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Abstract

We model a single-level quantum system connected to two reservoirs as a heat engine. A
typical angle of attack is to assume weak system-bath coupling, so that one can study
the system using a master equation. In this project, we follow Esposito [1] and use the
non-equilibrium Green’s function (NEGF) combined with first order gradient expansion
to study this model. In so doing, no weak-coupling assumption is invoked and we obtain
a quantum kinetic equation (QKE). From there, we discuss Esposito’s definitions of en-
ergy, heat, entropy and external work. We then solve the QKE and study steady-state
thermoelectric engine. Finally, we propose protocols for driven cyclic heat engine.

2



Acknowledgement

First and foremost, my heartfelt gratitude goes to Prof. Wang Jian-Sheng for providing
me with this opportunity to explore NEGF and relearn thermodynamics. I also thank
him for sharing with us his other expertises in mathematics and computing, as well as his
experience of life as researcher.

Secondly, I am indebted to Prof. Gong Jiangbin and Prof. Christian Miniatura for the
fruitful discussions we had regarding thermodynamic entropy, Dyson equation and my
project in general.

Next, I am grateful to my mentor Dr. Juzar Thingna for his kind words of encourage-
ment, for pointing out the problems of my mindset, and for teaching me to be open-minded
to critiques.

I would also like to thank my fellow group members Mr. Xu Xiansong for his little
library and advice, as well as Mr. Chen Ruofan for sharing his knowledge in physics.
Throughout my life as a student, I benefited from discussions with my friends Mr. Sim
Jun Yan and Ms. Sonya Maslovskaya in physics and mathematics. I sincerely acknowledge
my high school teacher Mr. Low Meng Wha for igniting my passion in science.

Last but not least, I would like to thank my family for their unconditional love and
support.

3



Contents

Introduction 6

1 Equilibrium Green’s Function 8
1.1 The Free-electron case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 The General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Non-equilibrium Green’s Function 14
2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Contour-ordered Green’s function . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Contour and Contour-ordering . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Contour-ordered Green’s function . . . . . . . . . . . . . . . . . . . 17

2.3 Dyson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Feynman diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Projections of Dyson equation . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Greater and lesser Green’s functions . . . . . . . . . . . . . . . . . 28
2.4.2 Lesser projection of a double product . . . . . . . . . . . . . . . . . 28
2.4.3 Advanced and retarded Green’s functions . . . . . . . . . . . . . . . 30
2.4.4 Projections of triple product . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Kadanoff-Baym equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Wigner transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.2 Convolution under Wigner transform . . . . . . . . . . . . . . . . . 34

2.7 First order gradient expansion . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.1 {·, ·} and [·, ·] under gradient expansion . . . . . . . . . . . . . . . . 37
2.7.2 g−1 under gradient expansion . . . . . . . . . . . . . . . . . . . . . 37

2.8 Solution for GR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.9 Solution for G< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.10 Self energy Σ and spectral function A . . . . . . . . . . . . . . . . . . . . . 40

3 Thermodynamics of Quantum Dot 41
3.1 Particle number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Energy current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Heat current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Work current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 External power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4



3.3 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Quantum Kinetic Equation 46
4.1 Exact solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Perturbative solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Steady-state solution . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 First-order solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Steady-state Regime 49
5.1 Currents and entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Near-equilibrium thermodynamics . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Linear irreversible thermodynamics . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Thermoelectric engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.1 Thermopower and thermoelectric efficiency . . . . . . . . . . . . . . 53
5.4.2 Carnot efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.3 Curzon-Ahlborn efficiency . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Thermoelectric efficiency at maximum power . . . . . . . . . . . . . . . . . 54
5.5.1 Weak-coupling optimization . . . . . . . . . . . . . . . . . . . . . . 55
5.5.2 Ordinary optimization . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Driven Quantum Dot 59
6.1 Cyclic heat engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 ε and Γ as state parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Four-stroke protocol for work extraction . . . . . . . . . . . . . . . . . . . 62
6.4 Fermi-smoothened trapezoidal driving . . . . . . . . . . . . . . . . . . . . . 64
6.5 Sinusoidal modulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Summary 72

A Moving S-matrices into Tt
{
. . .
}

73

B Familiarizing with Tt and Tτ 75
B.1 Actions of Tt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.2 Actions of Tτ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

C Extending a contour to +∞± 77

D Exact Solution of First Order Quantum Kinetic Equation 79

E Second Order Gradient Expansion 82
E.1 Second order retarded Green’s function . . . . . . . . . . . . . . . . . . . . 82
E.2 Second order quantum kinetic equation . . . . . . . . . . . . . . . . . . . . 83

5



Introduction

Classical thermodynamics allows us to characterize a system consisting of 1023 particles
with just a few variables [2]. Thanks to statistical mechanics, we now understand that
this large number of particles is exactly what allows us to speak of the energy, volume
of the system as averaged quantities. When we shrink the size of the system, a different
approach should be adopted, and this falls under the scope of stochastic [3] or quantum [4]
thermodynamics. Among the various topics in (stochastic or quantum) thermodynamics,
one persistent question is the exchange of energy in strong coupling. Indeed, this was
probably what initiated Esposito [5] to work on his new formalism of strongly (or non-
weakly)-coupled quantum thermodynamics.

In the nineteenth century, the desire to improve steam engines was what motivated the
pioneers (Carnot, Clausius, Joule among others) to establish the groundwork for ther-
modynamics. Indeed heat engines and thermodynamics are intimately connected: with
Carnot cycles one can define a temperature scale [6], and in some idealized situations, it
is even possible to formulate classical thermodynamics using Carnot cycles [7][8]. Natu-
rally, with small-scale systems, one wishes to do the same: to harness our knowledge in
constructing energy conversion devices, and reciprocally, to improve our understanding of
thermodynamics with nano-heat engines.

Classical thermodynamics enjoys a certain universality similar to special relativity. To
see this, compare Carnot’s statement [7][9]:

Independently of the working fluid, there is an upper bound to the efficiency
of cyclic heat engines working between two thermal reservoirs.

with the following statement in special relativity [14]:

In any inertial frame, the speed of light is the same.

On the other hand, sometimes, the studies on (stochastic or quantum) heat engines can be
very model-dependent. For instance, one can consider a Brownian particle in a harmonic
potential [10], a particle in a box [11], an interacting Bose gas [12], a chiral multiferroic
chain [13] etc. Our project is of no exception. More precisely, we use a single-level
quantum dot as our model and consider a steady-state thermoelectric engine and protocols
for driven cyclic heat engine.
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For ease of reading, here is the synopsis of this thesis: Chapter 1 sets the stage for a
discussion of non-equilibrium Green’s function (NEGF). More precisely, we begin with
equilibrium Green’s function and discuss how contour naturally arises. In Chapter 2, we
first revisit NEGF applied to thermal transport. Supplemented with first-order gradient
expansion, we obtain the expression for the retarded Green’s function and a quantum
kinetic equation describing the occupation of the single-level system. In Chapter 3, we
provide motivations for the proposed definitions of thermodynamics that are not included
in the original article. Chapter 4 discusses aspects of the quantum kinetic equation, as
well as its exact and perturbative solution. With these, we consider steady-state regime
in Chapter 5 and solve for the thermodynamic quantities and check its consistencies
with linear irreversible thermodynamics. One important application of our model as a
thermoelectric engine is then presented. Finally, Chapter 6 deals with the case of driven
quantum dot and proposes protocols for cyclic heat engine.

The first two chapters constitute a large part of this project. For research articles, it
would have been more appropriate to put them in Appendices, or simply not write them
at all. However, these are indispensable for a thorough understanding of the backgrounds.
For instance, by going through the derivations we see why this treatment does not require
weak-coupling, and by observing the spectral function we see how energy level-broadening
is being taken into account. The reader may wish to skip these technical details and start
directly from Chapter 3, where extra thermodynamical aspects are discussed.
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Chapter 1

Equilibrium Green’s Function

As advocated by Haug and Jauho [15], NEGF is “structurally equivalent” to its equi-
librium counterpart. Therefore, in the hope to highlight their similarities and to justify
the need for NEGF, we first discuss equilibrium Green’s function, which we divide into
two cases: free-electron and general. In the former case, we introduce the notion of
time-ordering and obtain the Green’s function equation associated to the time-dependent
Schrödinger equation. For the general case, by switching between pictures, we discuss
how the need for contour naturally arises and how this can be avoided in the equilibrium
case.

1.1 The Free-electron case

We have in mind a non-interacting thermal particle reservoir1 at temperature T and
chemical potential µ, whose Hamiltonian is given by

H =
∑
k

εka
†
kak. (1.1)

As usual, ak and a†k are the fermionic annihilation and creation operators for the k-th
state. We thus define the k−th state free-electron Green’s function as:

gk(t1, t2) = −
i

~

〈
Tt{ak(t1)a†k(t2)}

〉
0
. (1.2)

In passing, we remark that, putting the Tt aside, this definition is similar to a two-point
correlation function in statistics.

We shall now explain the notations involved. First of all, Tt is the time-ordering oper-
ator:

Tt{A(t1)B(t2)} =


A(t1)B(t2) , if t1 > t2,

−B(t2)A(t1) , if t2 > t1,

A(t)B(t) , if t1 = t2 = t.

(1.3)

1A thermal particle reservoir is one which can exchange energy and particle with the system, while
keeping its energy and particle number practically unchanged.
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where A,B are fermionic operators2. In Appendix C we elaborate further on the action
of Tt on more than two operators.

We now proceed to define the averaging bracket:

〈. . .〉0 = Tr[ρ0 . . . ] (1.4)

where ρ0 is the equilibrium density matrix describing the system or reservoir, given by:

ρ0 =
e−β(H−µN)

Z
. (1.5)

Here and below β = 1
kBT

always denotes the inverse temperature. Z is the grand canonical
partition function:

Z = Tr[e−β(H−µN)] (1.6)

and N is the particle number operator:

N =
∑
k

a†kak. (1.7)

Finally, we note that it is possible to expand the time-ordering operator in (1.2) as:

gk(t1, t2) = −
i

~

[
θ(t1 − t2) 〈{ak(t1)a†k(t2)}〉0 − θ(t2 − t1) 〈{a†k(t2)ak(t1)}〉0

]
. (1.8)

Given the above expression, we have the following equations of motion for the free-electron
Green’s function: (

i~
∂

∂t1
− εk

)
gk(t1, t2) = δ(t1 − t2),(

−i~ ∂

∂t2
− εk

)
gk(t1, t2) = δ(t2 − t1).

(1.9)

In equilibrium, one enjoys time-translational invariance: the free-electron Green’s function
depends on just one argument rather than two:

gk(t1, t2)
equilibrium−−−−−−→ gk(t1 − t2). (1.10)

With t = t1 − t2, we thus obtain(
i~

∂

∂t
− εk

)
gk(t) = δ(t). (1.11)

The moral of the story is that, in equilibrium, the time-ordering operator allows us to es-
sentially recover the Green’s function equation associated to the free-particle Schrödinger
equation.

2A fermionic operator is an operator that can be expressed in terms of sums and products of fermionic
creation and annihilation operators.
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1.2 The General case

We now introduce a more general system whose Hamiltonian is given by:

H = H0 + V, (1.12)

where H0, like (1.1), is the reservoir (or unperturbed) Hamiltonian, V is an interaction
term that renders the problem insoluble. Let

∣∣Φg

〉
denote the (second-quantized) ground

state of the interacting system (1.12). Then, we define the Green’s function for a k−state
electron, when the ground state of (1.12) is

∣∣Φg

〉
, as:

GΦ(t1, t2) = −
i

~
〈
Φg

∣∣ Tt{aH(t1)a†H(t2)} ∣∣Φg

〉
(1.13)

where we suppressed the state index k for notational brevity.

In definition (1.13), everything is in Heisenberg picture: the wavefunction
∣∣Φg

〉
is frozen

in time, the subscript H of an operator O means that:

OH(t) = U †
H(t, t0)O(t)UH(t, t0) (1.14)

with UH(t1, t2) the Heisenberg evolution operator3:

UH(t1, t2) = Tt exp
[
− i

~

∫ t2

t1

H(s) ds

]
. (1.15)

In (1.14), t0 is the synchronization time4 where all three (Schrödinger, Heisenberg, inter-
action) pictures coincide.

It is worthwhile to mention that, for the most general case, where the interacting ground
state is not pure but described by a density matrix5:

ρg =
∑
Φ

pΦ
∣∣Φg

〉 〈
Φg

∣∣ , (1.16)

one would then calculate the Green’s function using:

G =
∑
Φ

pΦGΦ, (1.17)

recovering thus the more familiar expression:

G(t1, t2) = −
i

~
Tr
{
ρgTt{aH(t1)a†H(t2)}

}
. (1.18)

3In equilibrium the Hamiltonian H has no explicit time-dependence, so there is no need for time-
ordering since at each time it commutes with itself. However for consistency of notation to NEGF we
shall keep Tt here.

4For the two time instants t1, t2 in (1.13), it is a common practice to choose t0 ≤ min(t1, t2): all time
instants of interest are ulterior to the synchronization time.

5In other words, the interacting system is prepared in a classical statistical mixture.
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The problem then is to calculate each GΦ as in (1.13) which contains valuable infor-
mation (spectral function, particle density, etc) of the system6. However, in its definition
(1.13), we need to calculate the quantum-mechanical average of some operators (whose
time-evolution we do not know) in the interacting ground state

∣∣Φg

〉
(which we do not

know).

Thus in order to have an operational definition of the Green’s function, we must per-
form a series of transformations. More precisely, we are going to put it in a form ready
for perturbation expansion. First, we recall the definition of an operator in interaction
picture:

OI(t) = U †
H0
(t, t0)O(t)UH0(t, t0) (1.19)

with UH0(t1, t2) the evolution operator in interaction picture:

UH0(t1, t2) = Tt exp
[
− i

~

∫ t2

t1

H0(s) ds

]
. (1.20)

Combining (1.14) and (1.19), we obtain a relation connecting an operator in Heisenberg
and interaction picture:

OH(t) = S†(t, t0)OI(t)S(t, t0), (1.21)

where the scattering matrix (or S−matrix) is defined as:

S(t1, t2) = U †
H0
(t1, t2)UH(t1, t2). (1.22)

The Green’s function then becomes:

GΦ(t1, t2) = −
i

~
〈
Φg

∣∣ Tt{[S†(t1, t0)aI(t1)S(t1, t0)][S
†(t2, t0)a

†
I(t2)S(t2, t0)]

} ∣∣Φg

〉
. (1.23)

By the properties of time-evolution operators (U and S), we thus have:

GΦ(t1, t2) = −
i

~
〈
Φg

∣∣ Tt{S(t0, t1)aI(t1)S(t1, t2)a†I(t2)S(t2, t0)} ∣∣Φg

〉
. (1.24)

A connection to NEGF is in place. Observing the terms inside the time-ordering operator,
one could regard the operators as acting successively from t0 −→ t2 −→ t1 then back to
t0. That is, they follow a contour on the time axis:

t0 t2 t1

Figure 1.1: The contour followed by the operators in (1.24).

There is however no need for such contour in equilibrium: by a series of transforma-
tions, we can “deform” the contour so that it runs through the entire time-axis instead
of turning around.

6Since by virtue of (1.17), the total Green’s function would simply be a weighted average of each
individual GΦ.
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We first exploit a clever trick of switching between the pictures. Since at the synchro-
nization time all pictures coincide, we have:∣∣Φg

〉
=
∣∣ΦI(t0)

〉
where the LHS is in Heisenberg picture, RHS in interaction picture. By construction,
wavefunctions in the latter picture satisfy:∣∣ΦI(t1)

〉
= S(t1, t2)

∣∣ΦI(t2)
〉
. (1.25)

Thus, by introducing two additional reference time instants: the distant past (t = -∞)
and far future (t = +∞), we have:∣∣ΦI(t0)

〉
= S(t0, -∞)

∣∣ΦI(-∞)
〉
,〈

ΦI(t0)
∣∣ = 〈ΦI(+∞)

∣∣S(+∞, t0),
(1.26)

which when inserted into (1.24) yields:

GΦ(t1, t2)

=− i

~
〈
ΦI(+∞)

∣∣S(+∞, t0)Tt
{
S(t0, t1)aI(t1)S(t1, t2)a

†
I(t2)S(t2, t0)

}
S(t0, -∞)

∣∣ΦI(-∞)
〉
.

(1.27)

In Appendix A we demonstrate that it is safe to include the two scattering matrices

sandwiching the time-ordering operator Tt
{
. . .
}
inside it:

GΦ(t1, t2)

=− i

~
〈
ΦI(+∞)

∣∣ Tt{S(+∞, t1)aI(t1)S(t1, t2)a
†
I(t2)S(t2, -∞)

} ∣∣ΦI(-∞)
〉
.

(1.28)

For an even more compact notation, we group the S−matrices together7, writing:

GΦ(t1, t2) = −
i

~
〈
ΦI(+∞)

∣∣ Tt{aI(t1)a†I(t2)S(+∞, -∞)
} ∣∣ΦI(-∞)

〉
. (1.29)

In order to proceed, we adopt a procedure called adiabatic switching-on-off [16], in which
the Hamiltonian (1.12) is replaced by:

Hη = H0 + e−η|t−t0|V. (1.30)

Here, η > 0 is a number that will eventually be taken to be zero.

7In so doing, we have assumed that the interaction Hamiltonian in the interaction picture VI contains
only even powers of fermionic operators, so that when permuted around, the minus signs incurred always
cancel out to leave the final result unchanged in sign.
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Let us investigate the consequence of such replacement. First of all, for η −→ 0, we
recover H:

lim
η→0
Hη = H. (1.31)

Next, for η small but not equal to zero:

Hη =


H0 when t = -∞,

H0 + V when t = t0,

H0 when t = +∞.

(1.32)

Since the rate of transition, η, is a small positive number, we deduce that Hη effectively
represents a Hamiltonian where we adiabatically switch from H0 to H0 + V then to H0

again. Symbolically, the Green’s function (1.29) becomes:

Gη
Φ(t1, t2) = −

i

~
〈
Φη

I(+∞)
∣∣ Tt{aηI(t1)aηI †(t2)Sη(+∞, -∞)

} ∣∣Φη
I(-∞)

〉
(1.33)

where we put a superscript η to remind ourselves that we replaced the Hamiltonian:
H −→ Hη. Therefore, the interacting (Hamiltonian H0 + e−η|t−t0|V ) ground state at
t = -∞ is identical to the non-interacting (Hamiltonian H0) ground state (denoted by
|Φ0〉): ∣∣Φη

I(-∞)
〉
= |Φ0〉 . (1.34)

Furthermore, the adiabatic switching-on-off ensures [17] that:∣∣Φη
I(+∞)

〉
= Sη(+∞, -∞)

∣∣Φη
I(-∞)

〉
(1.35)

only differs from
∣∣Φη

I(-∞)
〉
by a phase factor:∣∣Φη

I(+∞)
〉
= eiΘ

∣∣Φη
I(-∞)

〉
(1.36)

with Θ ∈ R. By multiplying both sides by
〈
Φη

I(-∞)
∣∣, we obtain:

eiΘ =
〈
Φη

I(-∞)
∣∣Sη(+∞, -∞)

∣∣Φη
I(-∞)

〉
. (1.37)

To sum up, we obtain:〈
Φη

I(+∞)
∣∣ = 〈

Φη
I(-∞)

∣∣〈
Φη

I(-∞)
∣∣Sη(+∞, -∞)

∣∣Φη
I(-∞)

〉 (1.38)

which when plugged back into (1.33) gives:

Gη
Φ(t1, t2) = −

i

~

〈
Φη

I(-∞)
∣∣ Tt{aηI(t1)aηI †(t2)Sη(+∞, -∞)

} ∣∣Φη
I(-∞)

〉〈
Φη

I(-∞)
∣∣Sη(+∞, -∞)

∣∣Φη
I(-∞)

〉 (1.39)

and finally, using (1.34):

Gη
Φ(t1, t2) = −

i

~

〈Φ0| Tt
{
aηI(t1)a

η
I
†(t2)S

η(+∞, -∞)
}
|Φ0〉

〈Φ0|Sη(+∞, -∞) |Φ0〉
. (1.40)

By taking the limit η −→ 0, we simply drop the η indices, obtaining:

GΦ(t1, t2) = −
i

~

〈Φ0| Tt
{
aI(t1)a

†
I(t2)S(+∞, -∞)

}
|Φ0〉

〈Φ0|S(+∞, -∞) |Φ0〉
(1.41)

where we have an expression of the equilibrium time-ordered Green’s function which is
ready for a perturbation expansion.
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Chapter 2

Non-equilibrium Green’s Function

Having discussed briefly the equilibrium Green’s function, we now turn to NEGF proper.
We first elaborate on the model, before the bread and butter of NEGF—the contour-
ordered Green’s function [18]—is defined. We then discuss the notion of contour [19],
accompanied by a procedure called adiabatic switching-on, to obtain an expression of the
contour-ordered Green’s function ready for perturbation expansion. Next, we outline sev-
eral consequences of Wick’s theorem and Feynman diagrammatics that allow us to arrive
at the Dyson equation. From there we show how to obtain Kadanoff-Baym equations [15].
Then, we introduce Wigner transform and gradient expansion [20], which will be applied
to Kadanoff-Baym equations to solve for the retarded Green’s function and obtain the
equation of motion for the occupation probability of the single-level system.

