the changes in oscillation probabilities. 
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Thereafter, we determine the bounds of the background fields and discuss the results 

obtained. Finally, we conclude with a summary in Chapter 6. 
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Chapter 2 

Axiomatic Approach to the Construction of the 

Modified Lagrangian 
 

In this chapter, we will discuss how the modified Dirac Lagrangian that violates CP 

symmetry is formulated by imposing particular constraints on the additional term. 

These constraints are typical properties that the conventional Dirac Lagrangian 

[  
 

 
 ̅(           

 ⃖   )   ̅  ] possesses. We will then discuss how Lorentz 

violation is introduced into the Lagrangian. At the end of the chapter, we will look at 

six specific examples of the CP-violating Lagrangians, which will be of the following 

form: 

    ̅(       )    

 

(2.1) 

where F is the additional term that we add in.  

2.1 Constraints  
 

Now we examine the different constraints that will be imposed on F. These properties 

are those that are required of the usual Dirac Lagrangian, except for one that we 

choose to violate; that of CP symmetry (which will be further discussed in Chapter 3). 

We thus require our Lagrangians to have the following properties: 

 Hermiticity 

 Just as in Quantum Mechanics; which requires the Hamiltonian to be 

Hermitian, F should be Hermitian as well. This is to ensure that the eigenvalues 
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and hence the eigen-energies are real. This indicates that the following 

equation should hold, 

     . (2.2) 

 Locality 

Physics that is described by a wavefunction will be accurately captured by a 

local evolution equation. This will continue to be the case in our situation. In 

this way, F will only depend on the wavefunction, its adjoint and their 

derivatives all evaluated at a single point.  

 Universality 

It is a phenomenon in which the physics remains unchanged even when the 

wavefunction undergoes rescaling. With this scale invariance property, F 

should be of the same form whether it describes a single particle or a system of 

particles.  

There is another constraint arising from discrete symmetries that requires our 

modified Lagrangians to be CP-violating but this will be further discussed in Section 3 

as mentioned. 

2.2 Lorentz Violation  
 

As aforementioned, our objective is to generate CP violation in neutrino oscillations. 

One possible explanation for it will be due to the breakdown of Lorentz symmetry. 

There are certain quantum gravity models that suggest Lorentz violation and they 

belong to a framework that extends beyond the Standard Model, one that includes 

operators that violates CPT symmetry. [2] For example, certain string theories could 

cause the spontaneous breaking of CPT symmetry. [3] So the breaking of Lorentz 
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symmetry may imply that CPT symmetry is broken too, and can then indirectly hint at 

the violation of CP symmetry. [4] 

In our case, Lorentz violation enters through the constant background field in the form 

of             . This background field preserves the observer Lorentz symmetry but 

the particle Lorentz symmetry is broken. By definition, observer Lorentz 

transformations are enforced by coordinate changes whereas particle Lorentz 

transformations relate the properties of two particles with different spin orientation 

or momentum within a specific oriented inertial frame and it includes boosts on 

particles or localized fields but not background fields. This is illustrated in Figure 1 

below.  

 

 

Figure 1(a): Observer Lorentz Transformation whereby coordinate change is 

involved, thus Lorentz symmetry still holds.  

 



12 
 

 

Figure 1(b): Particle Lorentz Transformation which involves boosts on particles 

but not background field, thus Lorentz symmetry is broken. 

Thus the background field preserves the observer Lorentz symmetry but violates 

particle Lorentz symmetry.  

2.3 Explicit Examples   
 

In this section, we will look at six specific examples of modified Lorentz-violating Dirac 

Lagrangians that specify the three constraints mentioned in Section 2.1. As a reminder, 

the Lorentz violation enters through the background field,   , which is of the form 

(A,0,0,0). It does not mean that   is manifestly covariant, as per popular sentiment; it 

is simply a formalism whereby   is a scalar with a Lorentz index. To reinforce the fact 

that    is of this particular form, we will verify it by applying discrete symmetries to 

the modified Lagrangians (in Chapter 3). 
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Thus our altered Lagrangians are shown as below 

  
    ̅(       )      ̅    

 

(2.3) 

in which        ̅   . 

  
    ̅(       )     ̅      

 
(2.4) 

in which        ̅     . 

  
    ̅(       )     (   ̅)      ̅      (2.5) 

in which        (   ̅)      ̅     . 

  
    ̅(       )       (   ̅)        ̅      

 
(2.6) 

in which          (   ̅)        ̅     . 

  
    ̅(       )        (   ̅)        ̅      

 
(2.7) 

in which          (   ̅)        ̅     . 

