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Abstract

Quantum master equation (QME) is an important concept for open

quantum systems. Different types of quantum master equations are

developed to described the non-unitary time evolution of systems that

are coupled with environments. Due to the complexity of the gener-

alized exact master equation, a possible simplification is to perform

perturbative treatment. However, the perturbative treatment has lim-

ited ourselves into the weak coupling regime. In moderate or strong

coupling regime, higher order master equations should be considered

that have a high analytical and numerical complexity. One possible

attempt to avoid such complexity is to perform analytic continuation

techniques (AC) to the Redfield master equation (RME) and hence

to obtain a modified Redfield solution (MRS) of the second order

reduced density matrix (RDM). As compared to a common treat-

ment that preserves a zeroth order accuracy to RDM, the modified

Redfield solution so far gives exact results to second order RDM for

quantum harmonic oscillator model and spin-boson model connected

to bosonic baths. In this thesis, the modified Redfield solution is

generalized to fermionic systems and the exactness of the solution is

discussed. A comparison is also done against other types of master

equations including the Redfield master equation and the Lindblad

master equation (LME). The result gives an overall picture on how

different master equation approaches behave in a varying coupling

strength. The validity of using various master equations for transport

problems is discussed.
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Chapter 1
Introduction

The development of quantum mechanics in the last century has provided us a

brand new perspective of the microscopic world. The studies on microscopic and

mesoscopic phenomena would no longer be constrained in the classical regime

and the quantum features of many phenomena are revealed. At an earlier stage,

the elementary studies usually focus on isolated system in quantum mechanics as

a natural generalization and correspondence of classical mechanics. However, the

interaction between the system and the environment are overlooked for isolated

systems while there does not exist an ideal isolated system in reality. Typical

problems with contributions from the system-environment interaction lie in a wide

range of topics in physics such as mesoscopic transport [8], quantum information

[10], optics [4, 3], etc.. The system-environment interaction plays an indispensable

role in such scenarios. This type of system is often known as an open system

as a contrast to an isolated system. Particularly, when the system of interest is

extremely small such that quantum mechanics plays an essential role, it is named

as an open quantum system [2, 28, 20]. The environment is often called a bath

or a reservoir and is considered equilibrated.

For an open quantum system, the energy and particle transfer capture the

nonequilibrium features of such a system. These features can be captured via a

reduced density matrix (RDM) [1] that can be viewed as a quantum counterpart of

the classical phase space volume density. RDM is often defined by the taking the

partial trace over the infinite degrees of freedom of the environment to the total

density matrix that includes both the environment and the system of interest. It

1



Chapter 1. Introduction 2

naturally turns out that the key problem to be tackled in such a system is to

find the RDM that contains all information of the system of interest. Therefore,

the computation of the non-trivial nonequilibrium RDM is our primary target.

Different approaches have been formulated to evaluate the RDM. The common

approaches are grouped under an umbrella term known as quantum master

equations. While the exact quantum master equation [17, 30] is often difficult to

solve even with numerically exact approaches, perturbative treatments are often

used in the weak system-bath coupling regime. It can be systematically extended

to moderate coupling by taking into account higher order contributions [24, 11].

One commonly used perturbative master equation is the Redfield master equation

(RME) [19] that resort to only the weak coupling approximation. Lindblad master

equation (LME) [15, 7] is another widely used master equation that imposes an

additional secular approximation to the RME. LME can also be formulated using

quantum dynamical semi-group in a more mathematically rigorous way. LME is

also known as the Lindblad form that is trace-preserving and preserves complete

positivity. However, despite the long history that the RME has been formulated,

the accuracy of RME has only been discussed in very recent years [6, 16]. It is

found that the RME does not give an accurate result in steady state with a naive

assumption that the second order density matrix solely depends on the second

order relaxation tensor. To obtain the correct result up to second order, higher

order relaxation tensor is required. Such higher order calculations are extremely

tedious [24] and are difficult to be generalized. In order to circumvent these

problems, the analytic continuation method (AC) [22, 23, 21] is proposed by J.

Thingna et al. to obtain the RDM correct up to second order without calculating

the higher order relaxation tensors. The AC method has been demonstrated on

quantum harmonic oscillator and spin-boson model with bosonic baths. Thus,

it would be interesting to investigate the validity of this method on fermionic

systems.

In this thesis, by using the analytic continuation technique, a modified solution

to the Redfield master equation is proposed for fermionic systems. Our approach
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is demonstrated on spinless single quantum dot (SQD) model and spinless double

quantum dot (DQD) models. We check the accuracy of the form of the second

order RDM obtained via AC for fermionic systems against the nonequilibrium

green’s function (NEGF) method [5, 27, 9]. The results are also compared

with RME and LME. Such comparison would provide an overall picture on the

adequacy of determination by using various master equations.

This thesis is structured in the following way. In chapter 2, an introduction to

reduced density matrix formalism used in open quantum system is given. For

quantum master equation approaches, we present a microscopic derivation of

Redfield master equation and Lindblad master equation. The nonequilibrium

Green’s function approach is briefly discussed. In the end, we present an accuracy

comparison scheme. In chapter 3, the accuracy issue with RME is discussed and

the modified Redfield solution is obtained for fermionic system via the analytic

continuation technique. In chapter 4, we propose a single quantum dot model

and two types of double quantum dot models to examine the exactness of the

modified Redfield solution using the comparison scheme introduced in chapter

2. The exactness is checked against NEGF. In chapter 5, the modified Redfield

solution is compared against other master equations including RME and LME.

In the end, we present the conclusion in chapter 6.
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Chapter 2
Reduced Density Matrix Formalism

2.1 Overview

The quantum master equation could be in general regarded as a first order

differential equation that describes the time evolution of the reduced density

matrix. The probabilistic nature originates from the physical stochastic processes

possessed by the system of interest due to the inaccessibility to the complete

knowledge of the environment.

Classically, master equations could appear in the forms of Boltzmann equation,

Fokker-Planck equation, etc.. Such master equations give a complete description

of the probability density function that defines the property of the system.

In quantum mechanics, the probability density function concept in phase space

is replaced by the reduced density matrix. For open quantum system, the

total density matrix would be describing both the environment and the system.

Moreover, the bath as an environment should be an infinite bath to maintain

equilibrium which has infinitely many of degrees of freedom that makes the

problem unsolvable. The RDM is obtained by coarse graining (tracing out) over

the infinite degree of freedom of the environment. The equation governing the

evolution of such a RDM is known as a quantum master equation in the theory

of open quantum systems. QME help retain the crucial bath information of the

environment without increasing the complexity beyond the system Hilbert space.

In 1928, Pauli has given the first quantum master equation known as the Pauli

5



Chapter 2. Reduced Density Matrix Formalism 6

master equation or rate equation [18] that is used to describe the occupation

number in weak coupling. Redfield in 1957 developed a master equation [19]

that describes the environment-spin interaction for nuclear magnetic resonance.

The Nakajima−Zwanzig master equation is formulated by Nakajima in 1958

[17] and by Zwanzig in 1960 [30]. It is also known as the generalized master

equation that preserves a form of integro-differential equation. In 1976, Gorini,

Kossakowski, and Sudarshan proposed an alternative QME [7] by using quantum

dynamical semigroup formalism for finite dimensional Hilbert space. In the

same year, Lindblad provided a deep mathematical understanding [15] to the

structure of this QME and showed that it preserves positivity. In general, all

the perturbative second order master equation can be obtained from the RME

by imposing appropriate approximations. For example, the Lindblad master

equation is obtained by imposing the secular approximation on the Redfield

master equation. In the case of the Pauli master equation, only the diagonal

elements are taken into account.

In this chapter, a general introduction to density matrix and the reduced density

matrix is given. A general setup for open quantum system is formulated. We then

present a microscopic derivation of the RME. Based on the derivation for RME,

the LME with an additional secular approximation (also known as rotating wave

approximation) is formulated and we compare it with the quantum dynamical

semigroup formalism for the Lindblad form.

2.1.1 Reduced Density Matrix

The density matrix formulation [14, 26] developed in 1928 generalized the descrip-

tion of quantum mechanics from the wave function based description of isolated

systems to open systems. For open quantum system, the system of interest

is always coupled with the bath. The total density matrix for the bath and

the system that form a composite isolated system seems to be able to obtain in

standard treatment for closed systems. However, the size of the bath is considered
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as infinitely large and the total density matrix would essentially not be a suitable

quantity to study the system of interest. Therefore, the degrees of freedom of the

bath have to be coarse-grained over. The resultant form is the reduced density

matrix defined as

ρ = TrB (ρtot) . (2.1)

This trace-taking process is known as the partial trace over the infinite degrees

of freedom of the environment or the bath. The total density matrix ρtot is

a composite form for the system of interest, the baths, and the system-bath

interactions.

Such total density matrix ρtot can be defined as

ρtot =
∑
i

pi |ψi〉 〈ψi| , (2.2)

where pi is the probability of the normalized state |ψi〉 that belongs to the total

Hilbert space including both the system and the bath. The sum
∑

i pi = 1 and

|ψi〉 is in the Hilbert space of the system of interest. In general, the state |ψi〉

does not need to be orthogonal. RDM yields a similar definition except that it

will be defined by the normalized state |φi〉 that belongs to the Hilbert space of

the system only.

The key properties of the RDM can be summarized into the following points:

1. Hermicity: ρ† = ρ.

2. Normalization: TrS (ρ) = 1.

3. Positivity: 〈φi| ρ |φi〉 ≥ 0.

4. Purity : TrS
(
ρ2
)
≤ 1.

Hermicity is required for common quantum mechanics operator. Normalization

and positivity arise due to the probabilistic nature of the density matrix. The
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last property give us a good indication for the purity of state. In general, pure

state will give us TrS
(
ρ2
)

= 1 and mixed states would give us TrS
(
ρ2
)
< 1.

It is necessary to clarify that in many other contexts the above mentioned density

matrix is often named as density operator and the matrix form of the density

operator is then regarded as density matrix in different representation.

What we really concerns is the system of interest, the observable of the system

would be defined by 〈A〉 = TrS

(
ρÂ
)
that is solely related to the RDM. The

observable of the composite system can be calculated from the density matrix

〈A〉 = Tr
(
ρtotÂ

)
. However, since the bath is usually considered as infinitely

large, such observable would often be meaningless to discuss. For example, the

energy and the number of particles of the composite system would be infinitely

large.

2.1.2 Generic Setup for Open Quantum System

For an open quantum system, the total Hamiltonian reads

Htot = HS +HB + λV, (2.3)

where HS is the Hamiltonian for the system of our interest, HB is the bath

Hamiltonian. V is system-bath coupling Hamiltonian with λ denoting the coupling

strength.

The bath Hamiltonian HB is often regarded as infinitely large. The bath could

be describe as an equilibrium distribution characterized by a fixed temperature

T and a fixed chemical potential µ. The bath can be chosen to suit different

requirements in transport problems. For example, the bath can be chosen as an

electronic bath or harmonic oscillator bath. The coupling term can often be cast

into a general form

V =
∑
σ

Vσ =
∑
σ

∑
i,α=1,2

Sαi ⊗Bα
iσ, (2.4)
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where α indicates the type of system operator and σ indicates the position of the

baths with respect to the system of interest. The baths Hamiltonian would then

have the form HB =
∑

σHσ.

