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Abstract

Transition metal dichalcogenides (TMDs), with chemical formula MX2, have
gained interest in recent years due to their atomic thinness and remarkable
properties, making them ideal candidates for nanodevices. However, there is
no reason to believe that asymmetric TMDs (aTMDs), with chemical formula
XMY, cannot exist. If stable and can be grown, the asymmetric structure may
have unexpected properties and open new applications.

For example, due to different electronegativities of chalcogens X and Y, we
expect a charge transfer from the less electronegative to more electronegative
chalcogen, resulting in a dipole moment. Such dipole-dipole interactions, instead
of weak Van der Waals interactions, can be used to stack up layers of aTMDs
and lead to interesting properties for such superlattices. The different charge
densities on different sides of aTMDs result in different surface properties, which
may have new applications. Also, we expect different M-X and M-Y bond
lengths to cause aTMDs to curl up naturally.

We propose to investigate flat, nanotube and spherical monolayer aTMDs
from first-principles using density functional theory (DFT). The structures will
be optimised according to parameters like lattice constant and radius of cur-
vature. Then, we study their electronic properties and explore their potential
applications.
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Chapter 1

Introduction

In recent years, 2D materials like graphene and TMDs have garnered strong in-
terest. Their atomic thinness makes them candidate materials for many nanode-
vices. TMDs have emerged as promising 2D materials with exceptional physical
behaviours [26] that are distinct from graphene. Though graphene has a high
carrier mobility [6], it lacks a direct band gap and graphene transistors cannot
be switched off. On the other hand, due to quantum confinement, TMDs have
direct band gaps [17], which make them potential candidates for transistors and
optoelectronic devices. Moreover, TMDs have modest mobility and excellent
on-off ratio in field effect transistors [23] comparable to thin silicon films, are
strong and flexible [2], and are tunable under strain [12]. These properties make
TMDs excellent candidates for flexible electronics.

However, to the best of our knowledge, no work has been done on aTMDs
yet. Symmetric TMDs have a chemical formula of MX2, with the M transition
metal sub-layer being sandwiched by 2 X chalcogen sub-layers. aTMDs have the
chemical formula XMY and are sandwiched by 2 different chalcogen sub-layers.
Figure 2.4 shows the structure for TeMoS, which is an example of a aTMD.

The motivation for studying aTMDs is as follows: First, due to the different
electronegativities of the 2 different chalcogen sub-layers, we expect a charge
transfer across the middle Mo sub-layer from the less to more electronegative
chalcogen sub-layer. For example, according to table 2.1, Te is less electronega-
tive than S. Therefore, we expect some charge transfer from Te to S in TeMoS
as shown in figure 1.1. This creates a dipole moment and stronger inter-layer
dipole-dipole interactions. In contrast, symmetric TMDs do not have such
dipole moments and reply on weak inter-layer Van der Waal’s forces to hold
different layers together. Stronger inter-layer dipole-dipole interactions may re-
sult in new properties of 2D superlattices formed by sandwiching different types
of aTMDs.

Second, the different charge densities on different sides of a aTMD monolayer
will result in different surface properties. For example, a floating electrophilic
oxygen molecule approaching a TeMoS monolayer may be more strongly at-
tracted to the more electron-rich S side as compared to the electron-poor Te
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Figure 1.1: Charge transfer from the less electronegative Te ion to the more
electronegative S ion results in an internal electric field and dipole moment for
monolayer TeMoS.
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Figure 1.2: The less electronegative Te atom has larger radius than Se atom.
Forcibly bonding the Te and S atoms to the Mo atom them using dotted lines
will force the TeMoS monolayer to curl up into a sphere.

side. Such dual surface properties may lead to new applications.
Third, the difference in electronegativities of the 2 chalcogens X and Y results

in different M-X and M-Y bond lengths. This causes the structure to curl up, as
shown in figure 1.2. We thus expect aTMDs to be naturally spherical instead of
flat like symmetric TMDs. Rolling naturally flat structures, like graphene and
symmetric TMDs, into nanotubes and spherical shell structures may introduce
significant strain. The natural radius of curvature in aTMDs may make aTMDs
better candidates for fabricating nanotubes and spherical shell structures.

In this work, we investigate aTMDs such as SeMoS, SeMoTe and TeMoS from
first-principles using DFT. However, we give TeMoS special attention because
it has the highest asymmetry. We also expect TeMoS to have the smallest
radius of curvature, thereby reducing the number of atoms of a unit cell of a
nanotube or spherical shell structure. This reduces the cost involved in DFT
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treatment and makes TeMoS most convenient to analyse. The structures (flat
2D, nanotube and spherical) of aTMDs will be optimised and their stability will
be analysed first. For stable structures identified from the stability analysis,
we carry out first-principles calculations to study their electronic properties and
explore their potential applications. All DFT treatment is done using a software
package called VASP [9]. Ball and stick structures are drawn using Materials
Studio [15], and charge densities are visualised using VESTA [20] and VaspView
[25]. Data is processed and plotted using GNU Octave [5].
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Chapter 2

Background

2.1 Structures of MoS2

MoS2 is a well-known example of a traditional, symmetric TMD. As such, we use
the example of MoS2 to discuss the structure of symmetric TMDs. Figures 2.1
and 2.2 show the possible structures of molybdenum disulphide MoS2. MoS2

is made up of layers that are held together by weak Van der Waals forces; these
layers can thus slide over each other easily like layers of graphene in graphite.
Unlike graphene however, each layer of MoS2 is constructed by laying 3 sub-
layers of atoms as shown in figure 2.3. There are two resulting structures for
a MoS2 layer – 2H (figure 2.1) and 1T(figure 2.2). The 2H structure is more
commonly found in nature [13].

To generate a layer, one can use the 2D Bravais hexagonal lattice defined by
the primitive lattice vectors a1 and a2 and the angle φ between them:

|a1| = |a2| = a, (2.1)

φ = 2π/3. (2.2)

In Cartesian coordinates, they are

a1 = −a

(
1

2
x̂ +

√
3

2
ŷ

)
, (2.3)

a2 = ax̂. (2.4)

The corresponding reciprocal lattice vectors are

b1 = − 4π√
3a

ŷ, (2.5)

b2 =
4π√
3a

(√
3

2
x̂− 1

2
ŷ

)
, (2.6)
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(a) Top down view.

(b) Side view.

Figure 2.1: 2H structure for monolayer MoS2, where bottom and top S atoms
(yellow spheres) are aligned together such that their projections onto the x-y
plane overlap. A middle Mo atom (blue sphere) bonded to 6 S atoms forms a
trigonal prismatic molecular geometry.
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(a) Top down view.

(b) Side view.

Figure 2.2: 1T structure for monolayer MoS2, where bottom and top S atoms
(yellow spheres) are not aligned together, i.e. their projections on the x-y plane
do not overlap. A middle Mo atom (blue sphere) bonded to 6 S atoms forms a
octahedral molecular geometry.
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Figure 2.3: The first layer of spheres with centres marked A are the S atoms. A
second layer of Mo atoms can be placed over points marked B. The third layer
of S atoms can over either A or C, making the sequence ABA or ABC. The
sequence ABA corresponds to the 2H structure in figure 2.1; the sequence ABC
corresponds to the 1T structure in figure 2.2.

and can verified to be correct using

bi · aj = 2πδij . (2.7)

The primitive cell is thus a rhombus made up of 2 equilateral triangles. By
picking any one of its 4 vertices as a lattice point, and duplicating another
lattice point T(u1, u2) away for all integers u1, u2, where

T = u1a1 + u2a2, (2.8)

we generate an infinitely large sheet of lattice points arranged in the hexagonal
way.

For the 2H structure of MoS2, we attach 2 S atoms and 1 Mo atom to every
lattice point in the following relative positions:

r(bottom S) = 0, (2.9)

r(middle Mo) =
1

3
a1 +

2

3
a2 +

1

2
d, (2.10)

r(top S) = d, (2.11)

where |d| = d is the distance between the bottom and top S atoms and d points
in the ẑ direction.