2.1 The Model

Throughout this project, the terms “bath” and “reservoir”, “single-level system” and
“quantum dot” will be used interchangeably. We will be using the following simple model:
a single-level (at energy ε) quantum system connected to two thermal electronic reservoirs
(at chemical potentials µL/R and temperatures TL/R).

εµL, TL µR, TR

Figure 2.1: A single-level quantum system connected to two baths individually kept in
equilibrium.

used prevalently in quantum transport and open quantum systems. The total Hamiltonian
of the dot+bath is given by:

H = Hd +HB +HT (2.1)

where the Hamiltonian of the single-level quantum system is given by:

Hd = εd†d, (2.2)

14



the sum of the Hamiltonian of left (right) reservoir being:

HB = HL +HR

=
∑
k

εkc
†
kck +

∑
j

εja
†
jaj

(2.3)

and the tunneling Hamiltonian:

HT =
∑
k

[γkc
†
kd+ γ∗

kd
†ck] +

∑
j

[λja
†
jd+ λ∗

jd
†aj], (2.4)

where we have used index k to indicate states in the left bath, j to indicate those in the
right.

Normally, one has to specify how the energy levels (εk and εj) are being distributed,
as well as the tunneling amplitudes (γk and λj). However, these details become unim-
portant under the wide-band approximation as we shall see later. Suffice it to say that,
kept in chemical potentials µL/R and temperatures TL/R, the electrons in the baths are
non-interacting, and that the system-bath couplings are described quadratically in cre-
ation/annihilation operators. Finally, we stress that the terms ε, εk, εj, Vk, Vj can all admit
explicit time-dependences. In other words, they can be driven externally.

Since we will be doing perturbation expansion later, let us regroup the Hamiltonian
(2.1) as:

H = Hd +HB︸ ︷︷ ︸
H0

+ HT︸︷︷︸
V

. (2.5)

For a closer look to H0, we shall first introduce the Fock space describing the system and
bath, which is split into three parts:

Ftotal = FL ⊗Fd ⊗FR (2.6)

with FL(R) the Fock space of left (right) bath, Fd the Fock space of the dot. Let us now
consider H0:

H0 = HL +Hd +HR

=
∑
k

εkc
†
kck + εd†d+

∑
j

εja
†
jaj.

(2.7)

In this context, we should understand these terms as:

HL =
∑
k

εkc
†
kck ⊗ 1d ⊗ 1R,

Hd = 1L ⊗ εd†d⊗ 1R,

HR = 1L ⊗ 1d ⊗
∑
j

εja
†
jaj.

(2.8)

We thus infer that H0 simply describes the Hamiltonian of the baths and the single-level
quantum system, treated as one composite but decoupled system.
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2.2 Contour-ordered Green’s function

Given the model, we can now define the contour-ordered Green’s function. Before that, we
recall that already in equilibrium theory, when switching from Heisenberg to interaction
picture, one finds that, when read from right to left, the operators can be regarded as
acting on a contour. We have seen that after some manipulations, such contour can be
“deformed” to the entire real-time axis. One key recipe is the Gell-Mann and Low theorem
[17], which exploits the fact that systems in equilibrium must also be in ground state.
This is evidently not the case when studying non-equilibrium problems. Therefore, the
necessity of a contour seems to be unavoidable, if a Green’s function is to be defined for
non-equilibrium problems.

2.2.1 Contour and Contour-ordering

In equilibrium, one major component in the definition of Green’s function is the time-
ordering operator Tt. However, on a contour, time-ordering alone does not suffice to
determine the precedence, as we can see in the Figure below1:

t

τ1

τ2

Figure 2.2: One real-time corresponds to two points on a contour.

Therefore, before we discuss contour precedence, let us consider a generic contour C:

τ2

t2

τ1

t1
t axis

C− branch

+ branch

Figure 2.3: A generic contour in NEGF.

which describes an oriented path on the real-time axis. Each point on the contour C
assumes a value2 on R× {+1,−1}. For example:

τ1 := (t1, σ1) = (t1,−),
τ2 := (t2, σ2) = (t2,+),

(2.9)

if the upper (lower) branch is assigned to be − (+), and we have written ∓ in place of
∓1.

1We only draw the contour off the real-time axis for illustration purpose. All contours should be
understood as always staying on the real-time axis.

2Some authors define the contour on C. A contour-time is then given by τ = t+ iη with t, η ∈ R and
η small. When one is done with contour, one would then take η −→ 0 to return to real-time.
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With this consideration, we can define a binary relation � to order contour times. Let
τ = (t, σ) and τ̃ = (t̃, σ̃). We say that

τ � τ̃ , (2.10)

read as “τ succeeds τ̃”3, if

(σ > σ̃) or (σ = σ̃ and t > t̃). (2.11)

Using this relation, we see that τ2 � τ1 for both Figure 2.2 and Figure 2.3. Notice that
in (2.11), we exclude the case where σ = σ̃ and t = t̃, that is, a contour time τ is not
comparable with itself using the relation �. Next, we replace the real-time arguments by
contour-times:

A(t) −→ A(τ) (2.12)

and define a contour-ordering operator Tτ which arranges the later operators4 to the left,
obeying the anticommutation rule in case of fermionic operators. Using Figure 2.3 as
example5, let A(τ1), B(τ2) be fermionic operators. We have:

Tt
{
A(τ1)B(τ2)

}
= −B(τ2)A(τ1) (2.13)

since τ2 � τ1.

2.2.2 Contour-ordered Green’s function

With the above considerations in mind, we now define the contour-ordered Green’s func-
tion of the system of interest (the dot):

G(τ1, τ2) = −
i

~

〈
Tτ
{
dH(τ1)d

†
H(τ2)

}〉
0

, (2.14)

where, as before, operators are in Heisenberg picture with respect to the fully-interacting
Hamiltonian H, and the averaging bracket is with respect to the frozen density matrix,
ρ0, at synchronization contour-time τ0:

〈. . .〉0 = Tr[ρ0 . . . ]. (2.15)

With the same reasons as in the case of equilibrium, it is difficult, if not impossible, to
calculate any term in definition (2.14). A series of transformations is then in place but
before that, we observe that there is no mention of any contour in the definition. Thus,
let us picture the general shape of contour on which Tτ acts in (2.14). For that, we first
switch to interaction picture:

dH(τ1) = S(τ+0 , τ1)dI(τ1)S(τ1, τ−0 ),
d†H(τ2) = S(τ+0 , τ2)d

†
I(τ2)S(τ2, τ−0 ),

(2.16)

with
τ±0 = (t0,±). (2.17)

Notice that we have used the symbol S in place of S to refer to contour-time scattering
matrices. We defer the discussion of what such object mean to Appendix C.

3Also “τ̃ precedes τ”, or “τ̃ is earlier than τ” or “τ is later than τ̃”.
4That is, operators whose contour argument is later.
5We refer to Appendix B for more examples on contour-ordering.

17



The contour-ordered Green’s function (2.14) then becomes:

G(τ1, τ2) = −
i

~

〈
Tτ
{
S(τ+0 , τ1)dI(τ1)S(τ1, τ2)d

†
I(τ2)S(τ2, τ−0 )

}〉
0

. (2.18)

We now see how a general contour6 in (2.18) must look like7:

τ1

τ2
Cτ−0

τ+0

Figure 2.4: A general contour C involved in (2.18).

We now proceed with other transformations to obtain a calculable expression for the
contour-ordered Green’s function. Let us group the scattering matrices8 into one, and
write

Tτ
{
S(τ+0 , τ1)dI(τ1)S(τ1, τ2)d

†
I(τ2)S(τ2, τ−0 )

}
=Tτ

{
dI(τ1)d

†
I(τ2)SC(τ+0 , τ−0 )

} (2.19)

where

SC(τ+0 , τ−0 ) = Tτ exp
[
− i

~

∫
C

VI(τ) dτ

]
. (2.20)

We show in Appendix C that as far as (2.19) is concerned, we can extend the contour in
Figure 2.4 to the following one:

τ1

τ2
τ−0

τ+0

τ = (+∞,−)

τ = (+∞,+)

Cext

Figure 2.5: An extended contour Cext from Figure 2.4.

resulting in:

G(τ1, τ2) = −
i

~

〈
Tτ
{
dI(τ1)d

†
I(τ2)SCext(τ

+
0 , τ

−
0 )
}〉

0

(2.21)

with

SCext(τ
+
0 , τ

−
0 ) = Tτ exp

[
− i

~

∫
Cext

VI(τ) dτ

]
. (2.22)

The motivation for extending C to Cext is: when brought back to real-time, for contour C,
one would have to write max(t1, t2) for the upper bounds of integrals, whereas for contour
Cext it would simply be t = +∞.

6Of course, Figure 2.4 is only for illustration purpose: τ1, τ2 need not be ordered this way in general.
7In drawing Figure 2.4, we placed τ2 on the real-time axis without distinguishing whether it is on the

upper or lower branch, but it does not matter since τ1 � τ2 for both cases.
8Since the tunneling Hamiltonian V = HT (cf. (2.4)) is quadratic in fermionic operators, permuting

the scattering matrices does not result in any minus sign.
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Next, we attack the averaging bracket 〈. . .〉0. In the spirit of perturbation theory, it
would be desirable to average with respect to H0:

〈. . .〉-∞
?
= Tr[ρ-∞ . . . ] (2.23)

where the composite decoupled system has separable equilibrium density matrix9:

ρ-∞ = ρL ⊗ ρd ⊗ ρR

=
eβL(HL−µLNL)

ZL

⊗
[
pd |0〉 〈0|+ (1− pd) |1〉 〈1|

]
⊗ eβR(HR−µRNR)

ZR

(2.24)

with pd the occupation probability of the single-level quantum dot, N, β, µ, Z the usual
quantities (cf. Section 1.1).

In order for (2.23) to be realised, analogous to the equilibrium case, we adopt an
adiabatic switching-on (not on-off) procedure. For the sake of discussion we revert to
real-time. The Hamiltonian H is replaced by:

Hη =

{
H0 + eη|t−t0|V if t ≤ t0

H0 + V if t > t0
(2.25)

Hence, for t = -∞, the tunneling term V is turned off, and the density matrix (in all
pictures) describing the Hamiltonian Hη(-∞) = H0 will be given by (2.24). Using the
same trick that at the synchronization time t0, all pictures coincide, the frozen Heisenberg
density matrix ρ0 is related to the interaction-picture density matrix ρI(t) by

10:

ρ0 = S(t0, t)ρI(t)S(t, t0). (2.26)

Thus by taking t = -∞ we have:

ρ0 = S(t0, -∞)ρI(-∞)S(-∞, t0)

= S(t0, -∞)ρ-∞S(-∞, t0).
(2.27)

Referring back to (2.21), we have:〈
Tτ
{
dI(τ1)d

†
I(τ2)SCext(τ

+
0 , τ

−
0 )
}〉

0

=Tr

[
ρ0Tτ

{
dI(τ1)d

†
I(τ2)SCext(τ

+
0 , τ

−
0 )
}]

=Tr

[[
S(t0, -∞)ρ-∞S(-∞, t0)

]
Tτ
{
dI(τ1)d

†
I(τ2)SCext(τ

+
0 , τ

−
0 )
}]

=Tr

[
ρ-∞S(-∞, t0)Tτ

{
dI(τ1)d

†
I(τ2)SCext(τ

+
0 , τ

−
0 )
}
S(t0, -∞)

]
(2.28)

9The density matrix ρS of a composite system S = S1 ∪ S2 is separable if it can be factored into
density matrices ρ1, ρ2 describing the constituent systems which make up the total one: ρS = ρ1 ⊗ ρ2.

10Unlike in the equilibrium case (cf. Equation (1.33) onwards), we do not put η superscript for simpler
notation.
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where for the last line we exploited the cyclic property of trace. The next step is to
promote the real-time S−matrices to contour-time S−matrices11:

S(t0, -∞) −→ S(τ−0 , -∞−),

S(-∞, t0) −→ S(-∞+, τ+0 ),
(2.30)

so that the last line in (2.28) becomes:

Tr

[
ρ-∞S(-∞+, τ+0 )Tτ

{
dI(τ1)d

†
I(τ2)SCext(τ

+
0 , τ

−
0 )
}
S(τ−0 , -∞−)

]
. (2.31)

We have encountered similar expression in the equilibrium case (cf. Equation (1.27)), and
by a same argument as in Appendix A, the sandwiching S−matrices can be combined

into the Tτ
{
. . .
}
term, giving:

Tr

[
ρ-∞Tτ

{
S(-∞+, τ+0 )dI(τ1)d

†
I(τ2)SCext(τ

+
0 , τ

−
0 )S(τ−0 , -∞−)

}]
. (2.32)

Since the S−matrices involve even powers of fermionic operators, they can be permuted
around freely under the Tτ sign without incurring change of sign. Thus we group them
together into one term:

SC(-∞+, -∞−) (2.33)

where C is the following Schwinger-Keldysh contour:

+∞-∞
C

Figure 2.6: Schwinger-Keldysh contour: a loop over the entire real axis.

Finally for the contour-ordered Green’s function we have:

G(τ1, τ2) = −
i

~
Tr

[
ρ-∞Tτ

{
dI(τ1)d

†
I(τ2)SC(-∞+, -∞−)

}]
. (2.34)

The transformation is not yet finished: in the next section we will be drawing Feynman
diagrams, and we will need a denominator to cancel disconnected diagrams. We return
to (2.24) and write:

ρ-∞ =
eβL(HL−µLNL) ⊗

[
pd |0〉 〈0|+ (1− pd) |1〉 〈1|

]
⊗ eβR(HR−µRNR)

ZLZR

(2.35)

11There are, of course, several ways for this to be done, for example:

S(t0, -∞) −→ S(τ+0 , -∞+)

S(-∞, t0) −→ S(-∞−, τ−0 )
(2.29)

but (2.29) is certainly the most useful one.
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where we have exploited the multilinearity of ⊗. On the other hand, since

Tr
[
pd |0〉 〈0|+ (1− pd) |1〉 〈1|

]
= 1, (2.36)

the product of partition function ZL and ZR can be written as

ZLZR = Tr
[
eβL(HL−µLNL)

]
Tr
[
pd |0〉 〈0|+ (1− pd) |1〉 〈1|

]
Tr
[
eβR(HR−µRNR)

]
= Tr

[
eβL(HL−µLNL) ⊗

[
pd |0〉 〈0|+ (1− pd) |1〉 〈1|

]
⊗ eβR(HR−µRNR)

] (2.37)

because Tr[A⊗B] = Tr[A] Tr[B]. We now write

ρ̃-∞ = eβL(HL−µLNL) ⊗
[
pd |0〉 〈0|+ (1− pd) |1〉 〈1|

]
⊗ eβR(HR−µRNR) (2.38)

so that we have

ρ-∞ =
ρ̃-∞

Tr[ρ̃-∞]
. (2.39)

We now multiply from left by S(t0, -∞), from right by S(-∞, t0). By virtue of (2.27), we
obtain:

ρ0 = S(t0, -∞)
ρ̃-∞

Tr[ρ̃-∞]
S(-∞, t0). (2.40)

We now move the denominator to the LHS and promote the operators to contour time:

ρ0(τ0)Tr[ρ̃-∞] = S(τ0, -∞−)ρ̃-∞S(-∞+, τ0). (2.41)

Recall that ρ0 is the density matrix associated to Hη at time t0. Despite its unknown
complexity, being a density matrix, ρ0 must be normalised: Tr[ρ0] = 1. Therefore it
follows that

Tr[ρ̃-∞] = Tr
[
S(τ0, -∞−)ρ̃-∞S(-∞+, τ0)

]
. (2.42)

Using the cyclicity of trace, we have:

Tr[ρ̃-∞] = Tr[ρ̃-∞SC(-∞+, -∞−)]. (2.43)

With (2.39), this becomes:

Tr[ρ-∞SC(-∞+, -∞−)] = 1. (2.44)

Referring back to (2.34), we obtain:

G(τ1, τ2) = −
i

~

Tr

[
ρ-∞Tτ

{
dI(τ1)d

†
I(τ2)SC(-∞+, -∞−)

}]
Tr
[
ρ-∞SC(-∞+, -∞−)

] (2.45)

where we now have a denominator which allows us to cancel disconnected diagrams later
on.
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2.3 Dyson equation

Having expressed the contour-ordered Green’s function as:

G(τ, τ ′) = − i

~

〈
Tτ
{
dI(τ)d

†
I(τ

′)SC(-∞+, -∞−)
}〉

〈
SC(-∞+, -∞−)

〉 , (2.46)

where 〈. . .〉 means average in decoupled system+bath, Tr[ρ-∞ . . . ], we shall now begin
with the perturbation expansion. First and foremost, we will suppress the I subscripts,
while being fully aware that all operators are in interaction picture. For convenience we
rewrite the expression for the S−matrix:

SC(-∞+, -∞−) = Tτ exp
[
− i

~

∫
C
VI(τ) dτ

]
= Tτ

{
+∞∑
n=0

1

n!

(
− i

~

∫
C
VI(τ) dτ

)n
}
.

(2.47)

Therefore we have for the numerator of (2.46):

− i

~

〈
Tτ
{
dI(τ)d

†
I(τ

′)SC(-∞+, -∞−)
}〉

= − i

~

〈
Tτ

{
dd†

′
+∞∑
n=0

1

n!

(
− i

~

∫
C
VI(τ) dτ

)n
}〉

= G0 +G1 +G2 +G3 +G4 + . . .

