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Abstract

Existing dimension witnesses focus on giving a lower bound to the dimension of the

quantum system measured based on the observed statistics. In particular, if the dimen-

sion witness is based on Bell-inequalities, one is able to distinguish between systems that

are entangled in different dimensions. However, it has been shown that violation of a

qutrit bound based on the CGLMP4 Bell-inequality can be achieved using multiple en-

tangled qubits and sequential qubit measurements. In this report, it will be shown that

a similar case happens for the dimension witness based on the CGLMP3 Bell-inequality.

We argue that such a situation makes a dimension witness trivial. A proper dimension

witness without such a problem will also be presented.
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Chapter 1

Context

In this introductory chapter, the motivation behind finding a proper dimension witness

will be presented with minimal mathematical expressions. The formalities will follow

in chapter 2, where Bell-inequalities will be introduced. In chapter 3, we will look

at existing dimension witnesses and see why they do not constitute what we would

consider a proper dimension witness. Such a proper dimension witness will be presented

in chapters 4 and 5, after which I end off with some concluding statements in chapter 6.

1.1 Dimension

The dimension of a classical system refers to the number of states that the system can

take. For example, the classical bit can take values 0 and 1 and is thus a system with

two dimensions. An English alphabet, having 26 different states, is an example of a

higher dimensional system.

In this project, we are interested in the dimensions of quantum systems. In the classical

case, we are usually able to distinguish perfectly the different classical states simply by

observation. In analogy, the dimension of a quantum system is defined to be the number

of distinguishable, or, orthogonal states of the system.

For example, the quantum analogue of the classical bit is the quantum bit, or qubit,

taking 2 orthogonal states, |0〉 and |1〉. By construction, any third state has to be

a normalized linear combination of |0〉 and |1〉, which we can no longer distinguish

perfectly from the first two states using a single quantum measurement. Therefore the

qubit is a two dimensional quantum system.
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Chapter 1: Context 2

In many quantum computation and information tasks, the dimension of the quantum

system limits the computational power and the amount of information that can be

stored.

As a simple example, consider this task: A box containing seven balls of different colours

is given to Alice, who will draw a ball at random from the box. Her task is to commu-

nicate the colour of the ball drawn to Bob by preparing and sending him a quantum

system. Upon receiving the quantum system, Bob can perform quantum measurements

on the system to try to determine the colour of the ball drawn by Alice.

Now, if the preparation device of Alice allows her to prepare seven orthogonal quantum

states, then Alice can simply encode each colour into the seven orthogonal states and

upon measuring in the orthogonal basis, Bob will be able to decode the colour. However,

if the preparation device of Alice is only able to prepare six orthogonal states, then the

success probability of Bob will be strictly less than one. In other words, a quantum

source of dimension at least seven is needed for Alice and Bob to perfectly complete this

task. This simple example illustrates that the amount of information that a quantum

system can encode depends on the dimension of the system.

1.2 Device-Independent Dimension Witness

Given that it may be advantageous to have higher dimensional systems, can we verify it

when manufacturer claims to have constructed a high dimensional quantum system? For

example, suppose the claim is that the quantum system is stored in a device on which

there are two sets of buttons. We can choose to prepare the hidden quantum system

in some unknown states by pressing on the first set of buttons, and make a quantum

measurement on the state prepared by pressing on the second set of buttons. The

outcome of the measurement is then made known say, on a display. This is illustrated

in figure (Fig.) 1.1.

Figure 1.1: A manufacturer claims that a quantum system is prepared in the de-
vice. By clicking on the buttons on the left, we can choose to prepare the system in
some (unknown) state. By clicking on the buttons on the right next, we choose some

(unknown) measurement to perform on the system. The outcome is then displayed.
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Given a general quantum state and measurement, we will be able to compute the prob-

abilities of obtaining each outcome using quantum theory. Now, we would like to ask

the reverse question: suppose we have many copies of the device so that we can obtain

the probability distributions of the outcomes of the various measurements and state

preparations, can we obtain any information on the dimension of the system stored in

the device? Specifically, we want to give a lower bound to the dimension. This task is

a form of device-independent dimension witness.

The term device-independent was first introduced in reference (ref.) [1], in which the

authors described a way to certify security in quantum key distribution (QKD) that

”needs no knowledge in the way the QKD devices work”.

When queried about the properties of a quantum system, it is natural for one to try to

seek out the answer by making suitable measurements on the system and interpreting

the results based on knowledge of which measurement was made. For example, to find

out the state of a spin-1
2 particle, one can perform tomography and measure the particle

along the three orthogonal bases. If the measurement σz yields the outcome +1 with

probability one, then we can conclude that the particle is in the spin up state along z-axis.

The conclusion drawn in this case is contingent on one knowing the measurement carried

out (σz) and the system that was measured (spin-1
2 particle). In a device-independent

scenario, we are free from such limitations as conclusions may be drawn directly from

the observed statistics.

Let us return to our example of witnessing the dimension of the quantum system stored

in the device. A trivial scenario which will allow us to witness the dimension will be

having four choices of state, and one four-outcome measurement on the device. If each

prepared state always gives its own unique measurement outcome, then the system

measured clearly has four distinguishable states and its dimension must be at least four.

The above gives a trivial example of a prepare-and-measure dimension witness, first

introduced in [2]. The task was made trivial as the dimension of the system is more

than or equal to the number of state choices. We are therefore allowed to use orthogonal

states for each state choice and distinguish them. However, when the dimension is

less than the number of state choices, it is in general non-trivial to obtain a dimension

witness. Examples of such prepare-and-measure schemes can be found in ref. [2, 3].

We have discussed how the dimension of a single quantum system can be lower bounded

using only the observed statistics. However, one may question the usefulness of such a

scheme in two ways:

• Is it useful to find a lower bound of dimension allowed by the statistics when we

know that all physical systems are essentially infinite dimensional?
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• Since any single particle probability distribution can be reproduced with classical

variables, why should we consider quantum systems?

To elaborate further, consider the first question. If we make measurements on a spin−1
2

particle in any directions on the Bloch sphere, we expect that the lower bound of the

dimension to be at most 2. However, if instead we measure the position of the particle,

the dimension will be infinite. In other words, if we include information such as a parti-

cle’s position in space, then any quantum system will be infinite dimensional. Therefore,

a claim to have generated a high dimensional quantum system seems to be a trivial one.

Moreover, any single particle probability distribution can be reproduced using a classical

strategy. This is the issue raised in point 2. This means that whatever protocol proposed

involving the use of a single quantum system could be done using classical systems,

making the switch from classical to quantum systems redundant.

However, the situation changes when we consider composite quantum systems.

1.3 Entanglement and Certification

If the composite quantum system is entangled, the correlation between the subsystems

cannot be achieved using classical means. Such non-classical correlations can be har-

nessed for various computation and communication tasks enabling us to perform tasks

not only faster, but even those that are classically impossible. Quantum Key Distribu-

tion (QKD) [4] is one well-known example.

Two particles are in an entangled state if we cannot express the state as one describing

each of the particles in a well-defined or pure state. On other words, the state cannot

be factorized into a tensor product form, or

|ψ〉 6= |ψ1〉 ⊗ |ψ2〉

Figure 1.2: Now, a manufacturer claims that in each of the devices above, there is a
qubit. Moreover, the two qubits in these two devices came from an entangled pair. By
clicking on the device, we again make a quantum measurement on the quantum system
in the device. Suppose after each measurement, the quantum state in the device is
restored to the initial state. By performing multiple measurements and studying the

statistics, we may be able to certify his claim.
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where |ψ1〉 and |ψ2〉 are states of the two individual particles.

Entangled particles can and have been created in the lab. For example, by directing a

laser beam on a non-linear crystal, one can generate photon pairs that are entangled in

their linear polarization. An example of such a set up can be found in ref. [5]. In such

set ups, the photons will end up in an maximally entangled state, known as the singlet

state,

|ψ〉 =
|01〉 − |10〉√

2
.

The ability to produce entangled particles is great news as it spells the possibility to

physically carry out those tasks that were classically impossible. Following the logic

from the previous section, we can now ask if there is a device-independent way to certify

entanglement. If a manufacturer hands us two black boxes (see Fig. 1.2) in which he

claims to contain one particle from an entangled pair each, can we, by pressing the

buttons corresponding to quantum measurements on the particles, and studying the

resultant statistics, deduce that entanglement is present?

Such a device-independent certification of entanglement exists, and is known as a Bell-

test. A Bell-test involves experimental verification of the violation of Bell-inequalities

[6], which are inequalities involving the statistics of the experiment. A violation of a Bell-

inequality can only be achieved using entangled systems. A more detailed explanation

on Bell-inequalities can be found in the next chapter. Such Bell-tests has also been

experimentally demonstrated, for example in ref. [7, 8].

1.3.1 Entanglement in higher dimensions

A photon pair entangled in their linear polarization is an example of entanglement in

two dimensions as there are only two orthogonal linear polarization states. In other

words the state vectors describing the linear polarisation states of the photons lives in

the Hilbert space H = C2 ⊗ C2.

Quantum systems can also be entangled in higher dimensions, with state vectors living

in H = Cd ⊗ Cd. For example, the state of two particles maximally entangled in d

dimensions reads

1√
d

d−1∑
i=0

|ii〉 .

Systems that are entangled in higher dimensions have also been produced in the lab.

For example, in [9], entanglement in 11 dimensions was demonstrated using photons

entangled in their orbital angular momentum (OAM).
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1.4 Certification of Entanglement in High Dimensions

In the previous section, we have discussed and gave an example of a system entangled in

high dimensions. Now, we would like a device independent way to certify it. Such a way

was proposed by Brunner et al. in ref. [10], which was where the idea of a dimension

witness was first introduced. More details on this can be found in the following chapters.

In essence, the dimension witness was based on a Bell-inequality. The maximal viola-

tion of the Bell-inequality attainable by any composite quantum systems depends on

the dimension in which the system is entangled in. A sufficiently high violation value

necessarily points to a system that is entangled in high dimension.

Note that it is in general non-trivial to produce particles entangled in high dimension.

Given two random particles, there is no reason to belief that they are entangled at all.

This is thus different from the case of the dimension of a single quantum system, where

we can always think of it as being of infinite dimension. Moreover, there is legitimate

reason for us to be interested in entanglement, since it allows us to accomplish tasks

that cannot be done using classical resources. Therefore, dimension witnesses looking

at the lower bound of entangled dimension may be more interesting then one studying

the dimension of a single quantum system. However, a problem persists.

1.5 The Problem

Even though producing entangled particles is non-trivial, once we are able to produce

a pair of entangled qubits, producing entangled ququarts becomes trivial! This is the

consequence of isomorphism between vector spaces of the same dimension.

Figure 1.3: Each pair of the devices on the left contains an entangled qubit. The
devices on the right contains a ququart each, which came from an entangled pair. Both
sets of devices can be viewed as having effective entangled ququart states. However,

the devices on the left are only able to make local qubit measurements.
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As a result, the Hilbert space of ququart systems is equivalent to the space of two qubits,

and by choosing a suitable encoding such as

|0〉 7→ |00〉, |1〉 7→ |01〉,

|2〉 7→ |10〉, |3〉 7→ |11〉,

the maximally entangled ququart state will factorise into two pairs of maximally entan-

gled qubits:

|00〉+ |11〉+ |22〉+ |33〉
2

7→ |00〉+ |11〉√
2

⊗ |00〉+ |11〉√
2

.

Physically, this means that if we have a pair of black boxes containing one particle from

an entangled qubit pair each and we wish to have entangled ququarts, we can simply

obtain another pair of those black boxes and taken together, we would effectively have

an entangled ququart system.

Therefore, it is not difficult at all if all we are interested in is to produce systems that are

entangled in high dimensions. We can simply take multiple pairs of entangled qubits.

However, looking at Fig. 1.3, we do see a difference between the boxes on the left

and those on the right: for the boxes on the right, the ququart system is contained in

one black box and by pressing the measurement buttons, we would expect to be able

to perform any general ququart measurements. However, the effective ququart system

on the left is in fact two qubits contained in separate black boxes. In this case, we

can still perform effective ququart measurements, by first choosing a measurement on

the first box and, perhaps depending on the outcome of that measurement, choose a

measurement on the second box. The outcomes of both measurements taken together

will be the outcome of this effective measurement. The ququart measurements we are

allowed to make is thus restricted to only sequential local qubit measurements.

We conclude that even though it might be trivial to obtain an entangled ququart state

from entangled qubit states, it is non-trivial to perform an arbitrary ququart measure-

ment. Hence, we finally arrive at the criteria of a proper dimension witness, which is

to certify in a device independent way if a non-trivial ququart measurement has been

carried out.

Unfortunately, it will be shown in subsequent chapters that the dimension witness in ref.

[10] fails to do so. Our task is therefore to search for such a proper dimension witness.



Chapter 2

Formalities

As mentioned in chapter 1, dimension witness was first introduced by Brunner et al.

in ref. [10]. There, dimension witness was defined to be a criteria on a set of joint

quantum probability distributions, obtained from a standard bipartite Bell scenario, to

lower bound the dimension of the quantum source used to generate the probablities.

In this chapter, we will first give an introduction to Bell inequalities, which is indispens-

able in the understanding of device-independent tasks. We will then move on to look at

the formal device-independent dimension witness criteria as it was set out in ref. [10].