  
    ̅(       )       ̅     

 

(2.8) 

in which         ̅    . 
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Chapter 3 
 

Discrete Symmetries 
 

The Standard Model is indeed telling of CP violation; however it is contrary that it 

provides the description of CP violation in its entirety. [6] Henceforth, we look beyond 

the Standard Model to provide reason for CP violation in neutrino oscillation. In this 

section, we first look at the individual discrete symmetries and how the modified 

Lagrangians transform under the different symmetries. Thereafter we will impose the 

condition of CP violation in the six lagrangians. This additional prerequisite will help 

us obtain the final, specific form of the modified Lagrangians.  

The parity transformation, charge conjugation and time reversal operator is given 

below respectively. 

  ̂       
 

(3.1) 

  ̂        
 

(3.2) 

  ̂          
 

(3.3) 

where   ,    and    are unobservable arbitrary phases. [7]  

3.1 Transformation of the Modified Lagrangians  
 

In this section, we will be looking at how       (   ̅)      ̅      transforms 

under the different symmetries only. For the rest of the Lagrangians, the calculations 

can be found in Appendix A. 
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3.1.1 Parity Transformation (P) of    
 

First, we look at how the individual components transform under parity. For the Dirac 

spinor and its adjoint, they transform as follows: 

   
 
→     

 

(3.4) 

  ̅ 
 
→              ̅   

 

(3.5) 

where the prime (i.e.   ) denotes the transformed spinors. 

The spatial part of the derivative transforms as well, and so the derivative becomes  

   
          . 

 

(3.6) 

Thus, the transformation of    under parity is 

        (  
  ̅ )       ̅         

           (    ̅  )        ̅          . 

 

 

Since parity affects the temporal and spatial part of the derivative differently, there 

will be two cases: 

When    : 

            ̅           ̅      
    

               ̅       ̅      . (3.7) 

When    : 

             ̅           ̅      
    

                ̅       ̅      . (3.8) 
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We observe that P is even for    , since the     remains unchanged. Whereas for 

   , P is odd since it differs from the original with an additional negative sign.  

3.1.2 Charge Conjugation (C) of    
 

As what we have done for P, we find out how the individual component changes under 

C. For the Dirac spinor and its adjoint, they transform as such, 

   
 
→      

 

(3.9) 

  ̅ 
 
→                        . 

 
(3.10) 

The derivative in this case remains unchanged as it is not affected by charge 

conjugation.  

Thus, the transformation of    under charge conjugation is 

         (  
  ̅)       ̅         

            (   ̅    )           ̅               

            (   ̅)      ̅     . 

 
(3.11) 

It is observed that C is odd for    since it is not the same as before charge conjugation 

was applied.  

3.1.3 Time Reversal (T) of    
 

Again, we look at how the individual components transform under parity. For the 

Dirac spinor and its adjoint, they transform as follows: 

 
  

 
→       

 
(3.12) 
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 ̅ 

 
→                     ̅. 

 
(3.13) 

 

The temporal part of the derivative transforms under time reversal as well, and so the 

derivative becomes  

   
          . 

 

(3.14) 

Thus, the transformation of    under time reversal is 

        (  
  ̅ )       ̅         

            (    ̅     )           ̅                . 

 

Since time reversal affects the temporal and spatial part of the derivative differently, 

there will be two unique cases, just like the case for parity transformation. 

When    : 

             ̅                 ̅          
      

                 ̅       ̅      . (3.15) 

When    : 

            ̅                 ̅          
      

                ̅       ̅      . 

 

(3.16) 

We observe that T is odd for    , since the     differs from the original with an 

additional negative sign.. Whereas for    , T is even since it remains unchanged.  
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3.2 CP Violation 
 

In order to achieve CP violation, i.e. CP-odd, there can be two cases: the first case in 

which C is odd while P is even; and the second case in which C is even whereas P is odd. 

For the case of   , P is even when     and odd when    ; and C is odd for both 

cases. So in order to get CP-odd, it will only happen when    . Thus the final 

expression of    is  

           ̅       ̅     . 
 

(3.17) 

Table 1 below summarizes the results for the six modified lagrangians. Detailed 

derivations of how they are obtained can be found in Appendix A. 

     P C T CP CPT Final Form of Modified Lagrangian 

   
0 + - + - - 

      ̅    
i - - - + - 

   
0 - + + - - 

      ̅      
i + + - + - 

   
0 + - - - + 

          ̅       ̅      
i - - + + + 

   
0 + - - - + 

       
     ̅       

  ̅      
i - - + + + 

   
0 + - - - + 

       
     ̅       

  ̅      
i - - + + + 

 

Table 1: Summary of Modified Lagrangians. 

 

As we can see from Table 1,    and    breaks CPT symmetry and this implies directly 

that Lorentz symmetry is broken. Whereas for   ,    and   , CPT symmetry is still 

preserved, we are unable to make a conclusive statement whether Lorentz  is violated. 
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The reason is because CPT belongs to a larger symmetry group that includes Lorentz 

violation. We can have a Lorentz violating system that preserves CPT symmetry but 

not a CPT violating system that preserves Lorentz symmetry. [7] 

One will also realise that     is missing from the table. The reason is that it does not 

comply with the condition of CP violation and hence it is eliminated. We will now look 

at the mathematics behind that leads us to this conclusion.  