(2.48)

where each Gn indicates the n−th power of the exponential expansion. We recall as well
the interaction term:

V = HT =
∑
k

[γkc
†
kd+ γ∗

kd
†ck] +

∑
j

[λja
†
jd+ λ∗

jd
†aj]. (2.49)

2.3.1 Wick’s theorem

An expression like (2.48) is impossible to evaluate, not without Wick’s theorem. We shall
use the following shorthand notation12:

d = d(τ),

d†
′
= d†(τ ′),

Vn = V (τn),

An or A(n) = A(τn),

(2.50)

where A is any of c, d, a, c†, d†, a†. Returning to the expansion (2.48), clearly,

G0 = −
i

~
〈Tτ{dd†

′}〉 (2.51)

12As a reminder, index n labels the contour time, whereas indices k (j) refer to the electron state in
left (right) reservoir.
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is the free Green’s function of the system when it is decoupled from the baths. The
original statement of Wick’s theorem is of combinatoric nature. We refer to Fetter and
Walecka [21] for an excellent exposition and we shall only state its consequences13 as we
go along with examples. First of all, we have:

Consequence 1. All odd orders in (2.48) vanish, i.e. G2n+1 = 0 for n ∈ N.

We thus begin with the calculation of G2. The multiplication between two V would
normally mix the left c, c† and right a, a† operators, however we have

Consequence 2. Under the action of 〈Tτ{. . . }〉, each operator must be paired with its
adjoint for a non-vanishing contribution to Gn.

to the rescue. That is, terms such as 〈dd†′c†1d1d
†
2a2〉 vanish because c†1 and a2 are unpaired

with their respective adjoints.

Hence, for G2 at least, we can concentrate on one bath, say the left, and add up the
right one to obtain the total G2:

G2 = Gleft
2 +Gright

2 (2.52)

We have:

Gleft
2 =

1

2

(
− i

~

)3∑
ki,kj

∫
C

∫
C

〈
Tτ

{
dd†

′
[
γki(1)c

†
ki
(1)d1 + γ∗

ki
(1)d†1cki(1)

]

×
[
γkj(2)c

†
kj
(2)d2 + γ∗

kj
(2)d†2ckj(2)

]}〉
dτ1dτ2

(2.53)

Thanks to Consequence 2 again, terms like 〈dd†′c†ki(1)d1d
†
2ckj(2)〉 vanish for ki 6= kj.

Therefore the summation over different states ki, kj essentially reduces to just one:

Gleft
2 =

1

2

(
− i

~

)3∑
k

∫
C

∫
C

〈
Tτ

{
dd†

′
([

γk(1)c
†
k(1)d1

][
γ∗
k(2)d

†
2ck(2)

]
+
[
γ∗
k(1)d

†
1ck(1)

][
γk(2)c

†
k(2)d2

])}〉
dτ1dτ2

(2.54)

We shall consider only the first term inside the round bracket, as the treatment for the
other is exactly the same. Let us focus on the braket

〈
Tτ{. . . }

〉
by moving the scalar

tunneling amplitudes γ aside, and arrange the operators into two groups, one of d and
another of c: 〈

Tτ
{[

dd†
′
d1d

†
2

][
− ck(2)c

†
k(1)

]}〉
(2.55)

Thus far, we have only used the fact that fermionic operators anticommute inside Tτ{. . . }.
We next introduce

13Together with the fact that averaging is done with respect to the decoupled system+bath density
matrix, as well as several other that we will highlight whenever necessary.
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Consequence 3. Under 〈Tτ{. . . }〉, the chain of operators rearrange and split into sum
of products of 〈Tτ{ckc†k}〉, 〈Tτ{dd†}〉, 〈Tτ{aja

†
j}〉 only14.

To illustrate,

−
〈
Tτ
{
dd†

′
d1d

†
2ck(2)c

†
k(1)

}〉
= −

〈
Tτ{dd†

′}
〉〈
Tτ{d1d†2}

〉〈
Tτ{ck(2)c†k(1)}

〉
+
〈
Tτ{dd†2}

〉〈
Tτ{d1d†

′}
〉〈
Tτ{ck(2)c†k(1)}

〉 (2.56)

For notational simplicity, let us drop the k index. We also adopt the following notation:

− i

~

〈
Tτ
{
. . .
}〉

= 〈. . .〉 (2.57)

As an example, by multiplying both sides by the cube of − i
~ , the RHS of (2.56) will be

written as:
− 〈dd†′〉 〈d1d†2〉 〈c2c

†
1〉+ 〈dd

†
2〉 〈d1d†

′〉 〈c2c†1〉 (2.58)

If we repeat the procedure for the other term in (2.54), we obtain:

Gleft
2 =

1

2

∑∫
C

∫
C

{
γ1γ

∗
2

[
− 〈dd†′〉 〈d1d†2〉 〈c2c

†
1〉+ 〈dd

†
2〉 〈d1d†

′〉 〈c2c†1〉
]

+ γ∗
1γ2

[
− 〈dd†′〉 〈d2d†1〉 〈c1c

†
2〉+ 〈dd

†
1〉 〈d2d†

′〉 〈c1c†2〉
]}

dτ1dτ2

(2.59)

where the summation is over the states assumed by c, whose k subscript is suppressed.
We remark that the expression above is symmetric when we permute 1 ↔ 2. Indeed,
the contour times τ1, τ2, being integration variables, are dummy in the sense that it does
not matter if we change their names: τ1 ↔ τ2, since we will be performing the contour
integral

∫
C
∫
C . . . dτ1dτ2. Therefore, the second line is actually identical to the first, which

sums up to cancel the one-half factor in front:

Gleft
2 =

∑∫
C

∫
C
γ1γ

∗
2

[
− 〈dd†′〉 〈d1d†2〉 〈c2c

†
1〉+ 〈dd

†
2〉 〈d1d†

′〉 〈c2c†1〉
]
dτ1dτ2 (2.60)

Similarly, for the contribution from right bath, we have:

Gright
2 =

∑∫
C

∫
C
λ1λ

∗
2

[
− 〈dd†′〉 〈d1d†2〉 〈a2a

†
1〉+ 〈dd

†
2〉 〈d1d†

′〉 〈a2a†1〉
]
dτ1dτ2 (2.61)

In fact the above is also true for higher order terms, when we focus on only one bath.
More precisely, for a generic even term G2n, let us write

G2n = Gleft
2n +Gmixed

2n +Gright
2n (2.62)

where for example Gleft
2n contains only c, d, c†, d† but not a, a†. Then we have:

Consequence 4. For Gleft
2n and Gright

2n , except for τ, τ ′, all contour arguments τn can be
permuted freely to cancel the 1

n!
in expansion (2.48).

14This “only” is to emphasize that we need only to split the operators in such a way that each c, d, a
is paired with its adjoint and none else. For instance, adopting notation (2.57), in (2.56) there is no

〈dd1〉 〈d†
′
d†2〉 〈c2c

†
1〉 as the first two brackets vanish, cf. Consequence 2.
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2.3.2 Feynman diagram

In our perturbation expansion, for each interaction term V there is a sum of four quadratic
operators15. Evidently the higher order terms become all the more complicated. To
handle them efficiently, let us introduce the celebrated bookkeeping device called Feynman
diagram. We draw Feynman diagrams using the following rules [22]:

〈dd†′〉 = τ ′ τ

〈cic†j〉 =
〈aka†`〉 =

In words: d operators are connected by solid line, c operators by dashed line, a operators
by wiggly line. They all are unoriented. When drawing the diagrams, except for τ, τ ′, we
can drop the contour labels since they are integrated anyway. We notice in passing that
the diagrams correspond respectively to the free Green’s function of system, left bath,
right bath. Using these rules, we have:

〈dd†′〉 〈d1d†2〉 〈c2c
†
1〉 = × τ ′ τ (2.63)

Diagram of the above kind is said to be disconnected. It can be factored into the free
Green’s function multiplied by another diagram, without being connected by any line.
When collected and summed up, these diagrams become the so-called vacuum diagram
and is exactly the denominator in (2.46). Therefore, we have

Consequence 5. Disconnected diagrams factor out and get cancelled by the denominator
in (2.46).

Thus disconnected diagrams will not contribute to the series expansion (2.48) and
we shall only focus on connected diagrams. For the second order term, the connected
diagrams are from the left and right bath:

〈dd†2〉 〈c2c
†
1〉 〈d1d†

′〉 = τ ′ τ

〈dd†2〉 〈a2a
†
1〉 〈d1d†

′〉 = τ ′ τ
(2.64)

Therefore, G2 is given by the sum of the above, multiplied by appropriate tunneling
amplitudes γ1γ

∗
2 and λ1λ

∗
2, and integrated over τ1, τ2. We stress that there is a summation

over the centre dashed and wiggly lines16.

Let us list the fourth order connected diagrams:

〈dd†2〉 〈c2c
†
3〉 〈d3d

†
4〉 〈c4c

†
1〉 〈d1d†

′〉 = τ ′ τ (2.65)

〈dd†2〉 〈a2a
†
3〉 〈d3d

†
4〉 〈a4a

†
1〉 〈d1d†

′〉 = τ ′ τ (2.66)

15These then need to be summed over the states of left/right bath.
16This corresponds to summing the different states k, j in the left and right bath.
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Again, there is an implicit multiplication with tunneling amplitudes, integration, and
summation over states. Then, (2.65) and (2.66) are respectively Gleft

4 and Gright
4 in (2.62).

We now turn to Gmixed
4 . The only non-vanishing diagram is:

〈dd†2〉 〈c2c
†
1〉 〈d1d

†
4〉 〈a4a

†
3〉 〈d3d†

′〉 = τ ′ τ (2.67)

Unlike Gleft
4 and Gright

4 , Gmixed
4 is twice the above diagram. We mentioned time and again

that the order of 1, 2, 3, 4 does not matter as they are integration variables. Therefore,
there is a corresponding diagram:

〈dd†4〉 〈a4a
†
3〉 〈d3d

†
2〉 〈c2c

†
1〉 〈d1d†

′〉 = τ ′ τ (2.68)

which is identical to (2.67) after integration. Thus, instead of writing

Gmixed
4 = 2× τ ′ τ , (2.69)

let us write

Gmixed
4 = τ ′ τ

+ τ ′ τ
(2.70)

To summarize, up to fourth order we have:

G(τ, τ ′) = τ ′ τ +
τ ′ τ

+

τ ′ τ

+

τ ′ τ

+

τ ′ τ

+

τ ′ τ

+

τ ′ τ

(2.71)

Alternatively, dropping the τ, τ ′ for simplicity:

G = +

 +

 +

 +


 +

 (2.72)

The above shows us the usefulness of Feynman diagram: it allows for a clearer represen-
tation of expansion (2.48), rather than chains of brackets. We proceed to define the self
energy:

Σ(τ, τ ′) =
τ ′ τ

+

τ ′ τ

(2.73)

Recalling that solid line is just the decoupled system Green’s function, we can write (2.72)
in a more compact manner:

G = g + gΣg + gΣgΣg. (2.74)
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We stopped at fourth order, but if we continue the expansion, the combinatorics magically
work out [21][22] to give the following:

G = g + gΣg + gΣgΣg + gΣgΣgΣg + . . .

= g + gΣ
(
g + gΣg + gΣgΣg + . . .

)
= g + gΣG.

(2.75)

We have chosen one particular way, but the other is equally valid:

· · ·+ gΣgΣgΣg + gΣgΣg + gΣg + g = G(
· · ·+ gΣgΣg + gΣg

)
Σg + g =

.GΣg + g =

(2.76)

The above two symbolic equations, (2.75) and (2.76), are called Dyson equation. What
they really mean is:

G(τ, τ ′) = g(τ, τ ′) +

∫
C

∫
C
dτ1dτ2 g(τ, τ1)Σ(τ1, τ2)G(τ2, τ

′),

G(τ, τ ′) = g(τ, τ ′) +

∫
C

∫
C
dτ1dτ2 G(τ, τ1)Σ(τ1, τ2)g(τ2, τ

′),

(2.77)

with the total self energy being the sum of that of the left and right bath:

Σ(τ1, τ2) = ΣL(τ1, τ2) + ΣR(τ1, τ2). (2.78)

Here,

ΣL(τ1, τ2) =
∑
k

γk(τ1)g
c
k(τ1, τ2)γ

∗
k(τ2) (2.79)

with the left reservoir k−th state free electron Green’s function:

gck(τ1, τ2) = −
i

~
〈Tτ{ck(τ1)c†k(τ2)}〉 . (2.80)

For completeness, at the expense of brevity we provide the analogous expressions for the
right self energy:

ΣR(τ1, τ2) =
∑
j

λj(τ1)g
a
j (τ1, τ2)λ

∗
j(τ2) (2.81)

and the right reservoir j−th state free electron Green’s function:

gaj (τ1, τ2) = −
i

~
〈Tτ{aj(τ1)a†j(τ2)}〉 . (2.82)

Let us briefly recap what happened: we started with the definition of contour-ordered
Green’s function, then performed a series of transformations so that we could series-
expand it. With Wick’s theorem and Feynman diagram analysis, we obtained Dyson
equation which we would like to solve. We shall devote the following sections to that end.

27



2.4 Projections of Dyson equation

The Dyson equation (2.77) is a pair of integral equations, the integrals being defined on
a contour. To understand better what exactly does a contour integral17 mean, we must
discuss the precedence of the two contour times τ1, τ2.

2.4.1 Greater and lesser Green’s functions

Thus, we return to the contour-ordered Green’s function G(τ1, τ2), cf. (2.46). As usual
let σ1, σ2 be the branch index of τ1, τ2. Thanks to the contour-ordering operator Tτ , the
Green’s function can be one of the two18:

G(τ1, τ2) =


− i

~
〈
d(τ1)d

†(τ2)
〉

, if σ1 > σ2

+
i

~
〈
d†(τ2)d(τ1)

〉
, if σ2 > σ1.

(2.83)

For the first one, contour time τ1 (τ2) lies on lower (upper) branch and the second one
is the reverse. When the contour-times are brought back to real-times, their frequent
appearances have earned them definitions, known respectively as greater Green’s function
G> and lesser Green’s function G<:

G>(t1, t2) = −
i

~

〈
d(τ1)d

†(τ2)
〉
,

G<(t1, t2) = +
i

~

〈
d†(τ2)d(τ1)

〉
.

(2.84)

Of course, such definitions are not limited to G: every function defined based on Tτ 19

shares these so-called greater and lesser projections.

2.4.2 Lesser projection of a double product

Since the terms involved in the integrand: g,Σ, G all contain contour-ordering operators,
it follows that Dyson equation (2.77) can be projected into greater or lesser component,
depending on the precedence of τ1, τ2. In order to study the projection of triple product,
we need to start with double product. In particular, we first discuss its lesser projection.
Suppose we have contour-ordered functions A,B,C, with the symbolic relation C = AB,
meaning:

C(τ1, τ2) =

∫
C
dτ A(τ1, τ)B(τ, τ2). (2.85)

Recall that the Schwinger-Keldysh contour C was obtained by extending from max(t1, t2)
to +∞. Here for simplicity let us return to the original contour20 C . If τ2 � τ1, to fix
idea, let us set t1 > t2. Graphically:

17In the sense of NEGF, not complex analysis.
18There are actually two more cases associated to σ1 = σ2 which will give us time and anti time-ordered

Green’s functions but we will not be needing them in this project.
19As well as those defined based on Tt in the equilibrium case.
20This will not affect the contour-ordered functions A,B,C, cf. Appendix C
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τ2

τ1
C

Figure 2.7: The contour C involved in (2.85).

Notice that much like in ordinary integrals, we can deform C into the following:

τ2

τ1
C1

C2

Figure 2.8: Deformed contour C1 ∪ C2 from C .

without changing the result of the contour integral AB. The advantage in so doing is
the following: on C1, as the integration variable τ runs, it is always earlier than τ2.
Therefore21 B(τ, τ2) = B<(τ, τ2) on C1. Similarly, on C2, τ is always later than τ1 so
A(τ1, τ) = A<(τ1, τ). Combining, we have:∫

C
dτ A(τ1, τ)B(τ, τ2) =

∫
C1

dτ A(τ1, τ)B
<(τ, τ2) +

∫
C2

dτ A<(τ1, τ)B(τ, τ2). (2.86)

Let us now focus on the first term on the RHS. We have, upon splitting: C1 = (-∞−, t−1 )∪
(t+1 , -∞+), and considering the precedence to project A into A< or A>:∫

C1

dτ A(τ1, τ)B
<(τ, τ2) =

∫ t1

-∞
dt A>(t1, t)B

<(t, t2) +

∫ -∞

t1

dt A<(t1, t)B
<(t, t2)

=

∫ t1

-∞
dt
(
A>(t1, t)− A<(t1, t)

)
B<(t, t2)

=

∫ +∞

-∞
dt
[
θ(t1, t)

(
A>(t1, t)− A<(t1, t)

)]
B<(t, t2).

(2.87)

We shall not repeat the case for C2 but only provide the result here:∫
C2

dτ A<(τ1, τ)B(τ, τ2) =

∫ +∞

-∞
dt A<(t1, t)

[
− θ(t2 − t)

(
B>(t, t2)−B<(t, t2)

)]
. (2.88)

We studied the case (τ2 � τ1 and t1 > t2). The other case (τ2 � τ1 and t2 > t1) gives the
same result and we have:

C<(t1, t2) =

∫ +∞

-∞
dt
[
θ(t1, t)

(
A>(t1, t)− A<(t1, t)

)]
B<(t, t2)

+

∫ +∞

-∞
dt A<(t1, t)

[
− θ(t2 − t)

(
B>(t, t2)−B<(t, t2)

)]
.

(2.89)

21We mentioned previously that to write B<, both contour-times must have been projected back to
real-times, but here let us slightly abuse the notation.
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2.4.3 Advanced and retarded Green’s functions

The above combinations of greater and lesser components appear equally often in NEGF.
This leads us to introduce the advanced Green’s function GA and retarded Green’s func-
tion GR:

GA(t1, t2) = −θ(t2 − t1)
(
G>(t1, t2)−G<(t1, t2)

)
= +

i

~
θ(t2 − t1)

〈
{d(t1), d†(t2)}

〉
,

GR(t1, t2) = +θ(t1 − t2)
(
G>(t1, t2)−G<(t1, t2)

)
= − i

~
θ(t1 − t2)

〈
{d(t1), d†(t2)}

〉
,

(2.90)

where {·, ·} is the anticommutator. Using the shorthand notation (multiplication means
appropriate convolution), we have:

C< = ARB< + A<BA. (2.91)

From the definition (2.90) we infer that one way to obtain the retarded projection is by
calculating their lesser and greater projections. Therefore we will also need the greater
projection, whose calculation is similar to the lesser:

C> = ARB> + A>BA. (2.92)

To obtain the retarded projection, we need to combine (2.91) and (2.92). For simplicity
we shall drop the two-time dependences wherever possible:

CR(t1, t2)

= θ(t1 − t2)
(
C>(t1, t2)− C<(t1, t2)

)
= θ(t1 − t2)

[ ∫
R
dt
(
ARB> + A>BA

)
−
∫
R
dt
(
ARB< + A<BA

)]
= θ(t1 − t2)

∫
R
dt
[
θ(t1 − t)(A> − A<)(B> −B<)− θ(t2 − t)(A> − A<)(B> −B<)

]
.

(2.93)

On the other hand, with some patience we observe that:

θ(t1 − t2)θ(t2 − t) = θ(t1 − t2)θ(t1 − t)θ(t2 − t)

= θ(t1 − t2)θ(t1 − t)
(
1− θ(t− t2)

)
= θ(t1 − t2)θ(t1 − t)− θ(t1 − t2)θ(t1 − t)θ(t− t2)

= θ(t1 − t2)θ(t1 − t)− θ(t1 − t)θ(t− t2).

(2.94)

Therefore,
θ(t1 − t2)

[
θ(t1 − t)− θ(t2 − t)

]
= θ(t1 − t)θ(t− t2) (2.95)
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and for the retarded projection we have:

CR(t1, t2) =

∫
R
dt θ(t1 − t)θ(t− t2)(A

> − A<)(B> −B<)

=

∫
R
dt AR(t1, t)B

R(t, t2).