2.1 Bell-Inequalities

Before the development of quantum mechanics in the 1920s and 1930s, it was generally

assumed that all physical properties of an object exist independent of observation. If

there is a particle, the particle is somewhere in space, exhibiting a specific motion and

a measurement merely allows us to obtain this information. However, with the devel-

opment of quantum mechanics, there were suggestions that such properties as position

and momentum of a particle does not exist prior to the measurement. Instead, the act

of measuring forces the particle to take up a definite value for the measured observable.

Initially, there were many objections to this counter-intuitive view, with Einstein fa-

mously suggesting that quantum mechanics was an incomplete theory of nature [11].

However, we now know that this counter-intuitive view is indeed the correct description

of how nature works thanks to the works of John Bell in the 1960s. The verification of

quantum non-locality involves experiments confirming the violation of Bell-inequalities

[6], which are inequalities involving the probability distributions obtained in Bell sce-

narios.

8



Chapter 2: Formalities 9

2.1.1 The bipartite Bell scenario

The Bell scenario consists of 2 parties, Alice and Bob, who are situated in separate

labs. A composite quantum system will be prepared by a quantum source, one part

of which is sent to Alice and the other to Bob. Alice and Bob then each chooses

a measurement to make on their part of the quantum system. Alice’s measurement

is denoted by x ∈ X = {0, 1, ...,ma}, and each measurement will give Ma possible

outcomes, denoted by a ∈ A = {0, 1, ...,Ma}. Bob’s measurement and outcome are

denoted by y ∈ Y = {0, 1, ...,mb} and b ∈ B = {0, 1, ...,Mb} respectively.

Figure 2.1: The bipartite Bell scenario.

Despite being spatially separated, the measurement outcomes of Alice and Bob may be

correlated if the shared quantum state was entangled. In such cases, the probability of

Alice obtaining outcome a and Bob obtaining outcome b when they have made measure-

ments x and y, denoted P (a, b|x, y), is such that P (a, b|x, y) 6= P (a|x, y)P (b|x, y).

2.1.2 Bell-inequalities as facets of the LV polytope

The types of correlations that can naturally occur between 2 non-communicating and

spatially separated parties such as Alice and Bob in a Bell scenario must satisfy the

no-signalling criteria.

Definition 2.1. A set of probability distributions PX ,Y = {P (a, b|x, y) : a ∈ A, b ∈
B, x ∈ X, y ∈ Y } is said to be no-signalling if it satisfies

∑
b

P (a, b|x, y) =
∑
b

P (a, b|x, y′) ≡ P (a|x),∀x ∈ X,∀y, y′ ∈ Y, (2.1)

∑
a

P (a, b|x, y) =
∑
a

P (a, b|x′, y) ≡ P (b|y),∀x, x′ ∈ X,∀y ∈ Y. (2.2)

Intuitively, if Alice and Bob are not communicating, the output of Alice should not

depend on the input of Bob. In other words, Bob cannot hope to communicate any

information to Alice by affecting her output via his input. This is precisely what the

above equation says.
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The classical assumption that the properties of a system exist independent of measure-

ment and that the effects of an event is only restricted to the point in space at which the

event took place is termed as local-realism. Under such assumptions, the correlations

attainable between two parties can be explained using the local-variables model.

Definition 2.2. A set of P (a, b|x, y)s can be explained by the local-variables model if

it can be written in the form

P (a, b|x, y) =
∑
λ

P (λ)P (a|x, λ)P (b|y, λ), (2.3)

where λ is a local hidden-variable shared between Alice and Bob, with a probability

distribution given by P (λ).

The local-variables (LV) model is a precise way to describe the local realism assumption.

For example, in a bipartite Bell scenario, when we assume that the results of Alice’s and

Bob’s measurements on the quantum particles they receive are predetermined, we are

essentially assuming that upon leaving the source, the pair of particles agrees on a list

of outputs for each measurement setting:

λ = {a0, a1, ..., ama ; b0, b1, ..., bmb}.

Each pair of particles, upon leaving the source, can get a different list of instructions

λ, drawn randomly from some set with the probability distribution given by P (λ). In

this case, the output of Alice or Bob is fully determined by λ and P (a|x, λ) = δa,ax|λ ,

where ax|λ is the instructed output for the setting x contained in λ. Similarly for Bob,

P (b|y, λ) = δb,by|λ . Therefore, we have

P (a, b|x, y) =
∑
λ

P (λ)δa,ax|λδb,by|λ ,

which is in the same form as the LV model. In a LV model, correlations observed between

the outputs of Alice and Bob is due to the shared variable λ. The scenario described

above in which λ determines a and b uniquely is called a deterministic model. The LV

model allows for more general strategies in which λ only determines the distributions,

P (a|x, λ) and P (b|y, λ) of a and b. However, it can be shown [12] that each LV model

can also be explained using a deterministic model which will result in the same PX ,Y .

Depending on the underlying model, each P (a, b|x, y) in PX ,Y is subjected to a number

of constraints. For example, if PX ,Y is to be no-signalling, then Eqn. 3 and 4 will need

to be satisfied. One can show that this decreases the number of free P (a, b|x, y)s in PX ,Y

from MaMbmamb to DNS = mamb(Ma − 1)(Mb − 1) +ma(Ma − 1) +mb(Mb − 1) [12].
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We can then think of each PX ,Y as a point parametrised by these free P (a, b|x, y)s lying

in a high dimensional real vector space, RDNS .

In addition, the set of no-signalling points is convex and has a finite number of extremal

points. It thus forms a polytope embedded in RDNS . The set of LV points lies within

this vector space since the LV model is no-signalling by construction. As it is similarly

convex, the points in the LV set form another polytope. The boundaries of a polytope

are hyperplanes living in the same vector space. A simple example of a polytope in

3-dimensions is shown in Fig. 2.2.

Figure 2.2: A polytope in R3. The boundaries of the enclosed region are called facets,
while the facets and the enclosed points make up the polytope.

The boundaries, or facets, of the LV polytope are single out the LV set from the no-

signalling set. All the probability points satisfying Eqn. 2.3 must lie within these

hyperplanes. If the equation of the hyperplane is ~n · P = f where ~n ∈ RD denotes

the vector normal to the plane pointing outwards with respect to the polytope, then all

probability points P belonging to the polytope must be such that

~n · P ≤ f.

Some of these facets are positivity facets which must be satisfied by any probability

model as they ensure that the probability points are non-negative. The facets distinct

to the LV polytope are called Bell inequalities, which are linear inequalities in the joint

probability distributions.

Quantum systems satisfy the no-signalling condition Eqn. 2.1 and thus lie within the no-

signalling polytope. However, violation of Bell-inequalities by quantum systems reveals

that nature does not go by the LV model. We will see an example of this in the following

section.
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The dimension of the LV polytope and hence the form of the associated Bell-inequalities

depends on the parameters mA, mB, Ma and Mb in the Bell scenario under consideration.

For example, one of the best known Bell-inequalities, the Clauser-Horne-Shimony-Holt

(CHSH) inequality [13], is the facet of the LV polytope with ma = mb = Ma = Mb = 2.

Once these parameters are set, one can in principle find the facets of the LV polytope

using a computer.

2.1.3 The CHSH Bell-inequality

The detailed derivation of the CHSH inequality will be omitted. However, as the in-

equality will be useful for subsequent discussions, it is important to at least state and

understand the form of the equation.

As mentioned, the CHSH inequality deals with the scenario in which Alice and Bob

each has two 2-outcome measurements. The convention is to let a, b ∈ {−1, 1} and

x, y ∈ {0, 1}. In this case, if we consider the quantum particles to share a λ at the

source telling them what to output for each measurement, then the quantity

s = (a0 + a1)b0 + (a0 − a1)b1

can only take the values 2 or −2 in each run of the experiment. Even though the quan-

tities in s cannot all be determined in one run, they do by assumption simultaneously

exist. Over many runs of the experiment, we can determine the expectation of s. By

linearity of expectation, we have

〈s〉 = 〈(a0 + a1)b0 + (a0 − a1)b1〉

= 〈a0b0 + a1b0 + a0b1 − a1b1〉

= 〈a0b0〉+ 〈a1b0〉+ 〈a0b1〉 − 〈a1b1〉

= E00 + E01 + E10 − E11

where we define the correlation coefficients Exy ≡ P (a = b|x, y)−P (a 6= b|x, y). For the

case in which a, b ∈ {−1, 1} , this is equals to 〈axby〉. Since s = 2 or −2, we have 〈s〉 < 2

in a deterministic case. We have thus arrived at the CHSH inequality:

S = E00 + E01 + E10 − E11 < 2. (2.4)

While it is only shown above for deterministic cases, the CHSH inequality, being a facet

of the LV polytope, is satisfied by all LV points.
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In a quantum scenario, we can calculate the value of S by defining a Bell operator

Ŝ = Â0B̂0 + Â0B̂1 + Â1B̂0 − Â1B̂1 (2.5)

where Âx and B̂y are the quantum observables measured by the measurements x and

y. In other words, they are hermitian operators, with eigenvalues ±1. Since quantum

theory is non-local, we would expect to find some quantum points which violate the

CHSH inequality.

Indeed, an example of of such a point is achieved by considering the maximally entangled

state of a qubit

|Φ+〉 =
|00〉+ |11〉√

2

and the observables

Â0 = Ẑ Â1 = X̂ (2.6)

B̂0 =
Ẑ + X̂√

2
B̂1 =

Ẑ − X̂√
2

(2.7)

where Ẑ and X̂ denotes the corresponding Pauli matrices. The value of S is then

S = 〈Φ+|Ŝ|Φ+〉

= 2
√

2

which violates the CHSH inequality. In fact, 2
√

2 is the maximal violation achievable

by quantum systems and this is known as the Tsirelson bound [14]:

Theorem 2.3. Measurements on quantum systems can violate the CHSH inequality at

most up to S ≤ 2
√

2.

2.2 The Formal Dimension Witness Criteria

In many device-independent techniques, the set of joint probability distributions {P (a, b|x, y) :

a ∈ A, b ∈ B, x ∈ X, y ∈ Y } provides information on the quantum system measured

without any a priori assumptions on the devices used for state preparation and measure-

ment. In dimension witness, the information to be extracted is the minimum dimension

of the quantum system compatible with the observed statistics.
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Formally, a set of probability distributions came from a D-dimensional quantum source

if each of the joint probabilities can be written in the form

P (a, b|x, y) = Tr(ρMX
a ⊗MY

b ) (2.8)

where ρ is a density operator acting on CD⊗CD and MX
a and MY

b are positive-operator

valued measure (POVM) elements acting on CD satisfying

0 ≤MX
a 0 ≤MY

b∑
a

MX
a = 1D

∑
b

MY
b = 1D

Following the above notation, a D-dimensional witness is defined as a linear inequality

in P (a, b|x, y) of the form

~w · ~P =
∑
a,b,x,y

wabxyP (a, b|x, y) ≤ wD. (2.9)

Here, wD is the maximal value attainable by quantum joint probabilities coming from

any D-dimensional quantum systems, maximising over all possible states and measure-

ments for a fixed ~w. For the above inequality to be a valid dimension witness, we require

further that a violation of the inequality can be achieved by quantum systems of dimen-

sions greater than D. Hence, once a set of joint probabilities violates the D-dimensional

witness, it can be certified that the quantum system producing the set is of dimension

at least D + 1.

The main challenge in any formulation of a dimension witness is thus to find a suitable ~w

so that the maximal violation of equation (Eqn.) 2.9 is different for different dimensions.

This is not a simple task in general as there is no good characterisation of the set of

probabilities coming from a D-dimensional system.



Chapter 3

Dimension Witness Based on

CGLMP Bell-inequalities

In this chapter an alternative motivation for dimension witness will be presented. Next,

we will study two specific examples of dimension witness, and see why they are unable

to fulfil this alternative motivation.

3.1 An Alternative Motivation for Dimension Witness

In ref. [10], an example of a 2-dimensional witness based on the CGLMP3 bell inequality

was given. Following this paper, other dimension witnesses to witness the dimensions

of quantum systems were proposed. Some of these were based on other bell inequalities

[15, 16], while others are not. For example, in [3], a prepare-and-measure scheme was

introduced in which the dimension of a single quantum system can be witnessed. In [17],

the authors found a dimension witness using Random Access Codes (RAC). Dimension

witnesses based on Bell-inequalities are those which can distinguish between systems

that are entangled in high dimensions and those that are entangled in low dimensions.

In general, the task of these dimension witnesses is to study the different sets of statistics

that can be achieved by quantum systems living in Hilbert spaces of different dimen-

sions. It was briefly mentioned in Chapter 1 that such dimension witnesses may be

experimentally trivial to achieve.

We would thus like to recast dimension witness into an experimentally motivated task

in which we ask the question ”Given the experimental outcomes, can we certify that the

experiment has genuine access to D dimensions and can perform all D-dimensional mea-

surements?” In the previous formulation, one can in principle certify only the dimension

15
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Figure 3.1: Demonstrating ququart measurements: An experiment which can per-
form all possible measurements on a ququart state has genuine access to dimension 4.
However, measurements involving only sequential qubit measurements as in this figure

can be trivially done using qubit set-ups.

of the quantum source used in an experiment. However, we are now also interested in

the types of unitary operations carried out in the experiment.

