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Abstract

Following the existing simulation routines of Monte-Carlo N-particle transport, we developed

an original computer program to perform Monte-Carlo simulation on a spherical shaped reactor

kernel. Analysis focusing on scalar flux and effective eigenvalue is carried out based on the result

of the program. Results are compared with 3-energy-group deterministic calculation. The most

probable neutron energy in MC method is slightly lower than the fast group energy assumed

in deterministic method. Later on, the effect of enrichment and reflector are studied. With

decreasing enrichment of Uranium-235 isotope, critical radius of the sphere increases from rc =

10.8cm to infinitely large. With the presence of paraffin reflector layer, much smaller critical

radius is required. In particular, we showed how a subcritical reactor with 55% enrichment and

Ru = 15.0cm is brought to supercritical condition with thickening reflector layer.



Chapter 1

Introduction

1.1 Introduction on the Project

Neutron transport refers to the study on neutron-material interaction. It first originated from

the kinetic theory of gases, but prevailed through the development of nuclear physics. In-

creasingly challenging problems in nuclear industry requires higher computational power and

more accurate approximations. Two main branches of approaches — deterministic method and

stochastic method, are used in neutron transport calculations today. In particular, Monte-Carlo

simulation as a stochastic method, has been extensively used in evaluating the performance of

new reactor designs. Some code currently in use include MCNP in Los Alamos National Labo-

ratory for multiple-purpose particle interaction simulation; KENO in National Energy Agency

for criticality and flux simulation[15]; Serpant in VTT Technical Research Centre of Finland

for spatial homogenization and fuel cycle studies[10]. Beyond neutron transport, Monte-Carlo

particle transport code such as GEANT[5], has also been applied in high energy particle ex-

periments.

In this project, we aim to reproduce a simplified Monte Carlo simulation specifically for a

single spherical fuel kernel wrapped by certain type of moderator. Specifically, the simulation

results will be presented in section 4 for three cases: pure U-235 core, enriched Uranium core

with variable enrichment, and enriched Uranium wrapped in paraffin layer. These three cases

was also studies by Tan Yan Ren using deterministic method. Hence a comparison between the

two methods will be possible. The motivation of this project is to realize some basic analysis
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such as cricality calculation and scalar flux plotting on the aforementioned spherical geome-

try. We did not have access to the official MCNP code and this whole project is carried out

by writing an original code that imitates the official code in terms of routines and structures.

Some of the relevant code can be found in appendices. Despite the simplicity, the model has

the potential to be adopted for more complicated simulation. The spherical, layered geome-

try can very well describe the structure of a fuel kernel in many reactor designs. For example,

generation IV reactors such as high-temperature gas-cooled reactor Allegro in Europe, and very-

high-temperature reactor HTTR[16] in Japan both adopt such structure where the spherical

fuel kernels is packed into pebble bed or prismatic blocks to form the reactor core.

1.2 Neutron Transport Equation

The neutron transport equation reads

1

v

∂

∂t
ψ(~r, Ω̂, E, t) =−

[
Ω̂ · ~∇+ σ(~r, E)

]
ψ + qex(~r, Ω̂, E, t)

+

∫
dE ′

∫
dΩ′σs(~r, E

′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E ′, t)

+ χ(E)

∫
dE ′νσf (~r, E

′)

∫
dΩ′ψ(~r, Ω̂′, E ′, t), (1.1)

where the quantity ψ(~r, Ω̂, E, t) = vN(~r, Ω̂, E, t), known as the angular flux of neutron , de-

scribes the distribution of neutrons inside a reactor, It equals the speed times number density

of neutrons with the corresponding traveling direction and energy at the specified position and

time. It can alternatively be defined as the total of the path lengths traveled per unit time by

all particles in phase volume dV dΩdE.

The change in this distribution has contributions from several physical processes, shown on

the right hand side of the equation. The first term gives the net loss of neutrons in a volume el-

ement positioned at ~r (for a specific angular direction) due to out going flux and out-scattering.