For example, for a single quantum dot coupled with two baths, we have

S1 = d, (2.5)

S2 = d†, (2.6)

B1
σ =

∑
kσ

vkσc
†
kσ, (2.7)

B2
σ =

∑
kσ

v∗kσckσ, (2.8)

and the form of coupling writes V = VL+VR =
∑

kL vkLdc
†
kL+

∑
kR vkRdc

†
kR+h.c.

with v as the tunnelling strength.

2.2 Quantum Master Equation Approach

2.2.1 Redfield Master Equation

Given the total Hamiltonian as Eq. (2.3), the time evolution of the total density

matrix is given by

ρtot (t) = U (t, 0) ρtot (0)U† (t, 0) . (2.9)

The time evolution operator then takes the form

U (t, 0) = e−iHtott

= e−i(H0+λV )t, (2.10)

with H0 = HS +HB. Throughout this thesis, ~ and kB are set equal to 1.

Obtaining the total density matrix Eq. (2.9) exactly is a cumbersome task due

to the presence of system-bath coupling term V . In order to make the problem
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tractable, we use the Kubo identity given by Eq. (2.11) [See Appendix A for

detailed proof] to perturbatively expand over the coupling as shown below.

The Kubo identity [13] has the following expression

eν(Â+B̂) = eνÂ
[
1+

∫ ν

0
dτe−τÂB̂eτ(Â+B̂)

]
, (2.11)

By identifying

B̂ = −iλV, (2.12)

Â = −iH0, (2.13)

ν = t, (2.14)

the time evolution operator of the total density matrix has the form

U (t, 0) = U0 (t, 0)

[
1− iλ

∫ t

0
dτU†0 (τ, 0)V U (τ, 0)

]
, (2.15)

with U0 (t, 0) = e−iH0t.

By substituting U (t, 0) recursively into above equation and keeping the terms up

to second order coupling, the time evolution operator can be written as

U (t, 0)

≈ U0 (t, 0)

[
1− iλ

∫ t

0
dτV (τ)− λ2

∫ t

0

∫ τ

0
dτdτ ′V (τ)V

(
τ ′
)]

= U0 (t, 0)UI (t, 0) , (2.16)

where

V (τ) = U†0 (τ, 0)V U0 (τ, 0) , (2.17)

UI (t, 0) = 1− iλ
∫ t

0
dτV (τ)− λ2

∫ t

0

∫ τ

0
dτdτ ′V (τ)V

(
τ ′
)
. (2.18)

Eq. (2.9) depicts the time evolution of density matrix in Schroedinger picture
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where as Eq. (2.17) represents the time evolution of operator in interaction

picture. The term UI (t, 0) represents the effect on the time evolution of total

system due to of system-bath coupling. By doing so, the final form of RDM could

be maintained in Schroedinger picture. An alternative derivation that works in

interaction picture for the RDM can be referred to [2].

Now we consider the time evolution of the total density matrix ρ̇tot (t) =

d
(
U (t, 0) ρtot (0)U† (t, 0)

)/
dt , by applying the perturbative time evolution oper-

ator Eq. (2.16). Thus, in the weak system-bath coupling regime, we obtain

ρ̇tot (t) = −i [H0, ρtot (t)]− iλ [V, ρ̃tot (t)]

+λ2

∫ t

0
dτ [V, [ρ̃tot (t) , V (τ − t)]] , (2.19)

with ρ̃tot (t) = eiH0tρtot (t) e−iH0t known as the evolution of the total density

matrix in the interaction picture.

However, we are interested in the reduced density matrix which is ρ. This could

be done by performing partial trace with respect to the bath degrees of freedom

TrB [ρ̇tot (t)] =
d

dt
TrB [ρtot (t)]

=
d

dt
ρ (t) . (2.20)

During the trace-taking process, we have assumed 〈B〉B = 0. The immediate

consequence would be that TrB ([V, ρ̃tot (t)]) = 0 as TrB (BρB (t)) = 0. We take

the liberty to have such a assumption due to the fact that a nonzero 〈B〉B
would only provide an energy shift to the total Hamiltonian. A new system-bath

coupling can be defined by V = S ⊗ (B − 〈B〉B). This assumption is known as

centering of baths.

Together with the decoupled initial condition that ρtot (0) = ρ (0)⊗ ρB (0) and
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Born approximation that ρB (0) ≈ ρB (t) one can find that

dρ (t)

dt
= −i [HS , ρ (t)]

−
∑
σαβ

∫ t

0
dτ
{[
Sα, S̃β (τ − t) ρ̃ (t)

]
Cαβσ (t− τ) + h.c.

}
, (2.21)

where Cαβ (t) is the bath correlation function defined as
〈
B̃α (t)Bβ (0)

〉
. The

coupling strength term is absorbed in the spectral density of the bath correlation.

The decoupled initial condition assumes that the system-bath coupling is only

turned on at time t = 0. Such condition would provide us a time reference that

we can start to take account the effect of system-bath coupling. It is not a strict

condition as it is always possible to manipulate the system or the bath such

that no system-bath coupling exist at a point of time. The Born approximation

assumes that the bath is always relaxed as the relaxation time of the bath is

always much shorter than the time evolution scale due to the bath’s infinite size

and its pre-assumed equilibrium condition.

A further approximation is made that ρ̃ (t) ≈ ρ (t) due to the weak coupling

condition. This allow us to rewrite Eq. (2.21) as

dρ (t)

dt
= −i [HS , ρ (t)]

−
∑
σαβ

∫ t

0
dτ
{[
Sα, S̃β (τ − t) ρ (t)

]
Cαβσ (t− τ) + h.c.

}
. (2.22)

The above equation is known as the Redfield master equation [19]. The first term

describes the free evolution of the Hamiltonian and the second term describes

the dissipative features of bath on the system due to system-bath interaction.

In the energy eigenbasis of the system, the above equation can be rewritten as

d

dt
ρnm = −i∆nmρnm +

∑
i,j

Rijnmρij , (2.23)

where ∆ij = Ei − Ej with Ei denoting the ith eigenenergy of the system and



Chapter 2. Reduced Density Matrix Formalism 13

Rijnm known as the relaxation tensor

Rijnm =
∑
σ

∑
αβ

SαniS
β
jm

(
Wαβ
σni +Wαβ∗

σmj

)
−δm,j

∑
l

SαnlS
β
liW

αβ
σli − δi,n

∑
l

SαjlS
β
lmW

αβ∗
σlj . (2.24)

Above W is defined as

Wαβ
σij =

∫ t

0
dτe−i∆ijτCαβσ (τ) , (2.25)

with the real part of W known as the transition rate.

We denote

W
′αβ
σij = Re

(
Wαβ
σij

)
, (2.26)

W
′′αβ
σij = Im

(
Wαβ
σij

)
. (2.27)

The function Γ(ε) is the spectral density. The detailed calculation of W and the

bath correlators can be referred to Appendix B where we assumed electronic

baths with a Lorentzian spectral density. The evaluation the transition rateW
′αβ
σij

would allow us to obtain an important condition which is known as the detailed

balance condition for fermionic systems

W
′21
σij

W
′12
σij

=
fσ (ε, Tσ, µσ)

1− fσ (ε, Tσ, µσ)
, (2.28)

with

W
′12
σij =

1

2
Γσij (ε) fσ (ε, Tσ, µσ) , (2.29)

W
′21
σij =

1

2
Γσij (ε)

[
1− fσ (ε, Tσ, µσ)

]
. (2.30)

The detailed balance condition describes the equilibration of a process due to its
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reversed process occurred for equilibrium bath in steady-state.

In steady state limit, that is, if we assume the system will reach steady state

after evolving for a sufficient long time, the reduced density matrix would no

longer be time dependent in the limit t→∞. Hence, we claim that dρ/dt = 0

in steady state and Eq. (2.25) can be rewritten as

Wαβ
ij =

∫ t

−∞
dτe−i∆ij(t−τ)Cαβ (t− τ) , (2.31)

such that the system-bath coupling is switched on at −∞ and a steady state is

reached at t.

With the condition that dρ/dt = 0 , we would be able to solve the RME as a linear

algebra problem. As mentioned in the introduction, the solution of the RME

provides a solution that is accurate up to zeroth order. A detailed explanation

would be presented in the next chapter.

2.2.2 Lindblad Master Equation

The other well-known master equation is known as Lindblad master equation

[15] (also known as Gorini-Kossakowski-Sudarshan-Lindblad equation [7]). The

LME can be formulated by using quantum dynamical semigroup. The dynamical

map to the reduced density matrix from the its initial state and a fixed state

preserves the semigroup property. The final form of generator of the dynamical

semigroup is usually known as the Lindbald form or the LME. By adopting

the quantum dynamical semigroup formalism, the trace-preserving property and

complete positivity can be easily viewed. However, despite the fact that the

formalism is mathematically rigorous, such form does not provide us with a clear

physical picture. A more physically friendly yet not so general approach can be

achieved by performing secular approximation to the RME. A general method

by performing secular approximation is given in [2], we reproduce its derivation

and show that it is equivalent with the Lindblad form in the Appendix. An
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alternative approach [29] could be done by considering a rotating frame.

In the rotating frame, the density matrix ρ̃nm (t) = ρnme
−i∆nmt. The RME

followed from Eq. (2.23) in its energy eigenbasis could be represented as

d

dt
ρ̃nm =

∑
ij

Rijnmρ̃ijei(∆nm−∆ij)t. (2.32)

The secular approximation requires all the terms ei(∆nm−∆ij)t with ∆nm 6= ∆ij

averaging to zero. As such, only ∆nm = ∆ij remains and the Lindblad form

could be represented as

dρnn
dt

=
∑
i

Riinnρii, (2.33)

dρnm
dt

= −i∆nmρnm +Rnmnmρnm, (2.34)

with Rnmnm only contains the real parts of the transition rates.

The term (∆nm −∆ij)
−1 with ∆nm 6= ∆ij defines the time scale τS for the

intrinsic evolution of the system which is large as compared to the system’s

relaxation time τR. Hence the terms ei(∆nm−∆ij)t are highly oscillating during

the time scale on ρ.

However, the above forms would be not so clear to give a direct connection to

the Lindblad form below. We shown in Appendix C an alternative way which

has a clearer connection to the Lindblad form.

The Lindblad Form obtained by quantum dynamical semigroup [2, 15, 7] is given

as

dρ

dt
= Lρ = −i [H, ρ] +

N2−1∑
k=1

γk

(
AkρA

†
k −

1

2
A†kAkρ−

1

2
ρA†kAk

)
. (2.35)
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2.3 Nonequilibrium Green’s Function Approach

Nonequilibrium Green’s function approach is another powerful tool in dealing with

nonequilibrium many-particle problems. NEGF is also formulated to calculate

the RDM [5]. The RDM formalism for fermionic system using NEGF is briefly

discussed below.

We still adopt the Hamiltonian for the generic setup introduced in Eq. (2.3).

The steady-state two point-correlation matrix is defined as

Dij =
〈
d†idj

〉
S

= TrS

(
ρd†idj

)
= Tr

(
ρtotd

†
idj

)
. (2.36)

For a quadratic Hamiltonian, the correlation matrix D can be calculated exactly.

By representing the correction matrix using the following Green’s functions

G± =
1

ε−Hs −
∑

σ Σ±σ (ε)
. (2.37)

The correlation matrix D can be cast into the form

Dij =
〈
d†idj

〉
S

=
1

2π

∫ ∞
−∞

dε
∑
σ

[(
G+Γσ (ε)G−

)
ji
fσ (ε, Tσ, µσ)

]
, (2.38)

where fσ is the Fermi-Dirac distribution
[
eβσ(ε−µσ) + 1

]−1 with βσ = T−1
σ .

