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ABSTRACT

We adapt the result for the semiclassical particle density of a non-interacting Fermi gas

in a one-dimensional potential with two turning points in [Ribeiro et al., PRL 114, 050401

(2015)] to isotropic potentials in higher dimensions. We also propose another method for

finding particle density via the quantum propagator, which is illustrated by two concrete

examples in one dimension. The resultant densities in these examples are found to be the

same as those given by the first method. The discussions pave the way for further refinements

of semiclassical physics including Thomas-Fermi model (TF), and density functional theory

(DFT).
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I. INTRODUCTION

I.1. Introduction

Dirac once commented [2],“The underlying physical laws necessary for the mathematical

theory of a large part of physics and the whole of chemistry are thus completely known,

and the difficulty is only that the exact application of these laws leads to equations much

too complicated to be soluble. It therefore becomes desirable that approximate practical

methods of applying quantum mechanics should be developed, which can lead to an expla-

nation of the main features of complex atomic systems without too much computation.” The

comment reflects a seemingly common situation in all sorts of physical theories. From the

observation of a handful of physical phenomena, scientists try to describe nature in terms of

some simple (or elegant) principles that can be applied to explain other phenomena (we are

talking about the power of prediction of a physical theory). However, no matter how hard

we try, there is still some gap between ideal and reality. Exact solutions to most physical

systems are just unachievable. The classical chaos, the Navier-Stokes equations, the Einstein

equations, and the Schrödinger equation are some examples. One simply has to resort to

approximations, perturbation methods, and the like.

In quantum mechanics, the widely used approximations are the JWKB method, and

the TF model [1, 3–5]. The former is along the line of solving the Schrödinger equation

approximately in the semiclassical regime (where ~ is smaller than the classical action).

The latter can be derived from the statistical method and is seemingly independent of the

Schrödinger equation. Soon after its birth, the TF model was applied extensively to complex

atomic systems and predicted the binding energy of neutral atoms, with a precision of about

10 percent [1]. Being largely classical, the model needs to be further refined in order to give

rise to better approximations. It eventually led to DFT, which was put on a firm theoretical

footing by the Hohenberg-Kohn theorem [6]. DFT now is a powerful tool for predicting the

electronic properties of atomic structures in condensed matter physics and chemical physics

(see the review papers [7–9]).

Among the observables that are of interest in any consideration of complex systems, one

of the most important is the particle density. It is also the main variable in DFT, which

states that the total energy of a system is a functional of the particle density, and the ground
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state particle density is the one that minimizes this density functional. In the present work,

we look at the ground state particle density in a limited context of non-interacting fermions,

which are subject to the same external potential. Interacting fermions, however, can be

considered to move in a common effective potential, and the problem can be reduced to

the non-interacting case. Of the attempts at modifying the TF particle density, which does

not reflect quantum effects, a notable result for one-dimensional potentials with two turning

points is reported by Ribeiro et al. [10]. The authors use the Langer wave function [11, 12]

as an approximation to the single-particle wave function and derive from it the semiclassical

ground state particle density. This semiclassical particle density is found to have a closed

form expression and gives an accurate approximation to the exact density. One motivation

of this project is to generalize this result to higher dimensions, starting with the isotropic

case.

Another line of attack is through the Feynman path integral formalism of quantum me-

chanics. We propose a method for obtaining particle density via the quantum propagator.

There has been a great deal of research in this field such as on the semiclassical quantum

propagator, and the trace formula [5, 13]. However, they do not consider the particle density

and its leading contribution specifically. Potentially, the new method can be generalized to

higher dimensions, in which the propagator is well defined.

The outline of the present report is as follows. Section II is devoted to the discussion of

the result by Ribeiro et al., including the Langer wave function and the expression for the

semiclassical ground state particle density. Section III is an extension of this semiclassical

particle density to isotropic potentials in higher dimensions, where we first consider the

Langer wave function (or semiclassical wave function) for the radial motion and the corre-

sponding radial particle density. We then use the examples of the harmonic oscillator and

Coulomb potentials in two and three dimensions to demonstrate the obtaining of the particle

density for fully filled shells. Finally, in section IV, we derive a formula for particle density

in terms of the quantum propagator. We also discuss the van Vleck-Gutzwiller semiclassical

propagator formula as well as the short-time approximation in choosing classical trajecto-

ries. We illustrate the new method with two concrete examples in one dimension. Various

physical insights have been deduced from these examples to prepare for the treatment of the

general case.

Some theoretical works in this paper were done in collaboration with Hue Jun Hao.
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Collaboration shows in the discussions on the Langer wave function in one dimension, the

leading contribution to the semiclassical density by Ribeiro et al., and the short-time ap-

proximation.

I.2. Conventions and notations

In this report, we use extensively the family of functions Fm (z) employed, for example

by Englert in [1]. This class of functions, related to the Airy function and its derivative, is

defined as

F0 (z) = [Ai (z)]2 (1)

and

Fm (z) =

(
− d

dz

)−m
F0 (z) , for integer m, (2)

where (d/dz)−1 signifies (
d

dz

)−1
f (z) = −

∫ ∞
z

dz′f (z′) (3)

Appendix 1 summarizes some recurrence and asymptotic properties of the functions Fm as

well as the expressions of the functions for some values of m that are useful in this work.

Throughout the report, the derivatives w.r.t time of certain quantities may be found

denoted by overdots, and those w.r.t position by primes.

We also assume that all fermions are spin-polarized. In other words, they have the same

spin and we neglect the spin multiplicity of 2 for each orbital.

There are several technical calculations in the appendices that the reader can skip in the

first reading.

It is also worth clarifying the units used in various numerical calculations in the present

report. Throughout, we work in the units where the mass of the particle m, the reduced

Planck constant ~, and the charge of the particle e are equal to one. For the example of the

Morse potential, V (x) = D
(
e−2βx − 2e−βx

)
, in section II, we choose D = 15 and β = 1

4
. For

the harmonic oscillator in all dimensions in sections III and IV, we choose ω = 1. Finally,

for the symmetrical linear potential in section IV, we choose f = 1.
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II. DISCUSSION OF THE RESULT BY RIBEIRO ET AL.

II.1. Introduction

In this section, the semiclassical particle density for non-interacting fermions in a one-

dimensional potential with two turning points by Ribeiro et al. [10] will be presented. An

analysis of the authors’ arguments starts with a discussion on the Langer wave function (19),

continuous in the entire domain, as an approximation to the single-particle wave function.

The authors derive from this semiclassical wave function a closed form formula for the

particle density (25), which is a correction to the TF density. We discuss some features of

this formula including its dominant term (27) and illustrate it by a one-dimensional Morse

potential, as done in [10].

II.2. Langer wave function

The one-dimensional time-independent Schrödinger equation for one particle with mass

m can be written as
d2

dx2
ψ (x) +

p2 (x)

~2
ψ (x) = 0, (4)

where ψ (x) is the wave function and the classical momentum p (x) is given by

p2 (x) = 2m (E − V (x)) ,

where E is the energy eigenvalue, and V (x) is the one-dimensional potential energy.

There are only a limited number of problems that have exact solutions. There have been,

therefore, various schemes for finding approximate solutions to the Schrödinger equation,

notably in the semiclassical regime , where the reduced Planck constant ~ is small compared

to the classical action.

One such scheme is well known under the name JWKB method, after Jeffreys [14], Wentzel

[15], Kramers [16], and Brillouin [17]. Concise rederivation can be consulted in many texts

(see for example [5, 18]). In this method, the wave function is expressed as the product of

an amplitude and a phase factor, which can be expanded in orders of ~. The method yields

an approximation to the wave function to first order, valid on both sides of a turning point

(one of the zeros of the classical momentum). A connection between these two solutions

is obtained by comparing them with the asymptotic solution by the local analysis of the
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Schrödinger equation at the turning point. One remarkable result is the quantization rule

for the bound state energy eigenvalues of a potential well, obtained by requiring the wave

function to be single-valued.

-

6

E

x1 x2 x

V (x)

Figure 1. A typical potential in one dimension with two turning points x1 and x2.

For a typical potential well with two turning points x1 and x2 as shown in figure 1, the

energy eigenvalues are given approximately by

∫ x2

x1

p (x) dx =

∫ x2

x1

√
2m (E − V (x))dx =

(
n+

1

2

)
π~, (5)

where the integral is taken from one turning point to another and n is a non-negative integer,

which is also the number of nodes of the wave function [5].

The condition for the approximation to work to the first order is that the variation of the

potential should be small enough (see [5]), so that√
~2
2m

|V ′ (x)|
(E − V (x))3/2

� 1. (6)

This is essentially a condition on the de Broglie wave length λ = ~
p(x)∣∣∣∣∂λ∂x

∣∣∣∣� 1. (7)

This method, however, has the disadvantage that the wave function diverges as 1√
|p(x)|

in

the neighborhood of a turning point.

Langer [19] generalized the JWKB method to get a semiclassical wave function that is

continuous in the whole domain including the turning point(s). The general method is known

as Airy uniform approximation to the one-dimensional Schrödinger equation (cf. [20]). A
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review is given in Appendix 3. Near the left turning point x1, the semiclassical wave function

is found by this method to be

ψ (x) =

[
z (x)

p2 (x)

]1/4
Ai (−z (x)) , (8)

where

z (x) =


[

3
2~

∫ x
x1
p (x′) dx′

]2/3
, for x > x1,

−
[

3
2~

∫ x1
x
|p (x′)| dx′

]2/3
, for x < x1.

(9)

z (x) can be written in terms of a quantity called the abbreviated action or the reduced action

(see [21]) with respect to the left turning point x1, given by

S1 (x) =

∫ x

x1

p (x′) dx′ =

∫ x

x1

√
2m (E − V (x′))dx′. (10)

The abbreviated action S1 (x) (in short, “action”, if there is no ambiguity) can be continued

analytically into the classically forbidden region if the phase of the classical momentum p (x)

is suitably chosen in that region. When x < x1, we put

p (x) = eiπ/2 |p (x)| .

This gives rise to

S1 (x) =

∫ x1

x

(
−eiπ/2

)
|p (x′)| dx′

= ei3π/2
∫ x1

x

|p (x′)| dx′,
(11)

and z (x) can then be defined as

z (x) =

[
3

2~
S1 (x)

]2/3
. (12)

The phase factor ei3π/2 gives z (x) the negative sign and ensures that the wave function in

equation (8), following the property of Airy function (see [20]), tends to zero rapidly in the

forbidden region. The Airy uniform approximation method applies equally well near the

right turning point x2. In this case, we simply replace the action with respect to the left

turning point by that with respect to the right turning point

S2 (x) =

∫ x2

x

p (x′) dx′ =

∫ x2

x

√
2m (E − V (x′))dx′. (13)
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For the approximate eigenfunction to be continuous everywhere, Miller [12] suggests a

connection formula, whereby the action from the left and from the right turning points are

matched at a mid-phase point xm defined by∫ xm

x1

p (x) dx =

∫ x2

xm

p (x) dx =
1

2

∫ x2

x1

p (x) dx. (14)

With the JWKB quantization rule (5), the mid-phase point xm is found to satisfy∫ xm

x1

p (x) dx =
1

2

(
n+

1

2

)
π~. (15)

Altogether, the function zn (x) corresponding to each bound state energy eigenvalue En

for a potential well with two turning points x1 and x2 is given by

In the classically allowed region:

zn (x) =

[
3

2~

∫ x

x1

dx′
√

2m (En − V (x′))

]2/3
, for x < xm,

zn (x) =

[
3

2~

∫ x2

x

dx′
√

2m (En − V (x′))

]2/3
, for x > xm.

(16)

In the classically forbidden region:

zn (x) = −
[

3

2~

∫ x1

x

dx′
√

2m (V (x′)− En)

]2/3
, for x < x1,

zn (x) = −
[

3

2~

∫ x

x2

dx′
√

2m (V (x′)− En)

]2/3
, for x > x2.

(17)

In passing, we deduce from these relations that

∂zn (x)

∂x
=


pn(x)

~
√
zn(x)

, for x < xm,

− pn(x)

~
√
zn(x)

, for x > xm.
(18)

The normalized semiclassical eigenfunctions (called the Langer wave functions) are given

by [10–12]

ψn (x) =

√
2mωn
pn (x)

z1/4n (x) Ai (−zn (x)) , (19)

where ωn is the angular frequency of the classical orbit corresponding to the energy level

En, given by the JWKB quantization rule (5). By taking derivative w.r.t n of

S1 (x2) =

∫ x2

x1

dx′
√

2m (En − V (x′)) = π~
(
n+

1

2

)
, (20)
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we infer for later reference that

∂En
∂n

∂

∂En

∫ x2

x1

dx′
√

2m (En − V (x′)) = π~

⇐⇒ ∂En
∂n

∫ x2

x1

dx′
1√

2
m

(En − V (x′))︸ ︷︷ ︸
Tn
2

= π~

⇐⇒ ωn =
2π

Tn
= ~−1

∂Eλ
∂λ

∣∣∣∣
λ=n

,

(21)

where Tn is the period of the periodic classical orbit of energy En. The Langer wave function

(19) is up to a phase factor. Observe that, as given by (19), the wave function is positive

and decays to zero at ±∞. In view of the fact that n is the number of nodes, the correct

wave function should change sign n times from −∞ to +∞. We, therefore, add in a factor

einπ when x < xm. The wave function given by the JWKB method is actually the leading

term in the asymptotic expansion of (19) for large |zn (x)|.

It is worth noting that when we do a numerical simulation of the Langer wave function

(19), it may not converge to a prescribed precision near the two turning points, due to the

vanishing of the classical momentum in the denominator. We shall replace it by its Taylor

expansion around a turning point xi

ψn (x) '
√

2mωn

(
1

2~m
∣∣ d
dx
V (xi)

∣∣
)1/6

Ai (−zn (x)) . (22)

Figures 2, 3, 4, and 5 now compare the exact wave function and its semiclassical approx-

imation (19) for the first four modes of a one-dimensional Morse potential. We refer to [22]

for the exact wave functions and energy eigenvalues for the Morse potential.
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Figure 2. Exact wave function and its semiclassical approximation (19) for mode n = 0 of a

one-dimensional Morse potential, V (x) = D
(
e−2βx − 2e−βx

)
, with three vertical gridlines showing

respectively x1, xm, and x2.
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Figure 3. Exact wave function and its semiclassical approximation (19) as in figure 2 but for mode

n = 1.
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Figure 4. Exact wave function and its semiclassical approximation (19) as in figure 2 but for mode

n = 2.
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Figure 5. Exact wave function and its semiclassical approximation (19) as in figure 2 but for mode

n = 3.

We can see that the semiclassical approximation matches well with the exact result in

general. Nevertheless, the approximation does not work as well for the ground state as

it does for the higher modes. For example, in figure 2, the matching point xm of the
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wave function is quite visible while figures 3, 4, and 5 are almost smooth curves. This is

understandable since in the semiclassical regime, the classical action S1 (x2) (20), which

increases with the energy, is very large compared to ~. We can also see that the number of

nodes matches the quantum number n, as discussed earlier.

II.3. Semiclassical particle density of a non-interacting quantum gas of fermions

in one dimension

In the TF model, the semiclassical particle density for a system of non-interacting spin-

polarized fermions in a one-dimensional potential is given by (cf. for example [1])

nTF (x) =


pF(x)
π~ , in the classically allowed region

0, in the classically forbidden region,
(23)

where pF (x) is the classical momentum at the Fermi energy level. We can see that the TF

density, on top of having a cusp at the turning points, gives zero density in the classically for-

bidden region, where quantum effect must be taken into account for a better approximation

of the exact density.