(2.96)

The advanced projection is obtained similarly. Using the shorthand notation, we have:

CR = ARBR

CA = AABA.
(2.97)

2.4.4 Projections of triple product

We are now ready to attack the case of triple product which appears in Dyson equation.
Suppose we have four contour-ordered functions satisfying D = ABC, which means as
usual:

D(τ1, τ2) =

∫
C

∫
C
dτdτ̃ A(τ1, τ)B(τ, τ̃)C(τ̃ , τ2). (2.98)

To obtain the lesser projection, we first treat E = AB as a contour-ordered function, then
D = EC and the projection rules for double product apply:

D< = ERC< + E<CA

= (AB)RC< + (AB)<CA.
(2.99)

Now we have another double product AB and the projection rules apply:

(AB)RC< + (AB)<CA = ARBRC< +
(
ARB< + A<BA

)
CA

= ARBRC< + ARB<CA + A<BACA.
(2.100)

The retarded projection for a triple product is then trivial:

DR = ARBRCR. (2.101)

These projection rules are collectively known as Langreth’s rule or analytic continua-
tion. We began with Dyson equation, discussed how to obtain its lesser/greater and
retarded/advanced projections. These projections of Green’s function are not completely
independent, and it turns out that G< and GR correspond respectively to particle number
and spectral function. These two are the only ones that we need from G, at least in this
project. Hence in the following, we shall bear in mind that our goal is to solve for G<

and GR.

2.5 Kadanoff-Baym equations

After projections into lesser and retarded components, Dyson equations are still inte-
gral equations. To facilitate Wigner transform, we need to convert them into integro-
differential equations, known as the Kadanoff-Baym equations. Firstly, we return to the

31



retarded component of Dyson equation:

GR(t1, t2) = gR(t1, t2) +

∫ ∫
dt′dt′′ gR(t1, t

′)ΣR(t′, t′′)GR(t′′, t2),

= gR(t1, t2) +

∫ ∫
dt′dt′′ GR(t1, t

′)ΣR(t′, t′′)gR(t′′, t2).

(2.102)

Recall that the free retarded (and advanced) Green’s function gR/A both satisfy:(
i~

∂

∂t1
− ε(t1)

)
gR/A(t1, t2) = δt2(t1),(

−i~ ∂

∂t2
− ε(t2)

)
gR/A(t1, t2) = δt1(t2),

(2.103)

which we write, symbolically:

g−1gR/A = 1,

gR/Ag−1 = 1.
(2.104)

Then, using the equations for gR, we have:(
i~

∂

∂t1
− ε(t1)

)
GR(t1, t2) = δt2(t1) +

∫
dt′′ ΣR(t1, t

′′)GR(t′′, t2),(
−i~ ∂

∂t2
− ε(t2)

)
GR(t1, t2) = δt1(t2) +

∫
dt′ GR(t1, t

′)ΣR(t′, t2),

(2.105)

which shall be represented symbolically as follows:

g−1GR = 1 + ΣRGR,

GRg−1 = 1 +GRΣR.
(2.106)

Their meanings should always be referred back to (2.105). We do the same for the lesser
projection:

G< = g< + g<ΣAGA + gRΣ<GA + gRΣRG<

= g< +G<ΣAgA +GRΣ<gA +GRΣRg<
(2.107)

and notice that the free lesser Green’s function g< is annihilated by the differential oper-
ators above: (

i~
∂

∂t1
− ε(t1)

)
g<(t1, t2) = 0,(

−i~ ∂

∂t2
− ε(t2)

)
g<(t1, t2) = 0,

(2.108)

which allows us to greatly simplify the lengthy expressions for G<:

g−1G< = Σ<GA + ΣRG<,

G<g−1 = G<ΣA +GRΣ<.
(2.109)

Equations (2.106) and (2.109) are called the Kadanoff-Baym equations.
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We now add the two equations in (2.106):

{g−1, GR} = 2 + {ΣR, GR} (2.110)

with [·, ·] a symbolic commutator. As for the other two equations in (2.109), let us
introduce the following functions to symmetrize the expressions:

A = i(GR −GA)

ReGR =
GR +GA

2


Γ = i(ΣR − ΣA)

ReΣR =
ΣR + ΣA

2

(2.111)

It should be stressed that, for the moment, we still do not have (GR)∗ = GA and therefore
ReGR should not yet be considered as the real part of GR. Using these new variables and
taking the difference of (2.109), we obtain:

[g−1, G<] = [Σ<,ReGR] + [ReΣR, G<] +
i

2
{Σ<, A} − i

2
{Γ, G<} (2.112)

with {·, ·} a symbolic anticommutator. Equations (2.110) and (2.112) are only symbolic:
g−1 acting on left/right refers to two different differentiation operators, while multiplica-
tions without g−1 mean convolutions.

2.6 Wigner transform

Before we begin, it is useful to remark that, had we been discussing equilibrium situa-
tion, we would have temporal translational invariance, allowing us to reduce the two-time
dependence of the Green’s functions to just one. This is not true for non-equilibrium
problems, therefore one way to proceed further is by means of the so-called Wigner trans-
form.

2.6.1 Definition

Since the Green’s functions involve two instances of time, t1 and t2, we begin with a
change of coordinates22: t =

t1 + t2
2

,

s = t1 − t2.
(2.113)

The Wigner transform of a function h(t1, t2) is obtained as follows: we first consider it as
a function h̃ in the new variables (s, t):

h(t1, t2) −→ h̃(s, t) = h

(
t+

s

2
, t− s

2

)
, (2.114)

then we perform a Fourier transform on the “fast variable” s:

h̃(s, t)
Fourier in s−−−−−−→ F{h̃}(E, t) =

∫
ds h̃(s, t)e+

iEs
~ . (2.115)

22Sometimes called Wigner or centre-of-mass coordinates.
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We use the symbol W to denote Wigner transformation and put a hat on top of a function
to denote its Wigner transform:

h(t1, t2) −→ ĥ(E, t) := W {h}(E, t) =

∫
ds h̃(s, t)e+

iEs
~ . (2.116)

2.6.2 Convolution under Wigner transform

Let us investigate the result of Wigner-transforming a convolution:

C(t1, t2) =

∫
dt′ A(t1, t

′)B(t′, t2). (2.117)

To this end, we first transform A,B into their respective Wigner coordinates:

A(t1, t
′) −→ A

(
t1 − t′,

t1 + t′

2

)
,

B(t′, t2) −→ B

(
t′ − t2,

t′ + t2
2

)
,

C(t1, t2) −→ C̃(s, t) = C

(
t− s,

t+ s

2

)
.

(2.118)

For A and B, we modify further their second arguments:

t1 + t′

2
= t+

t′ − t2
2

,

t′ + t2
2

= t− t1 − t′

2
.

(2.119)

Given a sufficiently smooth function g(x), we have:

g(x+ a) = g(x) + a
d

dx
g(x) +

a2

2!

d2

dx2
g(x) + . . .

= exp

[
a
d

dx

]
g(x).

(2.120)

Hence, generalised to two-variable:

A

(
t1 − t′, t+

t′ − t2
2

)
= A(t1 − t′, t) exp

[
t′ − t2

2

←−
∂

∂t

]
,

B

(
t′ − t2, t−

t1 − t′

2

)
= exp

[
−t1 − t′

2

−→
∂

∂t

]
B(t′ − t2, t).

(2.121)

where the arrow above the partial derivative indicates the direction on which it acts.
When multiplied together, the operators exp[. . . ] commute:

A(t1, t
′)B(t′, t2) = A(t1 − t′, t) exp

[
−t1 − t′

2

−→
∂

∂t

]
exp

[
t′ − t2

2

←−
∂

∂t

]
B(t′ − t2, t). (2.122)

34



Let us define the following functions to simplify notation:

Ā(ta, t) = A(ta, t) exp

[
−ta

2

−→
∂

∂t

]
,

B̄(tb, t) = exp

[
tb
2

←−
∂

∂t

]
B(tb, t).

(2.123)

Then, when the LHS of (2.117) is regarded as a function of s, t, we have:

C̃(s, t) =

∫
dt′ Ā(t1 − t′, t)B̄(t′ − t2, t) (2.124)

For the sake of clarity, the t−dependence of functions will be indicated at subscript:

Ā(t1 − t′, t) −→ Āt(t1 − t′),

B̄(t′ − t2, t) −→ B̄t(t
′ − t2).

(2.125)

Thus we see the RHS of (2.124) is simply a convolution:

(Āt ∗ B̄t)(t1 − t2) =

∫
dt′ Ā(t1 − t′, t)B̄(t′ − t2, t). (2.126)

Recalling that s = t1 − t2, we have:

C(t1, t2) = C̃(s, t) = (Āt ∗ B̄t)(s). (2.127)

Since Fourier transform F converts convolution into multiplication, we thus see the ad-
vantage of performing Wigner transform:

W {C}(E, t) =

∫
ds C̃(s, t)e+

iEs
~

= F{C̃}(E, t)

= F{Āt}(E)F{B̄t}(E).

(2.128)

We shall now calculate the Fourier transform. Since multiplying by a phase factor corre-
sponds to shifting argument:

F{eωsf(s)}(E) = F{f}(E − i~ω), (2.129)

we have:

F{Āt(ta)}(E) = F

At(ta) exp

[
−ta

2

−→
∂

∂t

] (E)

= Ât

(
E +

i~
2

−→
∂

∂t

)

F{B̄t(tb)}(E) = F

exp

[
tb
2

←−
∂

∂t

]
Bt(tb)

 (E)

= B̂t

(
E − i~

2

←−
∂

∂t

)
(2.130)
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where we have denoted the Fourier transform (with respect to s) of At by Ât. Finally,
using again (2.120), we have:

Ât

(
E +

i~
2

−→
∂

∂t

)
= Ât(E) exp

←−∂
∂E

(
i~
2

−→
∂

∂t

)
B̂t

(
E − i~

2

←−
∂

∂t

)
= exp

(−i~
2

←−
∂

∂t

)−→
∂

∂E

 B̂t(E)

(2.131)

Returning to (2.128), we get:

W {C}(E, t) = Ât(E) exp

←−∂
∂E

(
i~
2

−→
∂

∂t

) exp

(−i~
2

←−
∂

∂t

)−→
∂

∂E

 B̂t(E)

= Ât(E)
←→G B̂t(E)

(2.132)

where we have grouped the two operators into one:

←→G = exp

i~
2

[←−
∂

∂E

−→
∂

∂t
−
←−
∂

∂t

−→
∂

∂E

] . (2.133)

To summarize, we obtained the following rule for the Wigner transform of a convolution:∫
dt′ A(t1, t

′)B(t′, t2)
Wigner−−−−→ Â(E, t)

←→G B̂(E, t). (2.134)

2.7 First order gradient expansion

Thus far, the discussion above is exact and equally difficult as the original one, since the

operator
←→G is quite complicated. We previously called s = t1 − t2 a “fast variable”.

Naturally, we wish to regard t = t1+t2
2

as a “slow variable”. In other words, we assume
that external driving agent is slowly varying in the time-scale t:∥∥∥∥ ∂

∂t

∥∥∥∥ ∼ ω � 1 (2.135)

in a suitable operator norm, and ω is some characteristic driving frequency. If we expand←→G up to first order in ∂
∂t
, we obtain:

←→G ≈ 1+
i~
2

[←−
∂

∂E

−→
∂

∂t
−
←−
∂

∂t

−→
∂

∂E

]
(2.136)

This approximation is called first-order gradient expansion. Recall that the equations of
interest, the Kadanoff-Baym equations were modified to obtain (2.110) and (2.112). We
shall now investigate the effect of Wigner transform, to first-order in gradient expansion,
on such equations.
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2.7.1 {·, ·} and [·, ·] under gradient expansion

We begin with the symbolic commutator and anticommutator that do not involve g−1:

W
{
[A,B]

}
= W {AB −BA}

= W {AB} −W {BA}

= A
←→G B −B

←→G A

≈

ÂB̂ +
i~
2

[
∂Â

∂E

∂B̂

∂t
− ∂Â

∂t

∂B̂

∂E

]−
B̂Â+

i~
2

[
∂B̂

∂E

∂Â

∂t
− ∂B̂

∂t

∂Â

∂E

]
= i~{Â, B̂}E,t

(2.137)

where we have used {·, ·}E,t to denote the Poisson bracket between two functions of E and
t. In the same manner we consider the Wigner transform of the symbolic anticommutator:

W
{
{A,B}

}
= W {AB}+ W {BA}

≈

ÂB̂ +
i~
2

[
∂Â

∂E

∂B̂

∂t
− ∂Â

∂t

∂B̂

∂E

]+

B̂Â+
i~
2

[
∂B̂

∂E

∂Â

∂t
− ∂B̂

∂t

∂Â

∂E

]
= 2ÂB̂

(2.138)

This is similar to the result that Fourier transform converts convolution into multiplica-
tion.

2.7.2 g−1 under gradient expansion

We now turn to terms involving the “left/right inverse” of g, denoted by g−1, which are
just a symbol for two differential operators, cf. (2.103). Recall the transformation of
(t1, t2) −→ (s, t), which yields the following differentiation rules:

∂

∂t1
=

1

2

∂

∂t
+

∂

∂s
∂

∂t2
=

1

2

∂

∂t
− ∂

∂s

(2.139)
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For a function h(t1, t2), we have, up to first order in gradient expansion:

g−1h(t1, t2) =

(
i~

∂

∂t1
− ε(t1)

)
h(t1, t2)

=

(
i~
2

∂

∂t
+ i~

∂

∂s
− ε

(
t+

s

2

))
h̃(s, t)

≈
(
i~
2

∂

∂t
+ i~

∂

∂s
− ε(t)− ε̇(t)

s

2

)
h̃(s, t)

h(t1, t2)g
−1 =

(
−i~ ∂

∂t2
− ε(t2)

)
h(t1, t2)

=

(
−i~

2

∂

∂t
+ i~

∂

∂s
− ε

(
t− s

2

))
h̃(s, t)

≈
(
−i~

2

∂

∂t
+ i~

∂

∂s
− ε(t) + ε̇(t)

s

2

)
h̃(s, t)

(2.140)

Hence, the symbolic commutator and anticommutator involving g−1 simplify to give:

[g−1, h] =

(
i~

∂

∂t
− ε̇(t)s

)
h(t1, t2)

{g−1, h} =
(
2i~

∂

∂s
− 2ε(t)

)
h(t1, t2)

(2.141)

Recall that Wigner-transform is just rewriting in Wigner coordinates (s, t) then Fourier-
transform the s variable. Therefore, we have:

s ht(s)
Fourier in s−−−−−−→ −i~ ∂

∂E
ĥt(E)

∂

∂s
ht(s)

Fourier in s−−−−−−→ − i

~
Eĥt(E)

(2.142)

where we write the t−dependence at subscript for more clarity. Thus, we have for the
Wigner transform:

W
{
[g−1, h]

}
= i~

(
∂

∂t
+ ε̇(t)

∂

∂E

)
ĥt(E)

W
{
{g−1, h}

}
= 2(E − ε(t))ĥt(E)

(2.143)

We can manipulate a little bit the first equation above to make appear the Poisson bracket
in (E, t):(

∂

∂t
+ ε̇(t)

∂

∂E

)
ĥt(E) =

[
∂

∂E
(E − ε(t))

∂

∂t
− ∂

∂t
(E − ε(t))

∂

∂E

]
ĥt(E)

= {E − ε(t), ĥt(E)}E,t

(2.144)

After all these derivations, we will now only work with Wigner-transformed functions.
Hence we will drop the hat and simply write h(E, t).
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2.8 Solution for GR

Equipped with the above considerations, we can solve for one of the quantity of interest,
the retarded Green’s function GR(E, t). Indeed, from (2.110) we have:

W
{
{g−1, GR}

}
= 2 + W

{
{ΣR, GR}

}
2[E − ε(t)]GR(E, t) = 2 + 2ΣR(E, t)GR(E, t)

(2.145)

which solves the retarded Green’s function:

GR(E, t) =
1

E − ε(t)− ΣR(E, t)
. (2.146)

This is Equation (2) of Esposito’s article.

2.9 Solution for G<

Applying Wigner transform on both sides of (2.112) and using rules (2.137) and (2.138),
we obtain an equation of motion for the lesser Green’s function G<:

i~{E − ε,G<} = i~{Σ<,ReGR}+ i~{ReΣR, G<}+ iΣ<A− iΓG< (2.147)

or upon some simplification:

{E − ε− ReΣR, G<}+ {ReGR,Σ<} = 1

~
[Σ<A− ΓG<] (2.148)

where we dropped the (E, t) dependences and stress that {·, ·} here means Poisson bracket
with respect to (E, t). In order to proceed we shall admit the Kadanoff-Baym ansatz:

G<(E, t) = iA(E, t)φ(E, t) (2.149)

Here, φ(E, t) is the occupation probability and A(E, t) = −2ImGR(E, t) is the spectral
function. Recall that in equations above, ΣR,< actually mean:

ΣR,<(E, t) =
∑

ν={L,R}

ΣR,<
ν (E, t) (2.150)

that is, the retarded and lesser self-energy are sum of the self-energies of left and right
reservoirs. Next, we will admit the following result:

Σ<
ν (E, t) = iΓν(E, t)fν(E) (2.151)

where Γν(E, t) = −2ImΣR
ν (E, t) and

fν(E) =
1

exp [βν(E − µν)] + 1
(2.152)

is the Fermi-Dirac function of the ν = L,R bath. (2.148) then becomes:

{E − ε− ReΣR, iAφ}+ {ReGR, iΓf} = 1

~
[(iΓf)A− Γ(iAφ)] (2.153)
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Using (2.150), we obtain the following equation:∑
ν=L,R

{E − ε− ReΣR
ν , Aφ}+ {ReGR,Γνfν} =

1

~
∑

ν=L,R

AΓν(fν − φ) (2.154)

Finally, we invoke the Botermans-Malfliet approximation[23], which replaces23 the Fermi-
Dirac function in the second bracket by φ:

{ReGR,Γνfν} ≈ {ReGR,Γνφ} (2.155)

and obtain the following quantum kinetic equation:∑
ν=L,R

{E − ε− ReΣR
ν , Aφ}+ {ReGR,Γνφ} =

1

~
∑

ν=L,R

AΓν(fν − φ) (2.156)

With ~ = 1, this is Equation (3) of Esposito’s article.

2.10 Self energy Σ and spectral function A

Before we conclude this chapter, let us say a few words about the self energy Σ and the
spectral function A. First of all, with the diagrammatic analysis we obtained

Σ = ΣL + ΣR (2.157)

that is to say the total self energy is the sum of individual one. From the structure of the
tunneling Hamiltonian (2.4), we deduce that so long as the tunneling stays between dot
and bath24, we can have as many reservoirs as we wish. From the expressions for ΣL and
ΣR, cf. (2.79) and (2.81), we see that the self energy tells us about the influence of the
reservoirs on the dot25. It is customary to write for the retarded self energy of ν reservoir:

ΣR
ν (E, t) = Λν(E, t)− iΓν(E, t)

2
(2.158)

We will turn to the interpretations in a minute. Before that let us consider the spectral
function:

A(E, t) = −2ImGR(E, t) (2.159)

In the following, when a quantity has both (E, t) dependence, we will not write it at all.
Using the solution for GR, (2.146), we have:

A =
ΓL + ΓR

[E − ε(t)− (ΛL + ΛR)]2 +

(
ΓL + ΓR

2

)2 (2.160)

This is a Lorentzian centred at ε + (ΛL + ΛR), with width (ΓL + ΓR). The real part Λν

of the retarded self energy ΣR
ν can be interpreted as the shift of the quantum dot energy

level from ε, and the imaginary part Γν as the broadening of the energy level, both due
to its coupling to ν reservoir.