Σ±σ (ε) are known as the retarded (+) or advanced (-) self-energies of the bath at

σ and is given by

Σ±σ (ε) = Vσg
±
σ V
†
σ , (2.39)

where g±σ are the surface Green’s function of the baths given by g±σ (ε) =
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[ε± iη −Hσ]−1.

Γσ (ε) known as the spectral density of the bath at σ and is defined by

Γσ (ε) = i
(
Σ+
σ − Σ−σ

)
. (2.40)

Due to the system-bath coupling, this matrix would possess off-diagonal elements

and we could define a new sets of fermionic operators by diagonalizing the D. The

diagonal elements of the new diagonalized matrix Λ as λi. The transformation

reads U †DU = Λ. The new operator would then take the form

d′s =
∑
l

Ulsdl. (2.41)

Recall the form of a fermionic occupation number with energy εi

n (εi) =
exp (−βεi)∏N

i [1 + exp (−βεi)]
. (2.42)

We could write down an effective Fermi-Dirac distribution for each fermions s

ρ =

N∏
s=1

exp
(
−asd

′†
s d
′
s

)
[1 + exp (−as)]

, (2.43)

with as = ln
(
λ−1
s − 1

)
obtained via

〈
d
′†
s d
′
s

〉
= λs = [exp (as) + 1]−1.

2.4 Comparison Scheme

Nonequilibrium Green’s function approach provides us with the exact solution

to the reduced density matrix. To check the accuracy of the solution from

perturbative quantum master equation, we impose a comparison scheme by

checking the discrepancy error.
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We formally expand the RDMs obtained via NEGF and the QME as

ρNEGF =
∑
n=0

λ2nρ
(2n)
NEGF , (2.44)

ρQME =
∑
n=0

λ2nρ
(2n)
QME . (2.45)

The discrepancy error is then given by

D.E.(i) =
ρNEGF − ρQME

λi
, (2.46)

where i is the order of accuracy we want to check against.

Suppose we want to check if the QME is accuracy up to zeroth order, we find

that the

D.E.(0) = ρNEGF − ρQME

=
∑
n=0

λ2n∆ρ(2n)

= ∆ρ(0) + λ2∆ρ(2) + λ4∆ρ(4) + · · · , (2.47)

where ∆ρ(2n) = ρ
(2n)
NEGF − ρ

(2n)
QME . If ρ

(0)
QME is accurate, ∆ρ(0) = 0 and D.E. would

be at the order of λ2. The discrepancy error would converge to 0 in the limit

λ→ 0.

Similarly suppose we want to check if QME is accuracy up to 2nd order,

D.E.(2) =
ρNEGF − ρQME

λ2

=
∑
n=0

λ2n−2∆ρ(2n)

=
∆ρ(0)

λ2
+ ∆ρ(2) + λ2∆ρ(4) + · · · . (2.48)

If ρQME is accurate up to second order, ∆ρ(0) = ∆ρ(2) = 0 and D.E. is again in

the order of λ2. We could again check the limit of the discrepancy error when

λ approaches 0 and if the results match up to second order, the D.E.(2) → 0 as
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λ→ 0.

In chapter 4, we used D.E.(2) to check the second order RDM. For the zeroth

order RDM, an analytical proof is obtained for SQD using the weak coupling

approximation via NEGF and QME. A numerical comparison is done by using

the weak coupling approximation for DQD models.



Chapter 3
Modified Redfield Solution

3.1 Modified Solution of Redfield Master Equation

Two most commonly used master equations are introduced in the previous chapter.

In the chapter, the accuracy of the Redfield master equation is discussed in the

first part, which serves as the motivation for analytic continuation method. In the

second part, the AC method is constructed for fermionic system as a generalization

of the method that had been demonstrated on systems with bosonic baths in

previous publications [22, 23].

3.1.1 Accuracy of Redfield Master Equation

Intuitively, it may be easily assumed that by solving a second-order equation,

the density matrix solved would be accurate up to second order. However, C.H.

Fleming and N.I. Cummings [6] have shown that this is not the case. In general, to

obtain the solutions of accuracy of order-2n, the master equation of order-(2n+ 2)

is required. For RME, a typical perturbative second order master equation, would

only provide a solution that is accurate at zeroth order as a n = 1 case.

We consider a generic perturbation series expansion to all orders in the formally

exact master equation

∂ρ

∂t
=

(
∆ +

∞∑
n=1

λ2nR(2n)

)
ρ. (3.1)

20
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If we rearrange the ρ into a column vector with its diagonal part and off-diagonal

part separated in the form of


ρd

ρod

, we can also express ∆ as


0 0

0 ∆22

 and

the four tensor R(2n) as


R
ii(2n)
nn R

ij,i6=j(2n)
nn

R
ii(2n)
nm,n 6=m R

ij,i6=j(2n)
nm,n 6=m

. We reassign the index and

use 1 to denote i = j or n = m and 2 to denote i 6= j or n 6= m. The first

index refers to the relation between n and m and the second index refers to

the relation between i and j. The four tensor R(2n) can be then represented as
R

(2n)
11 R

(2n)
12

R
(2n)
21 R

(2n)
22

 .

By doing so, we could obtain

∂

∂t


ρd

ρod

 =




0 0

0 ∆22

+

( ∞∑
n=1

λ2nR(2n)

)

ρd

ρod

 . (3.2)

In the long time limit t→∞, the system would evolve to steady state such that

we can apply the steady state condition ∂ρ/∂t = 0. The time dependence in

the four tensor can be dropped in the long time limit since the steady state is

reached.

By formally expanding the RDM, we have

ρ =

∞∑
n=0

λ2nρ(2n). (3.3)

Hence, a master equation that contains all orders of RDM is obtained in steady-
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state 


0 0

0 ∆22

+

( ∞∑
n=1

λ2nR(2n)

)

∞∑
n=0

λ2n


ρ

(2n)
d

ρ
(2n)
od


 = 0. (3.4)

An order-by-order check can be performed to analyze the dependence of ρ(2n) on

the relaxation tensor R(2n). We demonstrate the accuracy issue for RME which

is a second order QME. In general, such check can be expanded to arbitrary

order.

For the zeroth order case when n = 0
0 0

0 ∆22

λ0


ρ

(0)
d

ρ
(0)
od

 = 0. (3.5)

We can compare the coefficient of λ0 and obtain

ρ
(0)
od = 0. (3.6)

This indicates that the off-diagonal element of the zeroth density matrix should

always be zero.

For the second order case when n = 1 , we have




0 0

0 ∆22

+
(
λ2R(2)

)

λ0


ρ

(0)
d

ρ
(0)
od

+ λ2


ρ

(2)
d

ρ
(2)
od


 = 0. (3.7)

We require the coefficient of λ2 to be 0. Together with the condition ρ(0)
od = 0, we
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have

R
(2)
11 ρ

(0)
d = 0, (3.8)

∆22ρ
(2)
od +R

(2)
21 ρ

(0)
d = 0. (3.9)

Above equations imply that ρ(0)
d is dependent on second order R(2) only and ρ(2)

od

relies on ρ(0)
d and R(2) .

A similar procedure applies to fourth order λ4 and we obtain

R
(2)
11 ρ

(2)
d +R

(2)
12 ρ

(2)
od +R

(4)
11 ρ

(0)
d = 0, (3.10)

∆22ρ
(4)
od +R

(2)
21 ρ

(2)
d +R

(2)
22 ρ

(2)
od +R

(4)
21 ρ

(0)
d = 0. (3.11)

Again we see that ρ(2)
d and ρ(4)

od requires R(4) to be fully determined.

In a more compact way, the dependence of the reduced density matrix on

relaxation tensors is given by:

ρ(0) →
{
R(2)

}
, (3.12)

ρ
(2)
od →

{
R(2)

}
, (3.13)

ρ
(2)
d →

{
R(2), R(4)

}
, (3.14)

ρ
(4)
od →

{
R(2), R(4)

}
. (3.15)

It can be observed that to obtain the second order off-diagonal elements, we

need the zeroth order and the second order relaxation tensor. To obtain the

second order diagonal elements we need to know the 4th order relaxation tensor

from equation. The RME is a second order QME which does not contain any

information for R(4). Hence the accuracy of the solution provide by RME would

only be accurate up to full zeroth order RDM and off-diagonal second order

RDM. A more general proof can be referred to [6] which shows explicitly that to

determine ρ(2n) correctly, R(2n+2) is required.
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This accuracy issue brought out an important aspect on the validity of using of

RME as it is only accurate to zeroth order. And we know that zeroth order RDM

would be the result obtained at λ = 0 if we consider Eq. (3.3). The second order

RDM correction term would not even be accurate in the weak coupling regime.

To obtain a correct correction term at second order, fourth order relaxation

tensor need to be calculated that is tedious to achieve. A possible approach by

performing analytic continuation technique to ρ(2)
od is formulated by J. Thingna

et al. The resultant modified Redfield solution has matched exactly for second

order RDM for harmonic oscillator and spin-boson model connected to bosonic

bath. The information of the exactness on fermionic systems with fermionic

bats is unknown. In the next part, we formulate the modified Redfield solution

using analytic continuation techniques for fermionic system based on previous

formalism for bosonic baths.

3.1.2 Analytic Continuation Method

In the previous section, the dependence on the density matrix and the relaxation

tensor is revealed. The problem that whether it is possible to obtain the second

order density matrix by avoiding the higher order relaxation tensor calculation

has emerged. It turns out that this is indeed possible by obtaining the diagonal

elements of the second order density matrix from the off-diagonal elements of the

second order density matrix.

In chapter 2, the RME in its eigenbasis has been found

dρnm
dt

= −i∆nmρnm +
∑
i,j

Rijnmρij , (3.16)

where we omit the index for position σ in Wαβ
σij in this chapter. Hence the
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relaxation four tensor is given by

Rijnm =
∑
σ

∑
αβ

SαniS
β
jm

(
Wαβ
ni +Wαβ∗

mj

)
−δm,j

∑
l

SαnlS
β
liW

αβ
li − δi,n

∑
l

SαjlS
β
lmW

αβ∗
lj . (3.17)

In the previous section, we obtain the dependence of the zeroth order RDM in

Eq. (3.6) and Eq. (3.8). In the eigenbasis representation

ρ
(0)
ij = 0, (3.18)∑

σ,i,αβ

[
Wαβ
ni S

α
niS

β
in − δn,i

∑
l

Wαβ
li S

α
nlS

β
li

]
ρ

(0)
ii = 0. (3.19)

Similarly, the dependence of the second order off-diagonal RDM in Eq. (3.9) can

be represented as

ρ(2)
nm = i

∑
σ,i,αβ

SαniS
β
im

∆nm

[(
Wαβ
im ρ

(0)
mm +Wαβ∗

in ρ(0)
nn

)
−
(
Wαβ
ni +Wαβ∗

mi

)
ρ

(0)
ii

]
. (3.20)

If we treat ρ(2)
nm as a function of ∆nm and let ∆nm be extremely small such

ρ
(2)
nm → ρ

(2)
nn , it can be found that

ρ(2)
nn = i

∑
σ,i,αβ

SαniS
β
in

∆nn

[
W ′αβinρ

(0)
nn −W ′αβniρ(0)

ii

]
, (3.21)

which preserve a 0/0 indeterminate form as R(2)
11 ρ

(0)
d = 0.