To provide a correction to the TF density, Ribeiro et al. [10] calculate the sum of the

modulus square of the Langer wave functions and extract the leading contribution from it.

The density of N occupied orbitals for a system of non-interacting fermions is given by

n (x) =
N−1∑
j=0

|ψj (x)|2 =
∞∑

k=−∞

∫ N−1/2

−1/2
dλ

2mωλ
pλ (x)

z
1/2
λ (x) Ai2 (−zλ (x)) exp (2πikλ) , (24)

where in the last step, the Poisson summation formula (cf. Appendix 2 and [23]) is used to

turn the sum into a sum of integrals. The authors [10] found an asymptotic approximation

to the density in the semiclassical limit

nsc (x) =
pF (x)

~

[(√
zAi2 (−z) +

Ai′2 (−z)√
z

)
+

(
~mωF

p2F (x)
csc (αF (x))− 1

2z3/2

)
Ai (−z) Ai′ (−z)

] ∣∣∣∣
z=zF(x)

,

(25)

where the Fermi energy EF is obtained by solving (5) for n = N − 1/2 (which is indeed the

Fermi energy that normalizes the corresponding TF density (23) to N), and αF (x) is given

by

αF (x) =
√
zF (x)

∂zλ (x)

∂λ

∣∣∣∣
λ=N−1/2

. (26)
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As pointed out in [10], equation (25) works for non-interacting fermions in a potential well

with two turning points. Eventually, the external potential will be the effective potential

which incorporates an interaction contribution and then allows for dealing with interacting

fermions. The result is extremely accurate and is a correction to the TF density that is

continuous to the forbidden region, as we can see in figure 6 for a system of two particles in

a Morse potential.

-2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

x

n
(x
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N=2

exact

Thomas-Fermi

semiclassical

Figure 6. Exact density, TF density, and semiclassical density (25) for two particles in a one-

dimensional Morse potential, V (x) = D
(
e−2βx/2 − 2e−βx

)
, with three vertical gridlines showing

respectively x1, xm, and x2.

II.4. Leading contribution to the particle density

Let n0 (x) be the first term in the full expression (25) of the semiclassical density

n0 (x) =
pF (x)

~

[√
zAi2 (−z) +

Ai′2 (−z)√
z

] ∣∣∣∣
z=zF(x)

. (27)

It can also be written in terms of the functions Fm (see Appendix 1) as

n0 (x) =
pF (x)

~
√
zF (x)

F1 (−zF (x)) . (28)
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With the relations (18) as well as the fact that d
dz
F2 (−z) = F1 (−z) (240), n0 (x) can be

written as

n0 (x) = sgn (xm − x)
d

dx
F2 (−zF (x)) . (29)

We can then, with ease, integrate n0 (x) to get its contribution N0 to the total particle

number N . We find that

N0 =

∫ ∞
−∞

dx n0 (x)

=

∫ xm

−∞
dx

d

dx
F2 (−zF (x))−

∫ ∞
xm

dx
d

dx
F2 (−zF (x))

= 2F2 (−zF (xm))− F2 (−zF (∞))︸ ︷︷ ︸
0

−F2 (−zF (−∞))︸ ︷︷ ︸
0

= 2F2 (−zF (xm)) .

(30)

The contribution at ±∞ is negligible since F2, as related to Airy function and its derivative,

vanishes for large negative zF, which is indeed the case at these two extremes.

By virtue of (15),

zF (xm) =

[
3

2~

∫ xm

x1

dx′
√

2m (EF − V (x′))

] 2
3

=
3

4
πN,

(31)

which increases with N . By an asymptotic expansion of F2 (247) for large zF (xm), we obtain

N0
N�1' 2

2

3π
[zF (xm)]3/2 , (32)

and hence

N0
N�1' N. (33)

We find indeed that n0 (x) is the dominant term in the full expression of the semiclassical

density nsc (x). For large total numbers of particles, this leading term approaches the exact

result. As we can see in figures 7 and 8, the density leading contribution n0 (x) is comparable

to the full contribution nsc (x) in its approximation to the exact density.
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Figure 7. Exact density, TF density, and semiclassical density (27) for one particle in a one-

dimensional Morse potential, V (x) = D
(
e−2βx − 2e−βx

)
, with three vertical gridlines showing

respectively x1, xm, and x2.
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Figure 8. Exact density, TF density, and semiclassical density (27) as in figure 7 but for two

particles.
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In the present paper, we shall focus solely on the dominant term n0 (x) of the particle density.

For its re-derivation, the reader is referred to Appendix 4.

II.5. Normalization of the Langer wave function

As a final check of the normalization of the Langer wave function (19), we recover it from

the leading contribution n0 (x) to the density. The term n0 (x) is derived from the term with

k = 0 in the Poisson summation (24), cf. Appendix 4. Essentially, it is a replacement of a

sum by an integral, i.e.

n (x) =
N∑
j=0

|ψj (x)|2 replace−−−−→
∫ N−1/2

−1/2
dν |ψν (x)|2 . (34)

It follows that we can retrieve the Langer wave function at the Fermi energy ψF (x) by

|ψF (x)|2 =
∣∣ψN−1/2 (x)

∣∣2 ' ∂

∂N
n0 (x) . (35)

By taking the derivative of

n0 (x) =
pF (x)

~
√
zF (x)

F1 (−zF (x)) (36)

w.r.t N , we have

∂

∂N
n0 (x) =

∂EF

∂N

[
∂pF (x)

∂EF

F1 (−zF (x))

~
√
zF (x)

+
pF (x)

~
∂zF (x)

∂EF

(
∂

∂z

F1 (−z)√
z

)
z=zF(x)

]
. (37)

By (21), we have
∂EF

∂N
= ~ωF. (38)

Note also that
∂

∂EF

pF (x) =
m

pF (x)
. (39)

We have hence, by (38), (39), and (243),

∂

∂N
n0 (x) = ~ωF

 m

pF (x)

F1 (−zF (x))

~
√
zF (x)

+
pF (x)

~
∂zF (x)

∂EF

−1

4

F−2 (−zF (x))(√
zF (x)

)3

 . (40)
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By (245), we can replace F1 in the above equation by F−2 and F0 and obtain

∂

∂N
n0 (x) =

2mωF

√
zF (x)

pF (x)
F0 (−zF (x))

+

 mωF

2pF (x)
√
zF (x)

F−2 (−zF (x))− 1

4
ωFpF (x)

∂zF (x)

∂EF

F−2 (−zF (x))(√
zF (x)

)3
 . (41)

By comparison with (19), we have

∂

∂N
n0 (x) = |ψF (x)|2 + [· · · ] . (42)

It can be proved by Taylor expansion that the correction term in the square brackets con-

verges to zero when x approaches each of the turning points. In addition, when N increases,

the Fermi energy EF increases, and the left and right turning points are transitioned towards

∓∞, respectively. Hence, as defined by (16) and (17), zF (x) → ∞ as N → ∞ for all x.

The correction term then vanishes in negative orders of zF (x). We recover the modulus

square of the Langer wave function as the leading term in the derivative w.r.t N of n0 (x).

Since n0 (x) has been shown to be normalized to N in the limit of large N , the Langer wave

function (19) that we use to derive n0 (x) is correctly normalized.
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III. EXTENSION OF THE RESULT BY RIBEIRO ET AL. TO ISOTROPIC PO-

TENTIALS IN HIGHER DIMENSIONS

III.1. Introduction

The essential point in the arguments of Ribeiro et al. [10] is the use of the Langer wave

function (19), which is a semiclassical approximation that is continuous on the entire domain

to the eigenfunction of the time-independent Schrödinger equation. Then, following the

method set out by the authors, we can extract the leading contribution to the particle density

of N occupied orbitals. It turns out that we can extend this method to two-dimensional

and three-dimensional problems with isotropic potentials, since these can be reduced to

one-dimensional problems by separation of variables. We consider the analog of the one-

dimensional Langer wave function (19) for the radial motion in two and three dimensions,

which eventually gives us the same form as in (27) for the dominant term in the semiclassical

radial particle density (56) for each angular quantum number l. Great care must be taken in

applying the JWKB method for radial motion as a centrifugal term has been introduced in

the effective potential. Here we follow the prescription by Langer [11]. For two dimensions,

the s-wave radial density (zero magnetic quantum number) requires special treatment as the

centrifugal term becomes a centripetal one. We use the result by Berry and de Almeida [24]

for the s-wave radial wave function near s = 0 and extract the leading contribution to the

radial particle density, following the method by Ribeiro et al. [10]. For the two-dimensional

Coulomb potential, which is highly singular near s = 0, the leading contribution to the

density (114) that we have derived fails to converge to zero at s = 0. In this case, we choose

to sum up manually the squared Langer wave functions for s-wave, which still approximate

accurately the exact wave functions. In future works, we have to find a better approximation

to arrive at the analog of formula (25) for s-wave, which is applicable to all potentials that

blow up less rapidly than 1/s2 near s = 0. We illustrate the results of this section by the

Coulomb and harmonic oscillator potentials in two and three dimensions.
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III.2. Isotropic potentials in three dimensions

III.2.1. Langer wave function for the radial motion and the corresponding radial particle den-

sity

In the three-dimensional case where the potential energy depends only on the radius

variable r in spherical coordinates, the wave function can be split into two parts

ψn,l,m (r, θ, φ) = Rn,l (r)Y
m
l (θ, φ) , (43)

where Y m
l (θ, φ) is the well-known spherical harmonics (see for example, [18]). Let un,l (r) =

Rn,l (r) r, we obtain the so-called radial Schrödinger equation, which reads{
− ~2

2m

d2

dr2
+ V (r) +

~2l (l + 1)

2mr2
− E

}
u (r) = 0. (44)

We can regard this as the Schrödinger equation for a one-dimensional equivalent problem

with the effective potential Ṽ (r) = V (r)+ ~2l(l+1)
2mr2

, but here the variable r goes from 0 to∞.

Langer pointed out [11] that the semiclassical approximation can only be correctly applied

after replacing l (l + 1) in the effective potential by (l + 1/2)2, explained in the following. He

did this by considering the singular nature of the centrifugal term at r = 0, which renders

condition (6) no longer valid [5] (for a rigorous discussion, see also the review paper of

semiclassical approximations in wave mechanics by Berry and Mount [25]). This is resolved

by a change of varibles that maps (0,∞) to (−∞,∞).

Langer [11] suggested the following change from (r, u (r)) to (x, ψ (x))

r = r0e
x/r0 ,

u (r) = e−x/2r0ψ (x) ,
(45)

where r0 is some length scale, which can be taken to be one in appropriate units. Now x

also has the dimension of length and goes from −∞ to ∞. We obtain the equation{
− ~2

2m

d2

dx2
+
[
V
(
r0e

x/r0
)
− E

]
e2x/r0 +

~2 (l + 1/2)2

2mr20

}
e−x/r0ψ (x) = 0. (46)

We identify the constant term −~2(l+1/2)2

2mr20
with the energy and

[
V
(
r0e

x/r0
)
− E

]
e2x/r0 with

the potential in the usual one-dimensional Schrödinger equation (4). The classical momen-

tum for the x variable is hence given by

p (x) =

√√√√2m

{
−~2 (l + 1/2)2

2mr20
− [V (r0ex/r0)− E] e2x/r0

}
. (47)
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We obtain the WKB quantization rule as in (5)

π~ (nr + 1/2) =

∫
dx

√√√√2m

{
−~2 (l + 1/2)2

2mr20
− [V (r0ex/r0)− E] e2x/r0

}
, (48)

where nr = 0, 1, 2, · · · is the radial quantum number. The integral is taken over the range

where the quantity under the square root sign is positive, i.e. in the classically allowed

region. Changing the variable back to r, we have

π~ (nr + 1/2) =

∫
dr

√√√√2m

{
E − V (r)− ~2 (l + 1/2)2

2mr2

}
. (49)

We notice that the change of variables thus carried out is equivalent to replacing l (l + 1) in

the centrifugal term by (l + 1/2)2. The prescription works even for l = 0 in three dimensions

(which requires special consideration in two dimensions, more on this later). It turns out that

(49) gives the exact expressions for the energy eigenvalues of three-dimensional harmonic

oscillator potential and Coulomb potential (cf. Appendix 5). However, it is shown in [24]

(cited in [5]) that the potential V (r) should not diverge faster than 1
r2

in the limit when

r → 0 for the Langer method to work.

Let ψ̃ (x) = e−x/r0ψ (x) and proceed as in [20], we obtain an Airy uniform approximation

(see Appendix 3) to ψ̃ (x) satisfying equation (46):

ψ̃ (x) =
z (x)1/4

p (x)1/2
Ai (−z (x)) , (50)

where p (x) is given by equation (47), and z (x) is defined as in [10] according to p (x). We

re-express z as a function of the r variable and obtain its expressions in different regions:

z (r) =



[
3
2~

∫ r
r1

dr′
√

2m
(
E − V (r′)− ~2(l+1/2)2

2mr′2

)]2/3
, for r1 < r < rm

[
3
2~

∫ r2
r

dr′
√

2m
(
E − V (r′)− ~2(l+1/2)2

2mr′2

)]2/3
, for rm < r < r2

−
[

3
2~

∫ r1
r

dr′
√

2m
(
V (r′) + ~2(l+1/2)2

2mr′2
− E

)]2/3
, for r < r1

−
[

3
2~

∫ r
r2

dr′
√

2m
(
V (r′) + ~2(l+1/2)2

2mr′2
− E

)]2/3
, for r > r2,

(51)
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where r1, r2 are the left and right turning points, respectively, and rm is the mid-phase point

where z (r) is matched. This is equivalent to the case when the classical momentum is given

by

pnr,l (r) =

√√√√2m

(
Enr,l − V (r)− ~2 (l + 1/2)2

2mr2

)
. (52)

Altogether, we have the approximation to the radial eigenfunctions with the normalization

factor

unr,l (r) =

√
2mωnr,l
pnr,l (r)

znr,l (r)
1/4 Ai (−znr,l (r)) , (53)

where ωnr,l is the classical frequency of one round-trip from one turning point of the effective

potential to the other and back, given by

ωnr,l = 2π

[∫ r2

r1

2dr

pnr,l (r) /m

]−1
. (54)

The energy eigenvalues Enr,l are given by (49).

It is noted that for a fixed value of the angular quantum number l, the effective potential is

fixed, and the semiclassical radial wave function (53) has the same form as the semiclassical

wave function (19) in the one-dimensional case. Thus, in the same manner, we approximate

the sum (which we call the radial particle density for the angular quantum number l)

N−1∑
nr=0

|unr,l (r)|
2 (55)

by

nN,l (r) =
pF,l (r)

~

[√
z (r)Ai2 (−z (r)) +

Ai′2 (−z (r))√
z (r)

] ∣∣∣∣∣
z=zF,l(x)

(56)

as we have the leading term (27) in the semiclassical density (25). The subscript F denotes

the Fermi energy, obtained by solving (49) for a particular value of l and nr = N −1/2. The

sum (55), nevertheless, is not the particle density for a practical system of non-interacting

fermions yet since we have to take into account the spherical harmonics part of the wave

function. We will illustrate how the density can be obtained for a certain total number of

particles with the examples of harmonic oscillator potential and Coulomb potential in three

dimensions.
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III.2.2. TF density in three dimensions

For now, let us quickly review the result of the TF model in three dimensions. The

particle density for spin-polarized fermions is given by [1]

nTF (r) =
pF (r)3

6π2~3
(57)

in the classically allowed region and zero elsewhere. pF (r) is the classical momentum at the

Fermi energy and is given by

pF (r) =
√

2m (EF − V (r)), (58)

where the Fermi energy EF is chosen such that nTF (r) is normalized to the total number

of particles N . Note that this EF is in principle not the Fermi energy chosen for equation

(56) for each angular quantum number. In the case of isotropic potential, the TF density is

isotropic. The normalization condition in this case reads∫ ∞
0

4πr2 dr nTF (r) = N. (59)

We see here how the TF model is crude in describing the shell structure. It is not for all

values of the total particle number that the density is isotropic even for isotropic external

potential.