The second term is an external source. The third term gives the in-scattering of neutrons from

all angles that ends up traveling in the direction Ω̂. And the last term is the multiplication

term given rise by fission. When the angular dependence of flux is not of great concern, another
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quantity is commonly used:

φ(~r, E, t) =

∫
ψ(~r, Ω̂, E, t)dΩ.

φ known as the scalar flux, is the integration of flux on spherical angle. When considering

spherical reactors such as discussed in this paper, the quantity φ is enough to study how the

distribution of neutron varies as a function of radial distance r.

An important aspect of neutron transport calculation is to determining the criticality con-

dition. For this purpose, usually a time independent form of transport equation is preferred:

[
Ω̂ · ~∇+ σ(~r, E)

]
ψ(~r, Ω̂, E) =

∫
dE ′

∫
dΩ′σs(~r, E

′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E ′)

+ χ(E)

∫
dE ′

ν

k
σf (~r, E

′)φ(~r, E ′) (1.2)

Here no external source is considered and an additional factor in fission multiplicity is intro-

duced. This is understood as the hypothetical adjustment needed for a steady state solution

to exist. Hereby the time-dependent equation becomes an eigenvalue problem.

1.3 MCNP

Monte-Carlo N-Particle Transport Code (MCNP) is a general-purpose code to simulate the

transport process of neutron, photon, electron, etc, first developed by Los Alamos National

Laboratory in 1957[6]. The most up-to-date MCNP6 package allows users to switch between

modes for transport calculation for different types of particles. It is suitable for typical reactor

geometries like close-packed fuel pebbles and fuel kernels lattices[9].

The essential components of a MCNP code include

� geometric tracking module

� tallying∗

∗tallying is the terminology in MCNP for collecting data entries for statistics
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� collision module

� eigenvalue calculation

Figure 1.1(a) shows the general procedure of a MCNP code. The program simulate the phys-

ical process by tracking the movement and collision of each single particle. Depending on the

sequence of code, there could be two types of calculations. The first type is a fixed-source cal-

culation. One single source and its secondary particles are tracked down until distinction(due

to absorption, leakage or rejection by weigh-modifying methods). In such calculation, a source

is also known as a history. The second type treats a collective of neutrons as a batch, and all

neutrons in the current batch is brought through exactly one random walk to form the next

batch. Such is called eigenvalue calculation since it is convenient to find eigenvalue in this way.

More on eigenvalue will be discussed in section 3.2.4.

In this project we have adopted the eigenvalue calculation scheme. In addition, we choose

to follow analog Monte Carlo, which is characterized by[4]

� faithful simulation of particle histories

� no alternation of PDFs

� at collision, particle is killed if absorption occurs

� particles are born with weight 1.0

� weight is unchanged throughout history until particle is killed

� score 1.0 when tallying events of interest

Thus, weight modifying schemes such as Russian Roulette are not applied. This is justified

when the main interest of our program lies in critical conditions, where the neutron number

inside reactor remains stabilized.
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Figure 1.1: (a)Top: A flowchart for a typical MCNP code
(b)Bottom: comparison between fixed-source MC and batched MC
picture from Forrest B. Brown Fundamental of Monte Carlo Particle Transport
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Chapter 2

Preliminary Statistics

2.1 Pseudorandom Number Generator

Being able to generate statistically random numbers is essential for all type of sampling. Though

genuine randomness is impossible to create using algorithms, pseudorandom number generators

can produce sequences of numbers which appear to be randomly sampled from a uniform

distribution, usually in the range [0, 1). A most straightforward one is the ’linear congruential

random number generator ’. Its sequence goes according to

Si+1 =(gSi + c) mod 2m,

ξi =Si/2
m, (0 < ξi < 1)

Large value for g and for m are desirable to reduce serial correlation. More systematic intro-

duction on the mathematics can be found for example in Knuth’s publication[8]. The default

random number generator in MATLAB uses Mersenne Twister algorithm, which is slower but

can provide higher-quality randomness. The period for the most commonly used Mersenne

Twister MT19937 is 219937 − 1.