23This is justified because the difference {ReGR,Γνfν −Γνφ} is of second order in gradient expansion.
24That is, no bath-bath tunneling.
25For instance, ΣL(τ1, τ2) =

∑
k γk(τ1)g

c
k(τ1, τ2)γ

∗
k(τ2) involves the left bath free-electron Green’s func-

tion gck and the tunneling amplitudes γk.
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Chapter 3

Thermodynamics of Quantum Dot

With the retarded Green’s function (2.146) and the quantum kinetic equation (2.156), we
are now in the position to discuss the thermodynamics of the single-level system connected
to two reservoirs. The definitions below were introduced by Esposito [1], probably by
reverse-engineering: integrate the quantum kinetic equation and define according to the
similarity of each term to its weak-coupling counterpart. The equations involved are
tedious but not difficult to derive. We omit the points already discussed in Esposito’s
article, but include some explanations and motivations that they did not provide. To
begin with, let us introduce the following notations:

Γ = ΓL + ΓR,

Λ = ΛL + ΛR.
(3.1)

One important point is the introduction of the renormalized spectral function:

A = A
∂

∂E

(
E − ε(t)− Γ

)
+ Γ

∂

∂E

(
ReGR

)
(3.2)

which will be the weight used to define the thermodynamic variables as follows. The
sequence of functions AΓ is a candidate for Dirac delta in the limit Γ → 0, ie. the
weak coupling limit. This renormalized version, rather than the usual A = −2ImGR

spectral function, would yield equations of motion that mirror the ones in stochastic
thermodynamics.

3.1 Particle number

The most immediate quantity that one can think of is probably the particle number. If
we integrate with respect to energy divided by 2π, we obtain:

d

dt

∫
dE

2π
Aφ =

∑
ν

∫
dE

2π
AΓν(fν(E)− φ). (3.3)

Recall that φ is the dot occupation density, fν is the Fermi-Dirac function for ν reservoir,
Γν is the coupling strength to ν reservoir. Thus in absence of A, the term Γν(fν − φ)
mirrors the rate of change of the system occupation probability due to transition to ν
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reservoir. Therefore when summed over bath, integrated with weight A, it seems natural
to interpret the result as the rate of particle flow to the system. This leads to defining

Iν(t) =
∫

dE

2π
AΓν(fν(E)− φ) (3.4)

as the particle current flowing into the dot. The integral at LHS of (3.3) is then interpreted
as particle number in the dot:

N (t) =

∫
dE

2π
Aφ. (3.5)

Before we proceed, the integrand of (3.4) will frequently appear, leading to its definition
as (energy-resolved) current density:

Cν = AΓν(fν(E)− φ). (3.6)

Thus, we have separated the total current density into the bath, reservoir by reservoir:
C =

∑
ν Cν . However, we can do better. For each Cν , we can split it into two terms: one

representing inflow from ν, another outflow to ν, so that the sum signifies the net flow to
(or from, depending on the sign):

Cν = C+
ν − C−

ν . (3.7)

There is a myriad of ways to split this term, but if we regard
(
1−fν(E)

)
as the distribution

function of hole in reservoir ν, then the following:

AΓν [ fν(E)︸ ︷︷ ︸
Electron in ν

(
1− φ(E, t)

)︸ ︷︷ ︸
Hole in dot

−
(
1− fν(E)

)︸ ︷︷ ︸
Hole in ν

φ(E, t)︸ ︷︷ ︸
Electron in dot

] (3.8)

mimics the Boltzmann collision term [30] describing a process after which (hole in ν and
electron in dot) scatter into (electron in ν and hole in dot). Therefore, the particle current
density from ν reservoir to the dot is defined as:

C+
ν = AΓνfν(1− φ) (3.9)

and the current flowing from dot to ν:

C−
ν = AΓν(1− fν)φ. (3.10)

3.2 Energy

Equally important is of course the energy of the dot. If we multiply the quantum kinetic
equation by E and integrate, we obtain:

d

dt

∫
dE

2π
AφE =

∑
ν

∫
dE

2π
ECν −

∫
dE

2π
φ

[
A

∂

∂t

(
E − ε(t)− Γν

)
+ Γν

∂

∂t
ReGR

]
,

(3.11)
Aφ being the integrand of particle number, it is natural1 to define energy as follows:

E(t) =
∫

dE

2π
AφE. (3.12)

1Notice that the Hamiltonian of the dot, εd†d, could also suggest a definition such as εN , i.e., energy
level times the particle number. However looking at the spectral function, we see that the distribution in
energy is not delta-peaked at ε but smeared around it. This is probably why εN is not a good definition.
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3.2.1 Energy current

Cν being the current density, the first term at the RHS of (3.11) is interpreted as energy
current from ν reservoir:

J E
ν (t) =

∫
dE

2π
ECν :=

∫
dE

2π
CE

ν (3.13)

with CE
ν the energy current density. An analogy would be from electrodynamics, where

charge density velocity charge current density

ρ ~v = ~Jxy xy xy
E Cν = CE

ν

energy particle current density energy current density

In classical thermodynamics, given that after a process, our system of interest has its
energy changed from E to E + ∆E, we often wish to know further: which part of ∆E
goes to work being done and heat being exchanged. This is of no exception here and we
shall next discuss how to split J E

ν into a heat flux and work current.

3.2.2 Heat current

Defining heat is a persistent question in open quantum system. Entropy, on the contrary, is
unambiguous as the Shannon-von Neumann entropy is pretty much universally accepted.
In Esposito’s previous works [24], with a master equation approach, they considered a
quantum system weakly in contact with a thermal particle reservoir. In the spirit of
linear irreversible thermodynamics, they split the rate of change of entropy into two
parts: production Ṡi and flow Ṡe. Next, by considering quasi-static dynamics, ie. system
in equilibrium with bath at all instant, with detailed balance condition they obtained an
expression to be satisfied for the rates of transition. When one demands the entropy flow
Ṡe to be that of Clausius’ definition:

dS =
δQrev

T
, (3.14)

then the rate of heat flow is identified as:

Rate of change of probability× (Energy − chemical potential). (3.15)

This is probably why, for non-weakly-coupled regime, Esposito defined heat current to
be:

J Q
ν (t) =

∫
dE

2π
Cν(E − µν). (3.16)
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3.2.3 Work current

Drawing analogy with the First Law, in which energy change equals work plus heat, the
work current is defined to be:

J N
ν = J E

ν − J Q
ν ,

J N
ν = µνIν .

(3.17)

Since Iν represents the particle current, this J N
ν is interpreted as the work done in

transferring particles. It must be emphasized that this work current is the “internal
work”. It is of great importance when we consider particle-exchange engine in Section
5.4, because there we wish to transfer particles against a bias. However, this is not quite
the case when we consider a cyclic heat engine, in which we wish to perform “external
work” (to be discussed immediately after). Hence, any energy expended that is not for the
aforementioned purpose will lead to degradation of the performance of the heat engine.

3.2.4 External power

Having identified the energy, heat and work current, we notice that there is still a term
in (3.11), namely:

−
∫

dE

2π
φ

[
A

∂

∂t

(
E − ε(t)− Γν

)
+ Γν

∂

∂t
ReGR

]
. (3.18)

At first glance, there is no reason why this should be the rate of external work done, apart
from the requirement for (3.11) to be a First Law-like equation. However, in the wide
band limit2, the above expression becomes:∫

dE

2π
Aφ

[
ε̇(t) +

(
E − ε(t)

)dtΓ
Γ

]
= N (t)ε̇(t) +

∫
dE

2π
Aφ
(
E − ε(t)

)dtΓ
Γ

. (3.21)

The first term on the RHS is similar to the quantum thermodynamics definition [25] of
rate of work done3. The second term does not have good analogy in the weak-coupling

2Referring to the discussion of the retarded self energy in Subsection 2.10, the wide band limit is an
approximation which consists in ignoring the energy-level shift:

Λν = 0 (3.19)

and assuming the energy-level broadening Γν to be uniform:

Γν(E, t) = Γν(t) (3.20)

3For a generic quantum system we write its energy as

E =
∑
n

εnpn (3.22)

where n is state index, εn and pn are respectively the energy and probability of the system in state n. If
we grant the system time evolution and assume the validity of E(t) =

∑
n εn(t)pn(t), then we have

Ė(t) =
∑
n

(
ε̇n(t)pn(t) + εn(t)ṗn(t)

)
(3.23)

44



literature. However, looking at how the integrand involves E and the time-derivative of
the coupling Γ, it seems plausible to interpret it as the power due to driving the coupling.
Thus following Esposito we write the external power as:

Pext = N (t)ε̇(t) +

∫
dE

2π
Aφ
(
E − ε(t)

)dtΓ
Γ

. (3.24)

3.3 Entropy

In the weak-coupling regime, the state space of a single-level quantum system is two-
dimensional: empty |0〉 or occupied |1〉. Therefore, one way to characterize the entropy of
the system is by using the Shannon entropy: S = −[p0 ln p0+p1 ln p1]. Similarly, Esposito
defined the energy-resolved Shannon entropy as:

σ = −kB
[
φ lnφ+ (1− φ) ln(1− φ)

]
. (3.25)

Since the Poisson bracket obeys the chain rule:

{·, σ(φ)}E,t = {·, φ}E,t
dσ

dφ
(3.26)

by multiplying the quantum kinetic equation with dσ
dφ

and integrate, one obtains the
following equation:

d

dt

∫
dE

2π
Aσ =

∑
ν

∫
dE

2π

(
C+

ν − C−
ν

)
ln

C+

C− +
∑
ν

J Q
ν

Tν

, (3.27)

where S is identified as the total entropy of the quantum dot:

S(t) =

∫
dE

2π
Aσ (3.28)

and the entropy flow rate from ν−reservoir, reminiscent of Clausius’ definition of entropy:

Ṡν
e (t) =

J Q
ν

Tν

(3.29)

and the entropy production rate:

Ṡν
i (t) =

∫
dE

2π

(
C+

ν − C−
ν

)
ln

C+

C− ≥ 0. (3.30)

Now, εn is the energy level and for the simplest case: a particle in a box, this is closely related to
the width of the box. For a classical ideal gas performing work corresponds to changing the volume.
Hence ε̇n(t)pn(t) is identified as work exchange. Next, pn is the occupation probability of each state n
and together they describe the state of the quantum system. Classically, entropy also plays the role of
characterising the state, thus εn(t)ṗn(t) is identified as the heat exchange.
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Chapter 4

Quantum Kinetic Equation

Under the framework of NEGF and first-order gradient expansion, granted the wide band
approximation, the problem is now characterized by the spectral function A, occupation
probability φ, coupling strengths to ν−reservoir Γν , and the Fermi functions fν . In
the previous chapter we discussed Esposito’s thermodynamic definitions, which can be
calculated from the above mentioned quantities. Now, recall that the spectral function A
is related to the retarded Green’s function whose solution turns out to be immediate, cf.
(2.146), whereas the occupation probability φ, related to the lesser Green’s function, is
not yet solved, cf. (2.156). In this chapter we focus on solving this last equation: exactly
and perturbatively. These are just mechanical so we will be brief.

4.1 Exact solution

With Poisson bracket, (2.156) looks compact and neat, but is not the operational one.
Under the wide band limit, Γν(E, t) = Γν(t) and ReΣR

ν = 0, so (2.156) (with ~ = 1 and
index ν implies summation) becomes:

{E − ε, Aφ}+ {ReGR,Γνφ} = AΓν(fν − φ). (4.1)

It can be shown that
{E − ε, A}+ {ReGR,Γν} = 0. (4.2)

Therefore with the Leibniz rule of Poisson bracket, we obtain:

{E − ε, φ}A+ {ReGR, φ}Γν = AΓν(fν − φ). (4.3)

Using the relations

Γν∂tReG
R = Aε̇

(E − ε)2 − (Γν

2
)2

(E − ε)2 + (Γν

2
)2
− A2(E − ε)dtΓν

2
,

Γν∂EReG
R = A

(Γν

2
)2 − (E − ε)2

(E − ε)2 + (Γν

2
)2
,

(4.4)

(4.1) becomes:

A2Γν

2

[
∂

∂t
+
(
ε̇+ (E − ε(t))

dtΓν

Γν

) ∂

∂E

]
φ(E, t) = A

[
Γνfν + Γνφ(E, t)

]
(4.5)
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or upon simplifying common factors:[
∂

∂t
+
(
ε̇+ (E − ε(t))

dtΓν

Γν

) ∂

∂E

]
φ =

2

A

[
ΓLfL + ΓRfR

ΓL + ΓR

− φ

]
. (4.6)

The above is a one-dimensional convection equation. We provide the solution in Appendix
D. Denote

K(E, t) = 2

[(
E − ε(0)

Γν(0)

)2

+
1

4

]
Γν(t) (4.7)

and

g(E, t) =
ΓL(t)fL

(
ε(t) + E−ε(0)

Γν(0)
Γν(t)

)
+ ΓR(t)fR

(
ε(t) + E−ε(0)

Γν(0)
Γν(t)

)
ΓL(t) + ΓR(t)

(4.8)

the exact solution for the occupation probability is given by:

φ(E, t) = φ(E, 0)e−
∫ t
0 K(E,t′)dt′ +

∫ t

0

e−
∫ t
t′ K(E,t′′)dt′′K(E, t′)g(E, t′)dt′. (4.9)

One way to fix the initial condition φ(E, 0) is to take the steady-state solution, a subject
we will discuss in the next section.

4.2 Perturbative solution

The previous section shows how to solve analytically the quantum kinetic equation under
the wide band approximation. However, the expression (4.9) probably does not serve
much other than academic purpose. In the spirit of perturbation theory let us write:

φ(E, t) = φ(0)(E, t) + φ(1)(E, t) + · · · (4.10)

where superscript indicates the order in some driving frequency ω.

4.2.1 Steady-state solution

When (4.10) is plugged back into (4.6), the zeroth order term is simply a non-equilibrium
steady-state situation:

0 =
2

A

[
ΓL(t)fL(E) + ΓR(t)fR(E)

ΓL(t) + ΓR(t)
− φ(0)(E, t)

]
(4.11)

leading to a convex combination of the left/right Fermi functions as our steady-state
solution:

φ(0)(E, t) =
ΓL(t)fL(E) + ΓR(t)fR(E)

ΓL(t) + ΓR(t)
(4.12)

Notice that, zeroth order in driving frequency does not mean absence of time-dependence.
As we see from the above expression, though we try to refrain from varying temperature
nor chemical potential1, we can very well drive the coupling strengths Γν . In such a

1A large part of the formalism consists in having two reservoirs which are individually and separately
in equilibrium. When temperature and chemical potential are allowed to change, it is not clear that the
bath will still remain a bath.
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situation, the zeroth order solution describes a time-dependent steady state. The difficulty
of interpreting this oxymoron can be surmounted if we think of the quasi-static processes
in classical thermodynamics, where on each point of a process, the system is always in
equilibrium with some bath.

4.2.2 First-order solution

We plug the zeroth order solution back to (4.6). Since time-differentiating or multiplying
with terms with time derivative will increase the order by one, up to first order in driving
frequency, we have: [

∂

∂t
+
(
ε̇+ (E − ε(t))

dtΓν

Γν

) ∂

∂E

]
φ(0) = − 2

A
φ(1) (4.13)

yielding the following solution:

φ(1)(E, t) = −A(E, t)

2

[
∂

∂t
+
(
ε̇+ (E − ε(t))

dtΓν

Γν

) ∂

∂E

]
ΓLfL + ΓRfR

ΓL + ΓR

(4.14)

Having obtained an exact and another perturbative solution for first-order (in driving
frequency) quantum kinetic equation, one naturally asks whether it is possible to go one
order higher. Unfortunately, the resulting expressions are too complicated for manip-
ulation. Therefore, we refer to Appendix E for a discussion of second order gradient
expansion.
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Chapter 5

Steady-state Regime

In this chapter, we temporarily disregard the possibility of having external driving agents
and focus on the steady-state regime. We first obtain expressions for the thermodynamic
quantities defined in Chapter 3. Then, we identify thermodynamic forces and fluxes as-
sociated to temperature and chemical potential difference. Next, by considering small
differences in temperature and chemical potential, we Taylor-expand expressions contain-
ing ∆ 1

T
and ∆(− µ

T
) and keep only the linear terms to identify Onsager kinetic coefficients.

With these coefficients, Onsager reciprocal relation is shown to hold. These results are
new but Esposito probably took them into considerations when defining his thermody-
namic quantities. We then study a particle-exchange engine and show numerically the
validity of Curzon-Ahlborn efficiency for small ∆T .

5.1 Currents and entropy

At steady state, the particle current density from the left reservoir is given by:

CL(E) =
AΓLΓR

ΓL + ΓR

(
fL(E)− fR(E)

)
(5.1)

whereas for the right reservoir we have CR = −CL, leading to zero net particle current
entering the dot:

dN
dt

=

∫
dE

2π

(
CL(E) + CR(E)

)
= 0. (5.2)

However, individually the current (say from left) is interesting:

J N
L =

∫
dE

2π

AΓLΓR

ΓL + ΓR

(
fL(E)− fR(E)

)
(5.3)

where we recognize a Landauer-Büttiker-like expression [26] for a one-dimensional electron
conduction, with A the number of modes, ΓLΓR

ΓL+ΓR
the transmission probability, and fL(E)−

fR(E) the difference of Fermi distributions. Let us make a remark that this result for
steady-state particle current is widely accepted in nanoscale transport [27][28]. This
strengthens the evidence in favour for Esposito’s definitions, since by means of NEGF
and gradient expansion (which are also widely used [15][20]), we arrive at a standard
result that is (5.3).
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Next, the heat current from reservoir L is given by:

J Q
L =

∫
dE

2π
(E − µL)

AΓLΓR

ΓL + ΓR

(
fL(E)− fR(E)

)
(5.4)

and finally the energy current from left bath:

J E
L =

∫
dE

2π
E

AΓLΓR

ΓL + ΓR

(
fL(E)− fR(E)

)
(5.5)

and we notice that these three currents satisfy:

J Q
L = J E

L + µLJ N
L . (5.6)

Same results hold for the right bath and we shall not repeat them here. For a consistency
check, the rate of change of dot energy in steady-state is indeed:

dE
dt

=
∑

ν={L,R}

J Q
ν + µνJ N

ν = 0. (5.7)

Turning to the entropy production rate contributed by left reservoir, we have:

ṠL
i =

∫
dE

2π

(
C+

L − C−
L

)
ln

C+
L

C−
L

=

∫
dE

2π

AΓLΓR

ΓL + ΓR

(
fL(E)− fR(E)

)
ln

fL(1− φ)

(1− fL)φ
.

(5.8)

This expression cannot be further simplified, however when one considers the entropy
production rate contributed by both baths:

Ṡi = ṠL
i + ṠR

i

=

∫
dE

2π
CL ln

fL(1− fR)

(1− fL)fR

=

∫
dE

2π

[
− βL(E − µL)CL − βR(E − µR)CR

]
= −J

Q
L

TL

− J
Q
R

TR

.