III.2.3. Three-dimensional harmonic oscillator potential

The exact solution to the three-dimensional harmonic oscillator problem can be found in

various pieces of literature (cf. for example [26]). For the potential energy

V (r) =
1

2
mω2r2, (60)

the energy eigenvalue of each shell denoted by the principle quantum number n is given by

En =

(
n+

3

2

)
~ω, (61)

where

n = 2nr + l. (62)
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Here, nr and l are respectively the radial quantum number and the angular quantum number.

For spin-polarized systems, the eigenvalue En comes with a degeneracy

jn =
(n+ 1) (n+ 2)

2
. (63)

Table I summarizes the orbitals corresponding to the four smallest values of the principal

quantum number.

Table I. Orbitals of the four smallest values of the principal quantum number for a three-dimensional

harmonic oscillator.

n nr l number of orbitals jn

0 0 0 1 1

1 0 1 3 3

2
1 0 1

6
0 2 5

3
1 1 3

10
0 3 7

By employing the result (56), we can deduce the density of fully filled shells by sum-

ming the contributions of all the orbitals corresponding to those shells, and group the sum

according to the angular quantum number l.

For example, the first 3 shells n = 0, 1, 2 can accommodate at maximum 1 + 3 + 6 = 10

electrons. The density of a system of 10 electrons is given by

n10 (r) =
1∑

nr=0

0∑
m=0

|unr,0 (r)|2

r2
|Y m

0 (θ, φ)|2

+
0∑

nr=0

1∑
m=−1

|unr,1 (r)|2

r2
|Y m

1 (θ, φ)|2

+
0∑

nr=0

2∑
m=−2

|unr,2 (r)|2

r2
|Y m

2 (θ, φ)|2 .

(64)

When a shell is fully filled, the density is isotropic as the spherical harmonics have the

property [18]
l∑

m=−l

|Y m
l (θ, φ)|2 =

2l + 1

4π
. (65)
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Consequently, n10 (r) becomes

n10 (r) =
1

4πr2

{
1∑

nr=0

|unr,0 (r)|2 + 3
0∑

nr=0

|unr,1 (r)|2 + 5
0∑

nr=0

|unr,2 (r)|2
}
. (66)

We shall replace each sum over nr for each particular value of l by its semiclassical approx-

imation nN,l as in (56). We obtain hence

n10 (r) =
1

4πr2
[n2,0 (r) + 3n1,1 (r) + 5n1,2 (r)] . (67)

In the same way, we get the density of systems of one electron

n1 (r) =
1

4πr2
n1,0 (r) , (68)

and four electrons

n4 (r) =
1

4πr2
[n1,0 (r) + 3n1,1 (r)] . (69)

We can now compare the values of the density given by different methods, with the exact

expression of the radial wave function unr,l given by (see [26])

unr,l (r) =
2nr+l+1γl/2+3/4

π1/4

√
nr! (nr + l)!

(2nr + 2l + 1)!
rl+1 exp

(
−γr2/2

)
Ll+1/2
nr

(
γr2
)
, (70)

where γ = mω
~ and L denotes the generalized Laguerre polynomial (see [27]).

In figures 9, 10 and 11, we compare the exact, semiclassical as well as the TF densities

for N = 1, 4, 10 particles in a three-dimensional harmonic oscillator potential. Density for

more fully filled shells can be generated in the like manner.
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Figure 9. Exact density, TF density (57), and semiclassical density (68) for one particle in a

three-dimensional harmonic oscillator potential, V (r) = 1
2mω2r2.
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Figure 10. Exact density, TF density (57), and semiclassical density (69) for four particles in a

three-dimensional harmonic oscillator potential, V (r) = 1
2mω2r2.
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Figure 11. Exact density, TF density (57), and semiclassical density (67) for 10 particles in a

three-dimensional harmonic oscillator potential, V (r) = 1
2mω2r2.

We observe that the leading term in the semiclassical density suggested by Ribeiro et al.

[10] already gives an accurate approximation, which is continuous in the whole domain, to

the exact density, while the TF version has a cusp at the turning point. We also observe

that both the semiclassical density and the TF density approach the exact density as we

increase the total number of particle. There is, however, some anomaly for the red dots near

r = 0. This is error in numerical calculations as p (r) and z (r) tend both to infinity near

r = 0, but this does not affect our result significantly.

III.2.4. Three-dimensional Coulomb potential

For the potential

V (r) = −e
2

r
, (71)

the exact radial wave function is given by (see [28] and [29])

unr,l (r) = r
2

a3/2n2

√
(n− l − 1)!

(n+ l)!

(
2r

na

)l
e−r/naL2l+1

n−l−1

(
2r

na

)
, (72)
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where a = ~2
me2

, n = nr + l + 1, and the energy eigenvalues are given by

En = −me
4

2~2
1

n2
, (73)

with a degeneracy

jn = n2 =
n−1∑
l=0

(2l + 1) (74)

for spin-polarized systems.

Consider a system of N non-interacting spin-polarized electrons subject to the potential

V (r). We fill the electrons in the orbitals by the Aufbau rule, well-known in Chemistry (see

[30]). The electron filling order is: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p,...

Table II. Aufbau rule for filling electrons in orbitals

0 1 2 3 l

1 1s

2 2s 2p

3 3s 3p 3d

4 4s 4p 4d 4f

n

As in the three-dimensional harmonic oscillator example, the particle density for the first

four values of the total particle number with completely filled shells in the Coulomb potential

is given by

n1 (r) =
1

4πr2
n1,0 (r) , (75)

n2 (r) =
1

4πr2
n2,0 (r) , (76)

n5 (r) =
1

4πr2
[n2,0 (r) + 3n1,1 (r)] , (77)

n6 (r) =
1

4πr2
[n3,0 (r) + 3n1,1 (r)] , (78)

where nN,l (r) is given by (56).

We compare the semiclassical, TF, and exact densities for these four values of the total

particle number for the Coulomb potential in figures 12, 13, 14, and 15.
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Figure 12. Exact density, TF density (57), and semiclassical density (75) for one particle in a

three-dimensional Coulomb potential, V (r) = −e2/r.
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Figure 13. Exact density, TF density (57), and semiclassical density (76) for two particles in a

three-dimensional Coulomb potential, V (r) = −e2/r.
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Figure 14. Exact density, TF density (57), and semiclassical density (77) for five particles in a

three-dimensional Coulomb potential, V (r) = −e2/r.

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

r

4π
r2
n
N
(r
)

N=6

exact

Thomas-Fermi

semiclassical

Figure 15. Exact density, TF density (57), and semiclassical density (78) for six particles in a

three-dimensional Coulomb potential, V (r) = −e2/r.
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Again the semiclassical density gives quite an accurate approximation to the density and is

a correction to the TF density, especially in the classically forbidden region.

III.3. Isotropic potentials in two dimensions

III.3.1. Semiclassical wave function for the radial motion

We proceed as in the three-dimensional case by separation of variables in polar coordi-

nates,

ψn,l (s, φ) = Rn,l (s)
eilφ√
2π
, (79)

where n is the principle quantum number, and l is the magnetic quantum number, taking

integer values. Let un,l (s) = Rn,l (s)
√
s. We have the radial wave equation for un,l (s)

− ~2

2m

d2u

ds2
+

(
V (s) +

~2

2ms2

(
l2 − 1

4

))
u = Eu. (80)

The normalization condition for u (s) is∫ ∞
0

|u (s)|2 ds = 1. (81)

We also employ the same transformation of the s variable by Langer [11] as in the three-

dimensional case. The effective potential Ṽ (s) = V (s) + ~2
2ms2

(
l2 − 1

4

)
should be replaced

by

Ṽ (s) = V (s) +
~2

2ms2
l2. (82)

This gives rise to the JWKB quantization rule for l 6= 0

π~ (ns + 1/2) =

∫ s2

s1

ds

√
2m

{
E − V (s)− ~2l2

2ms2

}
, (83)

where the integral is taken from one turning point s1 of the effective potential to another

s2, and ns = 0, 1, 2, · · · is the radial quantum number. Again, for the method to work,

s2V (s)→ 0 when s→ 0.

For l 6= 0, the semiclassical wave function in the entire domain is given up to a phase

factor by

uns,l (s) =

√
2mωns,l
pns,l (s)

zns,l (s)
1/4 Ai (−zns,l (s)) , (84)

with all the involved quantities defined as in the three dimensional case (see (53)).
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However, the case l = 0 requires special consideration as the centrifugal term becomes a

centripetal one and the left turning point for an attractive potential V (s) is at s = 0 [5].

The treatment by Berry and Ozorio de Almeida [24] of this case is quite technical, so here

we use their results without delving further into the detail. The first one is that equation

(83) is still valid for l = 0 with the left turning point at s = 0.

The energy eigenvalues for harmonic oscillator and Coulomb potentials in two dimensions

given by this JWKB quantization rule (derivations similar to Appendix 5) are found to be

identical with the exact expressions (see the references in the discussion of the respective

example shortly)

En = −Z
2me4

2~2
1(

n− 1
2

)2 = −Z
2me4

2~2
1(

(ns + |l|+ 1)− 1
2

)2 , for Coulomb potential, (85)

and

En = ~ω (n+ 1) = ~ω ((2ns + |l|) + 1) , for harmonic oscillator potential. (86)

The normalized semiclassical wave function for l = 0 near s = 0 is found to be [24]

uns,l=0 (s) =
√
mωns

(
Sns (s)

~ pns (s)

)1/2

J0

(
Sns (s)

~

)
, (87)

where

pns (s) =
√

2m (Ens − V (s)), (88)

Sns (s) =

∫ s

0

√
2m (Ens − V (s′))ds′, (89)

and

ωns = π

[∫ s2

0

mds√
2m (Ens − V (s))

]−1
= ~−1

∂Eλ
∂λ

∣∣∣∣
λ=ns

. (90)

For s near s = s2, the semiclassical wave function is still given in the Airy form like in the

case l 6= 0 ((84)), with the left turning point s1 = 0.

We combine these two pieces of the semiclassical wave function near each turning point

and match them at a mid-phase point sm, where

1

2
π~ (ns + 1/2) =

∫ sm

0

ds
√

2m {Ens − V (s)}. (91)

Given that the number of nodes of the wave function is ns, we add in a phase factor e−insπ

for s < sm as we have done earlier (see page 13). To summarize, we have

uns,l=0 (s) =

e
−insπ√mωns

(
Sns (s)/~
pns (s)

)1/2
J0

(
Sns (s)

~

)
, for s < sm√

2mωns
pns (s)

zns (s)1/4 Ai (−zns (s)) , for s > sm.
(92)
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The piecewise semiclassical radial wave function (92) is an accurate approximation to the

exact wave function, as can be seen in figures 16, 17 and 18 below for the first three modes

corresponding to l = 0 of a two-dimensional harmonic oscillator potential.
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Figure 16. Exact wave function and its semiclassical approximation (92) for mode ns = 0, l = 0

of a two-dimensional harmonic oscillator potential, V (s) = 1
2mω2s2, with two vertical gridlines

showing respectively sm and s2.
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Figure 17. Exact wave function and its semiclassical approximation (92) as in figure 16 but for

mode ns = 1, l = 0.
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Figure 18. Exact wave function and its semiclassical approximation (92) as in figure 16 but for

mode ns = 2, l = 0.

For the moment, we do not see any obvious non-arbitrary way to patch the piecewise semi-
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classical radial wave function (92) at the mid-phase point into a continuous function. How-

ever, the discontinuity at sm in figure 16 is much less pronounced in figures 17 and 18 for

higher modes, where the semiclassical approximation (92) fits almost perfectly with the

exact result.

III.3.2. Radial particle density

We need to evaluate the sum (which we shall call radial particle density)

nN,l (s) =
N−1∑
ns=0

|uns,l (s)|
2 , (93)

where uns,l (s) is given by (84) or (92) in order to find the particle density.

We know from the discussion on the three-dimensional case that for l 6= 0, and l = 0,

s > sm, since the semiclassical radial wave function is given in the Airy form, this sum can

be approximated by

nN,l (s) '
pF,l (s)

~

[√
zF,l (s)Ai2 (−zF,l (s)) +

Ai′2 (−zF,l (s))√
zF,l (s)

]
, (94)

where the Fermi energy is EN−1/2 for a particular value of l.

The semiclassical radial wave function for l = 0, s < sm, however, is found to be in the

Bessel form. Therefore, we need to find another closed form expression for a semiclassical

approximation to the sum nN,l=0 (s) when s < sm, which we shall do by emulating the

derivation in Appendix 4. We have

nN,l=0 (s) =
N−1∑
ns=0

|uns,l=0 (s)|2 =
1

~

N−1∑
ns=0

mωnsSns (s)

pns (s)
J2
0

(
Sns (s)

~

)
, for s < sm. (95)

This sum can be approximated by an integral, which is the first term in the Poisson sum-

mation formula (see Appendices 2 and 4).

n0 (s) =
1

~

∫ N−1/2

−1/2
dλ
mωλSλ (s)

pλ (s)
J2
0

(
Sλ (s)

~

)
. (96)

Changing the the intergration variable to pλ, we have

n0 (s) =
1

~

∫ pN−1/2

p−1/2

dpλ
Sλ (s)

~
J2
0

(
Sλ (s)

~

)
. (97)
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Let f = pλ
Sλ

. We have
dpλ
dSλ

= f + Sλ
df

dSλ
, (98)

and n0 (s) becomes

n0 (s) =

∫ SN−1/2

S−1/2

dSλ
~

(
f + Sλ

df

dSλ

)
Sλ
~
J2
0

(
Sλ
~

)
=

∫ SN−1/2

S−1/2

dSλ
~

df

dSλ

S2
λ

~
J2
0

(
Sλ
~

)
+

∫ SN−1/2

S−1/2

dSλ
~
f
Sλ
~
J2
0

(
Sλ
~

)
= n1

0 (s) + n2
0 (s) ,

(99)

where we denote the two component integrals in the second last step by n1
0 (s) and n2

0 (s),

respectively.

We shall find the leading contribution in the asymptotic approximation to n0 (s) by

integration by parts. We have

n2
0 (s) = f

1

2

(
Sλ
~

)2 [
J2
0

(
Sλ
~

)
+ J2

1

(
Sλ
~

)] ∣∣∣∣SN−1/2

S−1/2

−
∫ SN−1/2

S−1/2

dSλ
df

dSλ

1

2

(
Sλ
~

)2 [
J2
0

(
Sλ
~

)
+ J2

1

(
Sλ
~

)]
,

(100)

where we use the fact that (see [29])∫ x

0

tJ2
0 (t) dt =

1

2
x2
[
J2
0 (x) + J2

1 (x)
]
. (101)

We have then

n0 (s) = f
1

2

(
Sλ
~

)2 [
J2
0

(
Sλ
~

)
+ J2

1

(
Sλ
~

)] ∣∣∣∣SN−1/2

S−1/2

+

∫ SN−1/2

S−1/2

dSλ
df

dSλ

1

2

(
Sλ
~

)2 [
J2
0

(
Sλ
~

)
− J2

1

(
Sλ
~

)]
.