In most Monte-Carlo simulations, there is a need to keep track of the seed of each step or

to jump between seeds. In an eigenvalue calculation of the MCNP code, Adjacent seeds will

be used for the random walks of two particles in the same batch, while a ’stride’ (jump over a
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number of seeds) will allow one to switch between batches. For this reason, linear congruential

method is much more convenient and hence chosen by the MCNP5 program.

2.2 Sampling Methods

2.2.1 Inverse sampling

Given a probability density function(PDF) of variable x,

P{a ≤ x ≤ b} =

∫ b

a

f(x)dx,

F (x) = P{x′ ≤ x} =

∫ x

−∞
f(x′)dx′.

Consider another variable ξ = F (x), it follows that

f(x)dx = dξ.

ξ defined in such way has a uniform probability distribution function, hence it could easily be

generated by a RNG as sampling points between 0 and 1. Variable x = F−1(ξ) then appear as

sampling points that follow the given PDF.

2.2.2 Rejection sampling

Figure 2.1: illustration on rejection sampling.
picture by M. Jordan and S. Jain, 2010, Lecture notes on Monte Carlo sampling
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Rejection sampling is a commonly used technique to sample a variable with relatively com-

plicated distribution, in cases where inverse sampling may become impossible or overly difficult.

Rejection sampling is itself a type of Monte-Carlo method. In figure 2.1, p(x) is the actual dis-

tribution of variable x, and Mq(x) is some other scaled distribution whose support includes the

support of p(x)∗, q(x) should be easy to sample using inverse sampling, and M is a constant

that ensures p(x) ≤Mq(x) for all values of x.

The sampling procedure starts by generating a sample point x′ from q(x):

x′ = Q−1(ξ1), Q(x) =

∫
q(x),

followed by a comparison between a second random number ξ2 and the ratio
p(x′)

Mq(x′)
.

if ξ2Mq(x′) ≤ p(x′), → accept x′ as a sample point;

if ξ2Mq(x′) > p(x′), → reject this x′, regenerate x′ = G−1(ξ1).

The envelope principle based on the relative size of area under probability distributions guar-

antees that x′ sampled this way follows distribution p(x′).

2.3 Central Limit Theorem

In statistics, the Central Limit Theorem states that for a large sample of independent variables

xn with well-defined expectation value and variance, taking their arithmetic mean

x̂ =
1

N

N∑
n

xn

results in a quantity that is approximately normally distributed, regardless of the underlying

distribution of x. Specifically, if variable x has expectation value x̄, the expectation value of x̂

is also x̄

E[x̂] = E

[
1

N

N∑
n=1

xn

]
=

1

N

N∑
n=1

E[xn] = E[x] = x̄.

∗this statement says that q(x) > 0 whenever p(x) > 0

8



The variance of x̄ follows

σ2(x̂) = E

{ 1

N

N∑
n

(xn − x̄)2

}2
 =

1

N2

N∑
n=1

E[(xn − x̄)2] +
1

N2

∑
n6=n′

∑
E[(xn − x̄)(xn′ − x̄)]

σ2(x̂) =
1

N
σ(x)

Averaging on a large number N of histories therefore gives a valid estimation on the population

mean. But to obtain the population variance from finite number of samples (without knowing

the exact x̄) requires the use of unbiased sample variance.

S2 =
1

N − 1

N∑
n=1

(xn − x̂)2 =
N

N − 1
(x̂2 − x̂2).

This guarantees that

E[S2] =
1

N − 1

{
N∑
n=1

E[(xn − x̄)2]−NE[(x̂− x̄)2]

}
= σ2(x).

Furthermore, the distribution of x̂ becomes normal for large N.

fN(x̂) =

√
N

2π

1

σ(x)
exp

[
−N(x̂− x̄)2

2σ2(x)

]
, n→∞.
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Chapter 3

MCNP for spherical symmetric reactor

3.1 Cross Sections

3.1.1 Definition

Microscopic cross section σ measures the cross-sectional area of a single nuclei for the type

of scattering considered. It gives the scattering rate, hence the intensity decrement per unit

length in material of the incident beam.

d

dx
I(x) = −NσI(x). (3.1)

Here N is the number density of nuclei inside material, usually has the unit cm−3. Microscopic

cross-section σ usually takes the unit of barn. 1 barn = 10−24 cm−2.