In a more compact notation, when we are taking n = m, it is equivalent to have

ρ
(2)
od =

−R(2)
11 ρ

(0)
d

∆12

. (3.22)

However, that does not imply that a limiting value of limm→n ρnm with appropri-

ate choice of a path does not exist.
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If we take Em → En − z, we have

ρ(2)
nn = lim

z→0
i
∑
σ,i,αβ

SαniS
β
in

En − (En − z)
[ (
Wαβ
in (z) ρ(0)

mm +Wαβ∗
in (0) ρ(0)

nn

)
−
(
Wαβ
ni (0) +Wαβ∗

ni (−z)
)
ρ

(0)
ii

]
= lim

z→0
i
∑
σ,i,αβ

SαniS
β
in

z

[ (
W
′αβ
in (z) ρ(0)

nn +W
′αβ
in (0) ρ(0)

nn

)
−
(
W
′αβ
ni (0) +W

′αβ
ni (−z)

)
ρ

(0)
ii

]
− lim
z→0

∑
σ,i,αβ

SαniS
β
in

z

[(
W
′′αβ
in (z) ρ(0)

nn +W
′′αβ
in (0) ρ(0)

nn

)

+W
′′αβ
in (z) z

∂ρ
(0)
nn

∂En
−
(
W
′αβ
ni (0) +W

′′αβ
ni (−z)

)
ρ

(0)
ii

]
, (3.23)

where we have expanded ρ(0)
nn (z) in the following way

ρ(0)
nn (z) = ρ(0)

nn + z
∂ρ

(0)
nn

∂En
. (3.24)

We have assumed

∂ρ
(0)
nn

∂Ei
= 0 for i 6= n. (3.25)

In the chapter 4 Sec. 4.3, we claim that this is a valid assumption.

In the limit z → 0, W ′ (z) = W ′ (−z)=W ′ (0) = W ′, with V ′′ni defined as
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∂W ′′ni/∂∆ni , the previous equation reads

ρ(2)
nn = lim

z→0
i
∑
σ,i,αβ

SαniS
β
in

z

[ (
W
′αβ
in (z) ρ(0)

nn +W
′αβ
in (0) ρ(0)

nn

)
−
(
W
′αβ
ni (0) +W

′αβ
ni (−z)

)
ρ

(0)
ii

]
− lim
z→0

∑
σ,i,αβ

SαniS
β
in

z

[(
W
′′αβ
in (z) ρ(0)

nn +W
′′αβ
in (0) ρ(0)

nn

)

+W
′′αβ
in (z) z

∂ρ
(0)
nn

∂En
−
(
W
′′αβ
ni (0) +W

′′αβ
ni (−z)

)
ρ

(0)
ii

]

= lim
z→0

∑
σ,i,αβ

SαniS
β
in

[(
W
′′αβ
in (0)−W ′′αβ

in (−z)
−z

)
ρ(0)
nn

−W ′′αβ
in (z)

∂ρ
(0)
nn

∂En
+

(
W
′′αβ
ni (0)−W ′′αβ

ni (−z)
−z

)
ρ

(0)
ii

]
+ ρ̄(2)

nn

=
∑
σ,i,αβ

SαniS
β
in

[(
−V ′′αβin ρ(0)

nn + V
′′αβ
ni ρ

(0)
ii

)
+W

′′αβ
in

∂ρ
(0)
nn

∂En

]
. (3.26)

In the last step, the term ρ̄
(2)
nn is dropped as we find that

ρ̄(2)
nn = lim

z→0
i
∑
σ,i,αβ

SαniS
β
in

z

[ (
W
′αβ
in (z) ρ(0)

nn +W
′αβ
in (0) ρ(0)

nn

)
−
(
W
′αβ
ni (0) +W

′αβ
ni (−z)

)
ρ

(0)
ii

]
= 0. (3.27)

Hence, the diagonal component of the density matrix can be thus represented as

ρ(2)
nn =

∑
σ,i,αβ

SαniS
β
in

[(
−V ′′αβin ρ(0)

nn + V
′′αβ
ni ρ

(0)
ii

)
+W

′′αβ
in

∂ρ
(0)
nn

∂En

]
. (3.28)

The term ∂ρ
(0)
nn

/
∂En can be determined via the Eq. (3.8), R(2)

11 ρ
(0)
d = 0, by

taking partial derivatives Ei to both side. The result takes the form

∂ρ
(0)
nn

∂En
=

∑
σ,i6=n,αβ S

α
niS

β
in

(
V
αβ(0)
ni ρ

(0)
ii + V αβ

in ρ
(0)
nn

)
∑

σ,i6=n,αβW
′αβ
in SαniS

β
in

. (3.29)
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To normalize the RDM at second order, we consider the following normalization

condition

ρnn =
ρ

(0)
nn + ρ

(2)
nn∑

i

(
ρ

(0)
ii + ρ

(2)
ii

)
≈

(
ρ(0)
nn + ρ(2)

nn

)(
1−

∑
i

ρ
(2)
ii

)
≈ ρ(0)

nn + ρ(2)
nn − ρ(0)

nn

∑
i

ρ
(2)
ii . (3.30)

By applying the normalization condition
∑

n ρnn = 1 and
∑

n ρ
(0)
nn = 1, we sum

up the above equation and it gives

1 = 1 +
∑
n

(
ρ(2)
nn − ρ(0)

nn

∑
i

ρ
(2)
ii

)
. (3.31)

Hence the normalized ρ(2)
nn takes the final form

ρ(2)
nn =

∑
σ,i,αβ

SαniS
β
in

[(
−V ′′αβin ρ(0)

nn + V
′′αβ
ni ρ

(0)
ii

)
+W

′′αβ
in

∂ρ
(0)
nn

∂En

]

−ρ(0)
nn

∑
σ,i,αβ

SαijS
β
jiW

′′αβ
ji

∂ρ
(0)
ii

∂Ei
, (3.32)

with Eq. (3.31) implying its traceless property.

This is the final form obtained using the analytic continuation method. The

resultant RDM with second order correction ρMRS = ρ(0) + λ2ρ(2) is known as

the modified Redfield solution.

In summary, to obtain the MRS, we first solve zeroth order RDM ρ(0) via Eq.

(3.8) or more explicitly by Eq. (3.18) and Eq. (3.19). The second order off-

diagonal RDM ρ
(2)
od would be supplied by Eq. (3.20). The normalized second

order diagonal RDM is then calculated via the analytic continuation result in Eq.

(3.32).
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Chapter 4
Exactness of the Modified Redfield Solution

The modified Redfield solution has been demonstrated on quantum harmonic

oscillator and spin-boson model with bosonic baths [22, 21]. The results are

shown to be exact by applying the comparison scheme. In this chapter, by

performing the analytic continuation technique for fermionic systems, we would

like to check whether such exactness still preserves.

Quantum dot [12] is a suitable fermionic system of interest. It is an artificial

nanostructure that can confine electrons. Experimentally, two different types of

dots could be structured. Vertical dots could be structured with high spatial

symmetry . Lateral dot could be constructed by using metallic gates in a plane

that has lower spatial symmetry. We are interested in how does the quantum dot

serves as an open system and interact with the bath. For electronic baths, we

would be able to study the electron transport properties. One interesting effect

would be the Coulomb blockade effect that allows us to adjust the number of

electrons in the quantum dot due to the Coulomb repulsion between electrons on

the quantum dot.

For exactness check, we consider a spinless single quantum dot model and two

types of double quantum dots model [25].

30
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4.1 Spinless Single Quantum Dot

Hamiltonian

Consider a SQD coupled with two baths, the total Hamiltonian can be written as

Htot = HS +HL +HR + VL + VR, (4.1)

with

HS = ε0d
†d, (4.2)

HL =
∑
kL

εkLc
†
kLckL, (4.3)

HR =
∑
kR

εkRc
†
kRckR, (4.4)

VL =
∑
kL

vkLdc
†
kL + h.c., (4.5)

VR =
∑
kR

vkRdc
†
kR + h.c.. (4.6)

d† and d are the creation and annihilation operator for electrons representing

excitation and de-excitation of an electron respectively. ε0 represents the on-site

energy level of the dot and εkL and εkR are the dispersion relations of the baths.

k refers to the momentum index. The bath Hamiltonian is assumed to be solvable

such that it can be written in above diagonal form in momentum space. v

represents the tunnelling strength.

The SQD can be described using the schematic picture in Fig 4.1. A single

quantum dot is coupled to two electronic baths. The baths are assumed to be in

respective equilibrium and hence it can be well described by Fermi distributions

that are defined by temperature Tσ and chemical potential µσ.
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ε0 TR, µRTL, µL

HL HS HR

Figure 4.1: A schematic figure of a single quantum dot. A single quantum dot
with on-site energy ε0 coupled with two fermionic baths in respective equilibrium
with fixed temperature Tσ and chemical potential µσ

Master Equation of a Sinlge Quantum Dot

With the above Hamiltonian, by using the recipe introduced in chapter 2, we

would be able to write down the explicit form of the RME in energy eigenbasis as

dρnm
dt

= −i∆nmρnm (t)

+
∑
σ=L,R

∑
ij

[
S2
niS

1
jmW

21∗
mjσ + S2

niS
1
jmW

21
niσ

−δm,j
∑
l

S2
nlS

1
liW

12
liσ − δi,n

∑
l

S2
jlS

1
lmW

12∗
ljσ

+S1
niS

2
jmW

12
niσ + S1

niS
2
jmW

12∗
mjσ

−δi,n
∑
l

S1
jlS

2
lmW

21∗
ljσ − δm,j

∑
l

S1
nlS

2
liW

21
liσ

]
ρij , (4.7)

where S2 and S1 are system operator d† and d respectively in energy eigenbasis.

For SQD, the Fock basis |00〉,|01〉 , |10〉,|11〉 are equivalent to the energy eigenbasis

since the system is only one-levelled. We have the liberty to express

S1 = d =


0 1

0 0

 , (4.8)

S2 = d† =


0 0

1 0

 . (4.9)

Directly solving Eq. (4.7) would give us the standard Redfield solution to the
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RDM. To obtain the modified Redfield solution, we follow the treatment described

in chapter 3 by using the relaxation tensor defined in Eq. (4.7) to obtain ρ(0)

and ρ(2)
od . ρ

(2)
d is then calculated via the AC analytic result in Eq. (3.32). The

LME can also be obtained via secular approximation on Eq. (4.7).

Nonequilibrium Green’s Function for Single Quantum Dot

To obtain the exact RDM, the nonequilibrium Green’s function approach for

RDM formalism is used. The retarded Green’s function of SQD is given by

G+ (ε) =
1

ε− ε0 − Σ+
L (ε)− Σ+

R (ε)
, (4.10)

with the self-energy given in Appendix E.

The correlation matrix D can be written as

〈
d†d
〉

=

∫ +∞

−∞
dε

1

2π

∣∣G+ (ε)
∣∣2 [ΓL (ε) fL (ε, TL, µL)

+ΓR (ε) fR (ε, TR, µR)
]
, (4.11)

that is a number for SQD system due to the size of the system.