(102)

We denote the residual integral in the above equation by n3
0 (s). Neglecting higher order

contributions included in the lower limit of integration and n3
0 (s), finally we obtain an

asymptotic approximation to the radial density for l = 0, s < sm

nN,l=0 (s) ' pF (s)

2

SF (s)

~2

[
J2
0

(
SF (s)

~

)
+ J2

1

(
SF(s)

~

)]
, (103)

where the Fermi energy is EN−1/2. We shall integrate this density to convince ourselves that

this is indeed the leading contribution to the sum nN,l=0 (s) for s < sm.
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The integral of (103) up to sm is

N0 =

∫ sm

0

ds
pF (s)

2

SF (s)

~2

[
J2
0

(
SF (s)

~

)
+ J2

1

(
SF (s)

~

)]
. (104)

A change of the integration variable gives

N0 =

∫ SF(sm)

SF(0)

dSF (s)

2

SF (s)

~2

[
J2
0

(
SF (s)

~

)
+ J2

1

(
SF (s)

~

)]
=

1

2

∫ x(sm)

x(0)

x
[
J2
0 (x) + J2

1 (x)
]

dx,

(105)

where x (s) = SF (s) and x (0) = 0.

We have ∫ x

tJ2
1 (t) dt =

1

2
x
[
x
(
J2
0 (x) + J2

1 (x)
)
− 2J0 (x) J1 (x)

]
, (106)

so

N0 =
1

2
x2
(
J2
0 (x) + J2

1 (x)
) ∣∣∣∣

x=SF(sm)/~
− 1

2
xJ0 (x) J1 (x)

∣∣∣∣
x=SF(sm)/~

, (107)

where (see (91))

SF (sm) =
1

2
π~N. (108)

For large particle number N , by an asymptotic expansion for large argument of the Bessel

functions (see [31]), we have

N0 '
x

π

[
cos2

(
x− π

4

)
+ cos2

(
x− π

2
− π

4

)] ∣∣∣∣
x=SF(sm)/~

− 1

π
cos
(
x− π

4

)
cos
(
x− π

2
− π

4

) ∣∣∣∣
x=SF(sm)/~

' N

2
.

(109)

This gives us half the total particle number, in addition to another N
2

from the integral∫∞
sm
nN,l=0 (s) ds. This shows that the semiclassical approximation to nN,l=0 (s) is

nN,l=0 (s) '


pF(s)
2

SF(s)
~2

[
J2
0

(
SF(s)

~

)
+ J2

1

(
SF(s)

~

)]
, for s < sm,

pF(s)
~

[√
zF (s)Ai2 (−zF (s)) + Ai′2(−zF(s))√

zF(s)

]
, for s > sm.

(110)

However, there is a possible discontinuity at the matching point, as can be seen in figure

19 for the radial density nN=2,l=0 (s) corresponding to the first two orbitals with l = 0 of a

two-dimensional harmonic oscillator potential.
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Figure 19. Exact radial density and semiclassical radial density 110 for the first two orbitals with

l = 0 of a two-dimensional harmonic oscillator potential, V (s) = 1
2mω2s2.

This happens because the semiclassical wave function near each turning point is in a dif-

ferent form. What we have done so far is only considering the leading contribution to the

semiclassical approximation of the sum nN,l (s). If we can extract higher order contribution,

the semiclassical radial wave function will approach the exact result and therefore tends

to be continuous at the mid-phase point. We shall do this by using the full expression of

the semiclassical density as in (25) for s > sm and extracting higher contribution from the

integral in (102).

Integrating by parts with the help of (101) and (106), we have

n3
0 (s) =

∫ SN−1/2

S−1/2

dSλ
df

dSλ

1

2

(
Sλ
~

)2 [
J2
0

(
Sλ
~

)
− J2

1

(
Sλ
~

)]
' df

dSλ

Sλ
2

Sλ
~
J0

(
Sλ
~

)
J1

(
Sλ
~

) ∣∣∣∣
λ=N−1/2

+ · · · .
(111)
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As Sλ (s) is given by (89), we have

df

dSλ
=

1

Sλ

dpλ
dSλ
− pλ
S2
λ

=
1

Sλ

dpλ
dEλ

(
dSλ
dEλ

)−1
− pλ
S2
λ

=
1

Sλ

m

pλ

[∫ s

0

m

pλ (s′)
ds′
]−1
− pλ
S2
λ

.

(112)

So,

n3
0 (s) ' 1

2~

[
Sλ
pλ

(∫ s

0

ds′

pλ (s′)

)−1
− pλ

]
J0

(
Sλ
~

)
J1

(
Sλ
~

) ∣∣∣∣
λ=N−1/2

+ · · · . (113)

Hence, a better approximation to nN,l=0 (s) than (110) is given by

nN,l=0 (s) ' pF (s)

2

SF (s)

~2

[
J2
0

(
SF (s)

~

)
+ J2

1

(
SF (s)

~

)]
+

1

2~

[
SF (s)

pF (s)

(∫ s

0

ds′

pF (s′)

)−1
− pF (s)

]
J0

(
SF (s)

~

)
J1

(
SF (s)

~

)
, for s < sm,

(114)

and

nN,l=0 (s) ' pF (s)

~

[(√
zAi2 (−z) +

Ai′2 (−z)√
z

)
+

(
~mωF

p2F (s)
csc (αF (s))− 1

2z3/2

)
Ai (−z) Ai′ (−z)

] ∣∣∣∣
z=zF(s)

, for s > sm. (115)

Now the discontinuity is less visible for the above-mentioned density
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Figure 20. Exact radial density and semiclassical radial density, (114) and (115), for the first two

orbitals with l = 0 of a two-dimensional harmonic oscillator potential, V (s) = 1
2mω2s2.

Now, we are in a position to find the density for some particular total numbers of particles.

We illustrate this by the two-dimensional harmonic oscillator and Coulomb potentials.

III.3.3. TF density in two dimensions

The TF particle density for spin-polarized fermions in two dimenions is given by [1]

nTF (r) =
pF (r)2

4π~2
(116)

in the classically allowed region and zero elsewhere. The classical momentum pF (r) is given

by

pF (r) =
√

2m (EF − V (r)). (117)

The Fermi energy EF is chosen such that nTF (r) is normalized to the total particle number

N . For isotropic potentials, the normalization condition reads∫ ∞
0

2πs ds nTF (s) = N. (118)
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III.3.4. Two-dimensional harmonic oscillator potential

The exact radial wave function for the two-dimensional potential

V (s) =
1

2
mω2s2 (119)

is found to be (see [26])

unsl (s) =
√

2γs

√
ns!

(ns + |l|)!
(
γs2
)|l|/2

exp
(
−γs2/2

)
L|l|ns

(
γs2
)
, (120)

where γ = mω
~ and n = 2ns + |l|. So for a particular value of n = 0, 1, 2, 3, · · · , l takes value

−n,−n+ 2,−n+ 4, · · · , n− 2, n. For spin-polarized systems, the degeneracy of the energy

eigenvalue En (86) is then

jn = n+ 1. (121)

Table III. Orbitals corresponding to the first four values of the principal quantum number for the

two-dimensional harmonic oscillator potential.

n ns l jn

0 0 0 1

1 0 ±1 2

2
1 0

3
0 ±2

3
1 ±1

4
0 ±3

The orbitals corresponding to the first four values of the principal quantum number are

tabulated in table IV. With nN,l given collectively by (114), (115), and (94), the particle

density nN (s) for N = 1, 3, 6, 10 is given by

n1 (s) =
1

2πs
[n1,0 (s)] , (122)

n3 (s) =
1

2πs
[n1,0 (s) + 2n1,1 (s)] , (123)

n6 (s) =
1

2πs
[n2,0 (s) + 2n1,1 (s) + 2n1,2 (s)] , (124)

n10 (s) =
1

2πs
[n2,0 (s) + 2n2,1 (s) + 2n1,2 (s) + 2n1,3 (s)] . (125)
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Figures 21, 22, and 23 show the exact density, TF density, and semiclassical density for

N = 1, 3, 6 particles in a two-dimensional harmonic oscillator potential. Except for a few

cusps where we connect the particle density in Bessel and Airy forms or near the turning

points where we choose to truncate the series expansion of the density, the semiclassical

result correlates well with the exact result.
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Figure 21. Exact density, TF density (116), and semiclassical density (122) for one particle in a

two-dimensional harmonic oscillator potential, V (s) = 1
2mω2s2.
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Figure 22. Exact density, TF density (116), and semiclassical density (123) for three particles in a

two-dimensional harmonic oscillator potential, V (s) = 1
2mω2s2.
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Figure 23. Exact density, TF density (116), and semiclassical density (124) for six particles in a

two-dimensional harmonic oscillator potential, V (s) = 1
2mω2s2.
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III.3.5. Two-dimensional Coulomb potential

The exact normalized radial wave function for the two-dimensional Coulomb potential

V (s) = −e
2

s
(126)

is found to be (see [32] or [33], but beware of the many misprints in the latter)

uns,l (s) =
1(

n− 1
2

)√
a

√
(n− |l| − 1)!

(n+ |l| − 1)!

×

(
2s(

n− 1
2

)
a

)|l|+1/2

e−s/(n−1/2)aL
2|l|
n−|l|−1

(
2s

(n− 1/2) a

)
,

(127)

where n = ns + |l|+ 1 and a = ~2
me2

. So, for a particular value of n = 1, 2, 3, · · · , |l| can take

value 0, 1, 2, · · · , n− 1. The energy eigenvalues are given by (85).

For spin-polarized systems, the degeneracy of the energy eigenvalue En is

jn = 2n− 1. (128)

We tabulate the orbitals corresponding to the first three values of the principal quantum

number for the two-dimensional Coulomb potential in table IV.

Table IV. Orbitals corresponding to the first three values of the principal quantum number for the

two-dimensional Coulomb potential.

n ns l jn

1 0 0 1

2
1 0

3
0 ±1

3

2 0

51 ±1

0 ±2

Denoting nN (s) as the semiclassical density for a system of N particles and nN,l (s) as

the semiclassical approximation to the sum

N−1∑
ns=0

|uns,l (s)|
2 , (129)
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we have

n1 (s) =
1

2πs
n1,0 (s) , (130)

n4 (s) =
1

2πs
[n2,0 (s) + 2n1,1 (s)] , (131)

n9 (s) =
1

2πs
[n3,0 (s) + 2n2,1 (s) + 2n1,2 (s)] . (132)

For the two-dimensional Coulomb potential, the effective potential has a singularity at s = 0.

This makes the asymptotic approximation (114) to the radial density near s = 0 for l = 0,

which is in Bessel form, no longer valid as it tends to a definite limit when s→ 0, while the

correct behavior should be a rapid decrease to 0. Until we have a better way to extract the

leading contribution to the radial density near s = 0, we shall sum the modulus square of

the piecewise semiclassical wave functions (92) for the case l = 0. As we can see in figure 24

for mode ns = 2, l = 0 of a two-dimensional Coulomb potential, the piecewise semiclassical

wave function (92) is still valid as it tends to zero when s→ 0.
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Figure 24. Exact wave function and its semiclassical approximation (92) for mode ns = 2, l = 0 of

a two-dimensional Coulomb potential, V (s) = −e2/s, with two vertical gridlines showing sm and

s2 respectively.

Figures 25, 26, and 27 compare the particle densities by various methods for N = 1, 4, 9

particles in a two-dimensional Coulomb potential.
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Figure 25. Exact density, TF density (116), and semiclassical density (130) for one particle in a

two-dimensional Coulomb potential, V (s) = −e2/s.
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Figure 26. Exact density, TF density (116), and semiclassical density (131) for four particles in a

two-dimensional Coulomb potential, V (s) = −e2/s.
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Figure 27. Exact density, TF density (116), and semiclassical density (132) for nine particles in a

two-dimensional Coulomb potential, V (s) = −e2/s.

The semiclassical density approximates the exact result very well. It especially catches the

vanishing of the density near s = 0 where the TF density fails.
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IV. A NEW APPROACH TO FINDING A SEMICLASSICAL PARTICLE DEN-

SITY

IV.1. Introduction

In the previous sections, we have discussed the semiclassical density result by Ribeiro

et al. [10] and how we can generalize it to isotropic potentials in higher dimensions. This

generalization is possible because these problems can be reduced to a one-dimensional prob-

lem, where we know how to connect the semiclassical wave function from different turning

points. In a more general setting, this is not as obvious. Moreover, the procedure does not

come without limitations. We have only been able to find the closed form expression for

the leading contribution to the density of fully filled shells. These are the cases when the

density depends only on the distance from the origin. We even encounter the special case of

l = 0 in two dimensions, where the semiclassical wave function near s = 0 is in a different

form from its Airy form near the right turning point. We have not patched the two pieces of

the semiclassical wave function into a continuous function in a satisfactory manner. With

all these limitations, we want, therefore, a method that can be more easily generalized to

higher dimensions.

This section is dedicated to that purpose. We propose a formula for particle density

involving the propagator in the Feynman path integral formalism. With suitable approxi-

mations of the propagator and the integrals involved, we aim at deducing the same leading

term in the particle density as given by (27). The propagator is well defined for higher

dimensions, which perhaps gives us some insights into how we can resolve our connection

problem and arrive at a method with a higher degree of generalization. Such a method may

also prove useful in understanding the classical-quantum connection.

IV.2. Particle density

Suppose a single-particle Hamiltonian Ĥ has the eigenstates denoted by |ψk〉 with the

corresponding energy eigenvalues Ek. The eigenstates satisfy the completeness relation (see

[34]) ∑
k

|ψk〉 〈ψk| = 1. (133)
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The particle density at a point x of a system of N non-interacting fermions, described by

the single-particle Hamiltonian Ĥ is given by

n (x) =
∑

k,Ek<µ

|ψk (x)|2 , (134)

where we sum all the orbitals with energy lower than the Fermi energy µ ≡ µ (N). It follows

that

n(x) =
∑
k

η (µ− Ek) |ψk (x)|2

=
∑
k

∫ µ

−∞
dλ δ (λ− Ek) |ψk (x)|2 ,

(135)

where in the last step, we use the integral representation in terms of the Dirac delta function

of the Heaviside step function

η (µ− Ek) =

∫ µ

−∞
dλ δ (λ− Ek) . (136)

With the integral representation of the Dirac delta function [31]

δ (λ− Ek) =
1

2π~

∫ ∞
−∞

dt exp [i (λ− Ek) t/~] , (137)

the density can be expressed as

n(x) =
∑
k

∫ µ

−∞
dλ

1

2π~

∫ ∞
−∞

dt exp [i (λ− Ek) t/~] |ψk (x)|2

=

∫ µ

−∞
dλ

1

2π~

∫ ∞
−∞

dt exp (iλt/~)
∑
k

exp (−iEkt/~) |ψk (x)|2

=

∫ µ

−∞
dλ

1

2π~
I (λ;x) ,

(138)

where I (λ;x) is given by

I (λ;x) =

∫ ∞
−∞

dt exp (iλt/~)
∑
k

exp (−iEkt/~) |ψk (x)|2

= 2Re

{∫ ∞
0

dt exp (iλt/~)
∑
k

exp (−iEkt/~) |ψk (x)|2
}
.