The reason for this consideration is the realization that what sets the level of sophis-

tication of two experiments apart is not the dimension per se of the quantum systems

produced; if an experiment can produce a pair of entangled qubits, it can produce

two pairs, giving a composite ququart system effectively. However, using the same ex-

perimental devices, such an experiment can only output probabilities resulting from

sequential qubit measurements. In other words, the measurement operators Mx
a and My

b

in Eqn. 2.8 can be factorised into Mx
a = Mx1

a1 ⊗M
x2
a2 , where Mx1

a1 and Mx2
a2 are operators

acting on C2. Thus, what genuinely makes one experiment superior over another is,

in addition to producing higher dimensional quantum systems, the experiment can also

perform unitary operations which can transform a quantum system into any coherent

superposition of states in the Hilbert space.

Therefore, it is desirable for a dimension witness to be a criteria on experimental out-

comes which once satisfied, it is guaranteed that the same outcomes cannot be achieved

using alternative set ups involving quantum systems of dimensions D′ ≤ D and devices

which are only capable of performing unitary operations on CD′ .

This poses a problem to dimension witnesses of the form in Eqn. 2.9. If the upper

bound wD can be achieved using factorisable states and measurements, it will imply

that an experiment does not need nontrivial high dimensional measurements to violate

the bound. We will show that this is indeed the case for two examples of dimension

witnesses based on the Collins-Gisin-Linden-Massar-Popescu (CGLMP) family of Bell

inequalities.
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3.2 The CGLMP Bell-Inequalities

The inequalities we are interested in is the CGLMP family of bell inequalities introduced

in ref. [18]. This family of inequalities is specific for the bipartite Bell scenario mentioned

in section 2.1.1 with mA = mB = 2 and for an arbitrary number of outcomes, Ma =

Mb = d. The CGLMP3 inequality has been independently found in [19].

Using a similar form as it appears in ref. [20], a CGLMPd bell inequality reads

〈Id,P〉 − 2 ≤ 0 (3.1)

where Id =

(
Jd JTd

JTd -JTd

)
(3.2)

Here, Jd is an upper triangular matrix with entries 1, P is the probability matrix and

〈·, ·〉 denotes the sum of term by term multiplication of the two matrix arguments.

The probability matrix P is a matrix containing all the joint probabilities P (a, b|x, y):

P =

(
P00 P01

P10 P11

)
(3.3)

with (P xy)ab = P (a− 1, b− 1|x, y) (3.4)

The maximal possible violation of the CGLMPd inequality Eqn. 3.1 by any quantum

state ρ ∈ CD ⊗ CD depends on the dimension D. Therefore, the upper bound of the

maximal violation by a quantum system living in CD⊗CD can serve as a D-dimensional

witness.

3.3 2-Dimensional Witness Based on CGLMP3 Inequality

In the CGLMPd scenario, the number of free parameters needed to specify a no-signalling

point is 4d(d − 1). Thus, for d = 3, the no-signalling polytope lies in a 24 dimensional

real vector space. Fortunately, by performing a classical processing on the outcomes

using a method specified in ref. [21], we can project the probability points onto a two

dimensional slice of the polytope, simplifying the geometry of the problem.

The points on this two dimensional slice are parametrised by two parameters, C(P) and

D(P). C(P) is the violation of the CGLMP3 inequality Eqn. 3.1, with d = 3, while

D(P) = −
1∑

x,y=0

2∑
k=0

P (a = k, b = k − 1− (x− 1)(y − 1)|x, y). (3.5)
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For any probability point P lying in the original polytope, the projected point on the

two dimensional slice of the polytope will retain the same values of C(P) and D(P).

The region accessible by quantum resources as well as qubit systems were found in ref.

[10] and the results are shown in Fig. 3.2. The red curve in the figure bounds the region

accessible to qubit systems, thus acting as a 2-dimensional witness.

Figure 3.2: Given any composite quantum system ρ and measurements {Mx
a : x ∈

{0, 1}, a ∈ {0, 1, 2}} for Alice and {My
b : y ∈ {0, 1}, b ∈ {0, 1, 2}} for Bob, we will be

able to compute the probability vector P using Eqn. 2.8. We can then locate this
probability point in the above figure after computing its C(P) and D(P) values. If the
point lies beyond the qubit bound, we can conclude that ρ is a density operator acting

on a CD ⊗ CD Hilbert space, with D > 2.

Moreover, since only entangled quantum systems violate Bell-inequalities, this dimen-

sion witness based on the CGLMP3 inequality, is able to distinguish quantum systems

entangled in dimension 3 or above from entangled qubits.

3.4 3-Dimensional Witness Based on CGLMP4 Inequality

Using a method similar to that by Moroder et al. [22], the amount of violation of the

CGLMP4 inequality has been found to be a dimension witness [23]. The negativity of a

state is a measure of entanglement [24]. For an entangled qudit living in CD ⊗ CD, the

maximum negativity attainable depends on the dimension, D according to

N (ρ) =
||ρTA || − 1

2
≤ D − 1

2

In addition, one can find a lower bound of the minimum negativity necessary for any

CGLMP4 violation by solving a semi-definite program [25]. By comparing the lower

bound obtained with the maximum negativity achievable by any states of dimension D,

a dimension witness is obtained. The result is shown in Fig. 3.3 [23].
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Figure 3.3: Lower bound on negativity against observed CGLMP4 violation. A

CGLMP4 violation of I
(3)
4 = 0.315 requires a minimum negativity of 1, which is the max-

imum negativity of an entangled qutrit state. Hence, any CGLMP4 violation greater

than I
(3)
4 indicates the presence of an entangled quantum system of dimension at least

4.

In particular, the upper bound of the maximal violation of the CGLMP4 inequality by

entangled qutrits is around I
(3)
4 = 0.315. This thus gives a 3-dimensional witness

〈I4,P〉 − 2 ≤ I(3)
4 .

In other words, any violation of the CGLMP4 inequality above I
(3)
4 certifies the presence

of entangled systems of dimension at least four.

3.5 Failure to satisfy Alternative Criteria

In section 3.1, we have seen an alternative motivation for Dimension Witness (DW),

that is to certify the ability to perform arbitrary measurements on a Hilbert space of

some high dimensions. In other words, we hope that the following relation holds:

satisfy DW for qudits⇒ ability to perform arbitrary measurements on Cd ⊗ Cd.

However, satisfying the CGLMP3 and CGLMP4 dimension witness for qutrits and

ququarts respectively given in the previous sections does not require one to perform

non-trivial measurements on high dimensional systems, as the same violation can be

achieved using only qubit sources and qubit measurements.

3.5.1 Violating CGLMP4 DW using qubits

First, we shall look at the DW based on CGLMP4.
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3.5.1.1 Maximal violation of CGLMP4 using ququarts

The maximal violation of the the CGLMPd inequality allowed by quantum theory can be

achieved using qudits and projective qudit measurements. Therefore, some composite

ququart state, which we will call the maximal violation state (MVS), will be able to

reach the maximal violation of the CGLMP4 inequality.

The corresponding optimal measurement settings are conjectured in ref. [26]. In fact,

this set of measurements is optimal for a wide class of states, including both the maxi-

mally entangled state (MES) and the MVS.

These measurement bases, labelled A0 and A1 for Alice and B0 and B1 for Bob, are:

AX = {|Ψx(a)〉}d−1
a=0 |Ψx(a)〉 =

d−1∑
k=0

ei
2π
d
ak

√
d

eikφx |k〉, (3.6)

BY = {|Φy(b)〉}d−1
b=0 |Φy(b)〉 =

d−1∑
k=0

e−i
2π
d
bk

√
d

eikθy |k〉. (3.7)

The choice of phases θ and φ are

φ0 = 0, φ1 =
π

d
, and θ0 = − π

2d
, θ1 =

π

2d
.

The details of how these optimal measurements are obtained is not important for us

and will be omitted. Only the form of these measurements is of interest as they can be

factorised into qubit measurements under a suitable choice of encoding, which we will

see in the next section.

The violation value of the CGLMPd inequality by a given composite qudit state, ρ ∈
Cd ⊗ Cd, using these measurements can then be obtained by taking the trace Tr(ρB),

where B is the Bell operator defined as

B =
∑
a,b,x,y

CabxyΠX(a)⊗ΠY (b). (3.8)

Here, we have ΠX(a) = |Ψx(a)〉〈Ψx(a)| and ΠY (b) = |Φy(b)〉〈Φy(b)|, and Cabxy is the

Bell coefficient of P (a, b|x, y) in Eqn. 3.1. As these measurements are conjectured to

be optimal, the maximal violation allowed by quantum theory can thus be obtained by

finding the maximal eigenvalue of B and the corresponding eigenstate will be the MVS.

For d = 4, the maximal violation is I∗4 ≈ 0.364762 [27]. Surprisingly, this maximal viola-

tion is not achieved by the MES even though it was widely believed that entanglement

should result in higher nonlocality.
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The violation by the MES, |ψMES〉 = 1
2(|00〉 + |11〉 + |22〉 + |33〉), using the same

measurement settings can be calculated from IMES
4 = 〈ψMES |B|ψMES〉. The MES also

gives a high violation of IMES
4 = 0.336091. Recall that the DW bound for qutrits from

section 3.4 is I
(3)
4 = 0.315. Hence, both the MVS and the MES satisfy the DW for

ququarts as expected. Now, we will show that satisfying this DW does not require one

to perform non-trivial ququart measurements. We will do this by demonstrating a case

in which performing sequential qubit measurements on two pairs of maximally entangled

qubits allows one to reach the same violation value of the ququart MES.

3.5.1.2 Achieving the MES violation

Recall from section 1.5 that as the Hilbert space of ququarts is isomorphic to the Hilbert

space of two qubits, any ququart state can be written as a composite qubit state after

choosing a suitable encoding. For example, with the standard binary encoding

|0〉A 7→ |00〉A1,A2 , |1〉A 7→ |01〉A1,A2 ,

|2〉A 7→ |10〉A1,A2 , |3〉A 7→ |11〉A1,A2 ,
(3.9)

the ququart MES factorises into two pairs of maximally entangled qubits:

(|00〉+ |11〉+ |22〉+ |33〉)A,B 7→ (|00〉+ |11〉)A1,B1 ⊗ (|00〉+ |11〉)A2,B2 (3.10)

omitting normalisation.

In other words, sending one part of a maximally entangled ququart to Alice and the

other to Bob can also be seen as sending 2 pairs of maximally entangled qubits, with

one qubit from each pair being sent to Alice and the other to Bob. We will label these

sub-systems as A1, A2 and B1, B2. This can be trivially achieved by using a quantum

source that can produce pairs of qubits in any coherent superposition.

Furthermore, using the same binary encoding, the optimal measurements in Eqn. 3.6

and 3.7 for Alice and Bob factorise into tensor products of operators acting on the

sub-systems A1, A2 and B1, B2 of Alice and Bob respectively.

From Eqn. 3.6, for d = 4, each vector in the measurement basis is

|ΨX(a)〉 =
1

2
(|0〉+ ω|1〉+ ω2|2〉+ ω3|3〉),
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where ω = ei(
2aπ
d

+φX). Using the same encoding as the MES, each of these vectors

factorises:

|ΨX(0)〉 =
1√
2

(|0〉+ ei(2φX) |1〉)A1 ⊗
1√
2

(|0〉+ ei(φX) |1〉)A2 ,

|ΨX(1)〉 =
1√
2

(|0〉 − ei(2φX) |1〉)A1 ⊗
1√
2

(|0〉+ ei(
π
2

+φX) |1〉)A2 ,

|ΨX(2)〉 =
1√
2

(|0〉+ ei(2φX) |1〉)A1 ⊗
1√
2

(|0〉 − ei(φX) |1〉)A2 ,

|ΨX(3)〉 =
1√
2

(|0〉 − ei(2φX) |1〉)A1 ⊗
1√
2

(|0〉 − ei(
π
2

+φX) |1〉)A2 .

Moreover, the vectors of A1 form a valid measurement basis σA1 = {|0〉 ± ei(2φX) |1〉}
and the vectors of A2 form 2 measurement bases σA2|+ = {|0〉 ± ei(φX) |1〉} and σA2|− =

{|0〉 ± ei(
π
2

+φX) |1〉}, separated according to the outcome of the first measurement.

This implies that Alice’s ququart measurement given by Eqn. 3.6 can be viewed instead

as first performing a qubit measurement on A1 then, conditioning on the outcome, a

second qubit measurement on A2. This is illustrated in Fig. 3.4.

Figure 3.4: The measurement device first makes the measurement σA1
on A1. If the

”+” outcome is obtained, the measurement σA2|+ will be made on A2. The device
will then output the outcome ”0” if the second measurement yields ”+” and ”1” if the
measurement yields ”−”. Similarly, if the outcome of the first measurement were ”−”,
a second measurement σA2|− will be made on A2. The outcomes ”±” will be labeled

”2” and ”3” respectively.

It can be easily verified that a similar factorisation happens for Bob. Using the resul-

tant measurement scheme on the composite qubit state in Eqn. 3.10, the probabilities of

obtaining any outcome P (a, b|x, y) will be the same as when the optimal ququart mea-

surement is carried out on the maximally entangled ququart. Hence, one can achieve a

violation IMES
4 of the CGLMP4 inequality, beating the qutrit bound in the DW, using

entangled qubits and qubit measurements.