We first find out how    transforms under parity. 

         ̅       

         
 

 
    ̅               

         
 

 
    ̅                . 

 

 

Since there are two dummy variables (  and  ), where they can be 0 or i, there will be 

a total of four scenarios. 

Two of the same cases where  =   and can both be either 0 or i: 

 
    

 

 
    ̅                   

 
(3.18) 

leading to a trivial solution. 

When     and    : 

 
    

 

 
    ̅                 

       
 

 
     ̅       ̅       

        
 

 
     ̅       ̅      . (3.19) 
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When     and    : 

 
    

 

 
    ̅                 

         
 

 
     ̅       ̅       

          
 

 
     ̅       ̅      . 

 

(3.20) 

For the remaining two cases, parity is odd since    does not remain the same under 

the transformation. 

Under charge conjugation, when  =   and can be either 0 or i, it works out to be the 

trivial case just like above. For the other two cases where     and     or     and 

   , 

 
     

 

 
    ̅                     

        
 

 
     ̅               ̅              

        
 

 
    ̅             

 

 

 

(3.21) 

and both cases will be C odd as we can see. So ignoring the trivial cases,    can only be 

CP-even, which is not what we desire. Thus,    is eliminated from our choices of 

modified lagrangians.  

It is also worth noting that the CP violation indeed comes from   , as mentioned in 

Section 2.2. As we can see from Table 1, it is only when     then we can get the CP 

odd for all of the modified lagrangians.  
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Chapter 4 

Plane-wave Approximations and Modified Energy 

Dispersion Relation 
 

In this chapter, we will find the plane-wave solutions to our modified Lagrangians and 

just as the typical Dirac Lagrangian; the solutions should be simultaneous eigenstates 

of energy and momentum. In Schrödinger representation, the energy-eigenvalue is as 

below 

           . 
 

(4.1) 

Whereas for momentum,  ⃗        ⃗  and the eigenvalue of momentum is given by  

  ⃗      . 

 

(4.2) 

We wish to pursue solutions of the following form 

                   
 

(4.3) 

where    is a four vector and setting       and u(k) is the associated bispinor. 

4.1 Deriving the Plane-wave Solution 
 

Since the x component is confined to the exponent, we have  

                 

 

(4.4) 

because we assumed the wavefunction to be as per Equation (4.3). 
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We then substitute this into the Dirac equation and after simplification, we get 

 
(      )  (      ⃗   ⃗

  ⃗   ⃗    
*(

  

  
)  (

          ⃗   ⃗  

  ⃗   ⃗          

)    

 
 

 
(4.5) 

where    represents the upper two components of the bispinor and    represents the 

lower two components and  ⃗ are the Pauli matrices.  Also,      while   ⃗    .  

In order to satisfy the condition of Equation (4.5), we can then obtain expressions for 

   and    which is as follows, 

 
   

  ⃗   ⃗

   
   

 

(4.6) 

 
   

  ⃗   ⃗

   
    

 
 

(4.7) 

By substituting Equation (4.6) into Equation (4.7) or vice versa, we get  

 
   

(  ⃗   ⃗)
 

     
   

 
 

(4.8) 

Evaluating (  ⃗   ⃗)
 

, 

  ⃗   ⃗    (
  
  

)    (
   
  

)    (
  
   

)  (
          

           
) 

 

(4.9) 

   ⃗   ⃗   (
  

                    (      )            

  (      )            (      )(      )    
 

)    ⃗    

 

(4.10) 

where 1 is the identity matrix. So simplifying Equation (4.8), we will get 

 
   

  ⃗  

     
    

 
 

(4.11) 
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From this, we get back the dispersion relation  

         ⃗  . 
 

 

(4.12) 

To obtain the plane wave solution to the Dirac equation, we consider four different 

cases: 

1. Let    (
 
 
), then    

  ⃗     ⃗

   
(
 
 
)  

 

   
(

  

      
*. The first canonical solution 

will then be 

 

      

(

 
 

 
 
  

   
      

   )

 
 

. 

 

(4.13) 

 

2. Let    (
 
 
), then    

  ⃗     ⃗

   
(
 
 
)  

 

   
(
      

   
*. The second canonical 

solution will then be 

 

      

(

 
 

 
 

      

   
   

   )

 
 

. 

 
 

(4.14) 
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3. Let    (
 
 
), then    

  ⃗     ⃗

   
(
 
 
)  

 

   
(

  

      
*. The third canonical solution 

will then be 

 

      

(

 
 

  

   
      

   

 
 )

 
 

. 