(139)

For positive t, the sum ∑
k

exp (−iEkt/~) |ψk (x)|2
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is the propagator K (x, x; t) = lim
x′→x

K (x′, x; t) from the point x back to itself in time t (see

[35]). So the density is given by

n (x) =
1

π~
Re

∫ µ

−∞
dλ

∫ ∞
0

dt exp (iλt/~)K (x, x; t) . (140)

The three-dimensional analog can be easily deduced

n (r) =
1

π~
Re

∫ µ

−∞
dλ

∫ ∞
0

dt exp (iλt/~)K (r, r; t) . (141)

We might want to evaluate the integral over time t or both integrals, respectively, for the

propagator K (r′, r; t) before taking the limit r′ → r.

IV.3. Quantum propagator: van Vleck-Gutzwiller formula

The propagator K (r′, r; t′ − t) in quantum mechanics is defined as the transition ampli-

tude between the state |r, t〉 and |r′, t′〉. Assuming the Hamiltonian Ĥ governing the time

evolution has no explicit time dependence so that the unitary time evolution operator is

exp
(
−iĤt/~

)
, we have

K (r′, r; t′ − t) = 〈r′, t′|r, t〉 = 〈r′| exp
(
−iĤ (t′ − t) /~

)
|r〉 . (142)

Inserting the completeness relation (133), we have

K (r′, r; t′ − t) =
∑
k

〈r′| exp
(
−iĤ (t′ − t) /~

)
|ψk〉 〈ψk|r〉

=
∑
k

exp (−iEk (t′ − t) /~)ψ∗k (r)ψk (r′) .
(143)

This completes the proof for the particle density formula (141). By the completeness relation

of the eigenstates of the position operator, the propagator satisfies the convolution relation

K (r2, r0; t2 − t0) =

∫
K (r2, r1; t2 − t1)K (r1, r0; t1 − t0) dr1. (144)

This convolution relation is the key of the Feynman path integral formalism (see [35]),

in which the propagator for a finite transition time can be found by dividing the time in

small sections of length δt and integrating the product of the propagators for these short

transitions over all possible intermediate positions. The path integral formalism provides

an interesting link between classical and quantum mechanics. As we shall see shortly, the
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propagator contains the classical action or the Hamilton principal function measured in ~

in its phase factor.

Consider the propagator K (r2, r1, δt) connecting two points r1 and r2 in an infinitesimal

time δt. We have

K (r2, r1; δt) = 〈r2| exp
(
−iĤδt/~

)
|r1〉

=

∫
dp 〈r2|p〉 〈p| exp

(
−iĤδt/~

)
|r1〉 ,

(145)

where we invoke the completeness relation for the eigenstates |p〉 of the momentum operator

p̂. Assume the Hamiltonian is of the form Ĥ = p̂2

2m
+ V (r̂). For a small time δt, we may

keep the first term in the Baker-Campbell-Hausdorff series expansion of exp
(
−iĤδt/~

)
,

see [36]. We have

exp
(
−iĤδt/~

)
' exp

(
−i

p̂2

2m

δt

~

)
exp

(
−iV (r̂)

δt

~

)
. (146)

As a result, we may replace the Hamiltonian operator by its classical counterpart

K (r2, r1; δt) '
∫

dp 〈r2|p〉 〈p|r1〉 exp (−iH (p, r) δt/~)

=

∫
dp 〈r2|p〉 〈p|r1〉 exp

(
−i

p2

2m

δt

~

)
exp

(
−iV (r1)

δt

~

)
.

(147)

With the momentum eigenstate in position representation

〈r2|p〉 =

(
1√
2π~

)3

exp
(

i
p · r2
~

)
, (148)

we have

K (r2, r1; δt) '
∫

dp

(
1

2π~

)3

exp

(
i
p · (r2 − r1)

~

)
exp

(
−i

p2

2m

δt

~

)
exp

(
−iV (r1)

δt

~

)
.

(149)

The integral over p can be done by completing the square and using the Gaussian integral.

We obtain hence

K (r2, r1; δt) '
(√

m

2πi~δt

)3

exp

(
i
m

2~
(r2 − r1)

2

δt
− iV (r1)

δt

~

)
. (150)

With the Lagrangian defined by

L (r, ṙ) =
m

2
ṙ2 − V (r) , (151)
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we have

K (r2, r1; δt) '
(√

m

2πi~δt

)3

exp

(
i
δt

~
L (r1, ṙ1)

)
, (152)

where

ṙ1 =
r2 − r1
δt

, (153)

which is the velocity of the particle in time so small such that the trajectory is essentially

that of a free particle.

For a path from r to r′ in a finite transition time t′ − t, we may divide the time in n

sections of length δt with intermediate points (rj, tj) where

r0 = r,

rn = r′,

tn − t0 = n δt = t′ − t,

(154)

By the convolution relation (144), the propagator between these two end points is given by

K (r′, r; t′ − t) = lim
n→∞

∫ (√
m

2πi~δt

)3n

exp

(
i

~

n−1∑
j=0

δt L (rj, ṙj)

)
dr1dr2 · · · drn−1

= lim
n→∞

∫ (√
m

2πi~δt

)3n

exp

(
i

~

∫ tn

t0

dt L (r, ṙ)

)
dr1dr2 · · · drn−1.

(155)

It may be written in a more compact form as

K (r′, r; t′ − t) =

∫
Dr exp

(
i

~

∫ t′

t

dt L (r, ṙ)

)
, (156)

where the integral
∫
Dr is called the path integral. The measure Dr is defined as

Dr = lim
n→∞

(√
m

2πi~δt

)3n

dr1dr2 · · · drn−1. (157)

As we can see in formula (156), the propagator is proportional to a phase factor containing

the quantity called the classical action or the Hamilton principal function R, defined by

R (r′, r; t′ − t) =

∫ t′

t

dt L (r, ṙ) , (158)

where r (t) is the trajectory along a certain path. However, in (156), we include all possible

paths along which the motion can be carried out between (r, t) and (r′, t′). This is what is

meant by path integral; we integrate over all paths.
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In the semiclassical limit, the time, the position, the mass, etc. are so large that the

Hamilton principal function is very large compared to ~. The phase factor oscillates very

rapidly even for a small variation in the path. This leads to cancellation of the phases, except

for those paths that are stationary. Along these paths, the Hamilton principal function is

nearly a constant, and these are nothing different from the classical orbits. So, the most

contribution to the propagator comes from these classical paths

K (r′, r; t′ − t) =
∑

class. paths j

Aj exp

(
i

~
Rj (r′, r; t′ − t)

)
, (159)

with some amplitude Aj.

van Vleck and Gutzwiller (see [37, 38] and also [5, 13]) found a semiclassical approximation

to the propagator in D dimension

Ksc (r′, r; t′ − t) =
∑

class. paths

(2πi~)−D/2
√
|det C| exp

[
i

~
R (r′, r; t′ − t)− iκπ

2

]
, (160)

where the matrix C is defined by

Cij (r′, r; t′ − t) = − ∂2R

∂ri∂r′j
(i, j = 1, 2, · · · , D) , (161)

and κ is obtained by counting the number of times the determinant of C changes sign along

the classical path from t to t′.

For small time t′ − t, we usually have exactly one classical trajectory that connect (r, t)

and (r′, t′). However, there may be more than one classical trajectory for large time t′ − t.

The formula (160) turns out to be exact for potentials in quadratic form ([5, 13]). It also

has an advantage in specifying correctly the phase of the propagator, as we shall see for the

one-dimensional harmonic oscillator potential.

IV.4. Short-time approximation

In the present work, we are interested in the propagator connecting a point with itself in

a certain time period. In general, we have different orbits for such kinds of motion. As it

turns out, in our method, only one particular orbit already gives us a good estimation for

the particle density. We shall see this when considering the example of a symmetric linear

potential.
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The particular orbit that we are using is illustrated in figure 28 for a typical one-

dimensional potential well. The particle starts out in the direction of the potential’s gradient

up to a certain Fermi energy E (t) and then retreats back to the original position, which

occurs in a total time period of t.

-

6

E (t)






�






�

x x

V (x)

Figure 28. Classical orbit in short-time approximation from a point x back to itself in time t in

a harmonic oscillator potential V (x) , with E (t) indicating the Fermi energy, which depends on

time t.

We can easily imagine a similar trajectory in higher dimensions. There is always a direction

parallel to the gradient of a general potential well, and such a trajectory is always possible

for small time. This is why we call short-time approximation.

The short-time approximation also shows up in another interesting way, as we shall see

in the discussion of a one-dimensional harmonic oscillator. It is when the determinant of C

generally changes sign for large values of t. In the formula (140), we integrate over t from 0

to ∞. However, as it turns out, all what large t does is to add extra phases to the integral

over small enough t. This shall results in some sort of energy quantization, which links the

discussion to the JWKB method.

IV.5. Symmetric linear potential

IV.5.1. Stationary states

We consider a symmetric linear potential given by

V (x) = f |x| , (162)
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where f is a positive constant. We want to solve the eigenvalue problem corresponding to

this potential
d2

dx2
ψ (x) =

2m (V (x)− E)

~2
ψ (x) . (163)

In the region x > 0, (163) becomes

d2

dx2
ψ (x) =

2m (fx− E)

~2
ψ (x) . (164)

Let z = α 2m(fx−E)
~2 , where α is a constant, to be found subsequently. We have then(

α
2mf

~2

)2
d2

dz2
ψ (z) =

z

α
ψ (z) . (165)

We choose α so that

1 = α

(
α

2mf

~2

)2

⇔ α =

(
~2

2mf

)2/3

,

(166)

and (165) assumes the form of the Airy differential equation (cf. [20])

d2

dz2
ψ (z) = zψ (z) , (167)

of which the only physically meaningful solution is the Airy function, which vanishes at ±∞,

ψ (z) = aAi (z) . (168)

Since

z =

(
~2

2mf

)2/3
2m (fx− E)

~2

=

(
2mf

~2

)1/3

(x− E/f) ,

(169)

we have

ψ (x) ≡ ψ1 (x) = aAi

[(
2mf

~2

)1/3

(x− E/f)

]
for x > 0. (170)

By the same argument, we prove that

ψ (x) ≡ ψ2 (x) = bAi

[
−
(

2mf

~2

)1/3

(x+ E/f)

]
for x < 0. (171)

In the above equations, a and b are two normalization factors. By the continuity of the wave

function and its derivative w.r.t x at x = 0, we have

(a− b) Ai

[
−
(

2mf

~2

)1/3

E/f

]
= 0, (172)
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and

(a+ b) Ai′

[
−
(

2mf

~2

)1/3

E/f

]
= 0. (173)

These two equations resolve to two scenarios

a = b; Ai′
[
−
(
2mf
~2
)1/3

E/f
]

= 0,

a = −b; Ai
[
−
(
2mf
~2
)1/3

E/f
]

= 0.
(174)

These correspond in fact to two classes of the eigenfunctions, symmetric and antisymmetric.

In summary, the eigenfunctions are given by

ψn (x) =

aAi
[(

2mf
~2
)1/3

(x− En/f)
]

for x > 0,

±ψ (−x) for x < 0.
(175)

The normalization constant is found to be

a =

(
2mf

~2

)1/6
 1

2F1

[
−
(
2mf
~2
)1/3

En/f
]
1/2

, (176)

where F1 is a function in the family Fm (see Appendix 1). For the two classes of eigenfunc-

tions, the eigenvalues En are given by

Ai′

[
−
(

2mf

~2

)1/3

En/f

]
= 0 for even n,

Ai

[
−
(

2mf

~2

)1/3

En/f

]
= 0 for odd n,

(177)

or jointly by

F2

[
−
(

2mf

~2

)1/3

En/f

]
= 0. (178)

The numerical values of the first 20 energy eigenvalues are given in table V as multiples of

f
(
2mf
~2
)−1/3

[31].
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Table V. The first 20 energy eigenvalues for the symmetric linear potential as multiples of

f
(
2mf
~2

)−1/3
.

even n En odd n En

0 1.018 1 2.338

2 3.248 3 4.087

4 4.820 5 5.520

6 6.163 7 6.786

8 7.372 9 7.944

10 8.488 11 9.022

12 9.535 13 10.040

14 10.527 15 11.008

16 11.475 17 11.936

18 12.384 19 12.828

IV.5.2. Exact particle density

The exact particle density of N occupied orbitals is obtained by summing the modulus

square of the eigenfunctions of the first N states

n (x) =
N−1∑
n=0

(
2mf

~2

)1/3
 1

2F1

[
−
(
2mf
~2
)1/3

En/f
]
Ai2

[(
2mf

~2

)1/3

(x− En/f)

]
. (179)

IV.5.3. Particle density given by the propagator method

We prove that the density given by this method is the same as the dominant term of that

given by Ribeiro et al.’s method [10]. By the propagator method, the density is given by

n (x) =
1

π~
Re

∫ µ

−∞
dλ

∫ ∞
0

dT exp (iλT/~)K (x, x;T ) . (180)

The propagator K (x, x;T ) given by the van Vleck-Gutzwiller formula under short-time

approximation is found to be (see Appendix 6)

K (x, x;T ) '
√

m

2πi~T
exp

{
− ifT |x|

~
− if 2T 3

24~m

}
. (181)
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We have, by substituting this into (180) and simplifying the notation by taking the derivative

w.r.t. µ

∂

∂µ
n (x) ' 1

π~
Re

∫ ∞
0

dT

√
m

2πi~T
exp

{
i

~
(µ− f |x|)T − if 2T 3

24~m

}
=

1

π~
Re

∫ ∞
0

dT

√
m

2π~T
exp

{
i

~
(µ− f |x|)T − if 2T 3

24~m
− iπ

4

}
=

1

π~

∫ ∞
0

dT

√
m

2π~T
cos

{
f 2T 3

24~m
− 1

~
(µ− f |x|)T +

π

4

}
.

(182)

We observe that the integral will give us the square of the Airy function, following its

integral representation [20]

Ai2 (x) =
1

2π3/2

∫ ∞
0

1√
t

cos
(
t3/12 + tx+

π

4

)
dt. (183)

By a change of variable T =
(

2~m
f2

)1/3
t, we have

∂

∂µ
n (x)

' 1

π~

∫ ∞
0

dT

√
m

2π~T
cos

{
f 2T 3

24~m
− 1

~
(µ− f |x|)T +

π

4

}
=

1

π~

(
2~m
f 2

)1/6 ( m

2π~

)1/2 ∫ ∞
0

dt
1√
t

cos

{
t3

12
− µ− f |x|

~

(
2~m
f 2

)1/3

t+
π

4

}

=

(
4m2

f~4

)1/3

Ai2

[
−(µ− f |x|)

~

(
2~m
f 2

)1/3
]
.

(184)

We obtain hence

n (x) =

∫ µ

−∞

(
4m2

f~4

)1/3

Ai2

[
−(λ− f |x|)

~

(
2~m
f 2

)1/3
]

dλ. (185)

By a change of variable z = (λ−f |x|)
~

(
2~m
f2

)1/3
, we have

n (x) '
∫ µ

−∞

(
4m2

f~4

)1/3

~
(

f 2

2~m

)1/3

Ai2 [−z] dz

=

(
2mf

~2

)1/3 ∫ zF(x)

−∞
Ai2 [−z] dz

=

(
2mf

~2

)1/3 ∫ zF(x)

−∞
F0 [−z] dz

=

(
2mf

~2

)1/3

F1 (−zF (x)) ,

(186)

where the integrand in the second last step is the function F0 (−z), whose anti-derivative is

F1 (−z), see Appendix 1.
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IV.5.4. Particle density given by Ribeiro et al.’s method

We start out by calculating the abbreviated action for a point x > 0, but x < x2, where

x2 is the right turning point for the Fermi energy EF. The result as given by (13) is found

to be

S (x) =
p3F (x)

3mf
, (187)

where pF (x) is the classical momentum at the Fermi level. Similar derivations show that

for a general point x, the absolute value of zF (x) is given by

|zF (x)| =

[
3

2~
|pF|3 (x)

3mf

]2/3

=

[
1

2~mf

]2/3
|pF|2 (x) .