We conclude that violating this 3-dimensional witness bound does not require one to

be able to perform nontrivial ququart measurements since an experiment involving only

local sequential qubit measurements can also violate the bound.
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Furthermore, the factorisation of the optimal measurements and MES happens to any

Hilbert spaces with dimension D = 2k. Hence, any DW based on CGLMPd with d = 2k

will fail to certify coherent manipulation if the MES of qudits can violate the DW bound.

3.5.2 Violating CGLMP3 DW using qubits

That multiple pairs of entangled qubits can be used to violate the CGLMP4 DW was

first pointed out by Y. Cai in his PhD thesis [23]. However, it remained to be seen if

the DW based on the CGLMP3 inequality faces the same problem. In this section, we

will see that indeed, the DW bound for d = 3 6= 2k can be violated using multiple pairs

of entangled qubits. In this case, qutrit states and measurements cannot be factorised

into qubit states and sequential qubits measurements directly. Hence it is not possible

to employ exactly the same strategy as the previous section to show that satisfying the

DW for qutrits does not require nontrivial high dimensional measurements.

Instead, we will try to find a violation of the DW bound using sequential qubit measure-

ments on multiple pairs of entangled qubits, which may allow for greater violation of

the CGLMP3 inequality than that achievable by measuring only one pair of qubits. In

order to do this, we will have to consider classical processing of the outcomes obtained

to reduce the number of outcomes to 3.

It turns out that 3 pairs of qubits can already violate the qubit bound based on the

CGLMP3 inequality in section 3.3.

The CGLMP3 Bell scenario involves two 3-outcome measurements each for Alice and

Bob. Therefore, to compute the CGLMP3 violation using projective measurements on

the Hilbert space of three qubits, we have do a coarse-graining of the 23 = 8 outcomes

by grouping them into 3 groups and giving each group a new label. For example, we can

label the outcomes 0 and 1 as 0′ and 1′, and simply group all the other outcomes, 2 to

7, together and label them as 2′. Whenever the outcome 1 is obtained, we will output

1′; whenever 3 is obtained, we will output 2′ and so on. We can then proceed to check

the CGLMP3 violation using this rebelling.

Before presenting the strategy of searching for a violation, we shall first look at useful

theorem, called schmidt decomposition.

Theorem 3.1. Suppose |ψ〉 ∈ Cd⊗Cd is a pure state of a composite system, AB. Then

there exist orthonormal states |kA〉 for system A and |kB〉 for system B such that

|ψ〉 =
d−1∑
k=0

λk|kA〉|kB〉,
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where λks are non-negative real numbers satisfying
∑

k λ
2
k = 1, known as the Schmidt

co-efficients.

3.5.2.1 Optimal measurement for qu-8it MES

A possible candidate for violating the CGLMP3 inequality is the MES of qu-8it using

the optimal measurements. However, as the goal is to show a violation using pairs

of entangled qubits, we need to establish that whatever composite qu-8its states and

measurements we use can be factorized into composite qubits states and measurements.

As before, using the standard binary encoding, the MES will factorise into 3 pairs of

maximally entangled qubits:

(|00〉+ |11〉+ |22〉+ |33〉+ |44〉+ |55〉+ |66〉+ |77〉)A,B

7→ (|00〉+ |11〉)A1,B1 ⊗ (|00〉+ |11〉)A2,B2 ⊗ (|00〉+ |11〉)A3,B3

In order to factorise the measurement vectors in Eqn. 3.6 as

⊗
i=1,2,3

(cos(αi)|0〉+ eiβi sin(αi)|1〉),

we will need to solve some simultaneous equations. One can verify that a possible

solution is such that the measurements can be carried out sequentially on the 3 qubits.

The case for Alice is illustrated in Fig. 3.5. The various corresponding measurement

vectors are:

σA1 = {|0〉 ± ei(π+4φX) |1〉}

σA2|+ = {|0〉 ± ei(2φX) |1〉}, σA2|− = {|0〉 ± ei(
π
2

+2φX) |1〉}

σA3|++ = {|0〉 ± ei(φX) |1〉}, σA3|+− = {|0〉 ± ei(
π
2

+φX) |1〉}

σA3|−+ = {|0〉 ± ei(
π
4

+φX) |1〉}, σA3|−− = {|0〉 ± ei(
3π
4

+φX) |1〉}

3.5.2.2 Searching for violation

Starting with the qu-8it MES and the corresponding optimal measurements for violating

the CGLMP8 inequality, we can optimize over all rebelling to find the maximal violation

of the CGLMP3 violation. The matlab code for this can be found in the appendix.

Basically, each rebelling corresponds to a way to rewrite the 16 ∗ 16 probability matrix
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Figure 3.5: The measurement device first makes the measurement σA1 on A1. If
the ”±” outcome is obtained, the measurement σA2|± will be made on A2. Depending
on the outcome, a third measurement will be carried out on A3. The final output
a ∈ {0, 1, ..., 7} will depend on the various measurements made and outcomes obtained.

P in Eqn. 3.3 into a 6 ∗ 6 matrix P ′. The CGLMP3 violation can then be calculated

using Eqn. 3.1 with P ′ as the probability matrix. It was found that the rebelling

1, 4, 7 7→ 0

2, 5 7→ 1

0, 3, 6 7→ 2

is an optimal, giving a violation of 0.2677. We can then proceed to search for a higher

violation, assuming this rebelling and the optimal measurement, by optimizing over all

factorisable state.

According to the Schmidt decomposition theorem, each composite qubit can be parametrised

using five parameters as

|ψ〉 = cos θ|0A10B1〉+ sin θ|1A11B1〉

where |0A1〉 = cosφ|0〉+ e−iα sinφ|1〉, |1A1〉 = sinφ|0〉 − eiα cosφ|1〉

|0B1〉 = cosµ|0〉+ e−iβ sinµ|1〉, |1B1〉 = sinµ|0〉 − eiβ cosµ|1〉

where |iχj 〉 is the Schmidt basis and |i〉 is the computational basis. A factorisable state

of three pairs of qubits can thus be parametrised using 15 parameters and optimization

can be carried out over all these parameters. Doing so will give us a slightly higher

violation of 0.2698. One can then go on to repeat the iteration by finding a new optimal

rebelling. However, the violation we achieve here already goes beyond the CGLMP3

DW bound for qubits, which was 0.2071.

Some intermediate points with violation values between 0.2071 and 0.2698 has also been

found. These points are projected onto the slice in Fig. 3.2 using the depolarization

method in [21]. Fig. 3.6 shows some of these points.
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(a) Projection onto slice. (b) Sequential measurements.

Figure 3.6: By assuming sequential measurements on 3 pairs of qubits as in Fig.
3.6(b), one can achieve points above the qubit bound (Fig. 3.6(a)).

All of the points in Fig. 3.6 lie above the qubit bound, but can be obtained using

sequential measurements on three pairs of entangled qubits. Therefore, we conclude

that it does not require nontrivial measurements on dimension three or higher to satisfy

the DW based on the CGLMP3 inequality.

3.6 A Proper Dimension Witness

In the previous sections, we have seen that DWs based on the CGLMP3 and CGLMP4

inequalities cannot satisfy our alternative criteria since the DW bound can be surpassed

using only qubit sources and sequential qubit measurements.

In order to demonstrate that the results from an experiment cannot be obtained using

only entangled qubits, we would require a measurement that cannot be factorized. A

prominent example of such a measurement is the Bell measurement, which we will study

in the next chapter. A device-independent certification of a Bell measurement will

constitute a proper dimension witness.
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Certification of Bell state

measurement

A Bell state measurement is a special type of measurement in that it can result in

entanglement between initially uncorrelated quantum systems. This characteristic of

the Bell state measurement makes it useful in applications such as quantum teleportation

[28] and entanglement swapping [29]. If the Bell state measurement in these applications

could be substituted with sequential qubit measurements, then quantum teleportation

for example, could be trivially performed in the lab. However, this is not the case. A

Bell state measurement cannot be replicated using only local qubit measurements. This

is precisely what we mean by a non-trivial measurement in high dimension.

In this chapter, a protocol to certify Bell state measurement would be proposed. First,

we will study what a Bell state measurement is.

4.1 Bell State Measurement

A Bell state measurement on a composite qubit system is a projective measurement on

the four orthonormal Bell states:

|Φ+〉 =
1√
2

(|00〉+ |11〉)

|Φ−〉 =
1√
2

(|00〉 − |11〉)

|Ψ+〉 =
1√
2

(|01〉+ |10〉)

|Ψ−〉 =
1√
2

(|01〉 − |10〉).

(4.1)

27
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As each of these states are orthonormal, they form a set of complete basis in the four

dimensional Hilbert space of composite qubits.

For a projective measurement like the Bell state measurement, if the projectors onto

each measurement bases are to be factorisable, we would be able to write each of the

bases as a product state. The fact that all the measurement bases of the Bell state

measurement is entangled tells us that the Bell state measurement cannot be factorised

into the form Π1 ⊗ Π2, where Π1 and Π2 are projectors on qubit spaces. For example,

the equation

|Φ+〉〈Φ+| = 1

2
(|0〉〈0| ⊗ |0〉〈0|+ |0〉〈1| ⊗ |0〉〈1|+ |1〉〈0| ⊗ |1〉〈0|+ |1〉〈1| ⊗ |1〉〈1|)

=
1√

|a1|2 + |a2|2 + |a3|2 + |a4|2
(a1|0〉〈0|+ a2|0〉〈1|+ a3|1〉〈0|+ a4|1〉〈1|)

⊗ 1√
|b1|2 + |b2|2 + |b3|2 + |b4|2

(b1|0〉〈0|+ b2|0〉〈1|+ b3|1〉〈0|+ b4|1〉〈1|)

has no solutions for the unknowns {ai, bi : i ∈ 1, 2, 3, 4}. This follows immediately from

the fact that the state |Φ+〉 is entangled. Since local measurements will destroy any

entanglement between qubits, no sequential qubit measurements can reproduce exactly

a Bell state measurement scenario.

In particular, only an entangling measurement like the Bell state measurement can

result in entanglement between qubits which were originally not entangled and have not

directly interacted. This is what happens in entanglement swapping [29].

4.1.1 Entanglement Swapping

The scenario for entanglement swapping is illustrated in Fig. 4.1. A source prepares two

pairs of entangled qubits in the state |Φ+〉 and sends one qubit from each pair to Alice

and the other to Bob. Initially, Alice and Bob will each hold two uncorrelated qubits,

A1, A2 and B1, B2.

The initial state of the four qubits can be rewritten as

|Φ+〉A1,B1 |Φ+〉A2,B2 =
1

2
(|Φ+〉|Φ+〉+ |Φ−〉|Φ−〉+ |Ψ+〉|Ψ+〉+ |Ψ−〉|Ψ−〉)A1,A2,B1,B2

From this, we can see that when Bob makes a Bell state measurement on his part of the

system B1, B2, there is an equal chance of him obtaining either of the four Bell states.

In addition the resulting state of Alice’s system A1, A2 will be in the same Bell state as

B1, B2. Hence, entanglement between originally uncorrelated qubits was created. This
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Figure 4.1: Entanglement swapping. A BSM by Bob (right) causes maximal entan-
glement in Alice’s (left) particles.

characteristic of the Bell state measurement is what we will be looking out for in the

protocol.

In a usual entanglement swapping scenario, the initial qubit pairs A1, B1 and A2, B2

are prepared in different Bell states. By performing a Bell state measurement followed

by an unitary transformation chosen based on the Bell state measurement outcome, the

entanglement between A2, B2 can be ”swapped” to the pair A1, A2, hence the name

”entanglement swapping”.

4.2 Certifying Bell State Measurement

The procedure proposed here to certify a Bell state measurement is similar to that

proposed by Rabelo et al. in [30]. However, we will modify the tripartite procedure

proposed in that paper into a bipartite one.

The general idea of the certification is to look out for the resultant entanglement in

Alice’s initially uncorrelated qubits A1 and A2 after a Bell state measurement (BSM)

by Bob on his qubits, B1 and B2. This is exactly the case in the entanglement swapping

scenario.

In order to demonstrate this in a device independent way, we would require two sub-tests:

(i) Certify that the state sent to Alice and Bob is equivalent to two pairs of maximally

entangled qubits, |Φ+〉A1B1 |Φ+〉A2B2 . This ensures that the quantum systems re-

ceived by Alice and Bob comprises of two uncorrelated subsystems each.

(ii) Certify that maximal entanglement between A1 and A2 is created after the BSM

by Bob.
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4.2.1 Test (i): Verifying presence of 2 singlets

The goal of this first sub-test is to certify that the state sent to Alice and Bob is equivalent

to |Φ+〉A1B1 |Φ+〉A2B2 device independently. The idea of testing the quantum state in a

device independent way is not new, and is in fact called self-testing [31] of state. The

first example of self-testing is that of the state |Φ+〉.

In section 2.1.3, we have seen that with a suitable choice of measurements, the state |Φ+〉
can reach the maximal violation of the CHSH inequality given by the Tsirelson bound.

In fact, we can obtain the same violation by appending additional degrees of freedom to

the state |Φ+〉〈Φ+|AB and performing identity measurements on these. Indeed, for any

state ρAB,

P (a, b|x, y) = Tr(Eax ⊗ EbyρAB)

= Tr((Eax ⊗ 1′A)⊗ (Eby ⊗ 1′B)ρAB ⊗ σA′B′).