 

(4.15) 

 

4. Let    (
 
 
), then    

  ⃗     ⃗

   
(
 
 
)  

 

   
(
      

   
*. The fourth canonical 

solution will then be 

 

      

(

 
 

      

   
   

   

 
 )

 
 

. 

 
 

(4.16) 

Where N is normalization factor, √   . [5] 

4.2 Modified Energy Dispersion Relation (MDR) 
 

From our modified Lagrangians, we are going to apply the plane wave solution to get 

the MDRs. Continuing to use    as an example; we apply it to the Euler-Lagrange 

equation, 

   

  
   (

  

 (   ̅)
)    

 
(4.17) 

 and solve it to obtain the desired MDR.  
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Referring to Equation (2.6),  

    

  
                    (4.18) 

 
   

     ̅ 
      

   (
   

     ̅ 
)            (   )     (   ) 

 

 

(4.19) 

since         . Substituting Equations (4.18) and (4.19) into the Euler-Lagrange 

equation: 

               (   )   . 

 
 

(4.20) 

We know that        (setting h=1) and from the Dirac equation (           ), 

we can obtain the following equation: 

           

                

           

 

 

 

(4.21) 

where        . We can then apply these substitutions into Equation (4.20) and it 

will become 

                    

 
    (       )       . 

 

 
 
(4.22) 
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Squaring both terms, we will obtain the following expression 

 (       )
 
      

  
                    

                  

 

 
 
 
 

(4.23) 

which is the MDR for    that we are seeking. Here,        ⃗  and all boldfaced letters 

represent 4-vectors.   

The exact method is applied to the rest of the Lagrangians and below is a summary of the 

different MDRs found. 

For   : 

              . 
 
 

(4.24) 

For   : 

  (          
     

 )

      
     

   
                   

   
     

       
    

 

(4.25) 

which may look rather complicated now, but it will simplify when we apply the condition that 

    for   . 

For   : 

                  . 
 

(4.26) 

For   : 

                 . 
 

(4.27) 
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For   : 

 
   

  [      
           

    
         

        
   

 ]

             
    

  
  

 
(4.28) 

As mentioned, the condition based on discrete symmetries as derived in the previous 

section has not been applied yet, we will do that in the next segment. Detailed 

derivations of the MDRs can be found in Appendix B. 
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Chapter 5 

Neutrino Oscillations 
 

Neutrinos are active research of interest in recent years because once we fully 

comprehend the mechanisms of neutrinos; we can probe into new physics that is still 

unbeknownst to us. First predicted by Bruno Pontecorvo in 1957, neutrinos are 

observed to change its flavour and this phenomenology is known as neutrino 

oscillations. The orthodox reasoning behind this phenomenology is that neutrinos 

have mass; contrary to what the Standard Model suggested. The presence of a Lorentz 

–violating background field suggests an alternative explanation of neutrino 

oscillations. 

In this chapter, we will first be looking at the conventional theory behind neutrino 

oscillation and how the probability of oscillation depends on the energy dispersion 

relation. Equipped with this knowledge, we can then apply our modified energy 

dispersion relations and see how the probabilities vary. Thereafter we can 

approximate the magnitudes of our background fields as we can obtain values of the 

different parameters collected from experiments. We will then discuss the significance 

of our results. 
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5.1 Orthodox Theory 
 

Given that neutrinos have masses, there exists neutrino mass eigenstates   , where i 

=1, 2, …, each with a mass mi. To understand leptonic mixing, consider the following 

leptonic decay of the W boson: 

   →      ̅  
 

(5.1) 

where α = e, μ or τ and   ,     and    are electron, muon and tau respectively. Now, 

leptonic mixing simply means that when   decays to a certain   ̅, the concomitant 

neutrino mass eigenstate can be any of the different   . This means that every time a 

  boson decays, the resulting mass eigenstate need not be the same each time. The 

amplitude for the decay of     to a specific      ̅  is denoted by    
 , where Uαi is a 

particular element of lepton mixing matrix. 

 

 

 

 

 

 

 

Figure 2: Neutrino Oscillation in vacuum. “Amp” denotes amplitude. [6] 

The amplitude of a neutrino undergoing flavour change, say from α to β is composed of 

three factors, as seen in Figure 2. The first is the amplitude for the neutrino produced 
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to be of a particular   , which is aforementioned to be    
 . The second is the amplitude 

for the    produced to travel from the source to the detector and is henceforth denoted 

as Prop(  ). Lastly is the amplitude for the lepton produced by    to be of a particular 

flavour, denoted by    . Thus the final amplitude is given by: 

 Amp (  →     ∑     
 

            . (5.2) 

To determine         , consider the Schr ̈dinger equation of    in its rest frame: 

 
 

 

   
       ⟩           ⟩ (5.3) 

where    is the time in rest frame while    is the rest mass of the neutrino eigenstate.  