(188)

As can be inferred from the earlier discussion, pF (x) always has the same phase as√
zF (x). Hence, the dominant term in the density given by this method is found to be (27)

n0 (x) =

(
2mf

~2

)1/3

F1 (−zF (x)) , (189)

which is exactly the result (186) found by the propagator method if we choose the same Fermi

energy EF = EN−1/2 for a system of N non-interacting fermions. En for the semiclassical

methods are given by the JWKB quantization rule which resolves into

En =
1

2m

(
3mfπ~(n+ 1/2)

2

)2/3

. (190)

Figure 29 compares the particle densities given by various methods. The semiclassical

density (186) correlates quite accurately with the exact result. This is a first example to

confirm the validity of the proposed method of finding the particle density via the quan-

tum propagator. This also shows that we may greatly simplify the problem of finding the

propagator by considering only one particular orbit associated with short transition time.

Even so, the particle density we found is already quite accurate. Of course, we need further

investigations to arrive at the general picture. In the next section, we consider the example

of a one-dimensional harmonic oscillator, where we know its propagator exactly. We shall

see how by using suitable approximations, we can relate the present method and the JWKB

method.
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Figure 29. Exact density, TF density, and semiclassical density (186) for three particles in a

one-dimensional symmetric linear potential, V (x) = f |x|.

IV.6. One-dimensional harmonic oscillator potential

For the Hamiltonian

H =
p2

2m
+

1

2
mω2x2, (191)

the propagator from a point x back to itself in some time t is given by (see Appendix 7)

K (x, x; t) =

√
mω

2πi~ |sin (ωt)|
exp

{
− imωx2

~
tan

(
ωt

2

)
− iκπ

2

}
, (192)

where

κ =

⌊
ωt

π

⌋
. (193)

The density according to formula (140) is given by

n (x) =
Re

π~

∫ µ

dλ

∫ ∞
0

dt

√
mω

2πi~ |sin (ωt)|
exp

{
− imωx2

~
tan

(
ωt

2

)
+

iλt

~
− iκπ

2

}
. (194)
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Denote

Iλ (x) =

∫ ∞
0

dt

√
mω

2πi~ |sin (ωt)|
exp

{
− imωx2

~
tan

(
ωt

2

)
+

iλt

~
− iκπ

2

}
. (195)

We divide the domain of integration into sections of length 2π
ω

,

Iλ (x) =
∞∑
j=0

∫ 2(j+1)π/ω

2jπ/ω

dt

√
mω

2πi~ |sin (ωt)|
exp

{
− imωx2

~
tan

(
ωt

2

)
+

iλt

~
− iκπ

2

}
. (196)

Let

I0λ (x) =

∫ 2π/ω

0

dt

√
mω

2πi~ |sin (ωt)|
exp

{
− imωx2

~
tan

(
ωt

2

)
+

iλt

~
− iκπ

2

}
. (197)

By changing the integration variable and taking into account the correct κ for integrals over

the sections, we deduce

Iλ (x) = I0λ (x)
∞∑
j=0

exp

(
iλ

~
2jπ

ω

)
exp (−ijπ) . (198)

The sum on the right-hand side does not converge in the usual sense. We shall see that

not this but the same sum over all integer j can be evaluated by the Poisson summation

formula. This sum arises when we take the real part of Iλ (x) with the evaluated expression

of I0λ (x) substituted in. Our focus now is on the evaluation of I0λ (x).

Let

f (t) = −mωx2 tan

(
ωt

2

)
+ λt,

g (t) =

(
mω

2πi~ |sin (ωt)|

)1/2

.

(199)

We have

I0λ (x) = I1 (x) + I2 (x) , (200)

where

I1 (x) =

∫ π/ω

0

dt g (t) exp

(
i

~
f (t)

)
,

I2 (x) =

∫ 2π/ω

π/ω

dt g (t) exp

(
i

~
f (t)− iπ

2

)
.

(201)

We shall consider two separate cases of the values of λ and x: the classically forbidden region

(λ < V (x)), and the classically allowed region (λ > V (x)).
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IV.6.1. Classically forbidden region

Now, we treat the case λ < V (x). Let

ρ (t) = −1

~
f (t) = −1

~

(
λt−mωx2 tan

(
ωt

2

))
. (202)

For λ < V (x), ρ (t) is an increasing function on the range [0, π/ω), which permits us to

make the change of variable

ρ (t) = ξ (u (t)) =
u3

12
+ uz, (203)

where z is a positive constant to be determined. The functions ρ (t) and ξ (u) are both

analytic for |t| ∈ [0, π/ω) and z ∈ C respectively, so if they agree on |t| ∈ [0, π/ω) for a given

choice of the analytic function u (t) , they agree on the entire open domain of analyticity. It

is generally difficult to invert the relation to express t as a function of u. We shall choose

instead to truncate the power series of t in orders of u. By inspection, we notice that u = 0

when t = 0. Therefore, in general we have

t ' dt (0)

du
u+ · · · (204)

for small values of u. Since the phases of the integrands of I1 (x) and I2 (x) are rapidly

oscillatory in the semiclassical limit, the dominant contribution to these integrals comes

from the vicinity of t = 0, which justifies the truncation.

To determine dt(0)
du

, we compare the first derivatives of ρ (t) and ξ (u (t)) at t = 0. From

ρ′ (t) =
1

~

(
V (x)

cos2 (ωt/2)
− λ
)
,

ξ′ (u (t)) =

(
u2

4
+ z

)
du

dt
,

(205)

we deduce that

dt (0)

du
=

z~
V (x)− λ

. (206)
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Therefore,

I1 (x)

=

∫ ∞
0

du
dt

du

(
mω

2πi~ |sin (ωt)|

)1/2

exp

[
−i

(
u3

12
+ uz

)]
'
∫ ∞
0

du

(
z~

V (x)− λ

)1/2 ( m

2π~

)1/2 1√
u

exp

[
−i

(
u3

12
+ uz +

π

4

)]
'
(

mz

2π (V (x)− λ)

)1/2 ∫ ∞
0

du√
u

[
cos

(
u3

12
+ uz +

π

4

)
− i sin

(
u3

12
+ uz +

π

4

)]
= π

(
2mz

(V (x)− λ)

)1/2 [
Ai2 (z)− iAi (z) Bi (z)

]
,

(207)

where we use the integral representations of Ai2 (z) (183) and of Ai (z) Bi (z) [20].

To find z, we compare ρ (t) and ξ (u (t)) where they are stationary on the domain of

analyticity. We have ρ′ (t) and ξ′ (u (t)) vanish when

t = ±it0,

u = ±i2
√
z,

(208)

where t0 is the positive solution of

cosh2

(
ωt0
2

)
=
V (x)

λ
> 1. (209)

The stationary values of ρ (t) and ξ (u (t)) are then

ξ = ±i
4

3
z3/2,

ρ = ± i

~

(
mωx2 tanh

(
ωt0
2

)
− λt0

)
.

(210)

We deduce that

z =

[
3

4~

(
mωx2 tanh

(
ωt0
2

)
− λt0

)]2/3
> 0. (211)
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As for I2 (x), we have after some changes of variable

I2 (x)

=

∫ 2π/ω

π/ω

dt

(
mω

2πi~ |sin (ωt)|

)1/2

exp

[
i

~

(
λt−mωx2 tan

(
ωt

2

))
− iπ

2

]
=

∫ 0

−π/ω
dt

(
mω

2πi~ |sin (ωt)|

)1/2

exp

[
i

~

(
λt−mωx2 tan

(
ωt

2

))]
exp

(
iλ2π

~ω
− iπ

2

)
= −

∫ π/ω

0

dt

(
mω

2π~ |sin (ωt)|

)1/2

exp

[
− i

~

(
λt−mωx2 tan

(
ωt

2

))
+

iπ

4

]
exp

(
iλ2π

~ω

)
= −I∗1 (x) exp

(
iλ2π

~ω

)
.

(212)

With (207), we have

I2 (x) ' −π
(

2mz

V (x)− λ

)1/2 [
Ai2 (z) + iAi (z) Bi (z)

]
exp

(
iλ2π

~ω

)
. (213)

Altogether, for λ < V (x),

I0λ (x) ' π

(
2mz

V (x)− λ

)1/2 [
Ai2 (z)− iAi (z) Bi (z)

]
− π

(
2mz

V (x)− λ

)1/2 [
Ai2 (z) + iAi (z) Bi (z)

]
exp

(
iλ2π

~ω

)
= π

(
2mz

V (x)− λ

)1/2

Ai2 (z)

[
1− exp

(
iλ2π

~ω

)]
− iπ

(
2mz

V (x)− λ

)1/2

Ai (z) Bi (z)

[
1 + exp

(
iλ2π

~ω

)]
.

(214)

IV.6.2. Classically allowed region

When λ > V (x), the graph of ρ (t) on the range [0, π/ω) now has a convex shape. This

suggests the change of variable

ρ (t) = ξ (u (t)) =
u3

12
− uz, (215)

for a positive constant z to be determined. Following the same method as for the classically

forbidden region, we expand t in orders of u for small values of u,

t ' dt (0)

du
u+ · · · . (216)
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We have

ρ′ (t) =
1

~

(
V (x)

cos2 (ωt/2)
− λ
)
,

ξ′ (u (t)) =

(
u2

4
− z
)

du

dt
.

(217)

Therefore,
dt (0)

du
=

z~
λ− V (x)

, (218)

and

I1 (x)

=

∫ ∞
0

du
dt

du

(
mω

2πi~ |sin (ωt)|

)1/2

exp

[
−i

(
u3

12
− uz

)]
'
∫ ∞
0

du

(
z~

λ− V (x)

)1/2 ( m

2π~

)1/2 1√
u

exp

[
−i

(
u3

12
− uz +

π

4

)]
'
(

mz

2π (λ− V (x))

)1/2 ∫ ∞
0

du√
u

[
cos

(
u3

12
− uz + π/4

)
− i sin

(
u3

12
− uz +

π

4

)]
= π

(
2mz

λ− V (x)

)1/2 [
Ai2 (−z)− iAi (−z) Bi (−z)

]
.

(219)

It follows that

I2 (x) ' −π
(

2mz

λ− V (x)

)1/2 [
Ai2 (−z) + iAi (−z) Bi (−z)

]
exp

(
iλ2π

~ω

)
. (220)

As a result, for λ > V (x),

I0λ (x) = = π

(
2mz

λ− V (x)

)1/2

Ai2 (−z)

[
1− exp

(
iλ2π

~ω

)]
− iπ

(
2mz

λ− V (x)

)1/2

Ai (−z) Bi (−z)

[
1 + exp

(
iλ2π

~ω

)]
.

(221)

The constant z in this case is also obtained by comparing the stationary values of ρ (t) and

ξ (u (t)). We have vanishing first derivatives at

t = ±t1,

u = ±2
√
z,

(222)

where t0 is the smallest positive solution to

cos2
(
ωt1
2

)
=
V (x)

λ
< 1. (223)
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The stationary values of ρ (t) and ξ (t) are given by

ξ = ±4

3
z3/2,

ρ = ±1

~

(
λt1 −mωx2 tan

(
ωt1
2

))
.

(224)

We deduce that

z =

[
3

4~

(
λt1 −mωx2 tan

(
ωt1
2

))]2/3
> 0. (225)

In summary

I0λ (x) ' 2mπz1/2

|pλ (x)|
Ai2 (±z)

[
1− exp

(
iλ2π

~ω

)]
− i

2mπz1/2

|pλ (x)|
Ai (±z) Bi (±z)

[
1 + exp

(
iλ2π

~ω

)]
,

(226)

where plus sign corresponds to the classically forbidden region and z is given by (225) and

(211) for the respective regions.

IV.6.3. Particle density

We are now in a position to calculate Re (Iλ (x)) and the particle density. We have

Re (Iλ (x)) =
1

2
I0λ (x)

∞∑
j=0

exp

(
iλ

~
2jπ

ω

)
exp (−ijπ)

+
1

2
I0λ (x)∗

∞∑
j=0

exp

(
− iλ

~
2jπ

ω

)
exp (ijπ) .

(227)

We substitute (226) in (227) and pay attention in grouping the terms so that we have the

sum of the phases over all integer j. We obtain eventually

Re (Iλ (x))

' mπz1/2

|pλ (x)|
Ai2 (±z)

[
1− exp

(
iλ2π

~ω

)] ∞∑
j=−∞

exp

(
iλ

~
2jπ

ω

)
exp (−ijπ)

− i
mπz1/2

|pλ (x)|
Ai (±z) Bi (±z)

[
1 + exp

(
iλ2π

~ω

)] ∞∑
j=−∞

exp

(
iλ

~
2jπ

ω

)
exp (−ijπ) .

(228)

We apply the Poisson summation formula (see Appendix 2) to evaluate the last sum, which

can be separated into sums over even and odd j.
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∞∑
j=−∞

(−1)j exp

(
iλ

~ω
2πj

)
=

∞∑
l=−∞

exp

(
iλ

~ω
4πl

)

−
∞∑

l=−∞

exp

(
iλ

~ω
4π (l + 1/2)

)

=

[
1− exp

(
i2πλ

~ω

)] ∞∑
l=−∞

exp

(
i2λ

~ω
2πl

)

=

[
1− exp

(
i2πλ

~ω

)] ∞∑
l=−∞

δ

(
2λ

~ω
− l
)

= 2
∞∑

k=−∞

δ

(
2λ

~ω
− (2k + 1)

)
,

(229)

where the coefficient before the sum in the second last step is zero for even l. Substituting

this into (228) gives

Re (Iλ (x)) ' 4mπz1/2

|pλ (x)|
Ai2 (±z)

∞∑
k=−∞

δ

(
2λ

~ω
− (2k + 1)

)
. (230)

The density is found to be

n (x) '
∫ µ

0

dλ

π~
4mπz1/2

|pλ (x)|
Ai2 (±z)

∞∑
k=−∞

δ

(
2λ

~ω
− (2k + 1)

)

=

∫ 2µ
~ω

0

dν
2mωz1/2

|pλ (x)|
Ai2 (±z)

∞∑
k=−∞

δ (ν − (2k + 1)) ,

(231)

where we employ the change of the integration variable ν = 2λ
~ω . Finally,

n (x) '
µ∑

λ=~ω(n+1/2)

2mωz1/2

|pλ (x)|
Ai2 (±z) (232)

where we sum over the mode energies from 0 to the Fermi energy µ.

We identify the expression inside the sum to be the probability density for each mode.

We compare this with the Langer wave function as in equation (19),

|ψ (x)|2 =
2mω |z|1/2

|p|
Ai2 (−z) (233)

One will find that these are exactly the same by working out the exact expressions of z (x)

defined in the discussion on the Langer wave function for the one-dimensional harmonic

oscillator. The particle density (232) is nothing but (24).
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Now, suppose we do not take into account the integrals over all the small sections of

length 2π/ω in evaluating Iλ (x) (196). Instead of a sum of integrals in the final result (231),

we shall only have one term, and the density is an integral in place of a sum (232). This

gives rise to the dominant term in the particle density (see Appendix 4). In other words, a

sum has been approximated by an integral.