For the 1T structure, we change the relative position of the top S atom to

r(top S) =
2

3
a1 +

1

3
a2 + d (2.12)

while keeping the relative positions of bottom S and middle Mo the same in
(2.10) and (2.11).
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Table 2.1: Electronegativities [28] of S, Se and Te in Pauling units. The elec-
tronegativities of S and Se are quite close, whereas the electronegativity of Te
is much less than those of S and Se.

S Se Te
2.58 2.55 2.01

2.2 Structure of aTMDs

For our study of aTMDs, we use the 2H symmetric TMD structure and replace
one of the chalcogen sub-layer with another chalcogen type. For example, in
TeMoS shown in figure 2.4, we replace the bottom sub-layer of S atoms of MoS2

with Te atoms. In this work, all aTMDs are of the 2H structure; the 2H structure
is more stable and more commonly found in nature than the 1T structure [13].

2.3 Electronegativities of chalcogens

Since we expect the interesting properties of aTMDs to come from the difference
in electronegativities of the different chalcogen sub-layers, it is useful to first find
these electronegativity values from current literature. The electronegativities of
S, Se and Te are tabulated in table 2.1. We find that the electronegativities of
S and Se are quite close, whereas the electronegativity of Te is much less than
those of S and Se. Hence, we expect TMDs MoS2, MoSe2 and aTMD SeMoS to
have similar properties.

2.4 Density functional theory

DFT searches for density distribution n(r) of electrons and ions that minimises
energy, similar to the variational principle; the density functional in “density
functional theory” refers to the energy functional to be minimised. We first
assume that the ions are fixed in position, whereas the electrons are free to
move. This assumption is valid because the ions are much more massive than
the electrons, and the ions move much more slowly than the electrons. This
assumption, where the electrons react instantaneously to the change in ionic
positions, is known as the Born-Oppenheimer approximation. In Hartree units,
the electron charge density used to minimise energy is thus

n(r) = |Ψ(r1, r2, . . . , rN)|2 , (2.13)

where Ψ(r1, r2, . . . , rN) is the all-electron wavefunction for N electrons. Within
the Born-Oppenheimer approximation, the many-particle eigenvalue problem
becomes  N∑

i=1

(
−1

2
∇2
i + Vn(ri)

)
+

1

2

∑
i6=j

1

|ri − rj |

Ψ = EΨ, (2.14)
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(a) Top down view.

(b) Side view.

Figure 2.4: 2H structure of a layer of aTMD TeMoS, where the bottom brown
sub-layer of atoms are Te atoms, the middle blue sub-layer of atoms are Mo
atoms, and the top yellow sub-layer of atoms are S atoms. Generated by Mate-
rials Studio [15]. All other aTMDs in this work are of the 2H structure.
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where

Vn(ri) = −
∑
I

ZI
|ri −RI |

(2.15)

is the external potential energy between the i-th electron and all the ions.
In the independent electron approximation, where electrons do not see one

another, we drop the term describing the Coulomb repulsion among electrons

N∑
i=1

(
−1

2
∇2
i + Vn(ri)

)
Ψ =

N∑
i=1

H0(ri)Ψ (2.16)

= EΨ, (2.17)

and express the all-electron wavefunction as a product of N single-electron wave-
functions φi(ri):

Ψ(r1, r2, . . . , rN) = φ1(r1)φ2(r2) . . . φN (rN ). (2.18)

Substituting the above expression into the right-hand side of (2.16), and using
the fact that H0(ri) only acts on φi(ri), the N -particle eigenvalue problem in
(2.16) reduces to N single-particle equations:

H0(r)φi(r) = εiφi(r) for i = 1, 2, . . . , N. (2.19)

The energy of the system is

E = ε1 + ε2 + · · ·+ εN . (2.20)

The greatest strength of this drastic approximation is that it reduces the N -
particle eigenvalue problem to N single-particle eigenvalue problems. However,
there are two serious shortcomings. First, electrons are fermions and according
to Pauli’s exclusion principle, the all-electron wavefunction Ψ must change sign
if we exchange the position coordinates of any 2 electrons. The all-electron
wavefunction should thus be written as the Slater determinant

Ψ(r1, r2, . . . , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(r1) φ1(r2) . . . φ1(rN )
φ2(r1) φ2(r2) . . . φ2(rN )

...
...

. . .
...

φN (r1) φN (r2) . . . φN (rN )

∣∣∣∣∣∣∣∣∣ , (2.21)

so that the determinant changes sign whenever we exchange 2 rows or columns.
Second, the magnitude of inter-electron Coulomb repulsion is comparable to
other terms and we cannot neglect it.

Using the correct all-electron wavefunction in (2.21) for the Schrodinger
equation in (2.14) that includes the inter-electron Coulomb repulsion, we now
instead have the Kohn-Sham equations(

−1

2
∇2 + Vn(r) + VH(r) + Vxc(r)

)
φi(r) = εiφi(r), (2.22)
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which are inspired by the convenient but inaccurate independent electron ap-
proximation to reduce the N -particle eigenvalue problem to N single-particle
eigenvalue problems.

The Hartree energy VH(r) describes the potential energy an electron im-
mersed in a electrostatic potential caused by other electrons:

VH(r) =

∫
dQ(r′)

|r− r′|
(2.23)

=

∫
n(r′) d3r′

|r− r′|
, (2.24)

which satisfies the Poisson equation

∇2VH = −4πn(r). (2.25)

The exchange-correlation energy Vxc(r) is the quantum correction needed when
transforming the many-particle problem (defined by the Slater determinant)
into the single particle picture. Hence, the many-body effect is included in
the Vxc(r) term. The exchange correlation term is also a functional of electron
density, i.e.

Vxc = Vxc[n(r)]. (2.26)

We note that the Kohn-Sham energy functional in the left-hand side of (2.22)
is a functional of charge density n(r), i.e.

F [n] = −1

2
∇2 + Vn[n] + VH[n] + Vxc[n], (2.27)

yet they determine the charge density through the Kohn-Sham orbitals φi(r) in
(2.22):

n(r) =
N∑
i=1

|φi(r)|2. (2.28)

This points towards a self-consistent method in solving the Kohn-Sham equa-
tions. Algorithm 1 illustrates this.
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Data: fixed ionic positions RI

Result: electron charge density n(r)
compute external potential Vn(r) = −

∑
I ZI/|r−RI |;

guess n(r);
do

compute Hartree potential ∇2VH[n] = −4πn(r);
compute exchange-correlation potential Vxc[n];
find Vtot = Vn + VH + Vxc;
solve single particle eigenvalue problem (Kohn-Sham equations)(
(−∇2/2) + Vtot[n]

)
φi(r) = εiφi(r);

get new charge density n(r) =
∑
i |φi(r)|2;

while new n(r) 6= old n(r);
return self-consistent electron charge density n(r) and ground state
energy E =

∑
i εi;

Algorithm 1: Self-consistent electronic calculation to solve Kohn-Sham equa-
tions in (2.22).

18



Chapter 3

Methodology

3.1 Flat TMDs and aTMDs

3.1.1 Equilibrium lattice parameters

The equilibrium lattice parameter a0 is the lattice parameter a = |a1| = |a2|
that minimises the energy of a (a)TMD monolayer ((a)TMD means symmetric
TMDs or aTMDs). We simulate an isolated monolayer by stacking many mono-
layers vertically with a large enough separation, i.e. for a monolayer spanning
the x-y plane, the vertical distance along the z-axis between two monolayers
is sufficiently large to approximate the physics of a truly isolated monolayer
surrounded by infinite vacuum. We thus use a super-cell defined by primitive
lattice vectors a1 and a2, as well as a3, which characterises the vertical distance
between two far-apart monolayers. We choose |a3| = 15 Å.

For a certain lattice parameter a, we allow the atoms to relax freely and be
influenced by the forces acting on them using the conjugate gradient method.
For each set of atomic positions in this relaxation, we use the Born-Oppenheimer
approximation to determine the electron wavefunctions in a self-consistent way.
Algorithm 3 illustrates this succinctly, while table 3.1 shows the relevant com-
putational details.