When solved, it gives us: 

        ⟩               ⟩. (5.4) 

Hence, 

 Prop(  )         . (5.5) 

When expressed in terms of lab frame variables,  

               (5.6) 

with    and    being the energy and momentum of   while   and L are the time and 

distance between the source and the detector.  

To contribute coherently to a neutrino oscillation signal, the components of the 

neutrino beam must be of the same energy, thus we can make the approximation 

    . So assuming      ,  the momentum    is given by: 

 
   √     

    
  

 

  
  (5.7) 
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Thus, 

 
            

  
 

  
   

 
 

 
(5.8) 

Since the phase        is prevalent to all the interfering mass eigenstates, it can be 

ignored, hence: 

 
            [    

 
 

  
]  

 
 

(5.9) 

For three-neutrino oscillation, we have 

 

(

  

  

  

)  (

         

         

         

)(

  

  
  

)  

 
 

(5.10) 

U here is a unitary matrix known as the Pontecorvo-Maka-Nagakawa-Sakata (PMNS) 

matrix, which is given in Appendix C. 

Let’s assume that at time t=0, a neutrino in a pure    ⟩ state: 

      ⟩        ⟩        ⟩        ⟩  
 
 

(5.11) 

As it evolves through time,  

 |    ⟩      
      |  ⟩      

         ⟩      
         ⟩ 

 
 

(5.12) 

where            ⃗   ⃗ .  

After propagating through a distance L, the wavefunction becomes: 

 |    ⟩      
    |  ⟩      

       ⟩      
       ⟩. (5.13) 

We assumed that the neutrino is relativistic, so                             .  



32 
 

From Equation (5.6), we can then approximate Ei to be 

 
      

  
 

   
  (5.14) 

Thus,  

 
              

  
 

   
   (5.15) 

We then express the mass eigenstate as superposition of the flavour eigenstates: 

 

      ⟩  (    
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(5.16) 

So the oscillation probability in the case of three neutrinos is: 

                          (  →   )  | ⟨  |    ⟩ |
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. 

 

(5.17) 

The oscillation probability is different for each of the nine types of flavour change. 

In this thesis, we shall focus on the a particular transition probability, that of    

transiting to   .  

    (  →   )    ⟨       ⟩    

 |    
       

      
       

      
       

 |
 
. 

 

(5.18) 

The reason is that CP violation enters neutrino oscillations through     and the 

experiments that determines the third neutrino mixing angle is known as the 
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accelerator experiments, such as the T2K (Tokai to Kamioka) experiment in Japan that 

search for appearance of    in    beams.  

Using the following complex relationship: 
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(5.19) 

Equation (5.18) becomes 
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(5.20) 

where 

 
      

    
 

  
   (5.21) 

 For expansion of the Real parts of the terms, refer to Appendix D.  
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We can see from Equation (5.20) that the oscillation probability is dependent on the 

mass squared difference; there will be no oscillation if     
  is zero. So from the 

evidence that neutrinos indeed oscillate, it is implied that neutrinos are not massless 

as we thought them to be. Another important observation is that up till now, we 

cannot determine the exact mass of the neutrinos, we can only do with knowing the 

mass squared difference between the different mass eigenstates for now.  

5.2 Neutrino Oscillation Probability for MDRs  
 

The usual dispersion relation used in the conventional theory is known to be  

      
     

 
(5.22) 

after setting    . As we can see from the previous section, the dispersion relation 

affects the oscillation probability directly by entering through the factor   . Thus with 

an altered dispersion relation, a change in oscillation probability is expected. We 

continue to use    as an example here. 

Starting with Equation (4.26), it becomes  

      
                      ⃗  

 
(5.23) 

after expanding the four-momentum. 

Since   must be equivalent to zero in order to have CP violation, we have 

   
           

           (5.24) 
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Equation (5.6) now becomes 
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(5.25) 

after doing a Taylor expansion and neglecting higher order terms as we assumed    is 

small.  Equation (5.15) then becomes 

 
          

  
 

   
 

      

 
   

       
  

 

          
    

 

 
 
 

(5.26) 

The probability of neutrino to change its flavour from   to e is then  
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(5.27) 

where      
    

    
 is the difference between the interactions of the Lorentz-

violating background field with the different mass eigenstates, from the assumption 

that the different mass eigenstates interact uniquely with the background field.  

To determine the oscillation probabilities for the rest of the MDRs, the same method is 

applied and the results are summarized as below. Full details will be shown in 

Appendix E. 
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For   : 
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(5.28) 

For   : 
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(5.29) 

For   : 
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(5.30) 

For   : 
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(5.31) 
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For   : 
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(5.32) 

As one can see, the oscillation probability defers from that of the conventional 

neutrino oscillation phenomenology; with the difference stemming from the Lorentz-

violating background field. We now wish to ascertain the bounds of these background 

fields and this will be shown in the next section.  