CONCLUSIONS AND FUTURE WORKS

IV.7. Conclusions

The semiclassical particle density (25) by [10] in one dimension has been adapted to find

the semiclassical particle density for non-interacting fermions in two and three dimensional

potentials in terms of the radial particle density ((56), (94), (114), and (115)) for each angular

quantum number or magnetic quantum number. The formula (140) for particle density in

one dimension involving the quantum propagator, applied to two concrete examples, gives

the same result by [10] with the propagator approximated by the van Vleck-Gutzwiller

formula (160) and the short-time approximation.

We have discussed the Langer wave function (19), which is an accurate approximation to

the exact solution of the one-dimensional time-independent Schrödinger equation. We have

also observed how we can connect the Langer wave function from various turning points.

The case of two turning points has been presented. The Langer wave function is valid in

the entire position space including the turning points, as illustrated in figures 2, 3, 4, and

5. With the Langer wave function, a good approximation to the particle density in the case

of non-interacting fermion gas is obtainable by just summing the respective orbitals; with

[10], we know that the semiclassical density can be expressed in a closed form formula (25),

the dominant term (27) of which we have checked and also rederived with a method based

on the quantum propagator for two examples in one dimension.

We have also extended the results by [10] to isotropic potentials in higher dimensions,

following the line of thought in the one-dimensional counterpart. The semiclassical radial

wave function (53) has turned out to be of the same form as in the one-dimensional case, with

the external potential replaced by an effective potential with a non-zero centrifugal term.

The anomaly for zero magnetic quantum number in two dimensions where the centrifugal
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term vanishes has also been treated. We have demonstrated how from the semiclassical radial

wave function, we arrive at the semiclassical particle density of non-interacting fermions in

higher dimensions for completely filled shells. An attempt to extract the leading contribution

to the radial particle density from the sum of the modulus square of the semiclassical wave

functions has been made for the case of zero magnetic quantum number near s = 0 in two

dimensions. The result is accurate for the harmonic oscillator potential, but fails for the

Coulomb potential, where we choose to sum the semiclassical radial wave functions (92) to

find the radial particle density for zero magnetic moment.

We move on to discuss another method to get a semiclassical particle density of non-

interacting fermions via the quantum propagator. We aim at getting a better intuition of

which physical approximations lead to the existing result by Ribeiro et al.’s method and

possibly a more general method for higher dimensions, which can resolve the “connection

issue”. The potential choice for the semiclassical propagator is the Van Vleck-Gutzwiller’s

formula. The new method’s formula for particle density has been tested on two examples: a

symmetric linear potential and a harmonic oscillator potential in one dimension. As it turns

out, we do not usually need many classical orbits in the van Vleck-Gutzwiller’s formula. The

typical orbit that exists for small transition time normally gives a good approximation to the

particle density. We have shown through explicit consideration of these two examples that

we indeed get the same result as by Ribeiro et al.’s method. The discussion of the latter

example also shows a connection of the present method with the JWKB approximation.

Based on the intuition gained in these concrete examples, we can now consider the general

case, for any one-dimensional potentials with two turning points and regular potentials that

vanish less rapidly than the inverse square law in two and three dimensions.

IV.8. Future works

For a future follow-up, we can keep investigate the process of extracting the leading

contribution to the radial particle density from the sum of the modulus square of the semi-

classical radial wave functions, in Airy form or Bessel form. Various results can also be used

to modify the several functionals in the density functional theory.

As for the new method, we can continue working on various concrete examples in one

dimension to gain more intuition, which proves valuable as we move on. The results for
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the concrete examples are derived from the knowledge of the explicit form of the quantum

propagator. To be able to consider the general case, we have to discuss the general properties

of the involved quantities like the Hamilton principal function, the propagator, and possibly

the Green function, which was the topic of various earlier works. It is likely that the proposed

method can be placed in a more general framework of the research on the classical-quantum

connection.
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APPENDICES

1. Fm functions (see [1])

a. Expressions of Fm for some definite values of m

F−2 (z) = 2
[
zAi2 (z) + Ai′2 (z)

]
(234)

F−1 (z) = −2Ai (z) Ai′ (z) , (235)

F0 (z) = Ai2 (z) , (236)

F1 (z) = −zAi2 (z) + Ai′2 (z) , (237)

F2 (z) =
2

3

[
z2Ai2 (z)− 1

2
Ai (z) Ai′ (z)− zAi′2 (z)

]
. (238)

b. Recurrence formulas

For m integer, (
m− 1

2

)
Fm (−z) =

1

4
Fm−3 (−z) + zFm−1 (−z) , (239)

∂

∂z
Fm (−z) = Fm−1 (−z) . (240)

Substituting (240) into (239) gives(
m− 1

2
− z ∂

∂z

)
︸ ︷︷ ︸
−z

1
2+m ∂

∂z
z
1
2−m

Fm (−z) =
1

4
Fm−3 (−z) . (241)

As a consequence,
∂

∂z

Fm (−z)

zm−
1
2

= −1

4

Fm−3 (−z)

zm+ 1
2

. (242)

It follows that
∂

∂z

F1 (−z)√
z

= −1

4

F−2 (−z)

(
√
z)

3 . (243)

(239) gives for m = 1:
1

2
F1 (−z) =

1

4
F−2 (−z) + zF0 (−z) , (244)

or
F1 (−z)√

z
=

1

2

F−2 (−z)√
z

+ 2
√
zF0 (−z) . (245)
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c. Asymptotic behavior of Fm

F1 (−z) |z�1 ∼
√
z

π
, (246)

F2 (−z) |z�1 ∼
1

2π

1
3
4

z
3
2 =

2

3π
z

3
2 . (247)
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2. Poisson summation formula

We have the Poisson identity (see for example, [23]):

∞∑
k=−∞

δ (x− k) =
∞∑

j=−∞

ei2πjx. (248)

Suppose we have a sum
∑N−1

k=0 fk. We can rewrite the sum as an integral

N−1∑
k=0

fk =

∫ N−1/2

−1/2
dνf (ν)

∞∑
k=−∞

δ (ν − k) , (249)

where f (ν) is a continuous extension of fν . Note that we add the sum of the Dirac delta

distributions to restrict ν to take integer values. Applying Poisson identity (248), we have

N−1∑
k=0

fk =

∫ N−1/2

−1/2
dνf (ν)

∞∑
j=−∞

ei2πjν

=

∫ N−1/2

−1/2
dνf (ν) + · · · ,

(250)

with the correction terms corresponding to j 6= 0.
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3. Airy uniform approximation to the one-dimensional time-independent Schrödinger

equation

Consider the one-dimensional Schrödinger equation (or the radial Schrödinger equation

in the three-dimensional case) in the form

− ~2

2m

d2

dr2
u (r) + V (r)u (r) = Eu (r) . (251)

The equation can be written as

d2

dr2
u (r) +

p (r)2

~2
u (r) = 0, (252)

where the classical momentum p (r) is given by

p (r)2 = 2m (E − V (r)) . (253)

We make the following transforms of both the dependent and independent variables by

z = z (r) ,

u = ρ (z)φ (z) .

This change of variables gives us a differential equation for ρ (z).

ρ′′ +

[
2
d

dz
lnφ− d2r

dz2
dz

dr

]
ρ′

+

[
1

φ

d2φ

dz2
− d2r

dz2
dz

dr

(
d

dz
lnφ

)
+
p2 (r)

~2

(
dz

dr

)−2]
ρ = 0.

(254)

By putting

φ =

(
dz

dr

)−1/2
=

(
dr

dz

)1/2

(255)

such that the term associated with the first derivative of ρ in equation (254) vanishes, we

obtain an equation where the quantity {z, r} appears

{z, r} =
z′′′

z′
− 3

2

(
z′′

z′

)2

,

where z′, z′′, and z′′′ are the successive derivatives of z as a function of r. The equation

reads

ρ′′ +

[
p (r)2

~2z′2 (r)
− 1

z′2 (r)
{z, r}

]
ρ = 0. (256)
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In the semiclassical approximation, we assume that ~ tends formally towards 0 so that

we could neglect the term {z, r}. The equation becomes

ρ′′ +
p (r)2

~2z′2 (r)
ρ = 0. (257)

The general method to proceed further consists in choosing the form of the function

ξ (z) =
p2 (r)

~2z′2 (r)
(258)

such that we know the solution of equation (257). By (255) the approximate solution to the

Schrödinger equation is

u (r) =

(
dz

dr

)−1/2
ρ (z) .

The JWKB method consists in choosing

ξ (z) = 1

The integration of equation (258) gives us

z (r) =


1
~

∫ r
rt
|p (r′)| dr′, if p2 (r) > 0,

i
~

∫ r
rt
|p (r′)| dr′, if p2 (r) < 0.

(259)

In (259) rt is one zero of the momentum p (r) or turning point. The obtained solution is the

known JWKB solution

u (r) =
1√
|p (r)|

exp (±iz (r)) . (260)

As for the Airy uniform approximation, we choose ξ (z) = z. Suppose we have a potential

with one turning point, where the classically allowed region is to the right of this turning

point. This choice resolves into

z (r) =


[

3
2~

∫ r
rt
p (r) dr

]2/3
, for the classically allowed region,

−
[

3
2~

∫ rt
r
|p (r)| dr

]2/3
, for the classically forbidden region.

(261)

We have then the approximate solution to the one-dimensional Schrödinger equation

u (r) ∼
[
~2
z (r)

p2 (r)

]1/4
Ai (−z (r)) . (262)

The derivation above is in no way new. Here we adopt the representation in [20]. Similar

derivations may be found in various texts.
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4. Rederivation of equations (10) and (12) in Ribeiro et al.’s paper

a. Equation (10)

We start with the notice that in writing down equation (9), the authors have assigned

m = 1. This may be convenient, but can also be confusing as we cannot keep track of the

dimension of the two sides of an equation. We shall restore m to be a parameter denoting

the mass of the fermion and rewrite the term corresponding to k = 0 (always in reference

to the authors’ paper):

n0 (x) = 2m

∫ N−1/2

−1/2
dλ
ωλ
√
zλ (x)

pλ (x)
Ai2 [−zλ (x)] . (263)

As suggested by the authors, we first carry out a change of variable from λ to pλ (x). In

what follows x is treated as a parameter, so we can forget about it for the moment and

agree that pλ (x), Eλ, and zλ (x) depend on the same variable λ, by the means of which we

can always write any one of p, E, and z as a function of another. For example, pλ(x) by

right is a function of x with a parameter dependence λ, but since we treat x as a parameter,

we can easily write pλ (x) = p (z).

Given pλ (x) =
√

2m (Eλ − V (x)), we have

∂pλ
∂λ

=
2m∂Eλ

∂λ

2pλ
=
m~ωλ
pλ

, (264)

where ωλ is defined as

ωλ = ~−1
∂Eλ
∂λ

. (265)

So the integral becomes

n0 (x) = 2m

∫ pN−1/2

p−1/2

dpλ (x)
pλ (x)

m~ωλ
ωλ
√
zλ (x)

pλ (x)
Ai2 [−zλ (x)]

= 2~−1
∫ pN−1/2

p−1/2

dpλ (x)
√
zλ (x)Ai2 [−zλ (x)] .

(266)

We change next the variable from pλ (x) to zλ (x). With f (z) = p(z)√
z

as defined in the paper,

we have

dp =
∂p

∂z
dz =

∂ (f
√
z)

∂z
dz

=

(
f ′
√
z +

f

2
√
z

)
dz.

(267)
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As a result, we have

n0 (x) = 2~−1
∫ zN−1/2

z−1/2

dz

(
f ′
√
z +

f

2
√
z

)√
zAi2 [−z]

= 2~−1
∫ zN−1/2

z−1/2

dzf ′ (z) zAi2 [−z] + ~−1
∫ zN−1/2

z−1/2

dzf (z) Ai2 [−z] .

(268)

We focus now on the second term and denote it as B = ~−1
∫ zN−1/2

z−1/2
dzfAi2 [−z]. We notice

that

Ai2 [−z] =
d

dz
[F1 (−z)] . (269)

An integration by part gives us

B = ~−1
[
f (z)F1 (−z)

∣∣∣∣
z=zN−1/2

− f (z)F1 (−z)

∣∣∣∣
z=z−1/2

]

− ~−1
∫ zN−1/2

z−1/2

dz
∂f

∂z
F1 (−z) .

(270)

Now

n0 (x) = ~−1
[
f (z)F1 (−z)

∣∣∣∣
z=zN−1/2

− f (z)F1 (−z)

∣∣∣∣
z=z−1/2

]

+ 2~−1
∫ zN−1/2

z−1/2

dzf ′ (z) zAi2 [−z]− ~−1
∫ zN−1/2

z−1/2

dz
∂f

∂z
F1 (−z)

= ~−1
[
f (z)F1 (−z)

∣∣∣∣
z=zN−1/2

− f (z)F1 (−z)

∣∣∣∣
z=z−1/2

]

+ ~−1
∫ zN−1/2

z−1/2

dzf ′ (z)
[
2zAi2 [−z]− F1 (−z)

]
.

(271)

We notice that

F1 (−z) =
√
zg+ (z) , (272)

and

2zAi2 [−z]− F1 (−z) = 2zAi2 [−z]−
[
zAi2 [−z] + Ai′2 [−z]

]
= zAi2 [−z]− Ai′2 [−z]

=
√
zg− (z) ,

(273)

where g± (z) = z1/2Ai2 (−z) ± z−1/2Ai′2 (−z) is defined in Ribeiro et al.’s paper. So alto-

gether, we have

n0 (x) ∼ ~−1pF (x) g+ [zF (x)] + ~−1
∫ zN−1/2

z−1/2

dz
√
z
∂f

∂z
g− (z) . (274)

80



It seems that the authors have missed a factor of ~−1 in the second term. Integrating by

parts the second term and ignoring the contribution from the lower bound of the integral,

we have

n0 (x) ∼ ~−1pF (x) g+ [zF (x)] + ~−1
∂f

∂z

∣∣∣∣
EF,x

A0 (zF) , (275)

where A0 (z) = −1
2
F−1 (−z) = Ai (−z) Ai′ (−z). The justification of the negligence of the

terms associated with the lower bound is the normalization of the leading contribution to

N in the semiclassical limit, as can be seen in II.4.

b. Equation (12)

Still treating x as a parameter and denoting now ∂
∂λ

as a prime, we have

∂f

∂z
=
f ′

z′
=

(p/
√
z)
′

z′

=
1

z′

p′
√
z − p 1

2
√
z
z′

z

=
p′√
zz′
− p

2z3/2
.

(276)

After substituting p′ as in (264) into the above equation, we have

∂f

∂z

∣∣∣∣
EF,x

=
1√

zF (x)∂zλ(x)
∂λ

∣∣∣∣
λ=N−1/2

m~ωF

pF (x)
− pF (x)

2z
3/2
F

. (277)

There may be a problem with the definition of αF (x) in the paper. αF (x) appears as the

argument of csc in the particle density, so it should be dimensionless. If any α is to be

defined, it should be

αF (x) =
√
zF (x)

∂zλ (x)

∂λ

∣∣∣∣
λ=N−1/2

, (278)

thereby giving
∂f

∂z

∣∣∣∣
EF,x

=
m~ωF

pF (x)αF (x)
− pF (x)

2z
3/2
F

. (279)

The term n0 is then given by

n0 (x) ∼ ~−1pF (x) g+ [zF (x)] +

(
mωF

pF (x)αF (x)
− pF (x)

2~z3/2F

)
A0 (zF) . (280)

We could not rederive the term n1 for the moment, so we quote the result here

n1 (x) =
mωF

pF (x)

(
csc (αF (x))− 1

αF (x)

)
A0 (zF (x)) . (281)

81



The sum of the two terms n0 and n1 gives us the full semiclassical approximation to the

particle density

nsc (x) = ~−1pF (x) g+ [zF (x)] +

(
mωF

pF (x)
csc (αF (x))− pF (x)

2~z3/2F

)
A0 (zF)

=
pF (x)

~

[√
zAi2 (−z) +

Ai′2 (−z)√
z

+

(
~mωF

p2F (x)
csc (αF (x))− 1

2z3/2

)
Ai (−z) Ai′ (−z)

] ∣∣∣∣
z=zF(x)

.