(5.9)

This is negative entropy flow from both baths, which when considered separately is nothing
but Clausius’ definition of entropy1 for reversible heat flow. When combined, we verify
that the rate of change of dot entropy is zero:

dS

dt
=

∑
ν={L,R}

Ṡν
i +
J Q

ν

Tν

= 0. (5.10)

1To be more precise, Clausius’ definition involves the differential of entropy and the reversible heat,
whereas here we have entropy current and heat current.
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5.2 Near-equilibrium thermodynamics

Splitting the rate of change of entropy S of the single-level system into the production
rate Ṡi and the flow rate Ṡe:

dS

dt
= Ṡi + Ṡe (5.11)

is nowadays well-accepted. This dates back to Prigogine [29] and probably stems from the
observation that for reversible processes, entropy, like most other quantities, is conserved.
Thus, when we are close to equilibrium but not quite2, it would be desirable to split
the entropy change into a part Ṡe that is conserved, and another part Ṡi that generates
entropy. Using classical thermostatics and imposing continuity equations, one can argue
that the entropy production is given by:

Ṡi = FTJ Q + FµJ N (5.12)

where J Q (J N) is the heat (particle) current, and FT = ∆ 1
T
(Fµ = −∆ µ

T
) is the affinity3

associated to temperature (chemical potential). Not surprisingly, Esposito’s definitions
are consistent with the above. Returning to (5.9) and using (5.6) we find:

Ṡi =
(

1

TL

− 1

TR

)
(−J E

L ) +

[
−
(
µL

TL

− µR

TR

)]
(−J N

L ). (5.13)

The signs are kept this way, because by convention a positive current indicates flowing into
the dot, thus a negative current means flowing to the bath. As another check, in absence
of particle current, the second law implies that energy current flows down temperature
gradient:

(J N
L = 0) ∧ (Ṡi ≥ 0) =⇒ (−J E

L ≥ 0 iff

(
1

TL

− 1

TR

)
≥ 0). (5.14)

5.3 Linear irreversible thermodynamics

Let us return to the discussion of thermodynamic forces (Fi) and fluxes (Ji). Intuitively,
one wishes to regard the fluxes as responses to the forces. If such is the case, when the
forces are weak, then a linear expansion is in place. Now, a difference in chemical potential
generates particle flow, and there is no reason for this current to be decoupled from the
energy flow, and vice versa. Thus phenomenologically, for small forces [30]:[

−J N

−J E

]
=

[
LNN LNE

LEN LEE

][
Fµ

FT

]
, (5.15)

where we remind the presence of minus sign is because of the convention that negative
current flows away from the dot. Arguing with detailed balance, Onsager [31] showed
his famous reciprocal relation: LNE = LEN for time-reversal invariant systems (eg. no

2Sometimes referred to as near-equilibrium and close-to-equilibrium.
3Also called thermodynamic forces, in the sense that negative entropy, −S is like some trapping

potential and when a system is deviated from the minimum of −S, these forces will attempt to restore
the system to the minimum and they do so by inducing the fluxes to generate entropy.
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magnetic field). Setting kB = 1, our task is to determine the expression of J N
L and J E

L

up to first order in FT = ∆β = βL − βR and Fµ = ∆(−βµ) = −βLµL + βRµR. After
some elementary calculations, one obtains:

LNN =

∫
dE

2π
A

ΓLΓR

ΓL + ΓR

4 cosh2

(
βE − βµ

2

)−1

,

LNE =

∫
dE

2π
EA

ΓLΓR

ΓL + ΓR

4 cosh2

(
βE − βµ

2

)−1

,

LEN =

∫
dE

2π
EA

ΓLΓR

ΓL + ΓR

4 cosh2

(
βE − βµ

2

)−1

,

LEE =

∫
dE

2π
E2A

ΓLΓR

ΓL + ΓR

4 cosh2

(
βE − βµ

2

)−1

,

(5.16)

where we denoted β = βL+βR

2
and βµ = βLµL − βRµR. Thus, we checked that Onsager

reciprocal relation LNE = LEN holds with Esposito’s definitions. These matrix elements
are called Onsager kinetic coefficients and here unfortunately the integrals cannot be
further simplified.

5.4 Thermoelectric engine

Let us first analyse the title of this section, word by word. Thermoelectricity is the
phenomenon in which heat and electricity (the flow of electrons) intertwine with each
other, thanks to the presence of both temperature and voltage (chemical potential in our
context) difference. Engine is a generic term designating energy-converting devices which
utilize heat to perform work. By thermoelectric engine, we mean one which uses heat to
overcome chemical potential barrier. More precisely, suppose TL > TR but µL < µR. The
temperature gradient drives heat from left to right, but particles tend to flow from right
to left because of the chemical potential difference. However, heat and particle current
are not independent, since when particles flow they carry with them energies. Thus we
can hope to pump electrons against chemical potential by using heat. This device then
qualifies to be called an engine4:

4Contrary to the cyclic heat engine that one encounters when studying Carnot cycle, this thermoelec-
tric device is a particle-exchange heat engine. The working medium (quantum dot) does not undergo a
cycle which exchanges heat and work at different stages. It takes in heat and perform work continuously
in a steady state.
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µL, TL µR, TR

TL > TR

µL < µR

J Q
L

J N
L

Figure 5.1: Thermoelectric engine: pumping electrons against chemical potential with
heat.

5.4.1 Thermopower and thermoelectric efficiency

Generally speaking, we evaluate the performance of an engine based on its efficiency and
power5. For our thermoelectric engine, the power is the rate of work done in transporting
particles against the bias:

P = (µR − µL)J N
L (5.17)

whereas the efficiency is the output power, divided by the heat current needed to deliver
it:

ηTE =
P
J Q

L

(5.18)

where J N
L (J Q

L ) is the particle (heat) current flowing from the left bath, as given by
(5.3) and (5.4). Let us check the pertinence of these definitions. We refer to a situation
depicted in Figure 5.1. Thus µR−µL > 0 and J Q

L > 0 (since it is entering the dot6), and
the power P is positive. As for ηTE, we consider the difference of P and J Q

L :

P − J Q
L = (µR − µL)

∫
dE

2π
CL −

∫
dE

2π
(E − µL)CL

=

∫
dE

2π
(E − µR)CR

= J Q
R ≤ 0.

(5.19)

Since heat is leaving from the dot to right as depicted in Figure 5.1. Thus ηTE ≤ 1 as
required.

5.4.2 Carnot efficiency

Allow us to make a historical detour to bring in the concept of Curzon-Ahlborn efficiency.
In 1824, Carnot [9] ruled out all attempts to build a maximally efficient engine in which all

5Recently people have begun to study efficiency and power fluctuations [32][33], which also serve to
characterize the performance.

6In absence of temperature gradient, µR > µL implies J Q
L < 0, cf. (5.14). Thus in order for J Q

L to be
positive we need to either have a strong enough temperature gradient, or to properly position the energy
level ε. Unfortunately we cannot provide explicit conditions because the expressions are not integrable.
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heat is converted into work7. He demonstrated a universal upper bound to the efficiency
of all cyclic heat engines, given by:

ηC = 1− TC

TH

(5.20)

where TH (TC) is the temperature of the hot (cold) bath from (to) which heat is absorbed
(discharged). In order to achieve this efficiency, it is necessary that the cycle be reversible
and hence quasi-static8. Power is output work divided by operational time. To perform
a quasi-static process, one needs to do it infinitely slowly. Therefore, even though Carnot
engine is the most efficient one, with zero power, it is also the least practical one.

5.4.3 Curzon-Ahlborn efficiency

The above consideration motivated the study of finite-time Carnot cycles. One way to
relax the quasi-static requirement is to allow heat transfers to take place in finite time,
which Curzon and Ahlborn did [34]. They then proceeded to maximize the output power
and showed that the efficiency at maximum power of their modified Carnot cycle is given
by:

ηCA = 1−
√

TC

TH

≤ ηC . (5.21)

Similar to ηC , the Curzon-Ahlborn efficiency is universal in that it does not depend on
the working fluid nor the thermal conductivity9. Furthermore, it only depends on the
temperature ratio TC

TH
. If we express ηCA as a function of ηC , then since ηC < 1, we have:

ηCA = 1−
√

1− ηC (5.22)

=
ηC
2

+
η2C
8

+
η3C
16

+O(η4C). (5.23)

Interestingly, it was shown for a Brownian Carnot engine[10] and for a Feynman ratchet[36]
that the efficiency at maximum power has the same expansion as in (5.23) up to second
order in ηC .

5.5 Thermoelectric efficiency at maximum power

While studying the same model in weak-coupling regime, with master equation, Esposito
showed that, when the temperature ratio TC

TH
is close to unity, the efficiency at maxi-

mum power of the thermoelectric engine (denoted by ηTE) as given in Figure 5.1 has an
asymptotic expression identical to that of (5.21) up to second order in ηC = 1− TC

TH
:

ηTE =
ηC
2

+
η2C
8

+ 0.077492 η3C +O(η4C). (5.24)

7Nowadays called a perpetual motion machine of the second kind.
8A reversible process is necessarily quasi-static but the converse is not true.
9In the derivation of ηCA, one assumes a Fourier law of heat conduction between working medium and

each reservoir. The thermal conductivities disappear in the final expression of efficiency at maximum
power.
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Thus, we ask if the thermoelectric efficiency at maximum power obeys similar expansion
using the definitions in this project. We first need to maximize the power given by (5.17).
Since in non-weak coupling, all integrals involved cannot be simplified, we can only resort
to numerical calculations. Next, we remark that the integrals of interest involve seven
parameters in total (ε, µL, µR, TL, TR,ΓL,ΓR). While we can argue by symmetry to reduce
them to five10, a brute force optimization without considering the physical context is still
impossible11. Hence, we adopt the following two different strategies:

(1) Fix the temperature and chemical potential of the hotter but negatively-biased bath:
TL, µL. Fix the total coupling strengths Γ = ΓL + ΓR and set ΓL = ΓR.

(2) For each ηC , calculate the corresponding TR.

(3) By varying ε and µR, maximize the power using either of:

(a) “Weak-coupling optimization”: Maximize the power with weak-coupling expres-
sions12. Calculate efficiencies using strong-coupling expressions.

(b) “Ordinary optimization”: Maximize the power and calculate the efficiencies, both
using strong-coupling expressions.

(4) Calculate the corresponding efficiency η with the optimizing values of ε and µR.

(5) Plot η against ηC .

5.5.1 Weak-coupling optimization

We first discuss the results with weak-coupling optimization. The units used are such
that ~ = 1, kB = 1. This leaves a freedom of choice for, say, time, and if desired it can
chosen for realistic values. For ease of reading we list the observations:

(i) For temperature ratio close to unity (ie. Carnot efficiency ηC close to zero), all
curves coincide and thus from ηCA we infer that they all behave like:

η ≈ ηC
2

+
η2C
8

(5.25)

for ηC sufficiently close to zero.

(ii) With naked eyes, the curves ηTE, Γ = 0.1 and Γ = 1.0 coincide perfectly. Thus for
sufficiently weak coupling, the efficiency at maximum power is unchanged by the
exact values of coupling. In fact, when zoomed in, Γ = 1.0 is below Γ = 0.1 which
itself is below ηTE.

10The dot energy level ε, the left/right chemical potential µL/R enjoy translational invariance. This
reduces the number of parameters by one. Furthermore, if we keep the total coupling strength ΓL + ΓR

fixed, the individual ones ΓL/R only affect the power by a multiplicative factor, thus we can set ΓL = ΓR.
11For example, if we let all five parameters to vary independently and freely, there is no solution to

the power optimization, because the power can be made arbitrarily large by having sufficiently large
temperature and chemical potential difference .

12This has been done by Esposito in [35].
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(iii) At larger ηC , the curves start to deviate from each other. Γ = 10.0 always stays
below Γ = 0.1 and Γ = 1.0, but is still above the exact Curzon-Ahlborn efficiency
ηCA.

(iv) The Γ = 40.0 curve lies lowest among all. The efficiency decreases for large ηC .
There is no proof to this but logically it is difficult to think of a machine whose
efficiency does not follow monotonously its Carnot efficiency. We can understand
this anomaly by considering Γ = 40.0 as having exceeded a critical coupling strength,
beyond which the weak-coupling expressions simply differ too much from the non-
weak coupling ones.

Figure 5.2: Efficiency at maximum power using weak-coupling optimization with fixed hot
bath temperature. The parameters used are µL = 0 and TL = 300.0. Units used are such
that ~ = 1,kB = 1.

5.5.2 Ordinary optimization

Contrary to the weak-coupling optimization, here for each data point, we optimize the
strong-coupling expressions. We used a ready-made optimizer from SciPy called SLSQP
(Sequential Least Squares Programming), which allows setting constraints13 and require

13The constraints are: µR > µL for consistency of the problem (transporting electrons from higher to
lower chemical potential) and ε > βLµL−βRµR

βL−βR
(the centre of spectral function must be greater than the

energy at which fL = fR). Note that this latter relation does not necessarily ensure the flow of electrons
to be from left to right as desired. In particular when the hot bath temperature is too high and coupling
strength too strong, there will be a significant backward flow of electrons and the optimization problem
becomes ill-posed.
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initial guesses. Naturally, one uses the weak-coupling optimized parameters as guesses.
We first plot the results at fixed hot bath temperature for different total coupling strengths.

Figure 5.3: Efficiency at maximum power using ordinary optimization with fixed hot bath
temperature. The parameters used are µL = 0 and TL = 300.0.

From the plot above, we see that the Γ = 40.0 curve is always monotonous even for large
ηC . Compared to Figure 5.2, the curves for Γ = 0.1 and Γ = 1.0 are not shown because
the results are not sensible14. Next, observe that the efficiency curves are shifted down as
we increase the coupling strength. Thus strong coupling deteriorates the thermoelectric
efficiency at maximum power. This is because maximizing power is finding the position at
which electrons from both sides have the strongest urge to be moved. On the other hand,
a larger coupling strength means allocating unnecessary bandwidth for the transport of
electrons that are around the optimal position.

Finally, we plot also the results for fixed total coupling strength but different temper-
atures:

14The optimization problem becomes ill-posed because with coupling strength that is several orders of
magnitude smaller than the temperature, by having chemical potential arbitrarily large the power can
always be made larger.
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Figure 5.4: Efficiency at maximum power using ordinary optimization with fixed total
coupling strength. The parameters used are µL = 0 and Γ = 10.0.

Notice once again the validity of the expansion (5.25) since all curves including ηCA

coincide for sufficiently small ηC . In particular, increasing the temperature of hot bath
TL shifts the efficiency curve upwards. One way to interpret this is, for a higher TL, the
Fermi function fL(E) is more smeared out around the chemical potential µL. Thus there
is more search space for the optimizer to look for ε and µR. We conclude this chapter with
the remark that the thermoelectric efficiency at maximum power is no longer a simple
function of temperature ratio alone, as shown in Figure 5.3 and 5.4.
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Chapter 6

Driven Quantum Dot

Having discussed steady-state thermoelectric engine, in this chapter we proceed to in-
vestigate the feasibility of a cyclic heat engine. We first recall several features of such
engine. The name “cyclic” itself suggests that we need to allow for time-evolutions in our
system. Among the plethora of possible modulations, we rule out a class by establishing
a necessary condition for a non-trivial work extraction. Finally, while analysis on paper
is not possible, we numerically implement one such engine.

6.1 Cyclic heat engine

By heat engine we mean a composite system consisting of two thermal1 reservoirs TH

and TC at different temperatures, a work reservoir W , and a working fluid S (single-level
quantum dot for our model). The working fluid is always connected to the work reservoir
and may be connected to both, either, or none of the thermal baths in the course of
its operations. The tricky business in non-classical heat engine to identify properly the
heat and work exchanged. In this project we follow Esposito’s definitions, so that the
external power2 is Pext, heat from hot (cold) bath is J Q

L (J Q
R ) with the convention that

TL = TH > TC = TR. By definition, the working fluid of a cyclic heat engine undergoes
a cyclic process, so that after one cycle, heat is absorbed from TH and discharged to TC

and work done to W .

1In our model, electrons are the carriers of energy, thus the reservoirs are thermal and particle.
2We have here a “black box” work reservoir, in that there is no mention of exactly how work is

exchanged. One possible physical situation is an electric field, whose strength changes the energy level ε
of the dot. If it results in a decrease of ε then work has been done to the external agent modulating the
electric field strength.
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Figure 6.1: Cyclic heat engine: performing work by transferring heat.

For example, if we use classical ideal gas as a working fluid, then its pressure and volume
p, V suffice to characterize its state, and we vary p, V in such a way to form a non-trivial
closed loop3 in the p−V diagram. The work exerted would then be the area of the closed
loop.

6.2 ε and Γ as state parameters

With µL/R, TL/R, ε,ΓL/R, seven parameters in total, we choose to vary ε, the dot energy
level, and Γ = ΓL+ΓR, the sum of the coupling strengths. Cyclicity means that we ought
to choose periodic functions ε(t) and Γ(t), such that after one period, heat has transferred
from hotter to colder bath, and work has been done to exterior. For simplicity, we choose
the two protocols ε(t) and Γ(t) to be of the same period4. Then, the problem can be
formulated as follows: on ε− Γ plane5, find periodic functions ε(t) and Γ(t) of the same
period T , such that after one period, they trace out a non-trivial closed loop, and if we
compute

W =

∫ T
0

Pext(t) dt (6.1)

that is the work after one cycle, we get a strictly negative number (so that work has been
done by the system to exterior). Let us recall the expression of Pext up to first order in
driving frequency:

Pext =

∫
dE

2π
Aφ(0)

[
ε̇+

dtΓ

Γ
(E − ε)

]
=

∫
dE

2π

[
Γ

(E − ε)2 + (Γ
2
)2

]2
Γ

2

ΓLfL + ΓRfR
ΓL + ΓR

[
ε̇+

dtΓ

Γ
(E − ε)

]
=

∫
dE

2π

A2Γ

2

ΓLfL + ΓRfR
ΓL + ΓR

[
ε̇+

dtΓ

Γ
(E − ε)

] (6.2)

When we have proportional coupling:

ΓR(t) = λΓL(t) (6.3)

3Non-trivial means that the loop does not reduce to a one-dimensional sector.
4They can be of different periods Tε and TΓ, but their ratio must be a rational number.
5Strictly speaking it is the semi-half plane ε− Γ+ since the coupling strength is non-negative.
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with λ > 0 a time-independent constant, the above becomes:

Pext =

∫
dE

2π

A2Γ

2

fL + λfR
1 + λ

[
ε̇+

dtΓ

Γ
(E − ε)

]
(6.4)

As for the total work done after one period we have:

W =

∫
dE

2π

{
fL + λfR
1 + λ

∫ T
0

dt
A2Γ

2

[
ε̇+

E − ε

Γ
Γ̇

]}

=

∫
dE

2π

[
fL + λfR
1 + λ

∫
γ

A2Γ

2
dε+

A2Γ

2

E − ε

Γ
dΓ

] (6.5)

where

γ : [0, T ] −→ (R,R+)

t 7−→
(
ε(t),Γ(t)

) (6.6)

is a protocol forming a non-trivial simple6 closed loop. In writing the one-parameter t
integral as a two dimensional (ε,Γ) line integral, we are considering A as a function of
ε,Γ for each E:

A(E) =
Γ

(E − ε)2 + (Γ
2
)2

= A(ε,Γ) (6.7)

A straightforward calculation shows that:

∂

∂ε

[
A(ε,Γ)2Γ

2

E − ε

Γ

]
=

A(ε,Γ)2

2
(3− A(ε,Γ)Γ) =

∂

∂Γ

A(ε,Γ)2Γ

2
(6.8)

This is equivalent to saying:

(i) The vector field (A(ε,Γ)2Γ
2

, A(ε,Γ)2Γ
2

E−ε
Γ

) has path-independent line integral.

(ii) W =
∫
γ
Pext dt = 0 for any closed loop γ.