5.3 Determination of the Magnitude of the Background 

Fields 
 

From our oscillation probabilities, it is possible to give estimated values of the order of 

magnitude of the background fields and this will be the focus of this section. The 

background field is still not observed until now, but its value should be within the 

error bar of the experimental results. Thus we can approximate the error of the first 

term (
    

 

  
* in the parenthesis of the      term of the probabilities to be of the same 

order of magnitude as the second term (that contains the    term). The values of the 

known parameters (i.e.,     
  and  ) are taken from experimental data. The values of 

the respective parameters are shown in Table 2. 
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Parameter Value 
Experiments that 

Measured Parameters 

     
  |    

 |                     
Long baseline reactor 

neutrino experiment, eg. 

Kamland, Super-

Kamiokande, Sudbury. 
     √      

               

     
  |    

 |

 |    
 | 

                    
Atmospheric and long 

baseline accelerator 

neutrino oscillation 

experiments, eg. 

MINOS/K2K. 

 

         

 √      
   

            

E 0.6GeV 
Energy of neutrino beam in 

T2K experiment [9] 

 

Table 2: Experiment Values of the Different Parameters. [8] 

 

As we can see from Table 2, we made the assumption that error of the mass difference 

of neutrino is approximately the square root of the error of the mass squared 

difference 

 
    √ (    

 )  

 

(5.33) 

It is observed that from these five Lagrangians, we only have four distinct value of 

order of the magnitude of the background fields because    and    will give the same 

value. This will be shown in the upcoming part. The values calculated are after 

restoring   and c and are dimensionless. 
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For    and   : 

From Equation (5.28), to determine the magnitude of the difference in background 

field, we do the following approximation 

 
Magnitude of      

      

 
(5.34) 

 
Magnitude of      

                   
     . 

 

 
(5.35) 

 
Similarly from Equation (5.29),  

 
Magnitude of      

      

 
(5.36) 

 
Magnitude of      

                   
     . 

 

 
(5.37) 

 The magnitudes of the background fields in    and    are the same. The units of these 

background fields are 
   

    
. 

For   : 

Just as before, we approximate the terms in the parenthesis of      from Equation 

(5.30) to be of the same order of magnitude. 

 
Magnitude of      

      . 

 
(5.38) 

 
Magnitude of      

                   
      . 

 
(5.39) 
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For   : 

From Equation (5.31), the terms in the approximation are observed to be different 

from the other Lagrangians, because both terms in the parenthesis share the same 

factor of  
    

 

  
, in addition to 

 

 
 and so the magnitude of the background field is different 

as compared to the rest.  

 Magnitude of      
                   

                   
      . 

 

(5.40) 

For   : 

Similarly from Equation (5.32),  

 
Magnitude of      

       

 
(5.41) 

 
Magnitude of      

                   
      . 

 
(5.42) 

For   ,    and   the units of their background fields are 
   

    
.  

5.4 Discussion of Results 
 

As a matter of fact, these magnitudes calculated are actually the upper bounds of what 

the background fields should be. One may wonder why there are different values for 

one particular background field. The reason for the different values is that the 

separate Lagrangians represent different physics that are still unknown to us, and so 

the background field interacts differently with each. For these two pairs of 

Lagrangians that give the same upper bound for the background field, the 

interpretation is that we cannot distinguish    and    using neutrino oscillations. We 

have to look into other ways if we were to differentiate between them.  
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These values will be useful when there are experimental data that differs from the 

usual. In the lagrangians that we have generated, CP violation is already imposed. So 

when we have experimental data that we suspect the involvement of CP violation, we 

can compare these data with our results and see if the potential background field from 

the data lie within our expected range. If they do, then we have a possible explanation 

as to where the CP violation effects come from. While comparing the background 

fields, it is better to convert the background fields from the data collected to 

dimensionless quantities since the units may be different.  

 While determining the magnitude of the background field for    and   , we notice 

that there is an additional factor of      in the probabilities. This is an area of interest 

because if we have the relevant experimental data, we can actually use this term to 

determine the mass of the neutrinos. In other words, this term is sensitive to the 

individual neutrino mass; which is an advantage because up till now, physicists can 

only determine the mass squared difference of the neutrino mass (as mentioned in the 

last part of Section 5.1).  

Also, from the oscillation probabilities of    and   , the background field can be 

suggested as an alternative explanation to neutrino oscillations. This is because if we 

were to assume that neutrinos are massless, the oscillations will be due to the 

interactions with the background field. Hence, whereas the conventional theory of 

neutrino oscillation provides the evidence that neutrinos are not massless; this 

alternative, unorthodox theory of neutrino oscillations can support the view that 

neutrinos can be massless.  
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Chapter 6 

Conclusion 
 

In this thesis, the objective is to obtain the CP-violating effects in neutrino oscillations. 