Naturally, a quantity

Σ = Nσ =
ρN0

A
σ

called macroscopic cross section is more relevant in most calculations. Clearly, in earlier equa-

tions (1.1),(1.2), σ actually means the macroscopic cross section Σ. In other sections of this

paper, we will always use σ for macroscopic cross section and any use of microscopic cross

section will be specially mentioned.

When considering homogeneously mixed material, the resultant macroscopic cross section will

simply be the sum of that due to each type of substance Σ =
∑

iNiσi. For mixtures whose
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component proportion is specified by mole fraction, such as enriched Uranium, the following

equation is useful

Σ =
ρN0

Aeff

∑
i

eiσi (3.2)

Here ei =
Ni

N
is the enrichment of the ith element/isotope, and Aeff =

∑
i eiAi is the effective

mass number of the mixture.

For mixture whose component proportion is specified by mass fraction, such as mixture of

different substances, the following equation is useful

Σ = ρeffN0

∑
i

αiσi
Ai

(3.3)

Here αi =
Mi

M
=

ρiVi
ρV

is the mass fraction of the ith substance and ρeff = (
∑

i

αi
ρi

)−1 is the

effective density of the mixture.

3.1.2 Reaction types

A collision between neutron and nuclei may lead to different types of reactions, namely, scatter,

capture and fission. To reflect the relative probability of happening of each of these processes,

the total cross section is divided into scattering and absorption cross sections σ = σs + σa.

And absorption is divided further into capture and fission cross sections σa = σγ + σf . Thus

given a collision, the probability that the neutron is scattered, captured or triggers a fission are

respectively
σs
σ

,
σγ
σ

,
σf
σ

.

3.1.3 Obtaining cross section data

The cross sections are dependent on the energy of the incoming neutron. The Evaluated Nu-

clear Data File(ENDF)[1] provides an ideal source for the data of microscopic cross sections at

different energy. Figure 3.1(a) below is a plot of the microscopic cross section of Uranium-235

against energy obtained from ENDF. Total, scattering and fission cross sections are respectively

drawn in blue, green and red.

The original data is unnecessarily numerous for the purpose of this project, and consists of
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a segment of rapidly changing region of resonance in the intermediate energy range. These

resonance are due to matching neutron kinetic energy with quantum states of the nuclei. To

incorporate the energy dependence conveniently into our program, an interpolation using cu-

bic spline method with 21 interpolation points in thermal range and 10 interpolation points in

fast range is applied. The interpolation result is drawn next to the original plot as figure 3.1(b).

Similar interpolations have been done to U-238 and other elements. The graphs can be found

in appendix A.
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Figure 3.1: (a)log-log graph of cross sections of U-235 in the energy range 10−10 to 10 MeV.
Original data provided by Young, Chadwick, Talou, Madland, Leal in ENDF/B-VII.1
in 2011
(b)interpolation of cross sections of U-235 from 10−9 to 10 MeV using cubic spline
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3.2 Geometric Tracking

3.2.1 Coordinates

Figure 3.2: one random walk that goes across the layer boundary. The parameters (r, θ) are
updated to be (r′, θ′) after the walk.

In a reactor with spherical symmetry, flux ψ(~r, Ω̂, E) has spatial dependence that is only

relevant to distance from centre of sphere, and angular dependence that is only relevant to

the angle between traveling direction Ω̂ and radial direction r̂. That is, ψ and its directional

gradients can be rewritten as

ψ(~r, Ω̂) = ψ(r = |~r|, µ = Ω̂ · r̂)

Ω̂ · ∇ψ(r, µ) = µ
∂ψ(r, µ)

∂r
+

1− µ2

r

∂ψ(r, µ)

∂µ
(3.4)

In the spherical reactor Monte-Carlo code, three parameters r, µ, E are registered for each

neutron. Geometric tracking is responsible to update the first two parameters whenever a neu-

tron performs a random walk. The geometry can be illustrated by figure(3.2). The blue line

represents the path of this walk. A neutron started in inner layer with cross-section σ1 has

initial parameters (r,µ = cos θ,E). At the end point of the blue arrow, the neutron undergoes

a collision event. Its spatial parameters there becomes r′ and µ′ = cos θ′ = Ω̂ · r̂′. While how

its energy change will depend on the type of collision happened.