As S is a linear function of the P (a, b|x, y)s, states capable of obtaining the same

P (a, b|x, y) will be achieve the same S value.

In fact, any bipartite state ρ̃AB that is equivalent to |Φ+〉 up to local isometries will

be able to achieve the same violation. In other words, if there exist a local isometry

I = IAA′ ⊗ IBB′ that can map |Φ+〉〈Φ+| from ρ̃AB onto an appended 2-qubits ancilla

system, σA′B′ :

I(ρ̃AB ⊗ σA′B′)I† = ρjunkAB ⊗ |Φ+〉〈Φ+|A′B′ ,

then we will be able to achieve S = 2
√

2 by simply making the necessary measurements

on A′ and B′ and identity measurements on A and B.

However, it is not clear if S = 2
√

2 also implies that the state measured must be

equivalent to |Φ+〉. The answer, according to self-testing, turns out to be yes [32].

Theorem 4.1. If a CHSH test yields S = 2
√

2 exactly, then the state is equivalent, up

to local isometries, to |Φ+〉 and the measurements are the corresponding Pauli matrices.

More recently, a criteria on P (a, b|x, y) for the self-testing of |Φ+〉A1B1 |Φ+〉A2B2 has also

been found [33]. This double CHSH test is what we will employ as our test (i).

In the double CHSH test, Alice and Bob will each have four 4-outcome measurement

settings, x, y, a, b ∈ {0, 1, 2, 3}. The idea of the test is to look at each of these mea-

surements and outcomes as if they represent the measurements and outcomes on two

subsystems A1, A2 and B1, B2 for Alice and Bob respectively. This is illustrated in Fig.

4.2.
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Figure 4.2: Double CHSH test. Each measurement of Alice and Bob will be in-
terpreted as local measurements on 2 subsystems. The inputs and outputs will be
interpreted as in the text. For example, when the measurement device on the right

gives the first outcome, or a = 0, we will interpret it as a1 = 0 and a2 = 0.

We will interpret the outcomes and settings as

a = 2a1 + a2 x = 2x1 + x2

b = 2b1 + b2 y = 2y1 + y2

For example, the case in which x = 1 and a = 3 will be interpreted as Alice measuring

A1 in x1 = 0 and A2 in x2 = 1 and obtaining the outcomes a1 = 1 and a2 = 1.

In order to certify that the state is equivalent to |Φ+〉A1B1 |Φ+〉A2B2 , Alice and Bob will

need to observe the following results:

SA1B1|x2=0 = 2
√

2 SA1B1|x2=1 = 2
√

2 (4.2)

SA2B2|x1=0 = 2
√

2 SA2B2|x1=1 = 2
√

2. (4.3)

In other words, four CHSH tests need to be carried out, with two on A1 and B1, condi-

tioned on Alice’s input for A2, and two on A2 and B2 conditioned on Alice’s input for

A1.

Explicitly, in every run of the experiment, Alice and Bob will record down the outcomes

and measurements made as (a1, a2, b1, b2;x1, x2, y1, y2). To obtain the value of SA1B1|x2=0

for example, they will filter out the results for which x2 = 0, rewrite the data by ignoring

the values for A2 and B2:

(a1, a2, b1, b2;x1, 0, y1, y2) 7→ (a1, b1;x1, y1)

and carry out the CHSH test for A1 and B1 using these data.

As with the self-testing of |Φ+〉, these results also certify that the measurements x1, x2, y1,

y2 carried out are the corresponding Pauli matrices in Eqn. 2.6. The proof that this

double CHSH criteria self-tests the state |Φ+〉A1B1 |Φ+〉A2B2 and measurements can be

found in the appendix of [33].
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4.2.1.1 Significance of Test (i)

From test (i), we can conclude that the state sent to Alice and Bob can be viewed as

two pairs of maximally entangled qubits. By monogamy of entanglement [34], which

states that if A is maximally entangled with B, then it must be uncorrelated with any

other systems, we have: A1 is uncorrelated with A2 and B1 is uncorrelated with B2.

Therefore, if a fifth measurement of Bob were to result in maximal entanglement in

Alice’s subsystems, we can certify that a BSM was carried out. This is the goal of test

(ii).

It is clear that test (i) does not require non-trivial measurement on ququart systems since

the required results of Eqns. 4.2 and 4.3 can be achieved by actually sending the self-

tested state to Alice and Bob and making local qubit measurements on the subsystems.

However, as any 2-qubit states and measurements can be viewed as ququart states and

measurements by choosing an encoding, we can also use ququart systems to satisfy test

(i). As an exercise, we will look at an explicit example by simply mapping the necessary

2-qubit states and measurements onto the ququart space.

We will use the inverse of the standard binary encoding in Eqn. 3.9. This will map

the state |Φ+〉A1,B1 |Φ+〉A2,B2 back into the maximally entangled ququart state, which is

simply the reverse of Eqn. 3.10.

To achieve the maximal CHSH violation in the 2-qubits scenario, Alice and Bob need

to perform local measurements on their respective subsystems chosen from the optimal

CHSH measurements in Eqn. 2.6 and Eqn. 2.7 for |Φ+〉. For example, we can choose

the following measurements for Alice:

x = 0 :{Πz+⊗Π

z+x√
2

+ ,Πz+⊗Π

z+x√
2

− ,Πz−⊗Π

z+x√
2

+ ,Πz−⊗Π

z+x√
2

− }7→{|Ψ0(a)〉〈Ψ0(a)|:a∈0,1,2,3}

where |Ψ0(0)〉 = c|0〉+ s|1〉

|Ψ0(1)〉 = s|0〉 − c|1〉

|Ψ0(2)〉 = c|2〉+ s|3〉

|Ψ0(3)〉 = s|2〉 − c|3〉

x = 1 :{Πz+⊗Π

z−x√
2

+ ,Πz+⊗Π

z−x√
2

− ,Πz−⊗Π

z−x√
2

+ ,Πz−⊗Π

z−x√
2

− }7→{|Ψ1(a)〉〈Ψ1(a)|:a∈0,1,2,3}

where |Ψ1(0)〉 = c|0〉 − s|1〉

|Ψ1(1)〉 = s|0〉+ c|1〉

|Ψ1(2)〉 = c|2〉 − s|3〉

|Ψ1(3)〉 = s|2〉+ c|3〉
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x = 2 :{Πx+⊗Π

z+x√
2

+ ,Πx+⊗Π

z+x√
2

− ,Πx−⊗Π

z+x√
2

+ ,Πx−⊗Π

z+x√
2

− }7→{|Ψ2(a)〉〈Ψ2(a)|:a∈0,1,2,3}

where |Ψ2(0)〉 =
1√
2

(c|0〉+ s|1〉+ c|2〉+ s|3〉)

|Ψ2(1)〉 =
1√
2

(s|0〉 − c|1〉+ s|2〉 − c|3〉)

|Ψ2(2)〉 =
1√
2

(c|0〉+ s|1〉 − c|2〉 − s|3〉)

|Ψ2(3)〉 =
1√
2

(s|0〉 − c|1〉 − s|2〉+ c|3〉)

x = 3 :{Πx+⊗Π

z−x√
2

+ ,Πx+⊗Π

z−x√
2

− ,Πx−⊗Π

z−x√
2

+ ,Πx−⊗Π

z−x√
2

− }7→{|Ψ3(a)〉〈Ψ3(a)|:a∈0,1,2,3}

where |Ψ3(0)〉 =
1√
2

(c|0〉 − s|1〉+ c|2〉 − s|3〉)

|Ψ3(1)〉 =
1√
2

(s|0〉+ c|1〉+ s|2〉+ c|3〉)

|Ψ3(2)〉 =
1√
2

(c|0〉 − s|1〉 − c|2〉+ s|3〉)

|Ψ3(3)〉 =
1√
2

(s|0〉+ c|1〉 − s|2〉 − c|3〉).

In the above expressions, we have denoted c = cos π8 and s = sin π
8 and ΠÔ

± as the projec-

tor onto the eigen-subspace of the observable Ô with eigenvalue ±1. The corresponding

ququart measurements which the binary encoding will map to is also shown.

Similarly, for Bob, we choose:

y = 0 :{Π
z+x√

2
+ ⊗Πz+,Π

z+x√
2

− ⊗Πz+,Π

z+x√
2

+ ⊗Πz−,Π

z+x√
2

− ⊗Πz−}7→{|φ0(b)〉〈φ0(b)|:b∈0,1,2,3}

where |φ0(0)〉 = c|0〉+ s|2〉

|φ0(1)〉 = c|1〉+ s|3〉

|φ0(2)〉 = s|0〉 − c|2〉

|φ0(3)〉 = s|1〉 − c|3〉

y = 1 :{Π
z+x√

2
+ ⊗Πx+,Π

z+x√
2

− ⊗Πx+,Π

z+x√
2

+ ⊗Πx−,Π

z+x√
2

− ⊗Πx−}7→{|φ1(b)〉〈φ1(b)|:b∈0,1,2,3}

where |φ1(0)〉 =
1√
2

(c|0〉+ c|1〉+ s|2〉+ s|3〉)

|φ1(1)〉 =
1√
2

(c|0〉 − c|1〉+ s|2〉 − s|3〉)

|φ1(2)〉 =
1√
2

(s|0〉+ s|1〉 − c|2〉 − c|3〉)

|φ1(3)〉 =
1√
2

(s|0〉 − s|1〉 − c|2〉+ c|3〉)
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y = 2 :{Π
z−x√

2
+ ⊗Πz+,Π

z−x√
2

− ⊗Πz+,Π

z−x√
2

+ ⊗Πz−,Π

z−x√
2

− ⊗Πz−}7→{|φ2(b)〉〈φ2(b)|:b∈0,1,2,3}

where |φ2(0)〉 = c|0〉 − s|2〉

|φ2(1)〉 = c|1〉 − s|3〉

|φ2(2)〉 = s|0〉+ c|2〉

|φ2(3)〉 = s|1〉+ c|3〉

y = 3 :{Π
z−x√

2
+ ⊗Πx+,Π

z−x√
2

− ⊗Πx+,Π

z−x√
2

+ ⊗Πx−,Π

z−x√
2

− ⊗Πx−}7→{|φ3(b)〉〈φ3(b)|:b∈0,1,2,3}

where |φ0(0)〉 =
1√
2

(c|0〉+ c|1〉 − s|2〉 − s|3〉)

|φ3(1)〉 =
1√
2

(c|0〉 − c|1〉 − s|2〉+ s|3〉)

|φ3(2)〉 =
1√
2

(s|0〉+ s|1〉+ c|2〉+ c|3〉)

|φ3(3)〉 =
1√
2

(s|0〉 − s|1〉+ c|2〉 − c|3〉)

The qubit measurements above for Alice and Bob will lead to maximal CHSH viola-

tions Sai,bi|xi+1
= 2
√

2, ∀i ∈ {0, 1} for |Φ+〉A1B1 |Φ+〉A2B2 . Similarly, the corresponding

ququart measurements will lead to maximal violations for the ququart MES.

4.2.2 Test (ii): Verifying Entanglement between A1 and A2

If the setting y = 4 of Bob were a BSM, then from section 4.1.1, A1 and A2 would end up

in one of the entangled Bell states, depending on the outcome of the BSM. Conversely,

if all CHSH tests on A1 and A2 conditioned on each measurement outcome of y = 4

give maximal violations of S̃A1,A2|b = 2
√

2 ∀b ∈ {0, 1, 2, 3}, then Bob’s measurement has

resulted in maximal entanglement between originally uncorrelated qubits thus certifying

that y = 4 was a BSM.

Since test (i) certifies that each of the 4-outcome measurements x ∈ {0, 1, 2, 3} corre-

sponds to two sequential optimal local qubit measurements on A1 and A2 in Eqn. 2.6,

we can already use these settings for the CHSH tests on A1 and A2.

However, the measurements that would lead to maximal violation of the CHSH inequal-

ity, Eqn. 2.4 are different for each of the four Bell states. This problem can be resolved

by noticing that using the same measurements optimal for |Φ+〉, the other three Bell

states will maximally violate Bell inequalities of a similar form to Eqn. 2.4 which are

just different linear combinations of the various Exy terms. Hence, Alice would need to
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compute these expressions for A1 and A2 for each outcome of Bob. They are

s0 = −s3 = E00 + E01 + E10 − E11,

s1 = −s2 = E00 + E01 − E10 + E11.
(4.4)

For example, for b = 0, s0 can be calculated as

s0 = E00|0 + E01|0 + E10|0 − E11|0

where Ex1x2|b = P (a1 = a2|x1, x2, b)− P (a1 6= a2|x1, x2, b)

= P (a = 0 or 3|x = 2x1 + x2, b)− P (a = 1 or 2|x = 2x1 + x2, b).

The conditioning of the probabilities on y = 4 is suppressed in the above expression

since we are under the assumption that Bob always make this same measurement for

test (ii).

It can be verified that the (i+ 1)-th Bell state in Eqn. 4.1 will give si = 2
√

2. However,

since we do not know which Bell state each outcome b correspond to, Alice will need to

compute all values from set {si : i = 0, 1, 2, 3} for each b and keep the highest value as

S̃A1,A2|b.