The density matrix would then take the form

ρ =
exp

(
−ac†0c0

)
1 + exp (−a)

, (4.12)

with

a = ln
(
D−1 − 1

)
. (4.13)
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It can be found that

ρ =


1−D 0

0 D

 . (4.14)

4.1.1 Weak Coupling Limit Discussion

In weak coupling limit such that λ→ 0, we expect that the MRS would give us

ρ(0) since the MRS is in the form ρ(0) + λ2ρ(2). We known in chapter 3 that ρ(0)

can be obtained via solving R(2)
11 ρ

(0) = 0

∑
σ=L,R

[
2S2

niS
1
inW

′21
niσ − 2δn,i

∑
l

S2
nlS

1
liW

′12
liσ

+2S1
niS

2
inW

′12
niσ − 2δi,n

∑
l

S1
ilS

2
lnW

′21
liσ

]
ρii = 0. (4.15)

The above form reduces to the following equation if we consider the non-zero

elements for system operator in its matrix representation S1
12 = 1 and S2

21 = 1:


W
′12
21σ −W ′21

12σ

W
′21
21σ −W ′12

12σ



ρ

(0)
11

ρ
(0)
22

 = 0, (4.16)

(ΓLfL + ΓRfR) ρ
(0)
11 − (ΓL (1− fL) + ΓR (1− fR)) ρ

(0)
22 = 0. (4.17)

Together with the normalization condition that
∑

i ρ
(0)
ii = 1, we have

ρ
(0)
11 = 1− ΓLfL + ΓRfR

ΓL + ΓR
. (4.18)

This is exactly the form if we perform weak coupling approximation to NEGF

for SQD.
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For NEGF, the weak coupling limit implies Σ+
L and Σ+

R → 0. The Green’s

function Eq. (4.10) would be effectively given by

G+ (ε) =
1

ε− ε0 − i1
2 (ΓL + ΓR)

. (4.19)

The correlation matrix would take the form

〈
d†d
〉

=

∫ +∞

−∞
dε

1

2π

1

(ε− ε0)2 + 1
4 (ΓL (ε) + ΓR (ε))2

[
ΓL (ε) fL (ε, TL, µL)

+ΓR (ε) fR (ε, TR, µR)
]
. (4.20)

By using the identity

lim
ε→0

ε

(x− a)2 + ε2
= πδ (x− a) , (4.21)

we have

D =
〈
d†d
〉

=
ΓLfL + ΓRfR

ΓL + ΓR
. (4.22)

Eq. (4.14) would then provide a form for ρ11

ρ11 = 1−D

= 1− ΓLfL + ΓRfR
ΓL + ΓR

, (4.23)

which is exactly the same as compared to the zeroth order RDM result obtained

via master equation given by Eq. (4.18). This implies that by checking the

result for NEGF in the weak coupling limit, the zeroth order RDM result can be

recovered.

The zeroth order RDM results have been shown to be analytically equal. A more

general form of the weak coupling limit result can be referred to [5]. We then

proceed to investigate the exactness of second order RDM.
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4.1.2 Exactness Check in Equilibrium

In equilibrium situation where both the left bath and the right bath preserve the

same temperature and same chemical potential, the system is effectively coupled

with one bath and hence there would be not net currents flow through the dot.

We adopt the comparison scheme proposed in chapter 2 and compare the second

order RDM obtained via AC and NEGF. The discrepancy error of interest would

be D.E.(2) as had been argued in chapter 2. When the coupling strength λ→ 0,

the D.E.(2) should also approach to 0 which is reflected by the y-intercept of the

fitted line for D.E.(2) versus λ2. By choosing a pair of equilibrium parameters,

the D.E.(2) versus coupling strength λ2 figure is given in Fig. 4.2

0.0000 0.0005 0.0010

λ2

0.0

0.2

0.4

D
.E
.(
2
)
(×

10
−
5
)

ρ11
linear fit

Figure 4.2: Figure of discrepancy error for ground state population ρ11 versus
the coupling strength λ2; TL = TR = 0.25 and µL = µR = 0. The cut-off energy
εD is 1. The coupling strength is chosen from 0.0001 to 0.001. The y-intercept
is given by −2.1534 × 10−8 which indicates a good match between ρ(2)

MRS and
ρ

(2)
NEGF ,

For a single quantum dot, the dimension of the Hilbert space is 2 and the RDM

only have two diagonal elements. Hence, we take the liberty to check only of the

diagonal element namely ρ11 as ρ22 is simply given by 1−ρ22 due to normalization

condition of RDM.
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The y-intercept is at the order 10−8 which is a good indication that the second

order RDM of MRS is exact. We are not able to obtain a solution at machine

precision of 10−15 due to the calculation of W . The calculation involves summing

over all the Matsubara frequencies that is impossible as there are infinite many

of terms. Certain convergence criterion is required. Throughout the thesis, the

convergence criterion for the Matsubara sum is set to 10−15. However, this does

not indicate that our solution is accurate to 10−15. Depending on the number

of terms that are summed up, the error can add up to 10−9 if 106 terms are

summed up. Hence 10−8 would be a good indication that our determination of

the exactness of second order RDM for MRS. For previous the work [22] done for

bosonic baths in equilibrium, an analytic proof is given for the equivalence of the

second order RDM in equilibrium.

4.1.3 Exactness Check in Nonequilibrium Steady-state

In the previous case, the exactness of second order RDM for MRS has been

checked. We have argued that by performing a linear fitting, the y-intercept

with a value of order 10−8 is a valid indication of the exactness of the second

order RDM for MRS. We check if this is true in nonequilibrium steady-state.

In NESS, the system of interest is connected to baths with different chemical

temperatures and/or different chemical potentials. The discrepancy error plot in

nonequilibrium is given by Fig. 4.3.

By performing linear fitting, a similar conclusion can be drawn as compared to

equilibrium situation as the y-intercept is again at the order 10−8. This allows

us to conclude that the MRS is exact up to second order in nonequilibrium

steady-state for single quantum dot system.
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Figure 4.3: Figure of discrepancy error for ground state population versus
the coupling strength λ2; TL = 0.50, TR = 0.25 and µL = 1, µR = 0. The
cut-off energy εD is 1. The coupling strength is chosen from 0.0001 to 0.001.
The y-intercept is given by −1.6908× 10−8 which again indicates a good match
between ρ(2)

AC and ρ(2)
NEGF in NESS.

4.2 Spinless Double Quantum Dots

Single quantum dot is a relatively simple one-levelled system. We would like

to perform the analytic continuation technique to a more complicated system.

Hence, as a natural generalization of single quantum dot model, the double

quantum dot model can be used.

Hamiltonian

We consider two types of DQD models. For the first type, we consider each

quantum dot coupled with one bath only with hopping between the two dots.

For the second type, we consider one dot coupled with both the left bath and

right bath with additional hopping between the two dots. For both cases, we do

not consider the coulomb interaction between the two dots which can be denoted

as Ud†1d1d
†
2d2. The reason is that NEGF can only handle bilinear Hamiltonian
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ε2ε1

h

HL dot 1 dot 2 HR

TR, µRTL, µLH-type

Figure 4.4: A schematic figure of an H-type double quantum dot system.
Two dots with on-site energies ε1 and ε2 coupled to different fermionic baths
in respective equilibrium with fixed temperature Tσ and chemical potential µσ.
Electrons are allowed to hop between the two dots.

ε1

ε2

h

HL HRdot 1

dot 2

TR, µRTL, µLV-type

Figure 4.5: A schematic figure of an V-type double quantum dot system. The
quantum dot with on-site energy ε1 is coupled with two fermionic baths in
respective equilibrium with fixed temperature Tσ and chemical potential µσ.
Electrons are allowed to hop between the two dots.

exactly and would not be able to compare the exactness for such systems. The

first type can be named as horizontal chain type (H-type) and the second type

can be named as vertical chain type (V-type). They are represented by Fig. 4.4

and 4.5 below.

The Hamiltonian of H-type DQD can be cast into the following form:

Htot = ε1d
†
1d1 + ε2d

†
2d2 − h

(
d†1d2 + d†2d1

)
+
∑
kL

εkLc
†
kLckL +

∑
kR

εkRc
†
kRckR

+
∑
kL

vkLd1c
†
kL + h.c.

+
∑
kR

vkRd2c
†
kR + h.c.. (4.24)
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The Hamiltonian of V-type DQD can be casted in the following form:

Htot = ε1d
†
1d1 + ε2d

†
2d2 − h

(
d†1d2 + d†2d1

)
+
∑
kL

εkLc
†
kLckL +

∑
kR

εkRc
†
kRckR

+
∑
kL

vkLd1c
†
kL + h.c.

+
∑
kR

vkRd1c
†
kR + h.c.. (4.25)

The only difference lies in the coupling term. The reason we propose the V-type

is that it seems to mimic a SQD behavior.

Master Equation of Double Quantum Dot

The RME for H-type DQD can be referred to Appendix D.

To construct the system operator in Fock basis for arbitrary size of system,

instead of identifying all the possible states transitions, we use a convenient way

di = σ⊗iz ⊗ d⊗ 1⊗Z−i, (4.26)

where d is the annihilation operator for a single electron and di is the annihilation

operator for the ith electron. Z represents the number of electrons the system

possesses.

We would obtain four system operators namely d1, d
†
1, d2, d

†
2. In the energy

eigenbasis, we denote them as S1, S2, S3, S4 respectively.

For a V-type DQD, we simply replace the system operator S4 and the system

operator S3 which belongs to dot 2 to S2 and S1. The transition rate would be

invariant since the baths are not changed for SQD, V-type DQD, and H-type

DQD.
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Nonequilibrium Green’s Function for Double Quantum Dot

The retarded Green’s functions for H-type and V-type DQD have the respective

form

G+
H =


ε− ε1 − Σ+

L (ε) t

t ε− ε2 − Σ+
R (ε)


−1

, (4.27)

G+
V =


ε− ε1 − Σ+

L (ε)− Σ+
R (ε) t

t ε− ε2


−1

. (4.28)

The RDM would be given as

ρ =
exp

(
−A11d

†
1d1 −A12d

†
1d2 −A21d

†
2d1 −A22d

†
2d2

)
[1 + exp (−a1)] [1 + exp (−a2)]

, (4.29)

with A matrix given by A = U∗


a1 0

0 a2

UT and ai = ln
(
λ−1
i − 1

)
. λi is the

eigenvalue of the correlation matrix D calculated.

4.2.1 Weak Coupling Limit Discussion

For DQD, it would be tedious to check if ρ (0) matches analytically due to the

following reasons. The solution provided by NEGF would be supplied along with

basis transformations as DQD Hamiltonian no longer preserves the equivalence

between Fock basis and energy eigenbasis. In addition, the solution solved via

QME is already in the energy eigenbasis. A four by four matrix is required to be

solved analytically and the final form would not be clear for comparison.

Instead, a numerical comparison can be done. We can directly compare the

density matrix with changing parameters such as the hopping coefficient and the
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chemical potential.
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Figure 4.6: Graph of RDM as a function of hopping energy h in the weak
coupling limit λ2 → 0; The chemical potential difference ∆µ = 2. The tempera-
tures are set as TL = 0.85 and TR = 0.25. The cut-off energy εD = 1. The dot
represents RDM obtained by NEGF and the line represent the RDM obtained by
MRS.
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Line: MRS
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Figure 4.7: Graph of RDM as a function of chemical potential difference between
the two baths ∆µ in the weak coupling limit λ2 → 0; ∆µ is defined as µL − µR.
The temperatures are set as TL = 0.85 and TR = 0.25. Hopping coefficient h = 1
and the cut-off energy εD = 1. The dot represents RDM obtained by NEGF and
the line represent the RDM obtained by MRS.