3.1.2 Average cohesive energies per atom

We can obtain the average cohesive energy per atom Ec using

Ec =

(
F0 −

∑
α

Fα

)/
NI , (3.1)

where F0 is the total equilibrium energy for the super-cell, α is the type of single
atom, Fα is the total energy for the α single atom and NI is the number of atoms
in the super-cell. Using the self-consistent electronic relaxation treatment for
fixed single atoms placed sufficiently far apart, we obtain the total energies Fα
for α = Mo,S,Se,Te.
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Data: initial ionic positions and electronic charge density
Result: equilibrium ionic positions, charge density n and energy F per

super-cell
compute forces on ions based on Coulomb interaction with electron
charge density n and with another ions;
move ions according using conjugate gradient method using computed
forces;
while ions still move do

guess electron wavefunction for new set of atomic positions;
while electron wavefunction not converged do

continue with self-consistent electronic calculation using algorithm
1;

end
compute forces on ions based on Coulomb interaction with electron
charge density n and with another ions;
move ions according using conjugate gradient method using computed
forces;

end
compute energy F per super-cell;
return equilibrium ionic positions, n and F ;

Algorithm 2: Both electronic and ionic relaxations.

Result: equilibrium lattice parameter a0
foreach lattice parameter a do

relax ionic and electronic charge density using algorithm 2
end
plot energy F per super-cell vs. a;
fit a quadratic curve to points near the lowest energy;
return value of a corresponding to minimum point of quadratic fit;

Algorithm 3: Atomic relaxation to obtain equilibrium lattice parameter a0.

Table 3.1: DFT parameters for flat 2D monolayers, where a is the trial lattice
parameter; Ecut is the cut-off energy; EDIFF and EDIFFG are the break conditions
for self-consistent electronic and ionic relaxation loops respectively.

Pseudo-potential Projector-augmented wave method [3]
Exchange-correlation functional Perdew-Burke-Ernzerhof [21]

Ecut 400 eV
Super-cell dimensions a× a× 15 Å

Ionic relaxation method Conjugate gradient descent
EDIFF 1× 10−6 eV
EDIFFG 1× 10−5 eV

k-points mesh Γ-centered Monkhorst-Pack 7× 7× 1

20



3.1.3 Bader analysis

To quantify the charge transfer from the less to more electronegative chalcogen
in aTMDs, we need a way of dividing the charge density amongst ions. An
intuitive way of doing so is to use the 2D surface on which the charge density is
minimum perpendicular to this surface. Such surfaces are called zero flux sur-
faces by Bader [1]. Using the algorithm and program developed by Henkelman’s
group [14], we divide the charge density and volume of a unit cell and assign
them to the constituent ions.

3.1.4 Dipole moment

Another way of quantifying the charge transfer in flat aTMDs is to get the
dipole moment p associated with the charge asymmetry. For TeMoS, in units
of the elementary charge,

p = ẑ

∫ ∞
−∞

(
n(z) + 6δ(z − zS) + 6δ(z − zMo) + 6δ(z − zTe)

)
z dz, (3.2)

= ẑ

((∫ ∞
−∞

n(z) dz

)
+ 6zS + 6zMo + 6zTe

)
(3.3)

where 6 comes from the effective nuclear charge of the ions (Te, Mo, S all have
6 valence electrons),

zS = r(S) · ẑ, (3.4)

and likewise for zMo and zTe, and n is the negative electron charge density with

n(z) =

∫∫
S

n(x, y, z) dxdy < 0, (3.5)

and S is the area of the primitive unit cell. The dipole moment points from the
negative to positive charge. Since we expect the more electronegative chalcogen
to attract more negative electron charge, the dipole moment should point from
the more to less electronegative chalcogen in aTMDs. On the other hand, we
expect no dipole moment for symmetric TMDs.

3.2 Spherical aTMDs

The difference in equilibrium lattice parameters for different chalcogens in sym-
metric TMDs MoS2, MoSe2 and MoTe2 in figure 4.3 suggests that flat 2D aT-
MDs are not energetically stable. For example, in TeMoS, the larger Te atoms
push against one another and the smaller S atoms pull on one another. This
tension at the S side and compression at the Te side will cause a flat piece of
TeMoS to curl up into a sphere. We need to first estimate the radius of such a
sphere, map the ionic positions from the flat structure to the sphere and then
relax the structure using DFT treatment.

Figure 3.1 illustrates the curling of a aTMD to form a sphere. The radius
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θ

r2

r1

r0

Figure 3.1: Spherical aTMD formed due to different sizes of chalcogens. The
three layers are formed by the smaller chalcogen, the middle transition metal
and larger chalcogen, with radii r1, r0 and r2 respectively. The angle subtended
by two adjacent atoms is θ.

of curvature is estimated by

r2θ

r1θ
=
a
(2)
0

a
(1)
0

, (3.6)

where a
(2)
0 and a

(1)
0 are the distances between two adjacent chalcogen atoms on

the outer and inner sphere respectively. Letting

r1 + d = r2, (3.7)

we have

r1 =
d(

a
(2)
0 /a

(1)
0

)
− 1

. (3.8)

For TeMoS, we assume the distance between two adjacent S atoms to be that
of the equilibrium lattice constant for that of MoS2, and likewise for the outer
Te atoms and MoTe2. Referring to table 4.1, this means

a
(2)
0 = a0(MoTe2) = 3.552 Å, (3.9)

a
(1)
0 = a0(MoS2) = 3.185 Å. (3.10)

The sphere’s thickness d is obtained from the equilibrium vertical distance be-
tween the Te and S atom found from the equilibrium electron and ion distribu-
tions in figure 4.6:

d = 3.373 Å. (3.11)
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Substituting the above values into (3.8) and (3.7), we get r1 and r2 shown in
table 3.2. The radius of the middle sphere for the Mo ions can be obtained from

r1 + c = r0, (3.12)

where c, similar to d, is the equilibrium vertical distance between the S and Mo
atom found when drawing figure 4.6.

Algorithm 4 outlines the steps of mapping ionic positions from a flat aTMD
to a sphere. The main idea is to create a sphere made of triangles [18], also

Result: initial ionic positions for spherical aTMDs
/* 3 layers: inner, middle and outer spheres */

foreach layer do
/* regular octahedron is a polyhedron made of 8

equilateral triangles of the same size */

draw a regular octahedron;
foreach octahedron face do

divide octahedron face into f rows of sub-triangles;
/* to obtain geodesic sphere */

set radial component of every vertex of sub-triangle to same
radius r of this layer;

end
if layer is inner or outer sphere then

foreach sub-triangle vertex do
place chalcogen ion;

end

else
/* layer is middle layer */

for every alternate sub-triangle do
place metal ion in the middle of sub-triangle;

end

end

end
return ionic positions for all 3 layers;

Algorithm 4: Initialising ionic positions of a spherical aTMD. The different
ways of placing the chalcogens and metal ion ensures most of the metal ions
to form the trigonal prismatic geometry with 6 other chalcogen ions.

known as a geodesic sphere, and to use the triangles to place the ions. The
primitive cell for the 2D hexagonal lattice comprises 2 equilateral triangles.
However, the highest regular polyhedron made up of equilateral triangles we
can have is the 20-faced icosahedron; anything higher is at best made up of
approximately equilateral triangles. Nevertheless, this is merely an initialisation
of the ionic positions, and we only need an estimate of the ionic positions for
now; the precise ionic positions will be determined after DFT relaxation.
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Table 3.2: Key parameters of initial ionic positions for optimal TeMoS. r is
radius of geodesic sphere, f is frequency of which the octahedron faces are sub-
divided into smaller triangles, N is number of atoms on a sphere, 〈a〉 is the
average distance between two atoms of the same sphere, and the subscripts 0,
1 and 2 denote the middle, inner and outer sphere respectively.

r0 30.727 Å
r1 29.255 Å
r2 32.628 Å
f 18
N0 1296

N1 = N2 1714
〈a〉0 3.072 Å
〈a〉1 3.227 Å
〈a〉2 3.426 Å

Because TeMoS has the largest difference between chalcogen sizes as com-
pared to SeMoS and SeMoTe, its radius of curvature is smallest and thus the
number of atoms involved for DFT computation is also smallest. Hence, we shall
focus on TeMoS for concrete calculations. Table 3.2 tabulates the parameters
characterising the geodesic spheres for initialising the spherical TeMoS.