4.2.3 Remarks

In order to satisfy both tests (i) and (ii), non-trivial measurements on ququart system

have to be involved. From the double CHSH criteria, we know that test (i) can be

satisfied using multiple 2-qubit states and sequential qubit measurements if and only

if the state is equivalent to |Φ+〉A1,B1 |Φ+〉A2,B2 . However, to satisfy test (ii) using the

same state and measurement for Alice, a BSM by Bob has to be involved. From the

discussion in section 4.1, we know that a BSM cannot be done using sequential qubit

measurements.

As with test (i), test (ii) can also be satisfied using ququarts and ququart measurements.

We will now complete the exercise in section 4.2.1.1 and find the necessary ququart
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measurement which corresponds to y = 4:

y = 4 :{|Φ+〉〈Φ+|,|Φ−〉〈Φ−|,|Ψ+〉〈Ψ+|,|Ψ−〉〈Ψ−|}7→{|φ4(b)〉〈φ4(b)|:b∈0,1,2,3}

where |φ1(0)〉 =
1√
2

(|0〉+ |3〉)

|φ1(1)〉 =
1√
2

(|0〉 − |3〉)

|φ1(2)〉 =
1√
2

(|1〉+ |2〉)

|φ1(3)〉 =
1√
2

(|1〉 − |2〉).

The reason for the choice of measurements x1 and x2 from the previous example is now

clear: these are the optimal CHSH measurements for A1 and A2. Conditioning on Bob’s

outcome b = i, Alice will find on computing the various sj in Eqn. 4.4, that si = 2
√

2.
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Deviation from Ideal

In the previous chapter, we have seen how certifying a perfect BSM serves as a DW,

certifying the ability to perform non-trivial ququart measurements. However, one can

rarely observe the exact statistics required for the tests in experiments due to imperfec-

tions in the measurement and state preparation devices. Therefore, it will be instructive

to investigate what happens to the observed statistics when one deviates from the per-

fect scenario. In particular, we would like to know to what extend can the statistics

be allowed to deviate from the perfect scenario before one stops certifying non-trivial

ququart measurements.

A similar problem was studied in ref. [30] and it turns out that if the first step of the

certification is perfect, in other words, one certifies that the state sent to Alice and Bob

is |Φ+〉A1,B1 |Φ+〉A2,B2 up to local isometries, then a CHSH value of

S̃A1A2|b ≥
√

2

in the second step is enough for certification.

In this chapter, we will give a proof to the above claim and look at some exercises to

investigate how the observed statistics will change when the state in test (i) and BSM

in test (ii) of the certification procedure differs from the ideal case.

5.1 Mixed State with Entangling Measurement

In this section, we look at what happens to the observed statistics if the state sent to

Alice and Bob in the first step is two pairs of imperfect singlets and the BSM in the

second step is a general entangling measurement.

37
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Specifically, the state we consider is two pairs of Werner states

ρA1B1A2B2 = (v|Φ+〉〈Φ+|+ (1− v)
1

4
)⊗2, (5.1)

which is the |Φ+〉 state mixed with white noise. In this case, if a CHSH test is carried

out on the subsystems ρA1B1 and ρA2B2 , the maximal violation we can get is clearly

S = v2
√

2 using the optimal measurements for |Φ+〉 since white noise will not contribute

any violation.

In the second test, the BSM of Bob is replaced with a general entangled measurement,

which is a projective measurement on {|Ψb〉 : b = 0, 1, 2, 3} with

|Ψ0〉 = cos(θ)|00〉+ sin(θ)|11〉

|Ψ1〉 = sin(θ)|00〉 − cos(θ)|11〉

|Ψ2〉 = cos(θ)|01〉+ sin(θ)|10〉

|Ψ3〉 = sin(θ)|01〉 − cos(θ)|10〉.

(5.2)

Depending on the outcome b ∈ {0, 1, 2, 3} of Bob’s measurement, the resultant state

after the measurement is given by

ρA1A2B1B2|b =
1A ⊗ |Ψb〉〈Ψb|ρA1A2B1B21A ⊗ |Ψb〉〈Ψb|

Tr(1A ⊗ |Ψb〉〈Ψb|ρA1A2B1B2)
.

With this, we can proceed to calculate the CHSH violation by the subsystems ρA1A2|b

conditioned on the outcome of Bob. Assuming that the measurements of Alice in test (i)

corresponds to the optimal measurements for CHSH violation by |Φ+〉, we can construct

the Bell operator. For simplicity, let us consider only the b = 0 case. Following section

4.2.2, the bell operator in this case is given by

Ŝ = Ẑ ⊗ Ẑ + X̂√
2

+ Z ⊗ Ẑ − X̂√
2

+ X̂ ⊗ Ẑ + X̂√
2
− X̂ ⊗ Ẑ − X̂√

2
. (5.3)

Finally, the CHSH violation of ρA1A2|b=0 is given by

S ≡ 〈Ŝ ⊗ 1b〉 = Tr(Ŝ ⊗ 1bρA1A2|b=0).

A matlab code for the above calculations has been written to find the dependence of the

CHSH violation between Alices subsystems in test (ii) on the parameters v and θ. The

result is

S(v, θ) = v2
√

2(sin(2θ) + 1). (5.4)
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In the case when v = 1, θ = π
4 , we get back the ideal case and S = 2

√
2 as expected.

5.2 Noisy BSM

In this section, we consider the case of a noisy BSM in test (ii) in which the outcomes

of the measurement are mixed up.

In other words, whenever the BSM on subsystems B1 and B2 yields the i-th bell state,

|ψi〉 in Eqn. 4.1, the measurement device will output the result as outcome j with

probability Pij = P (b = j|ψi). For convenience, we shall let the output b ∈ {1, 2, 3, 4} in

this section so that Pij , i, j ∈ {1, 2, 3, 4} denotes the entries of the 4 ∗ 4 matrix, P . We

shall also assume that the results in test (i) correspond to the ideal case.

In this scenario, when the measurement device outputs b = j, there is some probability

P (ψi|b = j) that the actual BSM yielded the state ψi, where

|ψ1〉 = |Φ+〉

|ψ2〉 = |Φ−〉

|ψ3〉 = |Ψ+〉

|ψ4〉 = |Ψ−〉.

These probabilities are given by

P (ψi|b = j) =
P (ψi ∩ b = j)

P (b = j)

=
Pij Tr((1⊗ |ψi〉〈ψi|)ρAB)

P (b = j)
,

where

P (b = j) =

4∑
i=1

P (ψi)Pij

=
4∑
i=1

Tr((1⊗ |ψi〉〈ψi|)ρAB)Pij ,

and ρAB is the state of Alice and Bob’s system after test (i).
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Therefore, the resultant state conditioned on the outcomes of the noisy BSM is

ρAB|b=j =
4∑
i=1

P (ψi|b = j)ρAB|ψi

=

4∑
i=1

P (ψi|b = j)
1A ⊗ |ψi〉〈ψi|ρAB1A ⊗ |ψi〉〈ψi|

Tr(1A ⊗ |ψi〉〈ψi|ρAB)
.

With this, we can calculate the CHSH violation values of A1 and A2 as in the previous

section, by taking the expectation value of the Bell operator. For example, the expecta-

tion value of the bell operator Ŝ defined in Eqn.5.3, given that noisy BSM output b = 1,

depends on P according to

S(P ) =
2
√

2(P11 − P41)

P11 + P21 + P31 + P41
. (5.5)

In a perfect BSM, the only non-zero term in the above expression is P11 = 1, and we

recover the optimal violation of 2
√

2. One can easily verify that for the case ρAB =

|Φ+〉A1B1 |Φ+〉A2B2 , the above expression corresponds to

S(P ) = 2
√

2(P (ψ1|b = 1)− P (ψ4|b = 1))

=
4∑
i=1

〈Ŝ〉iP (ψi|b = 1),

where 〈Ŝ〉i is the expectation value of Ŝ evaluated on the state |ψi〉. This is the expected

result since the output b = 1 corresponds to a probabilistic mixture of outcomes ψi of

the original BSM.

5.3 Entangling Measurements

In the previous sections, we have seen how the statistics will change if the state in test

(i) and the BSM in test (ii) of the protocol deviates from the ideal case. However, it is

important to note that although, for example, when v = 1√
2

and θ = π
4 in section 5.1

will give S =
√

2, the converse is not true. In other words, we cannot certify that the

measurement is a perfect BSM upon seeing S =
√

2. Indeed, with v = 1 and θ = 0, we

see the same statistics but Bob’s measurement in this case is not a BSM.

However, the criteria of a perfect self-testing result in test (i) together with a maximal

CHSH violation in test (ii) seem overly stringent, making certification of non-trivial

ququart measurement an impossible task. After all, measurement devices are rarely

perfect. Therefore, it will be desirable to relax our criteria. One way to do this is
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instead of insisting on a perfect BSM, we may just focus on entangling measurements.

A measurement that causes entanglement in initially unentangled systems cannot be

achieved by sequential local measurements.

With this relaxed criteria, we can allow for deviations from S = 2
√

2 in test (ii).

5.3.1 Certifying entangling measurement

It was mentioned in ref. [30] that any deviations from ideal in test (i) will lead to

difficulties in certifying entangling measurements, the reason being that we will not be

able to conclude that Alice and Bob each holds two subsystems anymore, making the

question of whether Bob has performed a entangling measurement inapplicable.

Therefore, we shall restrict ourselves to the case in which the ideal statistics is obtained in

test (i). We can thus certify that the state sent to Alice and Bob is, up to local isometry,

the state in Eqn. 5.1 with v = 1. From Eqn. 5.4, we see that whenever θ 6= kπ
2 , S >

√
2.

In other words, whenever Bob makes a pure entangling measurement, a measurement in

which the measurement operators are not separable, the CHSH violation by A1 and A2

will always be greater than
√

2. In fact, it turns out that the converse is also true [30]:

Proposition 5.1. S >
√

2⇒ Bob’s measurement was entangling.

Proof. To prove this claim, we have to find the maximum CHSH violation that Alice

can obtain given that Bob has made a separable measurement.

From test (i), we know, according theorem 4.1, that

ρAB = (|Φ+〉〈Φ+|⊗2)A1B1A2B2 ⊗ |junk〉〈junk|A′B′

up to local isometries. It follows that if Bob’s measurement on the subsystems B1 and

B2 were not entangling, the resultant partial state ρA1A2|b = TrB1,B2,A′,B′(ρAB) of A1

and A2 will be a product state.

Moreover, we also know from self-testing that the four measurements of Alice is equiva-

lent to the observables {Ẑ, X̂, Ẑ+X̂√
2
, Ẑ−X̂√

2
}A1A2 ⊗ 1A′ up to local isometries. Hence, any

CHSH Bell-operator constructed out of these four measurements must have the form

βA1A2 ⊗ 1A′ . In other words, entanglement in A′ will not contribute to the CHSH vio-

lation observed by Alice. This can be calculated from Tr((βA1A2)ρA1A2|b) where βA1A2

is some operator acting on a 2-qubit Hilbert space and ρA1A2|b is some 2-qubit state.
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Therefore, the maximum violation that Alice can observe after a non-entangling mea-

surement by Bob will be given by

Ssep = max
φ∈P
〈φ|Ŝ|φ〉, (5.6)

where Ŝ is the 2-qubit Bell operator in Eqn. 5.3 and |φ〉 is some 2-qubit state. The

maximization is taken over the set of pure product states, P, since the set of separable

states is convex and the maximum will be attained over the subset of extremal points,

P.

One can easily verify that the spectral decomposition of Ŝ is given by Ŝ = 2
√

2(|Φ+〉〈Φ+|−
|Φ−〉〈Φ−|). Putting this into the above expression, we obtain

Ssep = max
φ∈P
〈φ|Ŝ|φ〉

= max
φ∈P

2
√

2(|〈φ|Φ+〉|2 − |〈φ|Ψ−〉|2).
(5.7)

Finally, as the maximum overlap between a product state and a Bell state is 1
2 , Ssep =

√
2. In summary, if Alice observes any violation value S > Ssep =

√
2, the state ρA1A2|b

measured must be entangled, which can only be the case if Bob has made an entangling

measurement.

5.4 Overview

With the above exercises, we are now in a position to ask the question ”How will im-

perfections in my devices affect the certification of non-trivial ququart measurement?”

For example, we may consider an experimentalist hoping to show off his experiment set

up by demonstrating that his measurement is able to preform an entangling measure-

ment. In his lab, he has a quantum source, which can create entangled qubits. However,

due to imperfections in the source, the qubits produced will not be in a perfect singlet

state but will be mixed with some white noise, ending up in the Werner state, Eqn. 5.1.

In this case, we will make a small departure from the fully device independent scenario

by assuming that in every run of the experiment, the experimentalist sees and knows

that his source has sent out two pairs of Werner states, with one qubit from each pair

sent to Alice and the other to Bob. In other words, he knows that two uncorrelated

qubits were being sent to Alice and two to Bob in each run.
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Figure 5.1: Noisy measurement. With probability 1 − ε, the device will output the
correct b as the outcome of the original measurement, ψb. The error ε is then distributed

evenly amongst the other 3 outputs.

A noisy entangling measurement will then be carried out, which can be parametrised by

θ as in Eqn. 5.2, but with mixed outputs, as in section 5.2. For simplicity, we will model

the measurement device to output b = i when the original entangling measurement gave

the i-th outcome with probability 1− ε, with ε being a small error, which is then equally

distributed among the other outputs. This scheme is illustrated in Fig. 5.1.