To achieve this, we first obtain CP-violating Lagrangians through the imposition of 

constraints such as hermiticity, locality and universality, which are characteristic of 

the typical Dirac Lagrangian. But in our case, there is an additional condition under 

symmetry transformation, which is that the modified Lagrangians must violate CP 

symmetry. This CP violation enters through the Lorentz-violating background field 

that we attached to our lagrangians. We then obtain five modified Lagrangians 

satisfying these conditions; instead of six as we have planned because we found out 

that one of them did not satisfy the condition of CP violation.  

Thereafter, we derived the energy dispersion relations for each Lagrangians using 

plane wave solutions. These modified energy dispersion relations are then applied to 

neutrino oscillations and we study how the oscillation probabilities change. From 

these probabilities, we can determine the magnitude of the background field by 

approximating specific terms to be of the same order of magnitude; together with the 

values of the various parameters obtained from experiments, we can give a numerical 

value of these magnitudes.  

In actual fact, these magnitudes give us the upper bound on what the background field 

should be, if they were observed. From our calculations, we found out that from our 

five modified Lagrangians, we obtained four specific upper bounds, with a pair of them 

giving the same value. Despite having the same background field, the Lagrangians 
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actually represent different, new physics. Their interactions with the background field 

will be unique and hence resulting in the different bounds obtained.  

The results that we have gathered can be useful in future as we can compare 

experimental data, with our results and see if the potential background field from the 

data lie within our expected range. If it happens to be the case, we can suggest possible 

explanation as to where the CP violation originated. Also, we have a term that is 

sensitive to individual neutrino mass, which is an advantage as we can probe the 

neutrino mass with it; rather than just determining the mass squared difference, 

which is the limit now. Additionally, we can provide an alternative explanation for 

neutrino oscillations. That is, it is due to the interaction with the background field that 

resulted in neutrino oscillation, instead of the mainstream argument in which 

neutrinos have mass.  
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Appendix A: Transformation of Other Modified 

Lagrangians under Discrete Symmetries 
 

For   : 

Under parity transformation, 

        ̅         ̅       . 

 

(A.1) 

When    : 

         ̅      

                   ̅        

          ̅     

 

 

(A.2) 

Since        . We see that when    ,    is P even. 

When    : 

         ̅      

                   ̅         

               ̅   . 

 

 

(A.3) 

We see that when    ,    is P odd. 

Under charge conjugation,  

                                                         ̅      

                                            

                                                                               ̅       

                                                              ̅              . 

 

 

 

(A.4) 

Since                               and                       ̅  

         . 
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 When    : 

        ̅                ̅   . 

 

(A.5) 

We see that when    ,    is C odd. 

When    : 

        ̅               ̅   . 

 

(A.6) 

We see that when    ,    is C even. 

Under time reversal,  

        ̅      

                                                 ̅            

                                                                        ̅       . 

 

 

(A.7) 

When    : 

        
    ̅           ̅     

 

(A.8) 

We see that when    ,   is T odd. 

When    : 

        
    ̅            ̅     

 

(A.9) 

We see that when    ,   is T even. 

Since we want CP odd, the final form of    is given as such 

       ̅   . 
 

(A.10) 
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For   : 

Under parity transformation, 

        ̅           ̅         . 

 

(A.11) 

When    : 

        ̅        

           ̅          

            ̅     . 

 

 

(A.12) 

Since        . We see that when    ,   is P odd. 

When    : 

        ̅        

           ̅          

           ̅     . 

 

 

(A.13) 

We see that when    ,   is P even. 

Under charge conjugation,  

        ̅        

             ̅                 

            ̅     . 

 

 

(A.14) 

C is even for   . 

Under time reversal,  

        ̅           ̅             . 

 
 

(A.15) 
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When    : 

        
    ̅             ̅       

 

(A.16) 

We see that when    ,   is T even. 

When    : 

        
    ̅              ̅       

 

(A.17) 

We see that when    ,   is T odd. 

Since we want CP odd, the final form of    is given as such 

       ̅       
 
 

(A.18) 

For   : 

Under parity transformation, 

          (  
  ̅ )         ̅ (  

   )  (A.19) 

When    : 

         
     ̅           

  ̅      
    

            
     ̅       

  ̅       

 

(A.20) 

We see that when    ,   is P even. 

When    : 

          
     ̅           

  ̅      
    

              
     ̅       

  ̅       

 

(A.21) 

We see that when    ,   is P odd. 
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Under charge conjugation, 

           (  
  ̅ )         ̅         

            (   ̅    )            ̅              

               (   ̅)        ̅     . 

 

 

(A.22) 

  is C odd.  

Under time reversal, 

When    : 

          
     ̅                 

  ̅         
       

             
     ̅       

  ̅     . 

 

(A.23) 

We see that when    ,   is T odd. 

When    : 

          
     ̅                 

  ̅         
       

            
     ̅       

  ̅     . 

 

(A.24) 

We see that when    ,   is T even. 