The frequency f in table 3.2 refers to the number of rows of smaller sub-
triangles which a regular octahedron’s face (an equilateral triangle) is divided
to. The number of smaller sub-triangles in an octahedron face is thus f2. If
we consider the half of the sphere’s circumference to be made of 2 adjacent
octahedron faces, then we have

2× f ×
√

3

2
a = πr, (3.13)

where r is the radius of the sphere.
Figures 3.2 and 3.3 plot the initial ionic positions for spherical TeMoS.
However, the large number of atoms involved

N0 +N1 +N2 = 4724 (3.14)

makes DFT treatment too expensive. Instead, we decrease the radius by 8
times to reduce the number of atoms. The key parameters for such a drastically
reduced scheme is shown in table 3.3. Although the huge decrease in radius will
result in significant strain, the number of atoms involved in DFT computation
is now

N0 +N1 +N2 = 112, (3.15)

much smaller than 4724 atoms in the optimal structure. Figures 3.4 and 3.5
plot the initial atomic positions for the reduced spherical TeMoS, and these are
left to relax based on algorithm 2 and table 3.4.
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Figure 3.2: Initial atomic positions for optimal spherical TeMoS for ionic and
electronic relaxations. The inner, middle and outer spheres comprise S (red),
Mo (black) and Te (blue) atoms respectively.

25



-40
-30

-20
-10

0
10

20
30

40

-40
-30

-20
-10

0
10

20
30

40-40

-30

-20

-10

0

10

20

30

40

z
(Å
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Figure 3.3: Different view of initial atomic positions for optimal spherical
TeMoS.
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Table 3.3: Key parameters of initial ionic positions for reduced TeMoS. r is
radius of geodesic sphere, f is frequency of which the octahedron faces are sub-
divided into smaller triangles, N is number of atoms on a sphere, 〈a〉 is the
average distance between two atoms of the same sphere, and the subscripts 0,
1 and 2 denote the middle, inner and outer sphere respectively.

r0 5.129 Å
r1 3.657 Å
r2 7.030 Å
f 3
N0 36

N1 = N2 38
〈a〉0 3.136 Å
〈a〉1 2.236 Å
〈a〉2 4.298 Å

Table 3.4: DFT parameters for reduced spherical TeMoS, where r0 is the esti-
mated radius of curvature; 15 Å is the distance between two spherical surfaces;
Ecut is the cut-off energy; EDIFF and EDIFFG are the break conditions for self-
consistent electronic and ionic relaxation loops respectively.

Pseudo-potential Projector-augmented wave method [3]
Exchange-correlation functional Perdew-Burke-Ernzerhof [21]

Ecut 400 eV
Super-cell dimensions (2r0 + 15 Å)× (2r0 + 15 Å)× (2r0 + 15 Å)

Ionic relaxation method Conjugate gradient descent
EDIFF 1× 10−4 eV
EDIFFG 1× 10−3 eV

k-points mesh Γ point only
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Figure 3.4: Initial atomic positions for reduced spherical TeMoS for ionic and
electronic relaxations. The inner, middle and outer spheres comprise S (red),
Mo (black) and Te (blue) atoms respectively.
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a2
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R0

Figure 3.6: Rolling R and longitudinal L vectors for armchair aTMDs. The plus
and cross represent the smaller and bigger chalcogen ions respectively, while
the dot represents the middle metal ion. The rolling vector with the smallest
possible length is R0. The rectangular strip whose area bounded by R and L
is rolled up to form the primitive unit cell of the nanotube.

3.3 Nanotube aTMDs

It is difficult to study spherical aTMDs due to the expensive computational cost
involved with a large number of atoms. However, we still want to at least verify
directly that aTMDs will naturally curl up because of different M-X and M-Y
bonds. Fortunately, we can still take advantage of the asymmetry in aTMDs
by constructing nanotubes. Due to translational symmetry along the tube’s
axis, the number of atoms in a unit cell reduces significantly, making DFT
computation much more manageable than that for spherical aTMDs.

To construct a nanotube from flat aTMDs, we need two vectors – longitu-
dinal L and rolling R vectors. These vectors are shown in figure 3.6. L is the
tube’s axis and the primitive lattice vector for the nanotube’s 1D lattice. R is
the vector along which the flat piece is to be rolled, with

|R| = R = 2πr1, (3.16)

where r1 is the radius of the inner tube, similar to the radius of the inner sphere
for spherical aTMDs. The way the nanotube is rolled up, or its chirality, is
defined by R entirely in terms of

R = n1a1 + n2a2. (3.17)

Such a nanotube is also called a (n1, n2) nanotube. The rolling vector with the
smallest possible length is R0 and we can write

R = fR0, (3.18)
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Figure 3.7: Using coordinates x′ and y′, which are parallel to R and L respec-
tively, instead of x and y coordinates for rolling up grey rectangular strip to
nanotube. The ‘f’ in the projections rfx′ and rfy′ means ‘flat’.

where f is the frequency analogous to the one used for spherical aTMDs. For
example, we have f = 3 for figure 3.6.

To roll up the strip whose area is bounded by R and L, it is useful to first
re-define our coordinate system along R and L as shown in figure 3.7. For an
ion at position r, we have

rfx′ = r · R̂, (3.19)

rfy′ = r · L̂, (3.20)

rfz′ = rfz = r · ẑ, (3.21)

where the ‘f’ superscript refers to ‘flat’. Using figure 3.8, it is easy to see that

φ

2π
=
rfx′

R
. (3.22)

Then we have

rcx′ = (r1 + δ) cosφ, (3.23)

rcz′ = (r1 + δ) sinφ, (3.24)

rcy′ = rfy′ . (3.25)

Two common nanotube chiralities are the armchair and zigzag variants.
Their rolling and longitudinal vectors for TeMoS, as well as their key parame-
ters, are written in table 3.5. There are more atoms in the 1D primitive unit
cell of the zigzag nanotube due to a smaller R0.

Figures 3.9 and 3.10 plot the initial ionic positions for the armchair nanotube,
whereas figures 3.11 and 3.12 plot those for the zigzag variant. These initial

ionic positions are left to relax according to algorithm 2 and table 3.6.
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δ
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z

r1

Figure 3.8: Mapping position rf from flat rectangular strip in figure 3.7 to
position rc onto the curved surface of the nanotube. The tube’s axis lies along
the y′ axis, which points into the page. The smaller circle has a circumference
R from the rolling vector and has a radius of the inner radius r1. δ is the height
of the position rf above the x′-y′ plane in the flat strip picture. For aTMDs, δ
can be c from (3.12) or d from (3.7).

Table 3.5: Key parameters of initial ionic positions for optimal nanotube TeMoS.
L and R0 are the longitudinal and smallest rolling vectors respectively, r1 is the
inner radius, f is the number of R0s contained in R, and N0, N1 and N2 are the
number of ions in the middle, inner and outer tubes in the nanotube’s primitive
unit cell, which is defined by L, respectively.

Armchair Zigzag

L −a1 − a2 −2a1 − a2

R0 −a1 + a2 a2

r1 29.68 Å 30.53 Å
f 32 57

N0 = N1 = N2 64 114
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Figure 3.9: Initial atomic positions (front view) in primitive cell of armchair
nanotube TeMoS for ionic and electronic relaxations. The inner, middle and
outer spheres comprise S (red), Mo (black) and Te (blue) atoms respectively.
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Figure 3.10: Initial atomic positions (side view) in primitive cell of armchair
nanotube TeMoS for ionic and electronic relaxations.
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Figure 3.11: Initial atomic positions (front view) in primitive cell of zigzag
nanotube TeMoS for ionic and electronic relaxations. The inner, middle and
outer spheres comprise S (red), Mo (black) and Te (blue) atoms respectively.
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Figure 3.12: Initial atomic positions (side view) in primitive cell of zigzag nan-
otube TeMoS for ionic and electronic relaxations.
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Table 3.6: DFT parameters for TeMoS nanotubes, where R is the estimated ra-
dius of the nanotube; 15 Å is the distance between two cylindrical surfaces; Ecut

is the cut-off energy; 3.365 Å is lattice constant for flat TeMoS found later in ta-
ble 4.1; EDIFF and EDIFFG are the break conditions for self-consistent electronic
and ionic relaxation loops respectively.