It can be observed that the dots that represent the NEGF result matches with

the lines that Srepresent the MRS in the weak coupling limit λ2 → 0. Moreover,

the absolute differences between the NEGF RDM and the MRS RDM are at the

order 10−8. A more rigorous check can be done by using the comparison scheme

proposed in chapter 3 using D.E.(0) by varying the coupling strength.
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4.2.2 Exactness Check in Equilibrium

The dimension of the Fock space of DQD will be 4 and the corresponding

dimension of Hilbert space would also be 4. Hence the RDM would have 4

diagonal elements. Second order RDM would also contribute to two off-diagonal

elements as conjugate pairs. The D.E.(2) is then checked again the 4 diagonal

elements for the RDM and the real part and imaginary part of the off-diagonal

elements. In equilibrium, there off-diagonal elements are zero. The discrepancy

error plot is given by Fig. 4.8.



Chapter 4. Exactness of the Modified Redfield Solution 44

ρ22

ρ11

ρ33

ρ44

0.000 0.005 0.010

λ2

-0.25

0.00

0.25
D
.E
.(
2
)
(×

10
−
3
)

(a) H-type double quantum dot system
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(b) V-type double quantum dot system

Figure 4.8: Figure of discrepancy error for RDM in energy eigenbasis versus
system-bath coupling strength λ2 for double quantum dot models in equilibrium;
(a) represents the plot for the H-type double quantum dot. (b) represents the
V-type double quantum dot. The dotted line is given by linear fitting. TL = 0.25,
TR = 0.25 and µL = 0, µR = 0. The cut-off energy εD and the hopping energy
h are chosen to be 1. The coupling strength is chosen from 0.001 to 0.01. The
y-intercept for all the elements are of order 10−7 to 10−8 for both types of double
quantum dot systems.

The y-intercept at the order of 10−7 and 10−8 indicates that the MRS are exact

in equilibrium.
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4.2.3 Exactness Check in Nonequilibrium Steady-state

A similar check is done in NESS. The plot is given by Fig. 4.9.

It can be observed that the y-intercepts for diagonal elements with second order

RDM obtained via AC are at the order of 10−2 and 10−3 which ARE much

larger than that in the equilibrium case. This indicates that the exactness no

longer exist. For the off-diagonal elements where no manipulation is done, the

y-intercepts is at the order of 10−8.

We would like to investigate why there is such a loss of exactness and how would

it be possible to correct the AC.
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(a) H-type double quantum dot system
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(b) H-type double quantum dot system

Figure 4.9: Figure of discrepancy error for RDM in energy eigenbasis versus
system-bath coupling strength λ2 for double quantum dot models in nonequilib-
rium; (a) represents the plot for the H-type double quantum dot. (b) represents
the V-type double quantum dot. The dotted line is given by linear fitting.
TL = 0.85, TR = 0.25 and µL = 2, µR = 0. The cut-off energy εD and the
hopping energy h are set to 1. The coupling strength is chosen from 0.001 to
0.01. For both the H-type and V-type DQD, the y-intercept for all the diagonal
elements are of order 10−2 to 10−3. For off-diagonal elements, the y-intercept is
at the order of 10−7.
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4.3 Correction Scheme and Failure

The MRS for DQD is not exact for second order RDM in NESS as we have

illustrated. Initially, the exactness check is done for H-type DQD only. We then

propose a V-type DQD which mimics a SQD except for its system size. It has

been suspected that the loss of exactness is due to a sharp temperature and/or

chemical potential gradient exist between the two dots for one definite system.

However, the MRS solution is not exact to second order RDM again for the

V-type DQD. Hence, the underlying problem may due to other possible flaws in

the performing AC.

In chapter 3, the AC is performed with an expansion given by Eq. (3.24) . A

seemingly harmless assumption is given by

∂ρ
(0)
nn

∂Ei
= 0 for i 6= n. (4.30)

If we do not apply the above assumption, the expansion given by Eq. (3.24)

should be written in the new form

ρ(0)
nn (z) = ρ

(0)
nn+ z

∂ρ
(0)
nn

∂En
+ z

∑
i 6=n

∂ρ
(0)
nn

∂Ei
. (4.31)

Hence our attempt is to add in the new correction term given by z
∑

i 6=n ∂ρ
(0)
nn

/
∂Ei .

The term ∂ρ
(0)
nn

/
∂Ei is calculated via taking partial derivative to Eq. (3.19).

Without any constraints on the RDM, the attempt to solve ∂ρ(0)
nn

/
∂Ei would give

us an underdetermined linear system. However, if the normalization condition is

applied, it can be found that

N∑
i

∂ρ
(0)
nn

∂Ei
= 0, (4.32)

with N as the number of energy levels.



Chapter 4. Exactness of the Modified Redfield Solution 48

If above statement is true, the expansion in Eq. (4.31) would be

ρ(0)
nn (z) = ρ(0)

nn + z
N∑
i

∂ρ
(0)
nn

∂Ei

= ρ(0)
nn , (4.33)

which is not reasonable. We hence claim that Eq. (4.30) is a valid assumption.

Another attempt to correct the AC technique is by directly taking the limit for

ρ
(2)
nm when ∆nm → 0 using L’Hospital’s rule. We then find that the unnormalizaed

result is given by

ρ(2)
nn =

∑
σ,i,αβ

2SαniS
β
in

[(
−V ′′αβin ρ(0)

nn + V
′′αβ
ni ρ

(0)
ii

)
+W

′′αβ
in

∂ρ
(0)
nn

∂En

]
, (4.34)

that is exactly twice as compared to the AC result given by Eq. (3.32). It can

thus be concluded that second order RDM in MRS obtained via AC is not a

mathematically well-defined limit as the limit depends on the paths chosen to

approach En = Em. The AC performed by J. Thingna in [22] fix the nth energy

level and only allow the mth energy level to vary whereas L’Hospital’s rule is valid

when the limit is well-defined. However, it is noticed that the result obtained

via L’Hospital’s rule in Eq. (4.34) is identical with the Dyson expansion result

supplied in [21]. It would be interesting to investigate the relation between these

two results. However, these correction scheme fail to provide corrections to the

MRS.

Nevertheless, the loss of exactness of MRS does not imply that it is a totally

wrong answer. We would like to see in next chapter how well does MRS work as

an approximation with respect to the exact solution. It would also be thought-

provoking to see how does MRS perform as compared to other master equations

including RME and LME.



Chapter 5
Comparison with Other Master Equations

The previous chapter gives us an indication that the exactness of modified Redfield

solution does not preserve in some situations such as the double quantum dot

models in nonequilibrium. However, it does not mean that this solution fails to

yield a good approximation to the second order RDM. It would be interesting to

compare the MRS, RME, LME and NEGF as a benchmark by using some specific

physical observables. We check a few observables such as the local population of

the dots and the local particle current. In this chapter, the focus will be on the

H-type DQD with Hamiltonian given by Eq. (4.24).

The local population of the ith dot is simply given by

ni =
〈
d†idi

〉
. (5.1)

The local particle current is defined by

IL =

〈
dN1

dt

〉
= i

〈[
d†1d1, HS

]〉
= i

〈[
d†1d1,−t

(
d†1d2 + d†2d1

)]〉
= it

〈
d†2d1 − d†1d2

〉
. (5.2)

For a H-type DQD, we would like to see how various approaches would behave

with respect to a varying coupling strength. The dependence of the local particle

49
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current is plot against the coupling strength as shown in Fig. 5.1.
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Figure 5.1: Graph of local particle current in H-type double quantum dot versus
coupling strength λ2 via Redfield master equation (Black), modified Redfield
solution (Red), nonequilibrium Green’s function (Blue) and Lindblad master
equation (Green). The parameter used: TL = 0.85, TR = 0.25, µL = 2 µR = 0,
ε1 = 0.2, ε1 = 0.4, εD = 1, h = 1.

When the coupling strength is small, the NEGF, RME and MRS approach to

the same result given by ρ(0). When the coupling strength increases, it can be

seen from the figure that the RME solution provides us a better solution as

compared to MRS and LME. LME does not depend on the coupling strength

and is not able to compute the local particle current for this setup. The reason is

that the calculation of the defined local currents requires the off-diagonal RDM

which describes the hopping process in this context. However, by performing

secular approximation, the off-diagonal terms are found to be zero in steady

state. This can be directly observed from Eq. (2.34). The loss of off-diagonal

information would be in correspondence to the loss of information for the local

current. The reason that the RME has a better solution is also due to the off-

diagonal contributions from other higher order terms. By the accuracy analysis in

chapter 2, we know that the second order off-diagonal elements can be determined

accurately for RME. This is also evidence by the zero y-intercepts observed in
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the previous chapter for the discrepancy error plots. We know that

ρMRS = ρ
(0)
MRS + λ2ρ

(2)
MRS , (5.3)

ρRME = ρ
(0)
RME + λ2ρ

(2)
RME + λ4ρ

(4)
RME + · · · , (5.4)

where ρ(0) does not contain off-diagonal elements as we have shown in chapter

3. The contribution of the off-diagonal elements would come from ρ(2) that

are exact for both the MRS and RME. However, RME also contains the off-

diagonal elements from higher order terms even though they are incorrectly

determined. Hence, as compared to the MRS with ρ
(2)
od only, the RME with

ρ
(2)
od + ρ

(higher orders)
od is expected to have a better result as compared to MRS.

The points out a limitation for MRS when the calculation of certain observables

requires the off-diagonal contribution.

From the plots of the population as shown in Fig. 5.2, again the NEGF, RME,

MRS and LME approach to the same value when the coupling strength is small as

a consequence of the equivalence in weak coupling limit. With a higher coupling

strength, the MRS results are consistently smaller than that of NEGF. Meanwhile,

the RME results are consistently larger. In contrast, LME only gives a correct

description of the population distribution in the weak coupling limit.
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Figure 5.2: Graph of population of dot 1 and dot 2 in H-type double quantum
dot versus coupling strength λ2 via Redfield master equation (Black), modified
Redfield solution (Red), nonequilibrium Green’s function (Blue) and Lindblad
master equation (Green). The parameter used: TL = 0.85, TR = 0.25, µL = 2,
µR = 0, ε1 = 0.2, ε2 = 0.4, εD = 1, h = 1.
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The dependence of the local current on the coupling strength is revealed. However,

in our problem, we always consider the left bath and the right bath to be symmetric

with identical spectral density and coupling strength. Variation of the coupling

strength occurs symmetrically.

We consider another situation by varying the chemical potential which is equivalent

to variation of the degree of bias of the system.
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Figure 5.3: Graph of local particle current in H-type double quantum dot versus
chemical potential difference ∆µ via Redfield master equation (Black), modified
Redfield solution (Red), nonequilibrium Green’s function (Blue) and Lindblad
master equation (Green). The parameter used: TL = 0.85, TR = 0.25, λ2=0.05,
ε1 = 0.2, ε2 = 0.4, εD = 1, h = 1.

The local particle current is plotted against the chemical potential difference

in Fig. 5.3 the RME have a result that is closer the that of NEGF. The local

population profile given by Fig. 5.4 gives a similar conclusion in the previous

case that the MRS is always smaller the solution of NEGF and RME is always

larger. When the chemical potential increases, the system would be in a stronger

nonequilibrium condition and the difference between various solution will be

greater.
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Figure 5.4: Graph of local population of dot 1 and dot 2 in H-type double
quantum dot versus chemical potential difference ∆µ via Redfield master equation
(Black), modified Redfield solution (Red), nonequilibrium Green’s function (Blue)
and Lindblad master equation (Green). The parameter used: TL = 0.85, TR =
0.25, λ2=0.05, ε1 = 0.2, ε2 = 0.4, εD = 1, h = 1.