In such a scenario, we will have three parameters to consider, namely v for the Werner

state, θ for the entangling measurement and ε for the noisy measurement. We can then

perform a calculation similar to that in section 5.2 but replacing the state used in the

first step by two pairs of Werner states, and replacing the projectors onto the four Bell

states by projectors onto the four orthogonal entangled states in Eqn. 5.2.

As with the previous sections, we will restrict ourselves to looking at the case in which

b = 1 and the choosing the conventional CHSH operator, Ŝ to investigate how the value

S will depend on the three parameters.

After performing the necessary calculations, we find the following dependence

S(v, θ, ε) =
4∑
i=1

〈Ŝ〉iP (ψi|b = 1)

= v2
√

2(sin(2θ) + 1)(1− 4

3
ε).

As with the noisy BSM case, this result can be intuitively understood as the expectation

value of S since the outcome b = 1 is just a probabilistic mixture of the different

measurement outcomes, |ψi〉.

In order to certify entangling measurements, we would require S >
√

2. Fig. 5.2 shows

the 3D plot of the three parameters. The region in which (θ, ε, v) gives S >
√

2 is shaded

in orange.
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Figure 5.2: Region for which (v, θ, ε) gives S >
√

2

The projections of the shaded region onto the ε = 0, θ = π
4 and v = 1 planes are also

shown in Fig. 5.3.
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Figure 5.3: Projections of shaded region. For each of the above figures, only points
strictly above the blue curve may be tolerated for certifying entangling measurements.

Each of these figures tells us the amount of imperfections we can tolerate in two of the

three parameters, with the last parameter assumed to be ideal. From Figs. 5.3(a) and

5.3(b), we see that in order to certify entangling measurement, the Werner state must
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have v > 1√
2
. This is the same limit below which the state stops violating a CHSH test.

Therefore, so long as the amount of noise does not exceed what is needed for the Werner

state to violate a CHSH test, there will be some combination of (v, θ, ε) for which we

can still certify entangling measurement.

For the first quadrant, we see that so long as θ 6= 0 or π
2 , we have an entangling

measurement which can be certified for some v and ε values. Due to the particular

Ŝ we have chosen to look at, we will not be able to certify entangling measurements

when θ lies in the second or fourth quadrant. However, in each quadrant, so long as the

measurement is entangling, a suitable si in Eqn. 4.4 will result in S >
√

2.

Finally, the amount of noise beyond which we can no longer certify entangling measure-

ment is ε < 3
8 .
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Conclusion

6.1 Measurements and Unitary Operations

In section 3.1, an alternative motivation for DW was proposed as there was a need to

demonstrate genuine access to higher dimensions. We have defined the criteria for this

as having the ability to perform all non-trivial measurements on the Hilbert space with

the dimension that one is testing. A more natural and suitable criteria would probably

be the ability to perform all unitary operations instead of measurements since unitary

operations are involved in computation algorithms.

However, certifying measurements may be equivalent to certifying unitary operations

if we assume that the measurements are made by first performing unitary transforms

which will transform the measurement basis vectors into the computational basis vectors

followed by measurements in that basis.

For example, a BSM measurement can be performed by applying a controlled-NOT, or

CNOT gate on the 2-qubit state, followed by a Hadamard gate on the control qubit.

Fig. 6.1 shows the corresponding circuit. The effect of the circuit on the four Bell states

is given in table 6.1. A measurement on the transformed state in the computational

basis is then equivalent to a BSM.

H

Figure 6.1: A quantum circuit for performing a BSM.

The Hadamard gate transforms the |0〉 state into |0〉+|1〉√
2

and |1〉 into |0〉−|1〉√
2

.

46
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In Out

|Φ+〉 |00〉
|Φ−〉 |10〉
|Ψ+〉 |01〉
|Ψ−〉 |11〉

Table 6.1: The output states for the various inputs to the BSM circuit.

The CNOT gate is a 2-qubit gate, taking one qubit as a control and inverting the target

qubit if the control is in state |1〉 and leaving the target unchanged otherwise. In other

words, the CNOT gate performs the following transformation:

|00〉 7→ |00〉

|01〉 7→ |01〉

|10〉 7→ |11〉

|11〉 7→ |10〉,

with the first qubit being the control and the second being the target.

As an explicit example, the CNOT gate takes the input |Φ+〉 = |00〉+|11〉√
2

to |00〉+|10〉√
2

.

The Hadamard gate then takes the control qubit into a superposition: (|0〉+|1〉+|0〉−|1〉)|0〉
2 ,

which thus gives us the state |00〉.

Therefore, certifying a BSM may be seen as certifying the ability to perform a CNOT

gate. If we further assume the ability to perform single qubit unitaries, then we have

succeeded in certifying the ability to perform all non-trivial high dimension measure-

ments since CNOT and single qubit gates are universal for quantum computation [35].

That is, single qubit and CNOT gates together can be used to implement any arbitrary

unitary operations on multiple qubits.

For example, the general entangling measurement in Eqn. 5.2 can be implemented by

the circuit in Fig. 6.2. This is a modification of the circuit in Fig. 6.1 by replacing

the Hadamard gate with a single qubit unitary which maps |0〉 7→ sec(θ) |0〉+|1〉√
2

and

|1〉 7→ csc(θ) |0〉−|1〉√
2

.

U

Figure 6.2: A quantum circuit for performing a general entangling measurement.
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6.2 Further Directions

Any feasible certifications should allow for deviations from ideal and preferably allow

some conclusions to be drawn from the observed statistics. Therefore, it will be desirable

if the BSM certification proposed in this report can be modified such that one does not

need to satisfy test (i) perfectly.

In addition, certifying a BSM constitutes but one possible proper dimension witness. It

may be possible that by studying the set of probabilities achievable with factorisable

states and measurements, one can find some form of boundaries to this set, much like

how the Bell-inequalities are boundaries to the LV polytope. This will make it easier to

verify if a given probability point can be achieved using sequential local measurements

on low dimensional systems.



Appendix A

Violation of the CGLMP3 DW

using sequential qubit

measurements

This appendix lists the steps of obtaining the violating points on fig. 3.6 and the relevant

matlab codes.

First, we compute the probability table of the qu-8it MES using the optimal measure-

ments:

function [p] = Ptable(state)

%compute the probability table of a given state (column) using the "maximum

%violation measurements ".

d=sqrt(length(state ));

%normalise the state

state0 =1/ sqrt(state ’*state)*state;

% construct the Bell operator (CGLMP operator)

CGLMP = zeros(d^2);

ineq = [triu(ones(d)) tril(ones(d)); tril(ones(d)) -tril(ones(d))];

ineq = reshape(ineq ,4*d^2,1);

ii = 1;

for y=0:1

for b=0:d-1

for x = 0:1

for a = 0:d-1

49
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CGLMP = CGLMP + ineq(ii)*kron(optimalBasis(d,0,x,a)* ...

optimalBasis(d,0,x,a)’,optimalBasis(d,1,y,b)* ...

optimalBasis(d,1,y,b)’);

ii = ii + 1;

end

end

end

end

p = zeros (4*d^2,1);

ii = 1;

for y=0:1

for b=0:d-1

for x = 0:1

for a = 0:d-1

p(ii) = state0 ’*kron(optimalBasis(d,0,x,a)* ...

optimalBasis(d,0,x,a)’,optimalBasis(d,1,y,b)* ...

optimalBasis(d,1,y,b)’)* state0;

ii = ii + 1;

end

end

end

end

p = reshape(p,2*d,2*d);

end

Next, we input the probability table as ”P” into the function below to obtain the optimal

relabeling.

function [Index ,v] = Optimalrelabel( P )

%to find the index that will result in the maximum violation for the lifted

%CGLMP3 to 8 outcome case

%Take the 8 outcome probability table , P, and compute the best relabel

%for the violation of the CGLMP3 inequality

x = 1:3; %// Set of possible letters

K = 8; %// Length of each permutation

%// Create all possible permutations (with repetition) of letters stored in x

C = cell(K, 1); %// Preallocate a cell array

[C{:}] = ndgrid(x); %// Create K grids of values

y = cellfun(@(x){x(:)}, C); %// Convert grids to column vectors

y = [y{:}];

A=ones (3);

coeffn =[triu(A) tril(A);tril(A) -tril(A)];

Index=[y(1,:) y(1 ,:)];

v=0;

for i=1:3^8
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for j=1:3^8

In=[y(i,:) y(j ,:)+3];

V=sum(sum(coeffn ([y(i,:) y(j,:)+3] ,[y(i,:) y(j ,:)+3]).*P));

if V>v

v=V;

Index=In;

end

end

end

end

Using this relabeling, perform a minimisation using ”fminunc” on the function ”c8to3vioV2”

to obtain a factorisable qu-8it state that will give a higher violation to the CGLMP3

inequality.

function [ c3vio] = c8to3vioV2( x )

%Given the parameters x=(x1 x2... x15) of a factorisable c8*c8 state ,

%compute the corresponding cglmp3 violation ,assuming the maximum violation

%measurement and using the index

%corresponding to the best lifting

%(3 1 2 3 1 2 3 1 6 4 5 6 4 5 6 4)

% v=c3vio(x), v=violation. Parametrised state =

% (cos(x1)|aa ’>+sin(x1)|bb ’>) * (...)*(...) where

% |a>=cos(x2)|0>+exp(1i*x3)sin(x2)|1>,

% |a’>=cos(x4)|0>+exp(1i*x5)sin(x4)|1>

%express the factorisable state in the normal column representation psi ,

%with Ai,j being the various |a>s

A10=[cos(x(2)) exp(1i*x(3))* sin(x(2))] ’; A11=[sin(x(2)) ...

-exp(-1i*x(3))* cos(x(2))] ’;

B10=[cos(x(4)) exp(1i*x(5))* sin(x(4))] ’; B11=[sin(x(4)) ...

-exp(-1i*x(5))* cos(x(4))] ’;

A20=[cos(x(7)) exp(1i*x(8))* sin(x(7))] ’; A21=[sin(x(7)) ...

-exp(-1i*x(8))* cos(x(7))] ’;

B20=[cos(x(9)) exp(1i*x(10))* sin(x(9))] ’; B21=[sin(x(9)) ...

-exp(-1i*x(10))* cos(x(9))] ’;

A30=[cos(x(12)) exp(1i*x(13))* sin(x(12))] ’; A31=[sin(x(12)) ...

-exp(-1i*x(13))* cos(x(12))] ’;

B30=[cos(x(14)) exp(1i*x(15))* sin(x(14))] ’; B31=[sin(x(14)) ...

-exp(-1i*x(15))* cos(x(14))] ’;

psi=cos(x(1))* cos(x(6))* cos(x(11))...

*kron(kron(kron(A10 ,A20),kron(A30 ,B10)),kron(B20 ,B30 ));

psi=psi+cos(x(1))* cos(x(6))* sin(x(11))...

*kron(kron(kron(A10 ,A20),kron(A31 ,B10)),kron(B20 ,B31 ));

psi=psi+cos(x(1))* sin(x(6))* cos(x(11))...

*kron(kron(kron(A10 ,A21),kron(A30 ,B10)),kron(B21 ,B30 ));

psi=psi+cos(x(1))* sin(x(6))* sin(x(11))...

*kron(kron(kron(A10 ,A21),kron(A31 ,B10)),kron(B21 ,B31 ));

psi=psi+sin(x(1))* cos(x(6))* cos(x(11))...

*kron(kron(kron(A11 ,A20),kron(A30 ,B11)),kron(B20 ,B30 ));
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psi=psi+sin(x(1))* cos(x(6))* sin(x(11))...

*kron(kron(kron(A11 ,A20),kron(A31 ,B11)),kron(B20 ,B31 ));

psi=psi+sin(x(1))* sin(x(6))* cos(x(11))...

*kron(kron(kron(A11 ,A21),kron(A30 ,B11)),kron(B21 ,B30 ));

psi=psi+sin(x(1))* sin(x(6))* sin(x(11))...