(282)

82



5. Energy eigenvalues of the harmonic oscillator and Coulomb potentials in three

dimensions given by the JWKB quantization rule

As has been discussed in III.2, Langer [11] noticed that the correct JWKB quantization

for a three-dimensional isotropic potential should be obtained by replacing the centrifugal

term ~2l(l+1)
2mr2

of the effective potential by ~2(l+1/2)2

2mr2
. The JWKB quantization rule then reads∫ r2

r1

dr

√√√√2m

{
E − V (r)− ~2 (l + 1/2)2

2mr2

}
= π~ (nr + 1/2) , (283)

where the integral is taken between the two turning points r1 and r2, i.e. the two zeros

of the term under the square root sign, and nr is the radial quantum number. Here, we

derive from (283) the energy eigenvalues for the three-dimensional harmonic oscillator and

Coulomb potential problems.

In what follows, we use extensively the integral∫ π

−π

dα

1 + ε sin (α)
=

2π√
1− ε2

, for |ε| < 1. (284)

Let u (α) = tan (α/2). In the range (−π, π), u (α) is a monotonic function. Therefore,

α = 2 arctan (u). We have hence

dα =
2

1 + u2
du. (285)

We also have

sin (α) = 2 tan
(α

2

)
cos2

(α
2

)
=

2u

1 + u2
.

(286)

The left-hand side of (284) now becomes∫ ∞
−∞

1

1 + 2εu
1+u2

2

1 + u2
du =

∫ ∞
−∞

2du

u2 + 2εu+ 1

=

∫ ∞
−∞

2du

(u+ ε)2 + (1− ε2)

(287)

By a change of variable t = u+ε√
1−ε2 , the integral becomes∫ ∞

−∞

2
√

1− ε2dt
(1− ε2) (t2 + 1)

=
2√

1− ε2

∫ ∞
−∞

dt

t2 + 1

=
2√

1− ε2
[arctan (t)]

∣∣∣∣∞
−∞

=
2π√

1− ε2
.

(288)

Hence, (284) is proven.
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a. Three-dimensional harmonic oscillator

With the potential V (r) = 1
2
mω2r2, the left-hand side of (283) becomes

∫ r2

r1

dr

√√√√2m

[
E − 1

2
mω2r2 − ~2 (l + 1/2)2

2mr2

]

=

∫ r2

r1

dr

r

√√√√2m

[
Er2 − 1

2
mω2r4 − ~2 (l + 1/2)2

2m

]

= mω

∫ r2

r1

dr

r

√
(r22 − r2) (r2 − r21).

(289)

The last step follows from the fact that r1 and r2 are the two zeros of the integrand with

r2 > r1. Let

r2 =
r21 + r22

2
+
r22 − r21

2
sinα, for α ∈ (−π/2, π/2) . (290)

This implies

2rdr =
r22 − r21

2
cos (α) dα, (291)

and √
(r22 − r2) (r2 − r21) =

√(
r22 − r21

2

)2

(1− sinα) (1 + sinα)

=

(
r22 − r21

2

)
cosα.

(292)

The integral (289) now becomes

mω

∫ π/2

−π/2
dα
r22 − r21

4
cosα

(
r22 − r21

2

)
cosα

1
r22+r

2
1

2
+

r22−r21
2

sinα

=
mω

4

(r22 − r21)
2

r22 + r21

∫ π/2

−π/2
dα

cos2 (α)

1 + ε sinα

=
mω

4

(
r22 + r21

)
ε2
∫ π/2

−π/2
dα

cos2 (α)

1 + ε sinα
,

(293)

where

ε =
r22 − r21
r22 + r21

< 1. (294)

Consider now the integral

∫ π/2

−π/2
dα

cos2 (α)

1 + ε sinα
=

∫ 0

−π/2
dα

cos2 (α)

1 + ε sinα
+

∫ π/2

0

dα
cos2 (α)

1 + ε sinα
. (295)
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By changing the variable α → −π − α for the first integral and α → π − α for the second

integral on the right-hand side, we obtain

2

∫ π/2

−π/2
dα

cos2 (α)

1 + ε sinα

=

∫ π/2

−π/2
dα

cos2 (α)

1 + ε sinα
+

∫ −π/2
−π

dα
cos2 (α)

1 + ε sinα
+

∫ π

π/2

dα
cos2 (α)

1 + ε sinα

=

∫ π

π

dα
cos2 (α)

1 + ε sinα

=
1

ε2

∫ π

π

dα

[
ε2 − 1

1 + ε sinα
+

1− ε2 sin2 (α)

1 + ε sinα

]
=
ε2 − 1

ε2

∫ π

π

dα
1

1 + ε sinα
+

1

ε2

∫ π

π

dα (1− ε sin (α))

=
ε2 − 1

ε2
2π√

1− ε2
+

1

ε2
[α + ε cosα]

∣∣∣∣π
−π

=
ε2 − 1

ε2
2π√

1− ε2
+

2π

ε2
.

(296)

Now, r21 and r22 are solutions to

(mω)2 x2 − 2mEx+ ~2 (l + 1/2)2 = 0, (297)

so

r21,2 =
mE ∓

√[
(mE)2 − (mω)2 ~2 (l + 1/2)2

]
(mω)2

. (298)

Note that for the harmonic oscillator potential, the energy eigenvalues are positive, as a

result of the Sturm-Liouville theorem. As a result,

r22 + r21 =
2mE

(mω)2
, (299)

r22 − r21 =
2
√[

(mE)2 − (mω)2 ~2 (l + 1/2)2
]

(mω)2
. (300)
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We have then

ε =
r22 − r21
r22 + r21

=

√[
(mE)2 − (mω)2 ~2 (l + 1/2)2

]
mE

⇒ ε2 =
(mE)2 − (mω)2 ~2 (l + 1/2)2

(mE)2

⇒ 1− ε2 =
(mω)2 ~2 (l + 1/2)2

(mE)2

⇒
√

1− ε2 =
~ω (l + 1/2)

E
.

(301)

By virtue of (296) and (301), the integral (293) becomes

mω

4

(
r22 + r21

)
ε2
∫ π/2

−π/2
dα

cos2 (α)

1 + ε sinα

=
mω

4

(
r22 + r21

)
π
[
1−
√

1− ε2
]

=
mω

4

2mE

(mω)2
π

[
1− ~ω (l + 1/2)

E

]
=

π

2ω
[E − ~ω (l + 1/2)] .

(302)

The JWKB quantization rule now reads

π

2ω
[E − ~ω (l + 1/2)] = π~ (nr + 1/2) . (303)

Whence, we obtain the correct energy eigenvalues for the three-dimensional harmonic oscil-

lator problem

En = ~ω (n+ 3/2) , (304)

where

n = 2nr + l. (305)

b. Three-dimensional Coulomb potential

The Coulomb potential is given by

V (r) = −Z e
2

r2
, (306)

where Z is the number of elementary positive charges at the center of the potential field,

and e is the elementary charge with suitable unit.
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For the Coulomb potential problem, the left-hand side of (283) becomes∫ r2

r1

dr

r

√
2mEr2 + 2mZe2r − ~2 (l + 1/2)2

=
√
−2mE

∫ r2

r1

dr

r

√
(r − r1) (r2 − r),

(307)

where E < 0 as the potential is unbounded below. We proceed as in the harmonic oscillator

example and let

r =
r1 + r2

2
+
r2 − r1

2
sinα, for α ∈

(
−π

2
,
π

2

)
. (308)

It follows that

dr = dα
r2 − r1

2
cosα,

and √
(r − r1) (r2 − r) =

r2 − r1
2

cosα. (309)

The integral (307) becomes

√
−2mE

∫ π/2

−π/2
dα

(r2 − r1) cosα

(r1 + r2) + (r2 − r1) sinα

r2 − r1
2

cosα

= (r1 + r2)

√
−2mE

2
ε2
∫ π/2

−π/2
dα

cos2 α

1 + ε sinα
,

(310)

where

ε =
r2 − r1
r1 + r2

. (311)

With the result for the integral over α (296) in the previous subsection, the integral (310)

now becomes

(r1 + r2)

√
−2mE

2
π
(

1−
√

1− ε2
)
. (312)

Now, r1 and r2 solve

x2 +
Ze2

E
x− ~2 (l + 1/2)2

2mE
= 0, (313)

so

r2,1 =
−Ze2/E ±

√
(Ze2/E)2 + 2~2 (l + 1/2)2 /mE

2
. (314)

Consequently,

r2 + r1 = −Ze
2

E
,

r2 − r1 =

√
(Ze2/E)2 + 2~2 (l + 1/2)2 /mE.

(315)
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We obtain the value of ε as defined in (311)

ε =

√
(Ze2/E)2 + 2~2 (l + 1/2)2 /mE

−Ze2/E

⇒
√

1− ε2 =

√
−2E

m

~ (l + 1/2)

Ze2
.

(316)

With (312), (315), and (316), the JWKB quantization equation for the Coulomb potential

problem reads

−Ze
2

E

√
−2mE

2
π

(
1−

√
−2E

m

~ (l + 1/2)

Ze2

)
= π~ (nr + 1/2) ,

πZe2
√
−m
2E
− π~ (l + 1/2) = π~ (nr + 1/2) ,√

−m
2E

=
~ (nr + l + 1)

Ze2
.

(317)

We obtain the correct expression for the energy eigenvalues of the Coulomb potential

E = −Z
2me4

2~2
1

(nr + l + 1)2
, (318)

where
Z2me4

2~2

is the Rydberg constant.
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6. Semiclassical propagator for a symmetric linear potential in one dimension

Consider a particle initially at point x0 > 0 in a symmetric linear potential well V (x) =

f |x|. In order to apply the van Vleck-Gutzwiller formula (160), we have to find the Hamilton

principal function for the trajectory in short-time approximation. We consider an end point

x1 which is arbitrary close to x0 such that x1 < x0. The reason for this choice is because no

matter how small the time duration T of the trip is, we can always find a trajectory from

x0 along the gradient of the potential and backward to point x1. We eventually take the

coinciding point limit x1 → x0.

On the right branch of the potential, the equation of motion in Newtonian mechanics is

m
d2x

dt2
= −f

=⇒ v (t) = − f
m
t+ v0

=⇒ x (t) = − f

2m
t2 + v0t+ x0,

(319)

where x0 and v0 are respectively the initial position and velocity of the particle. By con-

struction, v0 > 0.

The time T when the particle reaches the point x1 now satisfies

− f

2m
T 2 + v0T + x0 = x1, (320)

which resolves into

T =
mv0
f

+

√(
mv0
f

)2

+
2m (x0 − x1)

f
. (321)

Inverting this gives v0 in terms of T

v0 = −(x0 − x1)
T

+
fT

2m
. (322)

Now the Hamilton principal function along this path is given by

R (x1, x0;T ) =

∫ T

0

[m
2
v2 (t)− fx (t)

]
dt

=
f 2

2m
T 3 − fv0T 2 +

(m
2
v20 − fx0

)
T

= − f 2

24m
T 3 − f (x0 + x1)

2
T +

m

2

(x0 − x1)2

T
,

(323)

where in the last step, we substitute the expression (322) of v0 in terms of T . We have now

C = − ∂2R

∂x0∂x1
=
m

T
. (324)
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So the semiclassical propagator is given by

K (x1, x0;T ) '
√

m

2πi~T
exp

(
− if 2

24~m
T 3 − if (x0 + x1)

2~
T +

im

2~
(x0 − x1)2

T

)
. (325)

Taking the coinciding point limit gives

K (x0, x0;T ) '
√

m

2πi~T
exp

(
− if 2

24~m
T 3 − ifx0

~
T

)
. (326)

Similar argument for x0 < 0 gives finally for a general point x,

K (x, x;T ) '
√

m

2πi~T
exp

(
− if 2

24~m
T 3 − if |x|

~
T

)
. (327)

90



7. Semiclassical propagator for a harmonic oscillator potential in one dimension

We have the equation of motion of a particle in a one-dimensional harmonic oscillator

potential V (x) = 1
2
mω2x2

mẍ = −mω2x, (328)

whose solution is given by

x (t) = A cos (ωt) +B sin (ωt) . (329)

Consider the initial conditions x (0) = x0, v (0) = v0, where we assume v0x0 > 0. Assume

for now x0 > 0, we have

A = x0,

B =
v0
ω
.

(330)

So the trajectory is given by

x (t) = x0 cos (ωt) +
v0
ω

sin (ωt) , (331)

with velocity

ẋ (t) = −ωx0 sin (ωt) + v0 cos (ωt) . (332)

The particle reaches a point x1 < x0 abitrarily close to x0 at a time T satisfying

x0 cos (ωT ) +
v0
ω

sin (ωT ) = x1. (333)

Let 0 ≤ α ≤ π/2 satisfy

sinα =
x0√

x20 + v20/ω
2
,

cosα =
v0/ω√

x20 + v20/ω
2
.

(334)

Equation (333) becomes

sin (ωT + α) =
x1√

x20 + v20/ω
2
< 1, (335)

and we shall choose the smallest positive T satisfying the above equation. Inverting relation

(333) gives

v0 =
ω

sin (ωT )
(x1 − x0 cos (ωT )) . (336)
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Now the Hamilton principal function is given by

R (x1, x0;T ) =

∫ T

0

[m
2
ẋ2 (t)− m

2
ω2x2 (t)

]
dt. (337)

An integration by parts gives

R (x1, x0;T ) =
m

2
ẋ (t)x (t)

∣∣∣∣T
0

−
∫ T

0

[m
2
ẍ (t)x (t) +

m

2
ω2x2 (t)

]
dt. (338)

Since x (t) is the classical trajectory, satisfying (328), the integral in the last equation van-

ishes, and we are left with the boundary terms. Substituting (331) and (332) for x (t) and

ẋ (t) into (338) gives

R (x1, x0;T ) = −mω
2

[
2x0v0
ω

sin2 (ωT ) +

(
x20 −

v20
ω2

)
sin (ωT ) cos (ωT )

]
. (339)

Finally, substituting the inverted relation (336) of v0 in terms of T into (339) gives

R (x1, x0;T ) =
mω

2 sin (ωT )

[(
x20 + x21

)
cos (ωT )− 2x0x1

]
. (340)

By the same token, we have the same expression for the Hamilton principal function for

x0 < 0, and x1 > x0 arbitrarily close to x0.

We have then

C = − ∂2R

∂x0∂x1
=

mω

sin (ωT )
, (341)

and the semiclassical propagator is given by

K (x1, x0;T ) =

√
mω

2πi~ |sin (ωT )|
exp

{
imω

2~ sin (ωT )

[(
x20 + x21

)
cos (ωT )− 2x0x1

]
− iκπ

2

}
,

(342)

where κ is the number of times the quantity sin (ωT ) changes sign along the trajectory from

t = 0 to t = T . It is hence the largest integer smaller than ωT
π

κ = bωT
π
c. (343)

The semiclassical propagator in this case turns out to be exact as the potential is quadratic

(see [35]). We even know the correct phase.
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