Chapter 5. Comparison with Other Master Equations 55

The above chosen observables do not give a clear indication of the accuracy of

MRS as compared to RME. The RME discrepancy error plot is compared with

the MRS discrepancy error plot in Fig. 5.5.

ρ44

ρ22
ρ33

ρ11

Re(ρ12)
Im(ρ12)

Dashed Line: RME
Solid Line: MRS

0.0000 0.0050 0.0100

λ2

-0.050

0.000

0.050

D
.E
.(
2
)

Figure 5.5: Figue of discrepancy error for RDM in energy eigenbasis versus the
system-bath coupling strength an H-type double quantum dot; The solid line
represents the result for MRS. The dashed line represents the result for RME.
TL = 0.85, TR = 0.25 and µL = 2, µR = 0. The cut-off energy εD is 1. The
coupling strength is chosen from 0.001 to 0.1.

We can see from the plot that the RME results have a larger y-intercept as

compared to RME for the diagonal elements of the second order RDM except

for ρ44. It means that it deviates from the exact value more than MRS. Hence,

MRS is more accurate than RDM for second order RDM in weak coupling regime.

Since the local population plot is not able to give us a clear indication on whether

RME or MRS is a better solution due to their consistent deviation, we check the

global population for all the energy levels. The global population plot is given

by Fig. 5.6. It can be seen that the global population gives a good match for

MRS and NEGF for the first three energy levels. However, the population for the

fourth energy level has a great deviation for MRS. This is also indicated by the

discrepancy error plot. As compared to RME, MRS still give a better predication

for most of the energy levels. The breakdown of MRS for a certain level may be

a clue to investigate the flaw in AC.
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Figure 5.6: Graph of populations for all the energy levels versus the coupling
strength; The red line represents the result for MRS. The black dashed line
represents the result for RME. The blue dotted line represent the result for
NEGF. TL = 0.85, TR = 0.25 and µL = 2, µR = 0. The cut-off energy εD is 1.
The coupling strength is chosen from 0.001 to 0.1.
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Moreover, it is noticed that RME would break down when the coupling strength

is strong if we consider the occupation number in different energy eigenstate.

An example is given by Fig. 5.7. It can be seen that the RME solution no

longer preserves positivity whereas the positivity for MRS still holds. For local

observable like population for dot 1 and dot 2. Such loss of positivity for RME is

not easy to observed if local population is considered as it would be cancelled by

contribution from other elements of RDM. A more detailed study on the valid

regime of RME can be done together with MRS.
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Figure 5.7: Graph of RDM versus coupling strength λ2; TL = 0.45 TR = 0.25
and µL = 1 µR = 0.The on-site energies are ε1 = 2 and ε2 = 4. The coupling
strength is chosen from 0.01 to 1. The blue cross represents the NEGF solution.
The red line represents the MRS and the black line represents the RME solution.



Chapter 6
Conclusion

In conclusion, we have extended the modified Redfield solution to fermionc

systems by performing analytic continuation technique. More specifically, the

exactness of the MRS in nonequilibrium steady-state has been examined. The

MRS in general does not preserve exactness. For a single quantum dot, the MRS

provides us with exact solution up to second order RDM in both equilibrium

and NESS. An exact match for the zeroth order RDM can be shown analytically

as compared to NEGF in the weak coupling limit. The SQD model does not

reveal a complicated physical scenario as it is only one-levelled systen with a

fixed energy spacing. It follows that multi-levelled double quantum dot models

with two different configurations are studied. A numerical study is done in the

weak coupling limit which verifies that the zeroth order RDM is exact. For

both types of DQD models, the exactness of second order RDM still preserves in

equilibrium. In NESS, the exactness no longer preserves as evident by discrepancy

error which is 105 order greater than exact case. A possible correction scheme

on the expansion of zeroth order RDM has shown to be failed. However, such

scheme provides a good support on the assumption made in previous work of

MRS. Another attempt to make an alternative formalism of analytic continuation

technique provides an answer with a factor of two difference which corresponds

to results obtained via Dyson expansion.

Though the modified Redfield solution is unable to produced an exact solution

in general, it would be interesting to see how well does MRS improve on the

results obtained from RME and LME. By demonstrating on an H-type DQD,
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the result on local current shows that the MRS tend to have larger deviations

from the exact result as compared to RME. These results provide us with an

important piece of information that the higher order contribution of RDM is more

important than the accuracy contribution to limited orders. Studies on the local

population of the dots do not provide a clear-cut evidence on the performance

of MRS and RME. The results for global population indicate that the MRS is

better as compared to RME in most situation. Moreover, the positivity of RDM

of RME would break down at large coupling strength as compared to MRS and

NEGF. The validity of RDM and MRS could be studies more thoroughly by

considering different observables.

In general, the modified Redfield solution provide as possible solution to obtain

the second order RDM without going into higher order calculation. It would be

interesting to continue to investigate the exactness of this approach. One possible

future work could be done is to provide an analytical proof for the exactness of

MRS in equilibrium for fermionic systems as inspired by the case for systems

with bosonic baths. It is also possible to continue to work on zeroth order RDM

correction scheme as the expansion of such zeroth order RDM is subtle. Other

possible systems could be proposed such as a triple quantum dot model which

help us to analyse possible flaw in the approach by increasing complexity of

the system. With the results in last chapter, it would be interesting for us to

investigate a possible solution which contains higher order contribution as well

as a second order result that is supplied by MRS. Such solution would intuitively

provide a correction on RME.
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Appendix A
Proof of Kubo Identity

The Kubo identity has the following expression:

eβ(Â+B̂) = eβÂ
[
1 +

∫ β

0
dτe−τÂB̂eτ(Â+B̂)

]
(A.1)

Consider e−βÂB̂eβ(Â+B̂),

e−βÂB̂eβ(Â+B̂) = −Âe−βÂeβ(Â+B̂) + e−βÂ
(
Â+ B̂

)
eβ(Â+B̂)

=
d

dβ

[
e−βÂeβ(Â+B̂)

]
(A.2)

∫ β

0
dτe−τÂB̂eτ(Â+B̂) = e−βÂeβ(Â+B̂) (A.3)

1 +

∫ β

0
dτe−τÂB̂eτ(Â+B̂) = e−βÂeβ(Â+B̂) (A.4)

eβÂ
[
1+

∫ β

0
dτe−τÂB̂eτ(Â+B̂)

]
= eβ(Â+B̂) (A.5)

which is exactly the Kubo identity.
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Appendix B
Bath Correlators and Transition Rates

The bath correlator Cαβ (t) is defined as
〈
B̃α (t)Bβ (0)

〉
. For electronic baths,

we have

B1
σ =

∑
kσ

vkσc
†
kσ, (B.1)

B2
σ =

∑
kσ

v∗kσc
†
kσ. (B.2)

It follows that

Cαβσ (t) =
〈
B̃α
σ (t)Bβ

σ (0)
〉
.

= TrB

[
ρBB̃α

σ (t)Bβ
σ (0)

]
. (B.3)

The non-vanishing correlations are C12
σ (t) and C21

σ (t) as the other terms are〈
c†kσ (t) c†kσ

〉
and 〈ckσ (t) ckσ〉 which are zero.

C12
σ (t) = TrB

[
ρBB̃α

σ (t)Bβ
σ (0)

]
=

∑
kσ

|vkσ|2 TrB

(
ρBc

†
kσckσ

)
eiεkt

=

∫ ∞
−∞

dε

2π
2π
∑
kσ

|vkσ|2 δ (ε− εk) fσ (ε) eiεt

=

∫ ∞
−∞

dε

2π
Γσ (ε) fσ (ε) eiεt. (B.4)
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Similarly, we have

C21
σ (t) =

∫ ∞
−∞

dε

2π
Γσ (ε) [1− fσ (ε)] e−iεt, (B.5)

where Γσ (ε) = 2π
∑

kσ |vkσ|2 δ (ε− εk) is known as the spectral density and

fσ (ε) is the Fermi-Dirac distribution of the bath σ at Tσ and µσ. Hence fσ (ε)

is given by {exp [(ε− µσ) /Tσ] + 1}−1The spectral density is approximated as a

Lorentzian with the following form

Γσ (ε) =
Γσ

1 +
(
ε
εD

)2 , (B.6)

where εD is cut-off energy.

C12
σ (t) would then take the form

C12
σ (t) =

∫ ∞
−∞

dε

2π

Γσ

1 +
(
ε
εD

)2

1

exp [(ε− µσ) /Tσ] + 1
eiεt. (B.7)

The above integral can then be calculated using residue theorem. The poles are

given by

ε+ = iεD, (B.8)

ε− = −iεD, (B.9)

εl+ = iνσl+ + µσ, (B.10)

εl− = iνσl− + µσ, (B.11)

where νl = π (2l + 1)Tσ is known as the Matsubara frequency and l+ = 0, 1, 2

,3· · · and l− are all the negative integers. The sign+ indicates that the poles

are on the upper half complex plane and - for the poles in the lower complex

plane. We takes the poles in the upper half plane as the integral diverges using

the poles in the lower half plane due to the existence of eiεt term. By evaluating



Chapter B. Bath Correlators and Transition Rates 66

the residues, it can be found that

C12
σ (t) =

ΓσεD
2

fσ (iεD) e−εDt − iTσ
∑
l+

Γσ
(
εl+
)
eiεl+ t, (B.12)

C21
σ (t) =

ΓσεD
2

e−εDt − C12∗
σ (t) . (B.13)

We also have the relation C12∗
σ (t) = C12

σ (−t) if we try to evaluate C12∗
σ (t) using

the poles in the lower half plane. The system-bath coupling λ2 is always absorbed

in the bath correlator.

By using the definition of W given by Eq. (2.25), W can be found by

W 12
σij =

ΓσεD
2

fσ (iεD)
1

(i∆ij + εD)
− Tσ

∑
l+

Γσ
(
εl+
) 1(

∆ij − εl+
) ,(B.14)

W 21
σij =

ΓσεD
2 (i∆ij + εD)

−W 12∗
σji . (B.15)

Hence the transition rates can be found via taking the real parts of above results.

It follows that V 12
σij can be found via ∂W 12

σij/∆ij defined in chapter 2.



Appendix C
Lindblad Master Equation Equivalent Form

In chapter 2, we obtain the RME as given by Eq. (2.22). We define the dissipative

term as a dissipator D [ρ (t)]

D [ρ (t)] = −
∑
σαβ

∫ t

0
dτ
{[
Sα, S̃β (τ − t) ρ (t)

]
Cαβ (t− τ) + h.c.

}
. (C.1)

By performing secular approximation, the above equation can be cast into

Lindblad form. The secular approximation is also known as rotating wave

approximation (RWA) . RWA is performed on the level of Hamiltonian whereas

for secular approximation, it is performed on the level of master equation.