Pseudo-potential Projector-augmented wave method [3]
Exchange-correlation functional Perdew-Burke-Ernzerhof [21]

Ecut 400 eV
Super-cell dimensions (2r0 + 15 Å)× 3.365 Å× (2r0 + 15 Å)

Ionic relaxation method Conjugate gradient descent
EDIFF 1× 10−5 eV
EDIFFG 1× 10−4 eV

k-points mesh Γ-centered Monkhorst-Pack 1× 7× 1
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Chapter 4

Results and discussion

4.1 Flat TMDs and aTMDs

4.1.1 Equilibrium lattice parameters

The energy F per super-cell defined by vectors a1, a2 and a3 vs. lattice parame-
ter a = |a1| = |a2| plots are shown in figures 4.1 and 4.2 for MoS2. The plots for
the rest of the TMDs and aTMDs are drawn in the appendix: A.1 and A.2 for
SeMoS, A.3 and A.4 for MoSe2, A.7 and A.8 for SeMoTe, and A.9 and A.10 for
MoTe2. The first plot for each material is a rough plot with large increments
of a by 0.1 Å to estimate the region near the equilibrium lattice parameter. The
second plot zooms in to this region and increments a by a finer 0.01 Å. Near
the equilibrium lattice parameter a0, we have

F (a− a0) = F (a0) + F ′(a0)(a− a0) +
1

2
F ′′(a0)(a− a0)2 + . . . . (4.1)

At the minimum point, F ′(a0) vanishes, leaving only the quadratic term if we
ignore the negligibly small higher terms. We thus fit a quadratic curve in the fine
plots for each material to obtain the equilibrium lattice parameters a0, which
are tabulated in table 4.1.

The equilibrium lattice parameters from our fits agree well with the exper-
imental values with < 1% error. The equilibrium lattice parameter increases
from MoS2 to MoSe2 to MoTe2, which is to be expected since the atomic radii
of the chalcogens increase down the group from S (1.00 Å) to Se (1.15 Å) to Te
(1.40 Å) [24]. Also, SeMoS having a radius between that of MoS2 and MoSe2
(similarly for SeMoTe) is intuitive.

4.1.2 Average Cohesive Energies per Atom

Using the single atom energies in table 4.2 and (3.1), we determine the average
cohesive energies per atom in table 4.3.
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F
(e

V
)

Figure 4.1: Rough plot of total energy F per super-cell defined by vectors a1,
a2 and a3 vs. lattice parameter a = |a1| = |a2| for MoS2. For each fixed value
of a, the positions of the ions are allowed to relax until convergence.

Table 4.1: Fitted equilibrium lattice parameters a0 arranged in ascending order
for various flat (a)TMDs. Blank cells mean no experimental values for a0 are
available.

Material a0 (Å) Experimental value (Å) Error (%)

MoS2 3.185 3.1602 [27] 0.7721
SeMoS 3.249
MoSe2 3.319 3.289(1) [4] 0.9243
TeMoS 3.365
SeMoTe 3.435
MoTe2 3.552 3.519(1) [22] 0.9321
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Figure 4.2: Fine plot of total energy F per super-cell vs. lattice parameter
a = |a1| = |a2| for MoS2.

Table 4.2: Total energies Fα for single atom α.

α Fα (eV)

Mo -0.723
S -0.324
Se -0.322
Te -0.319
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Table 4.3: Average cohesive energies per atom Ec determined from total energies
for entire primitive cell F for various flat (a)TMDs.

Material F (eV) Ec (eV)

MoS2 -21.783 -6.80
SeMoS -20.832 -6.49
MoSe2 -19.937 -6.19
TeMoS -19.705 -6.11
SeMoTe -18.904 -5.85
MoTe2 -18.024 -5.55

Table 4.4: Bader analysis for SeMoS

Atom Charge (e) Assigned volume (Å
3
)

Se 6.6797 59.7143
Mo 4.4640 12.0419
S 6.8563 59.7091

4.1.3 Equilibrium Lattice Parameters vs. Average Cohe-
sive Energies per Atom

Figure 4.3 plots the average cohesive energies Ec per atom vs. equilibrium lattice
parameter a0 relationship using tables 4.1 and 4.3.

4.1.4 Charge Distributions of Asymmetric Transition Metal
Dichalcogenides

Figures 4.4, 4.5 and 4.6 show the charge densities for aTMDs SeMoS, SeMoTe
and TeMoS respectively. As expected, TeMoS shows the greatest difference in
charge densities between the two chalcogens.

4.1.5 Bader Analysis

Bader analysis divides the electron charge density and unit cell volume, and
assigns them to the constituent atoms. The results are tabulated from tables
4.4 to 4.6. As expected, the charge densities assigned to the more electronega-
tive atoms are larger. TeMoS shows the greatest difference in assigned charge
between the two chalcogens, in agreement with the charge density plots.

4.1.6 Dipole moment

The asymmetry in charge density in a aTMD will result in a dipole moment.
Figure 4.7 shows the sum of charge density n(z) in x-y plane of the primitive cell
for TeMoS, and figures A.11 to A.15 show n(z) for other flat (a)TMDs. Table
4.7 show the dipole moment magnitudes calculated using (3.3). Surprisingly,
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Figure 4.3: Plot of fitted equilibrium lattice parameters a0 and average cohesive
energy Ec for each material. As the size of the constituent chalcogens increase,
both a0 and Ec increase.

Table 4.5: Bader analysis for SeMoTe

Atom Charge (e) Assigned volume (Å
3
)

Se 6.6943 64.6254
Mo 4.8839 14.1299
Te 6.4217 71.6697

Table 4.6: Bader analysis for TeMoS

Atom Charge (e) Assigned volume (Å
3
)

Te 6.4071 64.7791
Mo 4.7111 13.3969
S 6.8818 63.2514
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Figure 4.4: Equilibrium charge density for SeMoS. Bottom atoms are Se atoms,
middle atoms are Mo atoms, and top atoms are S atoms. The grey surface is an
isosurface, whereas reddish (bluish) colours on the slice indicate greater (less)
charge density.

Figure 4.5: Equilibrium charge density for SeMoTe. Bottom atoms are Se atoms,
middle atoms are Mo atoms, and top atoms are Te atoms.

Table 4.7: Dipole moment magnitudes for various (a)TMDs. All dipole moments
point from the more electronegative to less electronegative chalcogen.

Material d (e Å)

SeMoS 1.12
SeMoTe 1.09
TeMoS 2.43
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Figure 4.6: Equilibrium charge density for TeMoS. Bottom atoms are Te atoms,
middle atoms are Mo atoms, and top atoms are S atoms.
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Figure 4.7: Charge density n(z) for TeMoS. Negative n(z) is the electron charge
density, whereas the positive delta functions are the ionic charge density.
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Figure 4.8: Charge density n(z) for SeMoS and SeMoTe. The order of ions in
increasing z is Se, Mo, S for SeMoS, and Te, Mo, Se for SeMoTe.

the dipole moment for SeMoTe is less than that of SeMoS, even though the
electronegativity difference is larger in SeMoTe than that of SeMoS. Figure 4.8
shows the charge density n(z) for SeMoS and SeMoTe.

The dipole moment of 2.43 e Å = 11.6 D for each primitive unit cell of TeMoS
(contains 1 Te, 1 Mo and 1 S ion) is significant. A water molecule has only
a dipole moment of 1.85 D = 0.385 e Å [11]. However, the aTMD monolayer
resembles a layer of lipids more than a single water molecule. According to
Mohwald [19], the dipole moment for typical phospholipids are estimated be
around 15 D but are measured to be less than 1 D due to the screening effect of
mobile ions in the solution. 15 D is of the same order of magnitude for TeMoS.