*kron(kron(kron(A11 ,A21),kron(A31 ,B11)),kron(B21 ,B31 ));

%Obtain the lifted "bell operator", Bell.

state =1/ sqrt(psi ’*psi)*psi;

Bell3to8;

c3vio=real(state ’*Bell*state);

end

Using the function ”Ptable”, we can again compute the probability table corresponding

to this state. Next, using the optimal relabeling, we reduce this 8 outcome probability

table into the 3 outcome case using

function [ Probtable ] = Reddto3PT( Pd ,In )

%Given a probability table Pd of d outcomes , find the reduced probability table by

%grouping the outcomes into 3 outcomes using arbitrary indices , In, that is

%symmetric for Alice and Bob and over all measurement settings

d=length(Pd)/2;

%create a function to call on the relabelings

function [index]= outcome(x)

if x==1

index=find(In==1);

elseif x==2

index=find(In==2);

elseif x==3

index=find(In==3);

else

index =0;

end

end

Probtable=zeros (6);

for i=1:3

for j=1:3

Probtable(i,j)=sum(sum(Pd(outcome(i), outcome(j))));

Probtable(i+3,j)=sum(sum(Pd(outcome(i)+d, outcome(j))));

Probtable(i,j+3)= sum(sum(Pd(outcome(i), outcome(j)+d)));

Probtable(i+3, j+3)= sum(sum(Pd(outcome(i)+d, outcome(j)+d)));

end

end

end
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To compute D(P) in Eqn. 3.5, we use:

function [ D ] = Dvalue( Prob )

%to find the D(P) given the probability table from a bipartite d outcome

%experiment

d=length(Prob )/2;

P00=Prob (1:d,1:d);

P01=Prob (1:d,(d+1):2*d);

P10=Prob((d+1):2*d,1:d);

P11=Prob((d+1):2*d,(d+1):2*d);

%to find D for each of the x,y measurements

DP00 =0;

DP01 =0;

DP10 =0;

DP11 =0;

for k=0:d-1

DP00=DP00 -P00(k+1,mod(k-1 -(0-1)*(0 -1),d)+1);

DP01=DP01 -P01(k+1,mod(k-1 -(0-1)*(1 -1),d)+1);

DP10=DP10 -P10(k+1,mod(k-1 -(1-1)*(0 -1),d)+1);

DP11=DP11 -P11(k+1,mod(k-1 -(1-1)*(1 -1),d)+1);

end

D=DP00+DP01+DP10+DP11;

end

Finally, to obtain more points on the figure, we use this script:

%calculate the lifted 3to8 bell operator using the optimal indices

Bell = zeros (64);

cglmp3 =[triu(ones (3)) tril(ones (3)); tril(ones (3)) -tril(ones (3))];

index =[3 1 2 3 1 2 3 1 6 4 5 6 4 5 6 4];

liftc3=cglmp3(index , index );

ineq = reshape(liftc3 ,4*64 ,1);

ii = 1;

for y=0:1

for b=0:8 -1

for x = 0:1

for a = 0:8-1

Bell = Bell + ineq(ii)*kron(optimalBasis (8,0,x,a)...

*optimalBasis (8,0,x,a)’,optimalBasis (8,1,y,b)...

*optimalBasis (8,1,y,b)’);

ii = ii + 1;

end

end

end
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end

Bell;

%randomly select 50 cp values between 2 and 2.3 made by reducing qu8it

%to qutrit case and give the pair (cp,dp)

x=2+(2.3 -2).* rand (1 ,50);

for i=1:50

cp=x(i);

initAngle=rand (1 ,15);

func =@(w)-abs(c8to3vio(w)’*Bell*c8to3vio(w));

gunc =@(w) (func(w)-(-cp))^2;

[r,rv]= fminunc(gunc ,initAngle );

%c1=c8to3vioV2(r) %just for consistency check

P=Ptable(c8to3vio(r));

P3=Reddto3PT(P,[3 1 2 3 1 2 3 1]);

D=Dvalue(P3);

C=sum(sum(cglmp3 .*P3));

y(i)=D;

x1(i)=C-2;

end

y=real(y)

x=real(x1)

plot(y,x)



Appendix B

Deviation from ideal BSM

This appendix includes the matlab codes used for sections 5.1 and 5.2.

The below script is used to obtain the expression in Eqn. 5.4:

%2 by 1 unit vectors

e1 =[1;0]; e2 =[0;1];

%create e to call on dim 16 unit vectors

e=eye (16); %eg., e(:,3)=e3 in dim 16

%create the unitary to change from basis of B=A1B1A2B2 and C=A1A2B1B2

I_CB=[e(1,:);e(2 ,:);e(5,:);e(6 ,:);e(3,:);e(4 ,:);e(7,:);e(8 ,:);e(9 ,:);...

e(10 ,:);e(13 ,:);e(14 ,:);e(11 ,:);e(12 ,:);e(15 ,:);e(16 ,:)];

%create the four bell states

phi_p = (1/ sqrt (2))*( kron(e1,e1)+kron(e2 ,e2));

phi_m = (1/ sqrt (2))*( kron(e1,e1)-kron(e2 ,e2));

psi_p = (1/ sqrt (2))*( kron(e1,e2)+kron(e2 ,e1));

psi_m = (1/ sqrt (2))*( kron(e1,e2)-kron(e2 ,e1));

%create the starting state werner \otimes werner

v = sym(’v’,’real ’);

rho_A1B1A2B2=kron(v*(phi_p)*phi_p ’+(1-v)/4* eye(4),v*( phi_p)*phi_p ’+(1-v)/4* eye (4));

rho_A1A2B1B2=I_CB*( rho_A1B1A2B2 )*(I_CB ’);

rho=rho_A1A2B1B2;

%the projectors projecting Bob ’s system onto the four (imperfect) bell states

x = sym(’x’,’real ’); %x=pi/4 is the perfect bell on Bob

E0=cos(x)*kron(e1,e1)+sin(x)*kron(e2,e2);

E1=sin(x)*kron(e1,e1)-cos(x)*kron(e2,e2);

E2=cos(x)*kron(e1,e2)+sin(x)*kron(e2,e1);

E3=sin(x)*kron(e1,e2)-cos(x)*kron(e2,e1); %operator acts on 2-qubit state

E0=kron(eye(4),E0*(E0 ’));

E1=kron(eye(4),E1*(E1 ’));

E2=kron(eye(4),E2*(E2 ’));

E3=kron(eye(4),E3*(E3 ’));% operators act on the combined system of Alice and Bob
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%the resultant state of alice and bob conditioned on Bob ’s measurement

%result

rho_E0 =(1/ trace(E0*E0 ’*rho ))*(E0*rho*E0 ’);

rho_E1 =(1/ trace(E1*E1 ’*rho ))*(E1*rho*E1 ’);

rho_E2 =(1/ trace(E2*E2 ’*rho ))*(E2*rho*E2 ’);

rho_E3 =(1/ trace(E3*E3 ’*rho ))*(E3*rho*E3 ’);

%sigma x, y, z

sigx =[0 1;1 0]; sigz =[1 0;0 -1];

%the four bell operators

s1=kron(sigz ,(1/ sqrt (2))*( sigz+sigx ))+ kron(sigz ,(1/ sqrt (2))*( sigz -sigx ))+...

kron(sigx ,(1/ sqrt (2))*( sigz+sigx))-kron(sigx ,(1/ sqrt (2))*( sigz -sigx ));

s2=kron(sigz ,(1/ sqrt (2))*( sigz+sigx ))+ kron(sigz ,(1/ sqrt (2))*( sigz -sigx )) -...

kron(sigx ,(1/ sqrt (2))*( sigz+sigx ))+ kron(sigx ,(1/ sqrt (2))*( sigz -sigx ));

s4=-s1; s3=-s2;

%the "optimal" CHSH result of A1 and A2 given the result of Bob

S1=trace(kron(s1 ,eye (4))* rho_E0 );

S2=trace(kron(s2 ,eye (4))* rho_E1 );

S3=trace(kron(s3 ,eye (4))* rho_E2 );

S4=trace(kron(s4 ,eye (4))* rho_E3 );

%test: if v=1 and x=pi/4, S1 to S4 will yield the max vio of 2 sqrt2

v=1;x=pi/4;

%dep on v and x: 2^(1/2)*v^2*( sin(2*x) + 1)

The next script is used to obtain the expression in Eqn. 5.5:

%To find the CHSH violation of Alice given a noisy BSM on Bob ’s side where

%the measurement outcomes are mixed up. Mixtures are of the perfect bell

%state measurements , E0 -E3, name the outcomes M0-M3.

%2 by 1 unit vectors

e1 =[1;0]; e2 =[0;1];

%create e to call on dim 16 unit vectors

e=eye (16); %eg., e(:,3)=e3 in dim 16

%create the unitary to change from basis of B=A1B1A2B2 and C=A1A2B1B2

I_CB=[e(1,:);e(2 ,:);e(5,:);e(6 ,:);e(3,:);e(4 ,:);e(7,:);e(8 ,:);e(9 ,:);...

e(10 ,:);e(13 ,:);e(14 ,:);e(11 ,:);e(12 ,:);e(15 ,:);e(16 ,:)];

%create the four bell states

phi_p = (1/ sqrt (2))*( kron(e1,e1)+kron(e2 ,e2));

phi_m = (1/ sqrt (2))*( kron(e1,e1)-kron(e2 ,e2));

psi_p = (1/ sqrt (2))*( kron(e1,e2)+kron(e2 ,e1));

psi_m = (1/ sqrt (2))*( kron(e1,e2)-kron(e2 ,e1));

%create the starting singlet state

rho_A1B1A2B2=kron((phi_p)*phi_p ’,(phi_p)*phi_p ’);

rho_A1A2B1B2=I_CB*( rho_A1B1A2B2 )*(I_CB ’);

rho=rho_A1A2B1B2;

%the projectors on AB projecting Bob ’s system onto the four bell states
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E0=kron(eye(4),phi_p*(phi_p ’));

E1=kron(eye(4),phi_m*(phi_m ’));

E2=kron(eye(4),psi_p*(psi_p ’));

E3=kron(eye(4),psi_m*(psi_m ’));

% create the probabilities for the mixing of Bob ’s outcome

P=sym(’P’ ,[4,3]);

P=[P ones(4,1)-sum(P.’).’]; %P=[’output M0 given E0’, ’output M1

%given E0 ’,...;’ output M0 given E1 ’...]

%Probability of getting each of the outcomes

PM0=trace(E0*E0 ’*rho)*P(1,1)+ trace(E1*E1 ’*rho)*P(2,1)+ trace(E2*E2 ’*rho )...

*P(3,1)+ trace(E3*E3 ’*rho)*P(4,1);

PM1=trace(E0*E0 ’*rho)*P(1,2)+ trace(E1*E1 ’*rho)*P(2,2)+ trace(E2*E2 ’*rho )...

*P(3,2)+ trace(E3*E3 ’*rho)*P(4,2);

PM2=trace(E0*E0 ’*rho)*P(1,3)+ trace(E1*E1 ’*rho)*P(2,3)+ trace(E2*E2 ’*rho )...

*P(3,3)+ trace(E3*E3 ’*rho)*P(4,3);

PM3=trace(E0*E0 ’*rho)*P(1,4)+ trace(E1*E1 ’*rho)*P(2,4)+ trace(E2*E2 ’*rho )...

*P(3,4)+ trace(E3*E3 ’*rho)*P(4,4);

%the resultant state of alice and bob conditioned on Bob ’s true measurement

%result

rho_1 =(1/ trace(E0*E0 ’*rho ))*(E0*rho*E0 ’);

rho_2 =(1/ trace(E1*E1 ’*rho ))*(E1*rho*E1 ’);

rho_3 =(1/ trace(E2*E2 ’*rho ))*(E2*rho*E2 ’);

rho_4 =(1/ trace(E3*E3 ’*rho ))*(E3*rho*E3 ’);

%The resultant state of Alice and Bob upon receiving outcome Mb

rho_M0 =(1/ PM0)*( trace(E0*E0 ’*rho)*P(1,1)* rho_1+trace(E1*E1 ’*rho)*P(2 ,1)...

*rho_2+trace(E2*E2 ’*rho)*P(3,1)* rho_3+trace(E3*E3 ’*rho)*P(4 ,1)* rho_4);

rho_M1 =(1/ PM1)*( trace(E0*E0 ’*rho)*P(1,2)* rho_1+trace(E1*E1 ’*rho)*P(2 ,2)*...

rho_2+trace(E2*E2 ’*rho)*P(3 ,2)* rho_3+trace(E3*E3 ’*rho)*P(4,2)* rho_4 );

rho_M2 =(1/ PM2)*( trace(E0*E0 ’*rho)*P(1,3)* rho_1+trace(E1*E1 ’*rho)*P(2 ,3)...

*rho_2+trace(E2*E2 ’*rho)*P(3,3)* rho_3+trace(E3*E3 ’*rho)*P(4 ,3)* rho_4);

rho_M3 =(1/ PM3)*( trace(E0*E0 ’*rho)*P(1,4)* rho_1+trace(E1*E1 ’*rho)*P(2 ,4)...

*rho_2+trace(E2*E2 ’*rho)*P(3,4)* rho_3+trace(E3*E3 ’*rho)*P(4 ,4)* rho_4);

%sigma x, z

sigx =[0 1;1 0]; sigz =[1 0;0 -1];

%the four bell operators

S1=kron(sigz ,(1/ sqrt (2))*( sigz+sigx ))+ kron(sigz ,(1/ sqrt (2))*( sigz -sigx ))...

+kron(sigx ,(1/ sqrt (2))*( sigz+sigx))-kron(sigx ,(1/ sqrt (2))*( sigz -sigx ));

S2=kron(sigz ,(1/ sqrt (2))*( sigz+sigx ))+ kron(sigz ,(1/ sqrt (2))*( sigz -sigx ))...

-kron(sigx ,(1/ sqrt (2))*( sigz+sigx ))+ kron(sigx ,(1/ sqrt (2))*( sigz -sigx ));

S4=-S1; S3=-S2;

%Possible CHSH results of A1 and A2 given the result of Bob

S1=trace(kron(S1 ,eye (4))* rho_M0 );

S2=trace(kron(S2 ,eye (4))* rho_M0 );

S3=trace(kron(S3 ,eye (4))* rho_M0 );

S4=trace(kron(S4 ,eye (4))* rho_M0 );
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%largest value among these depends on P. E.g. if the prob of psi_0 given M0

%is highest among psi_i , then S1 will be largest

%S1 =(2^(1/2)*(2* P1_1 - 2*P4_1 ))/( P1_1 + P2_1 + P3_1 + P4_1)
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