By defining new operators

S (∆ij) =
∑

Ei−Ej=∆ij

|Ei〉 〈Ei|S |Ej〉 〈Ej | . (C.2)

The time evolution of the new operator takes the form

〈Ej | S̃ (∆ij , t) |Ei〉 = ei∆ijtS (∆ij) . (C.3)
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The dissipator then takes the following form

D [ρ (t)]

=
∑
σαβ

∫ t

0
dτ
{[

Sα, S̃β (τ − t) ρ (t)
]
Cαβ (t− τ)

−
[
Sβ, ρ (t) S̃α (τ − t)

]
Cαβ (τ − t)

}
=

∑
σαβ

∑
∆ij ,∆nm

∫ t

0
dτ
{[

Sα (∆ij) , S
β (∆nm) ρ (t)

]
ei∆nm(τ−t)Cαβ (t− τ)

−
[
Sβ (∆ij) , ρ (t)Sα (∆nm)

]
ei∆nm(τ−t)Cαβ (τ − t)

}
. (C.4)

By using secular approximation where we simply retain the term ∆nm = ∆ij as

the rest of terms in total averages to zero,

D [ρ (t)]

=
∑
σαβ

∑
∆ij

{[
Sα (∆ij) , S

β (∆ij) ρ (t)
] ∫ t

0
dτei∆ij(τ−t)Cαβ (t− τ)

−
[
Sβ (∆ij) , ρ (t)Sα (∆ij)

] ∫ t

0
dτei∆ij(τ−t)Cαβ (τ − t)

}
=

∑
σαβ

∑
∆ij

{
Wαβ
ij

[
Sα (∆ij) , S

β (∆ij) ρ
]

−
[
Sβ (∆ij) , ρS

α (∆ij)
]
Wαβ
ij
∗
}

=
∑
σαβ

∑
∆ij

2W
′αβ
ij

(
Sβ (∆ij) ρS

α (∆ij)−
1

2

{
Sα (∆ij)S

β (∆ij) , ρ
})

−
∑
σαβ

∑
∆ij

i

~
[HLS , ρ] , (C.5)

where

HLS =
∑
σ

∑
αβ

∑
∆ij

W
′′αβ
ij Sα (∆ij)S

β (∆ij) . (C.6)

HLS is often call as the lamb shift term which give a renormalization of the

energy levels. [HLS , HS ] = 0 and such renormalization is often neglected.
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This is exactly the Lindblad Form if we compare it with the result obtained by

quantum dynamical semigroup [2, 15, 7].

Lρ = −i [H, ρ] +
N2−1∑
k=1

γk

(
AkρA

†
k −

1

2
A†kAkρ−

1

2
ρA†kAk

)
. (C.7)



Appendix D
Redfield Master Equation for H-type Double

Quantum Dot

The Redfield master equation of an H-type double quantum dot in its eigenenergy

basis reads

dρnm
dt

= −i∆nmρnm (t)

+
∑
ij

[
S2
niS

1
jmW

21∗
L,mj + S2

niS
1
jmW

21
L,ni

−δm,j
∑
l

S2
nlS

1
liW

12
L,li − δi,n

∑
l

S2
jlS

1
lmW

12∗
L,lj

+S1
niS

2
jmW

12
L,ni + S1

niS
2
jmW

12∗
L,mj

−δi,n
∑
l

S1
jlS

2
lmW

21∗
L,lj − δm,j

∑
l

S1
nlS

2
liW

43
L,li

+S4
niS

3
jmW

43∗
R,mj + S4

niS
3
jmW

43
R,ni

−δm,j
∑
l

S4
nlS

3
liW

34
R,li − δi,n

∑
l

S4
jlS

3
lmW

34∗
R,lj

+S3
niS

4
jmW

34
R,ni + S3

niS
4
jmW

34∗
R,mj

−δi,n
∑
l

S3
jlS

4
lmW

43∗
R,lj − δm,j

∑
l

S3
nlS

4
liW

43
R,li

]
ρij (D.1)

where S1,2,3,4 are the system operators in the energy eigenbasis. S1 and S2 are

the system operators of the dot 1. S3 and S4 are the system operators of the dot

2. For an V-type double quantum dot, simply replace the system operator S3

and S4 with S1 and S2 as the dot 2 is no longer coupled with any bath.
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Appendix E
Self Energy of Fermionic Bath

Spectral density Γσ (ε) is given as

Γσ (ε) =
Γσ

1 +
(
ε
εD

)2 . (E.1)

The self-energies can be calculated which gives

Σ+
σ (ε) =

1

2

εεDΓσ
ε2 + ε2

D

− 1

2

ε2
DΓσ

ε2 + ε2
D

. (E.2)

By using Dyson equation,

G+ (ε) = g+ (ε) + g+ (ε)

(∑
σ

Σ+
σ (ε)

)
G+ (ε) (E.3)

The Green’s function of the sinlge quantum dot can be expressed as

G+ (ε) =
1

g−1 (ε)−∑σ Σ+
σ (ε)

=
1

ε− ε0 −
∑

σ Σ+
σ (ε) + iη

. (E.4)
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Appendix F
List of Codes and Sample Codes

List of codes used

1. Analytic NEGF Fortran codes to calculate exact RDM (By the author)

2. Semi-analytic NEGF Mathematica programme to calculate exact RDM (By

the author)

3. Numerical NEGF Mathematica programme to calculate exact RDM (By

the author)

4. RME codes in Fortran to calculate RDM for SQD and DQD (By the author)

5. LME codes in Fortran to calculate RDM for SQD and DQD (By the author)

6. Analytic continuation Fortran code to calculate MRS for SQD and DQD

(Original codes by J. Thingna to calculate harmonic oscillator. Modified by

the author to calculate SQD and DQD)

A short sample code for analytic NEGF calculation is given below
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! This code is to calculate density matrix for single quantum dot follow DSH-
PRE.85.011126

! By Xu Xiansong
! Last Updated: Wed Oct 28 09:14:24 SGT 2015
!------------------------------------------------

IMPLICIT NONE
DOUBLE COMPLEX, ALLOCATABLE :: RHO0(:,:),RHO2(:,:)
DOUBLE PRECISION :: E0,TL,TR,WD,G,uL,uR
INTEGER :: I,J,L,N,IERR

DOUBLE COMPLEX :: H,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,P1,P2,SUMP3,P3,
P3CHECK

DOUBLE COMPLEX :: C12,C13,C14,P4,P4CHECK,SUMP4
DOUBLE PRECISION, PARAMETER :: EPS=0.01D0, PREC=(10.0D0)**(-15.0D0),PI=

ACOS(-1.0D0)
DOUBLE PRECISION ::NUL1,NUL2
DOUBLE COMPLEX :: d,a,checkn,D0,DCHECK
DOUBLE COMPLEX,PARAMETER :: II=CMPLX(0.0D0,1.0D0)

INTEGER :: COUNT1,COUNT2
CHARACTER(LEN=15) :: E0_C,TL_C,TR_C,N_C,WD_C,G_C,UL_C,UR_C

!-------------Input Parameters----------------------------------
CALL GET_COMMAND_ARGUMENT(1,E0_C)
CALL GET_COMMAND_ARGUMENT(2,TL_C)
CALL GET_COMMAND_ARGUMENT(3,TR_C)
CALL GET_COMMAND_ARGUMENT(4,N_C)
CALL GET_COMMAND_ARGUMENT(5,WD_C)
CALL GET_COMMAND_ARGUMENT(6,G_C)
CALL GET_COMMAND_ARGUMENT(7,UL_C)
CALL GET_COMMAND_ARGUMENT(8,UR_C)
READ (E0_C,*) E0
READ (TL_C,*) TL
READ (TR_C,*) TR
READ (N_C,*) N
READ (WD_C,*) WD
READ (G_C,*) G
READ (UL_C,*) UL
READ (UR_C,*) UR

!---------------------------------------------------------------
ALLOCATE(RHO0(N,N),STAT=IERR)
IF (IERR /= 0 ) WRITE(*,*) "Allocation Error for Rh0"

!------------------Calculate the integral d----------------------
!!-----------------First 3 poles (One of them is zero/The one on imaginary

axis)--------------------------------
H=SQRT(4.0D0*G*WD-(WD+II*E0)**2)
C1=EXP(UL/TL+0.5d0/TR*(H+II*WD+E0))+EXP(UR/TR)*(2.0D0*EXP(UL/TL)+EXP(0.5D0

/TL*(H+II*WD+E0)))
C3=(4.0D0*II*G*WD-(WD+II*E0)*(H+II*WD-E0))
C4=(EXP(UL/TL)+EXP(0.5D0/TL*(H+II*WD+E0)))*(EXP(UR/TR)+EXP(0.5D0/TR*(H+II*

WD+E0)))
P1=II*G*WD*C1/C3/C4

C5=EXP(UL/TL+0.5D0/TR*(-H+II*WD+E0))+EXP(UR/TR)*(2.0D0*EXP(UL/TL)+EXP(0.5
D0/TL*(-H+II*WD+E0)))

C7=(4.0D0*G*WD+(E0-II*WD)*(H-II*WD+E0))
C8=(EXP(UL/TL)+EXP(0.5D0/TL*(-H+II*WD+E0)))*(EXP(UR/TR)+EXP(0.5D0/TR*(-H+

II*WD+E0)))
P2=G*WD*C5/C7/C8

!-------------------Matsubara Sum--------------------------------
P3=0.0D0
P3CHECK=0.0D0
COUNT1=0
DO L=1,10000000
NUL1=(L*2.0D0-1.0D0)*PI*TL
C10=((G*WD-(UL-II*WD)*(UL-E0))+NUL1*(-2.0D0*II*UL-WD+II*E0)+NUL1**2)
C11=((G*WD-(UL+II*WD)*(UL-E0))+NUL1*(-2.0D0*II*UL+WD+II*E0)+NUL1**2)

P3=P3-TL*G*WD**2/C10/C11
COUNT1=1+COUNT1
IF (ABS(P3-P3CHECK) .GT. PREC) THEN
P3CHECK=P3
ELSE
GOTO 10
END IF
END DO

10 SUMP3=P3*II



P4=0.0D0
P4CHECK=0.0D0
COUNT2=0
DO L=1,10000000
NUL2=(L*2.0D0-1.0D0)*PI*TR
C12=((G*WD-(UR-II*WD)*(UR-E0))+NUL2*(-2.0D0*II*UR-WD+II*E0)+NUL2**2)
C13=((G*WD-(UR+II*WD)*(UR-E0))+NUL2*(-2.0D0*II*UR+WD+II*E0)+NUL2**2)

P4=P4-TR*G*WD**2/C12/C13
COUNT2=1+COUNT2
IF (abs(P4-P4CHECK) .GT. PREC) THEN
P4CHECK=P4
ELSE
GOTO 20
END IF
END DO

20 SUMP4=P4*II
D=P1+P2+SUMP3+SUMP4

!----------------------Output-----------------------------------
! WRITE(*,*) "Count1",COUNT1
! WRITE(*,*) "Count2",COUNT2

WRITE(*,*) REAL(1.0D0-D)
! WRITE(*,*) REAL(D)
! WRITE(*,*) REAL((RHO0(1,1)))
!--------------Check for normalization--------------------------
! CHECKN=RHO0(1,1)+RHO0(2,2)
! WRITE(*,*) CHECKN
!--------------DSH RHO2 and higher order contribution-----------
! D0=1.0D0/(EXP((E0-UL)/TL)+1.0D0)+1.0D0/((EXP((E0-UR)/TR))+1.0D0)
! D0=D0/2.0D0

! WRITE(*,*) ’DSH RHO0’,(1.0D0-D0)
! WRITE(*,*) REAL((1.0d0-D)-(1.0d0-D0))
! WRITE(*,*) REAL(D-D0)

DEALLOCATE(RHO0)
END PROGRAM
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