The electron rich side of aTMD monolayers, e.g. S side for TeMoS, may
be used for catalysis. In gold catalysis, the gold atom absorbs negative charge
and uses this extra negative charge to cleave bonds [10]. Similarly, the electron
rich S side for TeMoS may also be used to cleave bonds to lower the activation
energy of a reaction, thus speeding up the reaction.
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Figure 4.9: Receding p DOS of Te atom from Fermi energy EF when asymmetry
in TMD increases from MoTe2 to SeMoTe to TeMoS.

4.1.7 Density of states

Figures A.16 to A.21 show the density of states (DOS) for various (a)TMDs.
In general, the sum of all the atom and orbital decomposed DOS’s is not the
total DOS. This is because the interstitial regions are not projected onto the
spherical harmonics of the atoms. From these figures, we see that the valence
and conduction states are contributed by hybridisation of Mo’s d shell and the
chalcogens’ p shell. The contributions from the p shells of the chalcogens are
small compared to that from the d shells of Mo.

Looking closely at the Te atom in DOS plots for MoTe2, SeMoTe and TeMoS,
we find that the p DOS recedes from below the Fermi energy when the asym-
metry in the (a)TMD increases. Figure 4.9 zooms in to the Fermi energy and
plots the Te p DOS for these three (a)TMDs.
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Table 4.8: Band gaps for flat (a)TMDs and high symmetry k-points kv and kc

at which valence and conduction edges are found.

Material Type Band gap (eV) kv → kc

MoS2 Direct 1.667 K → K
SeMoS Direct 1.560 K → K
MoSe2 Direct 1.437 K → K

SeMoTe Direct 1.266 K → K
MoTe2 Direct 1.074 K → K
TeMoS Indirect 1.046 Γ → K

4.1.8 Band structure

Figures A.22 to A.33 show the band structures for various flat TMDs and aT-
MDs. The crosses represent the highest point of the valence band and lowest
point of the conduction band, i.e. the valence and conduction edges. The types
and values of the band gaps are tabulated in table 4.8. As expected, the direct
band gaps increase with increasing electronegativity. Increasing electronegativ-
ity from the ion makes it more difficult to excite electrons, which implies a larger
energy gap. All (a)TMDs, except TeMoS, have direct band gaps.

Focusing on the valence and conduction bands for MoTe2, SeMoTe and
TeMoS (in order of increasing asymmetry) in figure 4.10, we see that the change
from a direct K→ K band gap to an indirect Γ→ K band gap is due to a relative
increase in valence energy Ev(Γ) at the Γ point (or relative decrease in valence
energy Ev(K) at the K point). This relative decrease in Ev(K) corresponds to
the receding p DOS of the Te ion from the Fermi energy in figure 4.9. From the
atom and orbital decomposed DOS plots in figure A.21, we see that the Fermi
energy EF is held up by the pd hybridised DOS from the S and Mo ions. This
suggests that Ev(K) is contributed by the Te ion, whereas Ev(Γ) is contributed
by the Mo and S ions. For completeness, we also plot the valence and conduc-
tion bands with increasing asymmetry from MoS2 to SeMoS to TeMoS in figure
4.11.

Figures 4.12 and 4.13 show the ion-decomposed band structure for TeMoS,
with the colour of every point defined by

(r, g, b) =
(cTe, cMo, cS)

cTe + cMo + cS
, (4.2)

where r, g, b stand for the intensities of red, green, blue respectively; and cTe is
the contribution from the Te ion and likewise for cMo and cS. (0, 0, 0) is black
and (1, 1, 1) is white. We see that the conduction and valence bands are supplied
mostly by the Mo atom, consistent with the DOS plots in A.21.

The small contributions from the chalcogens are isolated, renormalised with-
out the Mo’s contribution

(r, g, b) =
(cTe, 0, cS)

cTe + cS
, (4.3)
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Figure 4.10: Valence and conduction bands with increasing asymmetry from
MoTe2 to SeMoTe to TeMoS. The change from a direct K → K band gap to
an indirect Γ → K band gap is due to a relative increase in valence energy at
the Γ point (or relative decrease in valence energy at the K point). The energy
gap at the K point also increases with increasing electronegativity of one of
the chalcogens, which is expected because more energy is needed to excite an
electron for more tightly-bound systems.
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Figure 4.11: Valence and conduction bands with increasing asymmetry from
MoS2 to SeMoS to TeMoS. The change from direct K → K band gap to an
indirect Γ→ K band gap is due to a relative increase in valence energy at the Γ
point (or relative decrease in valence energy at the K point). MoS2 and SeMoS
look similar because the electronegativities of S and Se are very close.
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Figure 4.12: Ion-decomposed band structure for TeMoS. The contributions by
Te, Mo and S ions are coloured red, green and blue respectively.
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Figure 4.13: Ion-decomposed band structure (zoomed in) for TeMoS. The con-
tributions by Te, Mo and S ions are coloured red, green and blue respectively.

51



Γ M K Γ
-15.000

-10.000

-5.000

0.000

5.000

10.000

Path along high symmetry k-points

F
−
E

F
(e

V
)

Figure 4.14: Ion-decomposed band structure for TeMoS, excluding Mo’s contri-
bution and renormalised to the sum of S’s and Te’s contributions. The contri-
butions by Te and S ions are coloured red and blue respectively. Note that the
contributions from Te and S are very small compared to Mo.

and are shown in figures 4.14 and 4.15. We find that the valence edge Ev(Γ) is
contributed by the S ion, whereas the conduction edge Ec(K), as well as Ev(K)
is contributed by the Te ion.

The decomposed band structure of TeMoS helps to further explain figures
4.10 and 4.11. Literature regarding the strain-induced effects on DFT-calculated
band structures of MoS2 [7] and MoTe2 [16] report that Ev(Γ) for MoS2 increases
with tensile strain, whereas Ev(K) for MoTe2 decreases with compressive strain.
As the asymmetry in figure 4.10 increases from MoTe2 to TeMoS, the equi-
librium lattice constant is influenced by the non-Te chalcogen and decreases
according to table 4.1. The Te ion thus sees compressive strain and Ev(K) de-
creases with increasing asymmetry. On the other hand, the S ion from MoS2 to
TeMoS in figure 4.11 sees an increasing equilibrium lattice constant as the other
chalcogen atom becomes larger. It thus experiences a tensile strain and Ev(Γ)
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Figure 4.15: Ion-decomposed band structure (zoomed in) for TeMoS, excluding
Mo’s contribution and renormalised to the sum of S’s and Te’s contributions.
The contributions by Te and S ions are coloured red and blue respectively. Note
that the contributions from Te and S are very small compared to Mo.
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increases. The simultaneous decrease in Ev(K) by the Te ion and increase in
Ev(Γ) by the S ion causes the switch to an indirect Γ→ K band gap in TeMoS.

4.1.9 K and Γ Point Charge Densities

Indirect band gaps decrease optical efficiency because additional phonons are
needed to impart momentum to the electron for excitation to occur. Despite
this, the indirect band gap in TeMoS may still be useful for photonic applica-
tions. Because the S ion contributes more to the valence edge Ev(Γ) at the Γ
point, and the Te ion contributes more to the conduction edge Ec(K) at the K
point, the electron can be seen as disappearing from the S ion and appearing at
the Te ion after excitation. This separation of holes at the S ion and electrons
at the Te ion makes it easier for collection by an external circuit.

Figures 4.16 to 4.19 show the charge density at the valence edge for TeMoS,
whereas figures 4.20 and 4.23 show the charge density at the conduction edge.
These charge densities are

n(r) = |φ(r)|2, (4.4)

where φ(r) is the wavefunction that can contain 2 electrons and gives the valence
Ev(Γ) or conduction edge Ec(K).

These charge density plots at the valence and conduction edges show the
spatial distributions of the hole and electron respectively after electron-hole
pair separation. Due to the high charge densities around the Mo atom for
both the conduction and valence edges, the spatial separation between electron
and hole is much less pronounced. This was also pre-empted by the large Mo
contributions to the valence and conduction bands in figure 4.13. Unfortunately,
electron-hole pair separation is poor for TeMoS.