The first item allows us to define the external work done as a state function of (ε,Γ):

W (ε,Γ) =

∫
dE

2π

[
fL + λfR
1 + λ

∫ B

A

A2Γ

2
dε+

A2Γ

2

E − ε

Γ
dΓ

]
(6.9)

with A = (ε0,Γ0) an arbitrary reference point and B = (ε,Γ) the point of interest. Put
it differently, given a protocol (ε(t),Γ(t)):

Under the proportional coupling condition (6.3), the external work done be-
tween two instants ti and tf depends only on the two endpoints P = (ε(ti),Γ(ti))
and Q = (ε(tf ),Γ(tf )), but not the way one traverses from P to Q.

6Simple means the path is not self-intersecting.
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This is rather peculiar and is in sharp contrast with classical situation where work done
from one state to another depends largely on the path traversed. The second item tells us
that for non-pathological periodic protocols (ε(t),Γ(t)), the work done after one period is
always zero. In other words:

In order to design cyclic protocols such that after one period there is a non-zero
work W being done, it is necessary that one breaks the proportional coupling
condition (6.3).

However, it must be stressed that the above conclusions only hold for equations of motion
up to first order in driving frequency. After time integration over a period, the external
work done actually becomes zeroth order. Unfortunately as shown in Appendix E, the
quantum kinetic equation up to second order is too complicated to be handled. We thus
focus only on first order equations (therefore zeroth order for time-integrated work done).

6.3 Four-stroke protocol for work extraction

Bearing in mind the necessity to break proportional coupling (6.3) for a non-trivial cyclic
heat engine, we now discuss a simple case where the total coupling strength is kept fixed:
Γ = ΓL(t) + ΓR(t) with Γ̇ = 0. Then the rate of work done becomes:

Pext =

∫
dE

2π

Γ

2

[
Γ

(E − ε(t))2 + (Γ
2
)2

]2
︸ ︷︷ ︸

A(E,t)

[
ΓL(t)

Γ
fL +

(
1− ΓL(t)

Γ

)
fR

]
︸ ︷︷ ︸

φ(0)(E,t)

ε̇(t) (6.10)

Thus by plotting along energy axis, we can investigate the effects of modulations on A
and φ(0). These are the terms that constitute the (energy) integrand of external power.
When the total coupling strength Γ is fixed, the renormalised spectral function A does not
change its width but moves its centre as we vary ε. On the other hand, the modulation
of ΓL changes the shape of the zeroth order probability distribution φ(0):

(a) (b)

Figure 6.2: (a) Changing the renormalised spectral function A by increasing dot energy
level ε with total coupling strength Γ kept fixed. (b) Changing the steady-state distribution
φ(0) by decreasing hot bath coupling strength ΓL. The transitions are represented from
dashed to solid lines.
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With the above in mind, we propose the following scheme that would allow us to obtain
a negative time-integrated Pext (work output):

(A) Decrease dot energy level ε. This leads to negative Pext and hence work output Wout

when integrated.

(B) Increase hot bath coupling strength ΓL. This does not result in any exchange of work
but will decrease the work that needs to be supplied later to restore the system to
its initial state.

(C) Increase the dot energy level ε back to its initial value, this requires external work
to be done on the dot Win. If the parameters are appropriately tuned, we can expect
to have |Win| < |Wout|.

(D) Decrease the hot bath coupling strength ΓL back to its initial value to start from
step (A) again.

Schematically, the above can be summarised in the following flow chart:

(A) ε̇ < 0, Γ̇L = 0 : Work output

(B) ε̇ = 0, Γ̇L > 0 : Zero work (C) ε̇ > 0, Γ̇L = 0 : Work input

(D) ε̇ = 0, Γ̇L < 0 : Zero work

Figure 6.3: A possible realisation of quantum dot cyclic heat engine. Each process is
represented by a dashed to solid line transition.

63



6.4 Fermi-smoothened trapezoidal driving

Graphically, one possible realisation of protocols ε(t) and ΓL(t) is given by the following
trapezoidal signal:

Figure 6.4: Trapezoidal control for work extraction. If we start from (A) as in Figure 6.3,
then solid line is ε(t) and dashed line ΓL(t).

However, in applying first order gradient expansion, we assumed regularity of all time-
dependent functions so that they admit Taylor expansions and terms of order ∂2

t could
be neglected for slow driving. The first derivative of trapezoidal signal is clearly dis-
continuous. One way to overcome this difficulty is by replacing the ramps with Fermi
functions7:

KC,T (t) =



0

C

(
4t

T
− 1

)
C

4C

(
1− t

T

) −→



0 , t ∈
[
0, T

4

)
C

(
exp

[
−80

(
t
T
− 3

8

)]
+ 1

)−1

, t ∈
[
T
4
, T
2

)
C , t ∈

[
T
2
, 3T

4

)
C

(
exp

[
80
(

t
T
− 7

8

)]
+ 1

)−1

, t ∈
[
3T
4
, T
)

(mod T )

Figure 6.5: Smoothening trapezoidal signal with Fermi functions.

7In fact, there is a whole class of functions, collectively known as sigmoid functions, that allows us
to smoothen the ramp. A sigmoid function admits two different asymptotic values at ±∞ and increases
smoothly from one to another.

64



In choosing the factor 80 in the arguments of exponents, we approximate exp(−10) ≈ 0.
It is worthwhile to mention that, by choosing protocols in which Γ̇ = 0, the expression
for external power is then:

Pext(t) = ε̇(t)N (t) (6.11)

with N (t) the particle number. This allows us to have a nice analogy with ideal gas heat
engine, where the (infinitesimal) work done is given by pdV . In particular, we can draw
a N − ε diagram, in which the area enclosed gives the total external work:

(A)

(B)

(C)

(D)

Figure 6.6: N − ε diagram analogous to ideal gas p − V diagram. Area enclosed is the
external work done. The protocols are ε(t) = −3.0+Kε0,T0(t) and ΓL(t) = KΓ0,T0(t+

T0

4
),

with parameters ε0 = 3.0, Γ0 = 5.0, T0 =
1
ω
, ω = 0.01, TL = 10.0, TR = 1.0, µR = µL = 0.

Each process is labelled as illustrated in Figure 6.3.

For ordinary ideal gas engine, stroke (D) usually restores the pressure back to some
higher value. Here, for quantum dot heat engine using the protocols as mentioned in the
description of Figure 6.6, stroke (D) is degenerate to just a point. This can be understood
by referring back to Figure 6.3, where process (D) decreases hot bath coupling strength
ΓL but does not alter significantly the particle number N . Though we cannot prove this,
by adjusting parameters, it is found that if one insists on having a non-degenerate stroke
(D), then the resulting N − ε diagram will become doubly-connected. That is, for stroke
(D) to be not just a point, there is a point (N , ε) that must be crossed.
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(A)

(B)

(C)

(D)

Figure 6.7: Path-crossing for non-degenerate stroke (D). The net work done is the dif-
ference of areas of the two connected regions. The protocols are ε(t) = 1.0 + Kε0,T0(t)
and ΓL(t) = KΓ0,T0(t +

T0

4
), with parameters ε0 = −3.0, Γ0 = 5.0, T0 = 1

ω
, ω = 0.01,

TL = 10.0, TR = 1.0, µR = µL = 0.

By increasing the amplitude of the modulation of coupling strength, this crossed point
gets shifted and the areas enclosed decrease, leading to lower work output as shown:

Figure 6.8: Coupling strength shifts the crossed point and decreases the area (therefore
work output). Same protocol and parameters as in Figure 6.7 except for Γ0 which varies
from 4.0 to 30.0.

One can draw the same state diagram for the broadened dot energy E − ε and entropy
S − ε. The latter is not particularly illuminating so we will not show it here. For the
E − ε diagram we have:
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(A)

(B)

(C)

(D)

Figure 6.9: E − ε diagram of the system. Strokes (B) and (D) show how energy can
be changed by tuning coupling strength ΓL without changing the dot energy level. The
protocols and parameters are the same as in Figure 6.6.

If anything, it serves as a reminder that in non-weak coupling regime, the dot energy E
is no longer sharply-defined at its level ε but is smeared around it. Thus even when the
dot level ε is unchanged, by modulating the coupling strength ΓL (strokes (B) and (D)),
one could still change the dot energy E . Another observation is how Figure 6.9 bears a
strong resemblance to state diagrams of classical four-stroke engine.

Next, instead of visualising the state variables individually with ε, we plot all three of
them together:

(a)

(b)

Figure 6.10: Three dimensional plots of particle number N , dot energy E and dot en-
tropy S. The different curves are obtained by varying hot bath temperature TL. The hot
bath temperature TL varies from 2.0 to 10.0, then from 30.0 to 50.0. The protocols and
parameters are the same as in Figure 6.6.(a) Front view. (b) Back view.
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We observe a limiting behaviour of the cycles as we increase the hot bath temperature TL.
This is not surprising because a large TL corresponds to a more smeared out steady-state
distribution φ(0). Thus when other parameters (ΓL, ε, µ) are kept fixed, further increasing
TL will only affect slightly the integrals N , E ,S .

Finally, we address the performance of the cyclic heat engine under the Fermi-smoothened

protocol. We plot the total output work Wout = −
∫ T
0
Pext(t) dt as a function of ηC :

Figure 6.11: Total output work as a function of ηC(TL) = 1− TR

TL
with cold bath temperature

fixed at TR = 1.0. The protocols and all parameters except TL are the same as in Figure
6.6.

However, total output work is not a good characterisation of engine performance. In fact,
when designing the protocol, our only intention was to extract as much work as possible,
regardless of the time spent nor the heat required. If we plot Pext as a function of t:
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Figure 6.12: Rate of external power Pext as a function of (period-normalised) time t
T
.

The protocols and all parameters are the same as in Figure 6.6.

we see that two halves of total time are spent not having any change to Pext. They
correspond to strokes (B) and (D), where we modulate ΓL in order to reduce input work
and increase output work. Therefore, the proposed protocol aims at increasing net output
work at the cost of reduced power. Figure 6.11 verifies the work extraction ability of
our proposed protocol, which greatly resembles classical stroke engines. Furthermore, the
extracted work increases with temperature ratio TL

TR
, in accordance with Carnot’s analogy8.

6.5 Sinusoidal modulations

In the previous subsection, we observed that the stationary portions of Fermi control as
illustrated in Figure 6.5 allows for a stroke-like engine but reduces the power. Here, we
take the protocols in Figure 6.4 and replace them by sinusoidals:

ε(t) = 2.0 + 4.0 sin2[ωt],

ΓL(t) = 5.0− 4.0 sin2[ω(t+ ϕ)],
(6.12)

with ω = 0.01 and ϕ =
π

4ω
:

8In his Réflexions[9] the great thermodynamicist compared the motive power (work in present day
terminology) of heat to that of waterfall, in which the temperature difference is compared to the height
of a waterfall in providing motive power.
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Figure 6.13: Sinusoidal controls given by (6.12) as a function of period-normalised time
t
T
with T = π

ω
. Solid line is ε(t) and dashed line ΓL(t).

Next, with this control, fixing µL = µR = 0 and TR = 1.0, we plot the efficiency:

η =
−Wout

Qin

=
−
∫ T

0
Pext(t) dt∫ T

0
J Q

L (t) dt
(6.13)

as a function of ηC(TL) = 1− TR

TL
:

Figure 6.14: Efficiency η as a function of Carnot efficiency ηC(TL) using sinusoidal con-
trols (6.12) and parameters µL = µR = 0 and TR = 1.0.

The above plot is, to say the least, disturbing, for classically one expects the engine
efficiency to increase with ηC , which is the theoretical maximum efficiency, should the
engine be operating reversibly in a Carnot cycle9. If we plot Wout and Qin separately as
functions of ηC :

9Of course, we are not dealing with a classical engine, and in particular isolated adiabatic and isother-
mal processes cannot be defined. In fact, one of the major goals of quantum or nanothermodynamics is
to study parallels or differences with their classical macroscopic counterparts.
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(a) (b)

Figure 6.15: (a) Wout and (b) Qin as functions of ηC using sinusoidal controls (6.12) and
parameters µL = µR = 0 and TR = 1.0.

we see that luckily the work output and heat input are still monotonous with hot bath
temperature TL (as a function of ηC). This is because as we increase TL, we need to
extend the E integration axis and the spectral function picks up more contributions to
the integrals. On the other hand, the problem of η decreasing with ηC can be seen from
Figure 6.15 since Qin increases way too fast for Wout to catch up. This in fact can be
justified from their expressions:

Wout =

∫ T

0

Pext dt =

∫ T

0

dt

∫
dE

2π
A(E, t)︸ ︷︷ ︸
∝ E−4

φ(0)(E, t)︸ ︷︷ ︸
∝ e−βL/R|E|

ε̇(t),

Qin =

∫ T

0

J Q
L (t) dt =

∫ T

0

dt

∫
dE

2π
A(E, t)(E − µL)︸ ︷︷ ︸

∝ E−1

(
fL(E)− φ(E, t)

)︸ ︷︷ ︸
∝ e−βL/R|E|

ΓL(t),

(6.14)

where the asymptotic behaviours are for large |E|. Thus increasing TL allows the (energy)
integrands of both Wout and Qin to pick up more contributions, with the former at a rate
which is E−3 slower. Worse still, to obtain the total work and heat we need integrate
over time which spans from t = 0 to t = T = π

ω
= 100π. Thus the difference gets further

amplified for large time since at each time-step Wout and Qin will increase at different
speed.

Finally, notice that the argument above does not specify the type of modulations. Thus
we have seen that using definition (6.13) as the efficiency η for our cyclic engine, we expect
a decrease of η as the corresponding Carnot efficiency ηC increases via an increase of hot
bath temperature TL.

71



Summary

In this project, by following the literature, we provided detailed derivations in Chapter 2
for the retarded Green’s function and the quantum kinetic equation in Esposito’s article
[1]. Tracing back some of his other articles [24], we then motivated the definitions of
proposed thermodynamic variables in Chapter 3.

Under the wide-band approximation, taking into account all possible modulations, we
solved analytically and perturbatively the quantum kinetic equation in Chapter 4. Though
they are not used, we also obtained perturbative solutions up to second order in Appendix
E.

Next, we obtained expressions for the thermodynamic variables in absence of time-
dependent driving in Chapter 5 and checked the validity of Onsager reciprocal relation.
We also studied the efficiency of a thermoelectric engine operating at maximum power,
and showed graphically that in non-weak coupling, the efficiency is reduced for greater
coupling strength.

Finally, for the case of driven quantum dot, we proved the impossibility of doing work
if a certain proportional coupling is not broken. Then, we proposed protocols that mimic
classical stroke engines. We plotted some state diagrams, in particular, a N − ε diagram
that is analogous to the classical ideal gas engine p− V diagram.

To summarize, we have extended Esposito’s studies on the single-level quantum dot
by considering steady-state regime and proposing protocols for it to operate as a cyclic
heat engine. The next thing to do would be to consider more involved models: a double
dot, a linear chain, or a central system with Coulomb interaction. Alternatively, it is
very speculative but one might hope to replace (or supplement) gradient expansion with
Floquet-Fourier analysis since both involve time-driving and the latter is abundant in the
literature [27][37][38].

Let us thus conclude this thesis with Einstein’s thought on thermodynamics [39]:

A theory is the more impressive the greater the simplicity of its premises,
the more different kinds of things it relates, and the more extended its area
of applicability. Therefore the deep impression that classical thermodynamics
made upon me. It is the only physical theory of universal content which I am
convinced will never be overthrown, within the framework of applicability of its
basic concepts.
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Appendix A

Moving S-matrices into Tt
{
. . .
}

In this appendix we justify the passage from (1.27):

GΦ(t1, t2)

=− i

~
〈
ΦI(+∞)

∣∣S(+∞, t0)Tt
{
S(t0, t1)aI(t1)S(t1, t2)a

†
I(t2)S(t2, t0)

}
S(t0, -∞)

∣∣ΦI(-∞)
〉

to (1.28):

GΦ(t1, t2)

=− i

~
〈
ΦI(+∞)

∣∣ Tt{S(+∞, t1)aI(t1)S(t1, t2)a
†
I(t2)S(t2, -∞)

} ∣∣ΦI(-∞)
〉

First, observe that there are three time instants (t0, t1, t2) inside Tt. It is convenient
to regard t0 as the time beyond which we start to study our system: t0 ≤ min(t1, t2).
Therefore, only two cases: t0 ≤ t1 ≤ t2 or t0 ≤ t2 ≤ t1 are possible. We first consider the
latter case. Tt does nothing, and the operators inside the braket become:

S(+∞, t0)Tt
{
S(t0, t1)aI(t1)S(t1, t2)a

†
I(t2)S(t2, t0)

}
S(t0, -∞)

=S(+∞, t0)S(t0, t1)aI(t1)S(t1, t2)a
†
I(t2)S(t2, t0)S(t0, -∞)

=S(+∞, t1)aI(t1)S(t1, t2)a
†
I(t2)S(t2, -∞)

(A.1)

Since we are in the case t1 ≥ t2 ≥ t0, the scattering matrix S(+∞, t1) contains terms
whose time argument is always greater than those to the right of it. Similarly, S(t2, -∞)
contains terms whose time argument is always less than those to the left of it. Put it
differently: the operators are already time-ordered, so we have

S(+∞, t1)aI(t1)S(t1, t2)a
†
I(t2)S(t2, -∞)

=Tt
{
S(+∞, t1)aI(t1)S(t1, t2)a

†
I(t2)S(t2, -∞)

} (A.2)

73



Turning to the case t2 ≥ t1 ≥ t0, we have

S(+∞, t0)Tt
{
S(t0, t1)aI(t1)S(t1, t2)a

†
I(t2)S(t2, t0)

}
S(t0, -∞)

=S(+∞, t0)Tt
{
aH(t1)a

†
H(t2)

}
S(t0, -∞)

=S(+∞, t0)
{
− a†H(t2)aH(t1)

}
S(t0, -∞)

=S(+∞, t0)
{
− S(t0, t2)a

†
I(t2)S(t2, t1)aI(t1)S(t1, t0)

}
S(t0, -∞)

=− S(+∞, t2)a
†
I(t2)S(t2, t1)aI(t1)S(t1, -∞)

(A.3)

Again, this last line is already time-ordered, leading to

− S(+∞, t2)a
†
I(t2)S(t2, t1)aI(t1)S(t1, -∞)

=− Tt
{
S(+∞, t2)a

†
I(t2)S(t2, t1)aI(t1)S(t1, -∞)

} (A.4)

We demonstrate that after some manipulations, (A.4) will become identical to (A.2).
Indeed, switching back to Heisenberg picture and using the fact that fermionic operators
anticommute under Tt:

− Tt
{
S(+∞, t2)a

†
I(t2)S(t2, t1)aI(t1)S(t1, -∞)

}
=Tt

{
− S(+∞, t0)S(t0, t2)a

†
I(t2)S(t2, t1)aI(t1)S(t1, t0)S(t0, -∞)

}
=Tt

{
− S(+∞, t0)a

†
H(t2)aH(t1)S(t0, -∞)

}
=Tt

{
S(+∞, t0)aH(t1)a

†
H(t2)S(t0, -∞)

}
=Tt

{
S(+∞, t1)aI(t1)S(t1, t2)a

†
I(t2)S(t2, -∞)

}
(A.5)

Hence, referring back to (1.27), for both cases, we can safely put the far-future and
distant-past scattering matrices inside Tt:

GΦ(t1, t2)

=− i

~
〈
ΦI(+∞)

∣∣ Tt{S(+∞, t1)aI(t1)S(t1, t2)a
†
I(t2)S(t2, -∞)

} ∣∣ΦI(-∞)
〉 (A.6)
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Appendix B

Familiarizing with Tt and Tτ

In this appendix, we describe the actions of Tt and Tτ on more than two operators.