Since we want CP odd, the final form of    is given as such 

        
     ̅       

  ̅     . 
 

(A.25) 
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For   : 

Under parity transformation, 

          (  
  ̅ )         ̅        . (A.26) 

When    : 

         
     ̅           

  ̅      
    

            
     ̅       

  ̅     . 

 

(A.27) 

We see that when    ,   is P even. 

When    : 

         
     ̅           

  ̅      
    

              
     ̅       

  ̅     . 

 

(A.28) 

We see that when    ,   is P odd. 

Under charge conjugation, 
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              (   ̅    )            ̅              

              (   ̅)        ̅     . 

 

 

(A.29) 

  is C odd.  

Under time reversal, 

When    : 

         
     ̅               

  ̅        
      

              
     ̅       

  ̅     . 

 

(A.30) 
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We see that when    ,    is T odd. 

When    : 

          
     ̅               

  ̅        
      

             
     ̅       

  ̅     . 

 

(A.31) 

We see that when    ,   is T even. 

Since we want CP odd, the final form of    is given as such 

        
     ̅       

  ̅     . 
 

(A.32) 
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Appendix B: Derivation of Other MDRs 
 

For   : 
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Equating Equations (B.2) and (B.3), 
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For   : 
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(B.7) 

Equating Equations (B.6) and (B.7), 
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(B.8) 
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After expanding Equation (B.8) and multiplying    from the left, 
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(B.9) 

where         

 Squaring both sides of the equation, we get: 
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Since   (
  

  
*,    (

  
  

) and    ( 
  

    
*, where    are the Pauli matrices, Equation 

(B.10) becomes 
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(B.11) 

This leads to two simultaneous equations 
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Equating Equations (B.12) and (B.13), we will get the MDR, 

            
        

    
    

                  
    

    
             

 

 

(B.14) 

In order to have CP odd for   ,    , thus we can ignore the terms with    .  
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Eventually, we get the MDR for    

 

 

     
        

           
      

     
       

                
       

  

              
        

       
    

    . 

 

 

(B.15) 

For   : 
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Equating Equations (B.17) and (B.18), 
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(B.19) 

Since we require     to have CP odd for   , the final form of the MDR is, 
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For   : 
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Equating Equations (B.22) and (B.23), 
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After expanding Equation (B.24) and multiplying    from the left, 
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Squaring both sides of the equation, we get: 
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Equation (B.26) becomes 
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This leads to two simultaneous equations 
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Substituting Equation (B.28) into Equation (B.29), 
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 , equation B.30 becomes, 
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Substituting back into Equation (B.31), we get the MDR 
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Since we require     to have CP odd for   , the final form of the MDR is, 

   
         

   
          

        
  

            
   

 
 

 
(B.34) 
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Appendix C: PNMS Matrix 
 

The PNMS matrix is given as below: 
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where           and           ;     are the mixing angles and   is the CP-violating 

phase. 

 

 

Appendix D: Expansion of Real Part of Equation 

(5.20) 
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Appendix E: Neutrino Oscillation Probabilities for 

Other MDRs 
 

For   : 

The MDR is given as  
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(E.1) 

Expanding k, 
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since     for   . 

Assuming   is small, we can neglect higher order terms and doing a Taylor expansion, 

we eventually get 
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Equation (5.15) becomes 

 
   (

  
 

   
 

   

 
)   

 

(E.4) 

 

 

 



59 
 

The oscillation probability in the case of    is 

 
 (  →   )             

    
       

 *
 

 
(
    

 

  
      

)+ 

                        
    

       
 *

 

 
(
    

 

  
      

)+ 

                          
    

       
 *

 

 
(
    

 

  
      

)+   

 
 

 
 
 
 

(E.5) 

For   : 

The MDR is given as  
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Expanding k, 
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Assuming   is small, we can neglect higher order terms and doing a Taylor expansion, 
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Equation (5.15) becomes 
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The oscillation probability in the case of    is 

 

 
 (  →   )             

    
       

 *
 

 
(
    

 

  
      

)+ 

                               
    

       
 *

 

 
(
    

 

  
      

)+ 

                                 
    

       
 *

 

 
(
    

 

  
      

)+   

 

 

 
 
 
 

(E.10) 

For   : 

The MDR is given as  
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Expanding k, 
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Assuming   is small, we can neglect higher order terms and doing a Taylor expansion, 

we eventually get 
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(E.13) 

Equation (5.15) becomes 
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The oscillation probability in the case of    is 
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(E.15) 

For   : 

The MDR is given as  

 
   

         
   

          
        

  

            
   

 

(E.16) 

Expanding k, 

       
        

           
            

   
          

        
   

     
          

         

 

(E.17) 

Assuming   is small, we can neglect higher order terms and doing a Taylor expansion, we 

eventually get 
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(E.18) 

Equation (5.15) becomes 
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The oscillation probability in the case of    is 
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