4.2 Spherical aTMDs

Figures 4.25 to 4.28 show the equilibrium ionic positions and charge density for
reduced spherical TeMoS after full relaxation. As mentioned earlier, this reduced
sphere has a radius of 8 times smaller than what we estimate to be optimal; the
optimal sphere contains too many atoms and makes DFT treatment infeasibly
expensive. We expect this reduced spherical structure to be highly strained.

4.3 Nanotube aTMDs

4.3.1 Equilibrium charge density

Figures 4.29, 4.30 and 4.31 plot the equilibrium charge densities for the f = 3,
or (−3, 3), armchair TeMoS nanotube. Similarly, figures 4.32, 4.33 and 4.34
plot the equilibrium charge density for the f = 3, or (0, 3), zigzag variant.
These nanotubes have much smaller radii of curvature than the optimal ones
in table 3.5 and are severely strained. We can see from figures 4.30 and 4.33
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Figure 4.16: Charge density at valence edge with isosurface for TeMoS. The
bottom brown spheres are Te ions, the middle purple spheres are Mo ions and
the top yellow spheres are S ions. The blue plane slices through the dz-like
electron cloud surrounding the middle Mo ion and the lop-sided pz-like electron
cloud surrounding the top S ion. This charge density reflects the hole density
left behind by the electron after it has been excited to the conduction edge at
the K point.

Figure 4.17: Charge density (top view) at valence edge with isosurface for
TeMoS.
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Figure 4.18: Charge density (side view) at valence edge with isosurface for
TeMoS.

Figure 4.19: Charge density at valence edge shown using slice for TeMoS. Most
of the hole charge density is captured by the middle Mo ion, a significant portion
is captured by the top S ion, and no hole charge density is captured by the
bottom Te ion.
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Figure 4.20: Charge density at conduction edge with isosurface for TeMoS. The
bottom brown spheres are Te ions, the middle purple spheres are Mo ions and the
top yellow spheres are S ions. The blue planes slice through the double-doughnut
shaped electron cloud surrounding the middle Mo ion and the butterfly-wing
shaped electron cloud surrounding the bottom Te ion. This charge density
reflects the conduction electron density after excitation from the Γ point.

Figure 4.21: Charge density (top view) at conduction edge with isosurface for
TeMoS.
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Figure 4.22: Charge density at conduction edge with isosurface for TeMoS.

Figure 4.23: Charge density at conduction edge shown using slices for TeMoS.
Most of the charge density surrounds the Mo ion, with slightly higher charge
density at the bottom Te ion than the top S ion.
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Figure 4.24: Charge density at conduction edge shown using slices for TeMoS.

that the Te atoms appear to protrude out significantly, with the middle Mo and
S atoms closer to one another. This is due to the high electron density in the
middle of such a small nanotube which repels the Te atoms outwards.

Figures 4.35 and 4.36 show the equilibrium charge density for the optimal
armchair TeMoS nanotube defined in table 3.5, whose radius is large. However,
due to time constraint and more expensive DFT computation (there are more
ions in a primitive cell for zigzag nanotubes), the relaxation for the optimal
zigzag nanotube is not complete and is left to be done as future work.

4.3.2 Energy vs. radius of curvature

For carbon or symmetric TMD nanotubes, we do not expect a minimum in
the energy vs. radius of curvature plot [8]. This is because their lowest-energy
structure is flat. However, the difference in the M-X and M-Y bonds for aTMDs
means that the least-energy structure is curved and that there is an optimal
radius of curvature. Thus we expect a minimum in the energy vs. radius of
curvature plot for aTMD nanotubes. Figure 4.37 illustrates this point.

Figures 4.38 and 4.39 show the average energy per atom F/N vs. radius of
curvature r0 for the armchair TeMoS nanotube, where F is the total energy per
primitive cell and N is the number of atoms in the primitive cell. Since the
primitive lattice constant L along the tube’s axis is kept fixed for all plotted
points, the plotted points do not represent fully relaxed structures. However, the
presence of a minima shows that aTMDs indeed curl up. This natural radius
of curvature may make aTMDs better candidates for fabricating nanotubes;
graphene is naturally flat and experiences significant strain when rolled into
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Figure 4.25: Equilibrium ionic positions and charge density for reduced spherical
TeMoS after ionic relaxation. The inner, middle and outer spheres comprise S,
Mo and Te atoms respectively. Charge density isosurface is shown here.
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Figure 4.26: Equilibrium ionic positions and charge density for reduced spherical
TeMoS after ionic relaxation. The inner, middle and outer spheres comprise S,
Mo and Te atoms respectively. Charge density isosurface showing slice position
and orientation is drawn here.
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Figure 4.27: Equilibrium ionic positions and charge density for reduced spherical
TeMoS after ionic relaxation. The inner, middle and outer spheres comprise S,
Mo and Te atoms respectively. Only the slice and atoms that it cuts through is
shown here.

62



Figure 4.28: Equilibrium ionic positions and charge density for reduced spherical
TeMoS after ionic relaxation. The inner, middle and outer spheres comprise S,
Mo and Te atoms respectively. Only the slice and atoms that it cuts through
is shown here. As expected, there is a higher charge density around the S ions
than the Te ions.
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Figure 4.29: Equilibrium charge density (front perspective view) for (−3, 3)
armchair nanotube TeMoS. Inner red atoms are S atoms, middle green atoms
are Mo atoms, and outer blue atoms are Te atoms. The grey surface is a charge
density isosurface.
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Figure 4.30: Equilibrium charge density (front orthographic view) for (−3, 3)
armchair nanotube TeMoS. Inner red atoms are S atoms, middle green atoms
are Mo atoms, and outer blue atoms are Te atoms. The grey surface is a charge
density isosurface.
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Figure 4.31: Equilibrium charge density (side view) for (−3, 3) armchair nan-
otube TeMoS. Inner red atoms are S atoms, middle green atoms are Mo atoms,
and outer blue atoms are Te atoms. The grey surface is a charge density iso-
surface.
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Figure 4.32: Equilibrium charge density (front perspective view) for (0, 3) zigzag
nanotube TeMoS. Inner red atoms are S atoms, middle green atoms are Mo
atoms, and outer blue atoms are Te atoms. The grey surface is a charge density
isosurface.
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Figure 4.33: Equilibrium charge density (front orthographic view) for (0, 3)
zigzag nanotube TeMoS. Inner red atoms are S atoms, middle green atoms
are Mo atoms, and outer blue atoms are Te atoms. The grey surface is a charge
density isosurface.

Figure 4.34: Equilibrium charge density (side view) for (0, 3) zigzag nanotube
TeMoS. Inner red atoms are S atoms, middle green atoms are Mo atoms, and
outer blue atoms are Te atoms. The grey surface is a charge density isosurface.
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Figure 4.35: Equilibrium charge density for optimal armchair nanotube with
parameters listed in table 3.5. The radius is large for a nanotube. Inner yellow
ions are S ions, middle purple ions are Mo ions, and outer greyish-brown ions
are Te ions. As expected, the more electronegative S atoms capture a greater
charge density.

Figure 4.36: Another view of equilibrium charge density for optimal armchair
nanotube. Inner yellow ions are S ions, middle purple ions are Mo ions, and
outer greyish-brown ions are Te ions.

69



en
er

gy

radius of curvature

(a) No minimum for carbon or symmetric TMD nanotubes. Their lowest energy state
is flat, which means the lowest energy occurs at an infinitely large radius of curvature.
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(b) Expected minimum for aTMD nanotubes. Asymmetry causes aTMDs to curl up
to an optimal radius of curvature, which means the lowest energy occurs at a finite
radius of curvature.

Figure 4.37: Difference in energy vs. radius of curvature between symmetric and
asymmetric TMD nanotubes.