B.1 Actions of Tt
When more than two operators are acted upon by Tt, its action is to be applied recursively.
To illustrate this point, we denote

Ai = Ai(ti)

We then have

Tt{A1 . . . Ak . . . An}
= (−1)k−1Ak Tt{A1 . . . Ak−1Ak+1 . . . An}
= (−1)k−1Ak (−1)m−1Am Tt{A1 . . . Ak−1Ak+1 . . . Am−1Am+1 . . . An}
= . . .

where we have assumed that tk > tm > ti, ∀i 6= m, k. In the hope of providing further
clarity, we consider three operators A1, A2, A3 with t1 < t2 < t3. We have

Tt{A1A2A3} = (−1)2A3 Tt{A1A2}
= A3 [(−1)A2A1]

= −A3A2A1

For the first line, A3 is moved twice to the leftmost position and out from Tt, incurring a
(−1)2 factor, whereas for the second line, we simply apply the definition of Tt acting on
only two operators.

B.2 Actions of Tτ
Let us now consider the case of three contour-times, τ1, τ2, τ3:
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t

τ3

τ2τ1

Figure B.1: A contour on which τ1, τ2, τ3 are located.

Clearly, τ3 � τ2 � τ1. Hence, on three fermionic operators A,B,C, the action of Tτ is
given by:

Tτ
{
A(τ1)B(τ2)C(τ3)

}
= Tτ

{
A(τ1)[−C(τ3)B(τ2)]

}
Swap B,C with a minus sign

=− Tτ
{
[−C(τ3)A(τ1)]B(τ2)

}
Swap A,C with a minus sign

= + Tτ
{
C(τ3)[−B(τ2)A(τ1)]

}
Swap A,B with a minus sign

=− Tτ
{
C(τ3)B(τ2)A(τ1)

}
=− C(τ3)B(τ2)A(τ1) All operators are now contour-ordered

Finally, as mentioned previously, two equal contour times are not comparable. Therefore,
as in the case for time-ordering, the order of two operators at equal contour time is
unchanged by Tτ . Using Figure B.1 as example, with four fermionic operators A,B,C,D,
we have:

Tτ
{
A(τ1)B(τ2)C(τ3)D(τ1)

}
= Tτ

{
A(τ1)[−C(τ3)B(τ2)]D(τ1)

}
= −Tτ

{
[−C(τ3)A(τ1)]B(τ2)D(τ1)

}
= +Tτ

{
C(τ3)[−B(τ2)A(τ1)]D(τ1)

}
= −C(τ3)B(τ2)Tτ

{
A(τ1)D(τ1)

}
= −C(τ3)B(τ2)A(τ1)D(τ1)

(B.1)

From these, one can inductively deduce the action of Tτ for an arbitrary number of
operators.
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Appendix C

Extending a contour to +∞±

We show that the scattering matrix SC(τ−0 , τ+0 ) in

G(τ1, τ2) = −
i

~

〈
Tτ
{
dI(τ1)d

†
I(τ2)SC(τ−0 , τ+0 )

}〉
0

(C.1)

can be transformed to SCext(τ
−
0 .τ

+
0 ), where C is the following contour1:

τ1

τ2Cτ−0

τ+0

Figure C.1: A general contour C.

and Cext is the same contour extended to +∞±:

τ1

τ2τ−0

τ+0

τ = (+∞,−)

τ = (+∞,+)

Cext

Figure C.2: An extended contour Cext from Figure C.1.

In other words, we intend to show that:

Tτ
{
dI(τ1)d

†
I(τ2)SC(τ−0 , τ+0 )

}
= Tτ

{
dI(τ1)d

†
I(τ2)SCext(τ

+
0 , τ

−
0 )
}

(C.2)

First of all, suppose τ1 � τ2. We begin with the RHS, and to fix idea we choose τ1, τ2 as
located on Figure C.2:

Tτ
{
dI(τ1)d

†
I(τ2)SCext(τ

+
0 , τ

−
0 )
}

=Tτ
{
dI(τ1)d

†
I(τ2)

[
S(τ+0 , τ1)S(τ1, +∞+)S(+∞−, τ2)S(τ2, τ−0 )

]}
=S(τ+0 , τ1)dI(τ1)S(τ1, +∞+)S(+∞−, τ2)d

†
I(τ2)S(τ2, τ−0 )

(C.3)

1We mentioned in Subsection 2.2.2 that it does not matter whether τ2 lies on upper or lower branch
since for both cases τ1 � τ2, but in order to write a proof we here fix τ2 on the upper branch.
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Here comes a good opportunity to investigate the meaning of a scattering matrix admitting
contour times as arguments. Consider the two S−matrices sandwiched between dI(τ1)
and d†I(τ2). For S(+∞−, τ2), since both +∞− and τ2 are on the upper branch, we have:

S(+∞−, τ2) = Tτ exp
[
− i

~

∫
γ

VI(τ) dτ

]
γ is the path τ2 → +∞−

= Tt exp
[
− i

~

∫ +∞

t2

VI(s) ds

]
Along γ every contour times lie on the same branch

= S(+∞, t2) The definition of a real-time S−matrix

where, the first line is the formal definition (which serves only manipulations) of a contour-
time scattering matrix, whereas the second line is its operationnal definition (which, in
principle, can be computed). For the same reason, the other S−matrix is given by:

S(τ1, +∞+) = Tt exp
[
− i

~

∫ t1

+∞
VI(s) ds

]
(C.4)

Therefore the product of these two can be simplified:

S(τ1, +∞+)S(+∞−, τ2) =

Tt exp
[
− i

~

∫ t1

+∞
VI(s) ds

]
Tt exp

[
− i

~

∫ +∞

t2

VI(s) ds

]
= S(t1, +∞)S(+∞, t2)

= S(t1, t2)

= Tt exp
[
− i

~

∫ t1

t2

V (s) ds

]

= Tτ exp
[
− i

~

∫
γ̃

V (τ) dτ

]
= S(τ1, τ2)

where γ̃ is the path τ2 → τ1 as in Figure C.1. Equation (C.3) then becomes:

Tτ
{
dI(τ1)d

†
I(τ2)SCext(τ

+
0 , τ

−
0 )
}

= S(τ+0 , τ1)dI(τ1)S(τ1, +∞+)S(+∞−, τ2)d
†
I(τ2)S(τ2, τ−0 )

= S(τ+0 , τ1)dI(τ1)S(τ1, τ2)d
†
I(τ2)S(τ2, τ−0 )

= Tτ
{
S(τ+0 , τ1)dI(τ1)S(τ1, τ2)d

†
I(τ2)S(τ2, τ−0 )

}
= Tτ

{
dI(τ1)d

†
I(τ2)

[
S(τ+0 , τ1)S(τ1, τ2)S(τ2, τ−0 )

] }
= Tτ

{
dI(τ1)d

†
I(τ2)SC(τ+0 , τ−0 )

}
(C.5)

Thus for τ1 � τ2 with τ1 on the lower and τ2 on the upper branch (as in Figure C.1),
identity (C.2) is true. The proofs for five other possibilities follow in the same manner
and it would not be useful to write them all here.
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Appendix D

Exact Solution of First Order
Quantum Kinetic Equation

We provide a detailed solution of the first order quantum kinetic equation (4.6):[
∂

∂t
+
(
ε̇+ (E − ε(t))

dtΓν

Γν

) ∂

∂E

]
φ =

2

A

[
ΓLfL + ΓRfR

ΓL + ΓR

− φ

]
(D.1)

First, let

v(E, t) = ε̇+ (E − ε(t))
dtΓν

Γν

(D.2)

and

s(E, t) =
2

A

[
ΓLfL + ΓRfR

ΓL + ΓR

− φ

]
(D.3)

We then have [
∂

∂t
+ v(E, t)

∂

∂E

]
φ(E, t) = s(E, t) (D.4)

Suppose z = φ(E, t) is a solution. If we now consider a function w(t, E, z) = φ(E, t)− z,
then the two dimensional surface w = 0 yields the function we seek, z = φ(E, t). The
advantage of going one dimension higher is that we can write (4.6) as:[

1 v(E, t) s(E, t)
]
·
[
∂φ

∂t

∂φ

∂E
−1
]
= 0 (D.5)

The second vector in the dot product is nothing but the gradient of w:

∇w(t, E, z) =

[
∂φ

∂t

∂φ

∂E
−1
]

(D.6)

Therefore, suppose we have a curve

γ : R −→ R3

λ 7−→
[
t(λ) E(λ) z(λ)

] (D.7)
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such that its tangent vector satisfies

dt(λ)

dλ
= 1

dE(λ)

dλ
= v(λ) = v(E(λ), t(λ))

dz(λ)

dλ
= s(λ) = s(E(λ), t(λ))

(D.8)

Then, (D.5) is saying that the curve γ(λ) is always perpendicular to ∇w. Thus if we
choose the initial condition γ(λ = 0) such that it lies on the surface w = 0, then the curve
stays on the surface for all λ > 0. Since z = φ on w = 0, solving for the third component
of γ(λ) is therefore tantamount to solving for φ. Hence, we seek to solve (D.8) subject to
the initial condition

t(λ = 0) = 0

E(λ = 0) = E0

z(λ = 0) = φ(E0, 0)

(D.9)

The first component is easy: t(λ) = λ. Next, using prime ′ to denote d
dλ
, with the result

t = λ we have for the second component:

E ′(λ) = ε′(λ) + (E(λ)− ε(λ))
Γ′
ν(λ)

Γν(λ)

E(λ)− ε(λ) =
E(0)− ε(0)

Γν(0)
Γν(λ)

(D.10)

As for the last component, denote g = ΓLfL+ΓRfR
ΓL+ΓR

. Recalling that we start from the surface
w = 0 to ensure z = φ. Thus we need to solve the following first order inhomogeneous
ordinary differential equation:

dφ(λ)

dλ
=

2

A(λ)
(g(λ)− φ(λ)) (D.11)

with initial condition φ(λ = 0) = φ(E(λ = 0), t(λ = 0)). This is doable and we provide
the solution:

φ(λ) = φ(0) exp
[
−
∫ λ

0

2

A(µ)
dµ
]
+

∫ λ

0

(
exp

[
−
∫ λ

µ

2

A(α)
dα
]) 2

A(µ)
g(µ)dµ (D.12)

Now we must revert to the original variables E, t. Earlier we denoted E(λ) = E0 to
avoid confusion, but this “initial energy” is really just an arbitrary point on energy axis:
E0 → E. Thus for the spectral function A(λ) = A(E(λ), t(λ)), we have:

A(E(λ), t(λ)) =
Γν(λ)

(E(λ)− ε(λ))2 + (Γν

2
)2

=

[(
E − ε(0)

Γν(0)

)2

+
1

4

]−1
1

Γν(t)

(D.13)

80



As for the Fermi functions:

fν(E(λ)) = fν

(
ε(t) +

E − ε(0)

Γν(0)
Γν(t)

)
(D.14)

Denote

K(E, t) = 2

[(
E − ε(0)

Γν(0)

)2

+
1

4

]
Γν(t) (D.15)

and

g(E, t) =
ΓL(t)fL

(
ε(t) + E−ε(0)

Γν(0)
Γν(t)

)
+ ΓR(t)fR

(
ε(t) + E−ε(0)

Γν(0)
Γν(t)

)
ΓL(t) + ΓR(t)

(D.16)

we thus obtain an explicit expression for the occupation probability:

φ(E, t) = φ(E, 0)e−
∫ t
0 K(E,t′)dt′ +

∫ t

0

e−
∫ t
t′ K(E,t′′)dt′′K(E, t′)g(E, t′)dt′ (D.17)
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Appendix E

Second Order Gradient Expansion

In this appendix we discuss second order gradient expansion. We need to return to

(2.134) and expand the operator
←→G to second order in ∂

∂t
, for the symbolic commutator,

anticommutator, as well as for g−1. Here we reintroduce ~ to keep track of dimensional
consistency. Since the procedure is similar as discussed in Section 2.7, we only list the
results:

W ({g−1, h}) =

[
2(E − ε(t)) +

~2

4
ε̈(t)∂2

E

]
h(E, t) (E.1)

W ([g−1, h]) = i~(∂t + ε̇(t)∂E)h(E, t) (E.2)

W ({A,B}) = 2AB − ~2

4
(∂2

EA∂2
tB + ∂2

tA∂2
EB) (E.3)

W ([A,B]) = i~{A,B}E,t +
~2

2
(∂tA∂EA∂tB ∂EB) (E.4)

Next, we directly invoke wide-band approximation, so that ΣR = − iΓ
2
and ∂EΓ = 0.

E.1 Second order retarded Green’s function

We apply the new rules to (2.145) to obtain the following equation for the retarded Green’s
function:

~2

8

(
ε̈− iΓ̈

2

)
∂2
EG

R = 1−
(
E − ε+

iΓ

2

)
GR (E.5)

Writing GR(E, t) = GR(0)
(E, t) +GR(1)

(E, t) +GR(2)
(E, t), we find that:

GR(0)
=

1

E − ε(t) + iΓ
2

(E.6)

GR(1)
= 0 (E.7)

GR(2)
= −~2

8

ε̈− iΓ̈
2

E − ε+ iΓ
2

∂2
EG

R(0)
(E.8)
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E.2 Second order quantum kinetic equation

As above, we apply the new rules to the Kadanoff-Baym equation for G< under the wide
band limit. Invoking again the Kadanoff-Baym ansatz G< = iAφ and bearing in mind
that to second order the Botermans-Malfliet approximation is no longer valid, we obtain
the following equation for φ:

(∂t + ε̇∂E)(Aφ) + (∂EReG
R)Γ̇f − (∂tReG

R)(∂Ef)Γ +
~
2
(∂tReG

R)(∂EReG
R)(Γf)Γ̇∂Ef

=
1

~
ΓA(f − φ)− ~

8

[
Γ(∂2

Ef)(∂
2
tA) + f Γ̈∂2

EA− Γ̈∂2
E(Aφ)

]
(E.9)

where we remind that when Γ and f appear together they must be summed over reser-
voirs. For completeness, we list here the perturbative solutions for φ(E, t) = φ(0)(E, t) +
φ(1)(E, t) + φ(2)(E, t), even though we will not be using them due to their complexities:

φ(0) =
ΓLfL + ΓRfR

ΓL + ΓR

(E.10)

φ(1) = −~
Γ

{
A

[
1

4
−
(
E − ε

Γ

)2
] [

(Γ̇LΓR − Γ̇RΓL)(fL − fR) + ε̇(ΓL∂EfL + ΓR∂EfR)
]

+
AΓ̇

2Γ
(E − ε)(ΓL∂EfL + ΓR∂EfR) + (∂t + ε̇∂E)φ

(0)

}
(E.11)

where A = A(0) = −2ImGR(0)
. The reason that it does not agree with (4.14) is because

for expressions accurate to second order in ∂t, one could not apply the Botermans-Malfliet
approximation. As for φ(2) we have:

φ(2) = − ~
AΓ

{
(∂tA+ ε̇∂E)φ

(1) + A(∂t + ε̇∂E)φ
(1)

+
~
2

(
∂tReG

R
)(

∂EReG
R
)
(ΓLfL + ΓRfR)(Γ̇L∂EfL + Γ̇R∂EfR)

− ~
8

[
(ΓL∂

2
EfL + ΓR∂

2
EfR)∂

2
tA+ (Γ̈LfL + Γ̈RfR)∂

2
EA− ∂2

t Γ∂
2
E

(
Aφ(0)

)]}
(E.12)

Finally, we conclude this Appendix with the following remark: when
←→G is expanded up

to first order in ∂t, we had a convection equation, cf. (4.6). Interestingly, when we keep ∂t
up to second order, we obtain a drift-diffusion equation (E.9), since the only derivatives
(acting on φ) involved are ∂t, ∂E and ∂2

E.
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dauerBüttiker formula. J. Math. Phys. 46, 042106 (2005).

[29] D. Kondepudi, I. Prigogine. Modern Thermodynamics: From Heat Engines to Dis-
sipative Structures, 2nd Edition. John Wiley & Sons Inc. ISBN-13: 978-1118371817
(2014).

85



[30] N. Pottier. Nonequilibrium Statistical Physics: Linear Irreversible Processes. Oxford
University Press. ISBN-13: 978-0199556885 (2009).

[31] S.R. De Groot, P. Mazur. Non-Equilibrium Thermodynamics. Dover Publications.
ISBN-13: 978-0486647418 (2011).

[32] G. Verley, T. Willaert, C. Van den Broeck, and M. Esposito. Universal theory of
efficiency fluctuations. Phys. Rev. E 90, 052145 (2014).

[33] M. Campisi. Fluctuation relation for quantum heat engines and refrigerators. J. Phys.
A: Math. Theor. 47 245001 (2014).

[34] F.L. Curzon, B. Ahlborn. Efficiency of a Carnot engine at maximum power output.
American Journal of Physics, Volume 43, Issue 1, pp. 22-24 (1975).

[35] M. Esposito, K. Lindenberg and C. Van den Broeck. Thermoelectric efficiency at
maximum power in a quantum dot. EPL 85 60010 (2009).

[36] Z.C. Tu. Efficiency at maximum power of Feynman’s ratchet as a heat engine. J.
Phys. A: Math. Theor. 41 312003 (2008).

[37] G.B. Cuetara, A. Engel and M. Esposito. Stochastic thermodynamics of rapidly driven
systems. New J. Phys. 17 055002 (2015).

[38] A. Agarwal, D. Sen. Equation of motion approach to non-adiabatic quantum charge
pumping. J. Phys.: Condens. Matter 19 046205 (2007).

[39] P. A. Schilpp. Albert Einstein, Philosopher-Scientist: The Library of Living Philoso-
phers Volume VII. Open Court. ISBN-13: 979-0875482865 (1998).

86


	Introduction
	Equilibrium Green's Function
	The Free-electron case
	The General case

	Non-equilibrium Green's Function
	The Model
	Contour-ordered Green's function
	Contour and Contour-ordering
	Contour-ordered Green's function

	Dyson equation
	Wick's theorem
	Feynman diagram

	Projections of Dyson equation
	Greater and lesser Green's functions
	Lesser projection of a double product
	Advanced and retarded Green's functions
	Projections of triple product

	Kadanoff-Baym equations
	Wigner transform
	Definition
	Convolution under Wigner transform

	First order gradient expansion
	{,} and [,] under gradient expansion
	g-1 under gradient expansion

	Solution for GR
	Solution for G<
	Self energy  and spectral function A

	Thermodynamics of Quantum Dot
	Particle number
	Energy
	Energy current
	Heat current
	Work current
	External power

	Entropy

	Quantum Kinetic Equation
	Exact solution
	Perturbative solution
	Steady-state solution
	First-order solution


	Steady-state Regime
	Currents and entropy
	Near-equilibrium thermodynamics
	Linear irreversible thermodynamics
	Thermoelectric engine
	Thermopower and thermoelectric efficiency
	Carnot efficiency
	Curzon-Ahlborn efficiency

	Thermoelectric efficiency at maximum power
	Weak-coupling optimization
	Ordinary optimization


	Driven Quantum Dot
	Cyclic heat engine
	 and  as state parameters
	Four-stroke protocol for work extraction
	Fermi-smoothened trapezoidal driving
	Sinusoidal modulations

	Summary
	Moving S-matrices into Tt{to1.5.…}to1.5.
	Familiarizing with Tt and T
	Actions of Tt
	Actions of T

	Extending a contour to +
	Exact Solution of First Order Quantum Kinetic Equation
	Second Order Gradient Expansion
	Second order retarded Green's function
	Second order quantum kinetic equation