70



0.000 5.000 10.000 15.000 20.000 25.000 30.000 35.000
-6.70000

-6.60000

-6.50000

-6.40000

-6.30000

-6.20000

r0 (Å)
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Figure 4.38: Average energy per atom F/N vs. radius of curvature r0 for arm-
chair nanotube, where F is the total energy per primitive cell and N is the
number of atoms in the primitive cell. The primitive lattice constant L along
the tube’s axis is kept fixed for all plotted points.
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Figure 4.39: Average energy per atom F/N vs. radius of curvature r0 (zoomed
in) for armchair nanotube, where F is the total energy per primitive cell and
N is the number of atoms in the primitive cell. The difference in energy for
different radii is around 0.005 eV and is small, which means that aTMDs are
not very sensitive to changes in radius of curvature.
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carbon nanotubes. The insensitivity of aTMDs to changes in radius of curvature
agrees intuitively with the fact that TMDs are flexible and can bend easily
without breaking [2].

Figures A.34 and A.35 show the energy vs. radius plot for zigzag TeMoS
nanotubes. However, due to time constraint and more expensive DFT compu-
tation (there are more ions in a primitive cell for zigzag nanotubes), the plot is
not complete and is left to be done as future work.
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Chapter 5

Conclusion

We set out to optimise the flat, nanotube and spherical structures of monolayer
aTMDs by minimising their energy with respect to parameters, such as the
lattice constant and radius of curvature. Special attention was given to TeMoS
because the electronegativities of Te and S are most different among suitable
chalcogens, and we expect its highest asymmetry to give it the most interesting
properties.

Forcing monolayer aTMDs to be flat, we optimised the lattice parameter for
various aTMDs and symmetric TMDs. We expect these values for aTMDs to
be accurate because our results for TMDs agree well with experimental data.
As expected, we found significant charge transfer and a corresponding dipole
moment for flat aTMDs. We also found that among all the (a)TMDs, TeMoS
is the only material with an indirect band gap. This can be explained by strain
effects felt by the Te and S chalcogens.

However, due to different M-X and M-Y bond lengths for a aTMD XMY, the
aTMD should curl up into a sphere naturally. In principle, we should minimise
the energy of such a spherical structure with respect to the radius of curvature.
However, an estimate of the optimal radius of curvature for TeMoS, based on the
lattice parameters of MoS2, MoTe2 and TeMoS, is so large that the sheer number
of ions involved makes DFT computation too expensive. We only gave a method
for initialising the spherical structure using geodesic spheres. Perhaps when
computers become faster or when DFT computation becomes more efficient,
other researchers can complete our work to investigate such a large spherical
structure.

A direct proof of the natural curvature of aTMDs requires a minimum in
the energy vs. radius of curvature plot. Although DFT treatment for spherical
aTMDs is too expensive, we can still obtain the energy vs. radius plot for nan-
otube aTMDs. This is because the periodic boundary condition applies along
the tube’s axis, thereby drastically reducing the number of ions in the primitive
unit cell. We then showed that there is indeed a minimum in the energy vs.
radius plot for armchair TeMoS under the constraint of a fixed lattice constant
(along the tube’s axis). In the future where the time constraint of this project
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does not apply, we should let L vary to obtain the fully relaxed states near the
minimum of the energy vs. radius plot. We should also complete the plot for
zigzag variants. Additionally, we can compute the band structures for these two
types of nanotubes.

aTMDs, by virtue of their dipole moment may lead to superlattices with
interesting properties. Their dual surface properties may be used to fabricate
new interesting devices. Moreover, aTMDs’ natural curvature may make them
stabler nanotubes. In this work, we optimised the electronic structure of various
structures of aTMDs, but we did not have the time to explore many other
mechanical and electrical properties. Nevertheless, many mechanical properties
are actually based on the derivatives of energy. Having found the electronic and
ionic charge distributions, as well as energies of aTMD nano-structures, we hope
to have laid the foundations and paved the way for future studies of aTMDs.
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Appendix A

Extra figures

A.1 Flat TMDs and aTMDs

A.1.1 Equilibrium lattice parameter

Figures A.1 to A.10 show the energy vs. lattice parameter plots for various
(a)TMDs. For every material, there is a rough plot which identifies the rough
location of the minimum, and a fine plot which fits a quadratic curve to the
points to find the equilibrium lattice parameter.

A.1.2 Dipole moment

Figures A.11 to A.15 show the sum of charge density n(z) in the x-y plane of
the primitive cell for a certain z for various flat (a)TMDs.

A.1.3 Density of states

Figures A.16 to A.21 show the atom and orbital decomposed density of states
for various (a)TMDs.

A.1.4 Band structure

Figures A.22 to A.33 show the band structures for various (a)TMDs. For every
material, there is the overall and enlarged (near the Fermi level) band structure.

A.2 Nanotube aTMDs

A.2.1 Energy vs. radius of curvature

Figures A.34 and A.35 show the energy vs. radius plot for the zigzag nanotube.
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Figure A.1: Rough plot of total energy F per super-cell defined by vectors a1,
a2 and a3 vs. lattice parameter a = |a1| = |a2| for SeMoS.
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Figure A.2: Fine plot of total energy F per super-cell vs. lattice parameter
a = |a1| = |a2| for SeMoS.

78



2.600 2.800 3.000 3.200 3.400 3.600
-20.000

-19.000

-18.000

-17.000

-16.000

-15.000

-14.000

a (Å)
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Figure A.3: Rough plot of total energy F per super-cell defined by vectors a1,
a2 and a3 vs. lattice parameter a = |a1| = |a2| for MoSe2.
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Figure A.4: Fine plot of total energy F per super-cell vs. lattice parameter
a = |a1| = |a2| for MoSe2.
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Figure A.5: Rough plot of total energy F per super-cell defined by vectors a1,
a2 and a3 vs. lattice parameter a = |a1| = |a2| for TeMoS.
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Figure A.6: Fine plot of total energy F per super-cell vs. lattice parameter
a = |a1| = |a2| for TeMoS.
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Figure A.7: Rough plot of total energy F per super-cell defined by vectors a1,
a2 and a3 vs. lattice parameter a = |a1| = |a2| for SeMoTe.
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F
(e

V
)

Figure A.8: Fine plot of total energy F per super-cell vs. lattice parameter
a = |a1| = |a2| for SeMoTe.
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Figure A.9: Rough plot of total energy F per super-cell defined by vectors a1,
a2 and a3 vs. lattice parameter a = |a1| = |a2| for MoTe2.
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Figure A.10: Fine plot of total energy F per super-cell vs. lattice parameter
a = |a1| = |a2| for MoTe2.
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Figure A.11: Charge density n(z) for MoS2.
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Figure A.12: Charge density n(z) for MoSe2.
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Figure A.13: Charge density n(z) for MoTe2.
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Figure A.14: Charge density n(z) for SeMoS.
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Figure A.15: Charge density n(z) for SeMoTe.
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Figure A.16: Atom and orbital decomposed density of states for MoS2.
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Figure A.17: Atom and orbital decomposed density of states for MoSe2.
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Figure A.18: Atom and orbital decomposed density of states for MoTe2.
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Figure A.19: Atom and orbital decomposed density of states for SeMoS.
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Figure A.20: Atom and orbital decomposed density of states for SeMoTe.
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Figure A.21: Atom and orbital decomposed density of states for TeMoS.
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Figure A.22: Band structure for MoS2.

98



Γ M K Γ
-2.000

-1.000

0.000

1.000

2.000

3.000

Path along high symmetry k-points

F
−
E

F
(e

V
)

Figure A.23: Band structure (enlarged) for MoS2.
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Figure A.24: Band structure for MoSe2.
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Figure A.25: Band structure (enlarged) for MoSe2.
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Figure A.26: Band structure for MoTe2.
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Figure A.27: Band structure (enlarged) for MoTe2.
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Figure A.28: Band structure for SeMoS.
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Figure A.29: Band structure (enlarged) for SeMoS.
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Figure A.30: Band structure for SeMoTe.
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Figure A.31: Band structure (enlarged) for SeMoTe.
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Figure A.32: Band structure for TeMoS.
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Figure A.33: Band structure (enlarged) for TeMoS.
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Figure A.34: Average energy per atom F/N vs. radius of curvature r0 for zigzag
nanotube, where F is the total energy per primitive cell and N is the number
of atoms in the primitive cell.
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Figure A.35: Average energy per atom F/N vs. radius of curvature r0 (zoomed
in) for zigzag nanotube, where F is the total energy per primitive cell and N is
the number of atoms in the primitive cell.
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