14



It can be easily checked that the final (r′, θ′) are related with the initial (r, θ) by

r′ = (r2 + l2 + 2rl cos θ)1/2

cos δ =
1

2rr′
(r2 + r′2 − l2) =

1

r′
(r + l cos θ)

θ′ = θ − δ (3.5)

where l, the path length of this random walk, will be discussed immediately.

3.2.2 Mean free path

Essential in simulating the neutron movement correctly is the estimation of mean free path

between two subsequent collisions. Following equation (3.1), the mean free path of a neutron

inside material with cross-section σ follows an exponential decay

F (l) = 1− e−σl

By inverse sampling,

l = − 1

σ
ln(1− ξ)

follows the correct distribution of path length x, where ξ is random number generated between

0 and 1.

In the case where Uranium is wrapped by a paraffin layer, The path may go across the bound-

ary between these two materials, and the previous result based on constant cross-section will

not be correct. Instead, a quantity called optical path length

L =
∑
i

σili = −ln(1− ξ)

is used, and is understood as the addition of physical path lengths inside different materials

weighted by the respective cross-sections. Refer to figure(3.2) again, where a typical boundary-

crossing random walk is drawn. The following procedure is used to find l:

� generate optical path length L = −ln(1− ξ).
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� calculate the maximal physical length l1 the neutron could travel in its current medium

σ1.

l1 = − cos θ ±
√
R2 − r2 sin2 θ

(+) if r < R, neutron is going outward from the inner sphere;

(−) if r > R, neutron is going inward from the outer sphere.

� if L < σ1l1, neutron collides before it reaches the boundary, l = L/σ1.

� if L > σ1l1, neutron crosses the boundary, l = l1 +
L− l1σ1

σ2

.

In the last step, extra complication may be involved if the neutron goes inward from outer shell,

piercing through a path in inner shell and reenter the outer shell again. The detailed treatment

can be found in the actual code of ’function MCtest2E walk’ in appendix C.

3.2.3 Tallying

Tallying is the terminology used in MCNP for accumulation of data. Properties such as collision

density and path length can be used to calculate the scalar flux.

Collision estimator

Inside a given volume Ṽ , a simple relation exists between the collision density and the average

scalar flux φ̄. The mean number of collision is simply given by the total cross section times scalar

flux c̄ = Ṽ σ̃φ̄. Using Monte Carlo method to estimate the mean collision number normalized

to 1 source neutron ĉ =
1

N

∑
n cn, ĉ approaches c̄ for large N. Therefore

φ̂ =
1

Ṽ σ̃

1

N

∑
n

cn. (3.6)

� Ṽ : volume element

� σ̃: average cross section in volume Ṽ

� cn: number of collisions made in Ṽ

� φ̂: estimated average scalar flux in Ṽ

16



Path length estimator

One disadvantage of collision estimator is that a neutron may in fact contribute to the flux in

Ṽ even though it collides outside the volume, vice versa. The path length estimator, on the

other hand, tallies the path segments every particle contributes when passing through Ṽ . Since

scalar flux can be defined as total track length traversed by all particles per unit volume per

unit time(section 1.2), we have the path length estimator

φ̄ =
1

Ṽ

1

N

∑
n

ln. (3.7)

Quantities bear the same meaning as in collision estimator, with ln being the track length in

Ṽ made by the nth particle.

3.2.4 Eigenvalue

In introduction section 1.2, the neutron transport equation had been cast into the form of

an eigenvalue equation. A additional factor
1

k
is used to scale the fission multiplicity. This

approach is useful in deterministic calculation as it reduces the transport equation into a linear

system

Ψj+1 = MΨj,

M = (Ω̂ · ~∇+ σ)−1(F + S)

F and S simply refer to the fission and scattering integrals. Hereby, (the largest) eigenvalues

of M determines the criticality of the reaction.

Deterministic method starts from a trial solution

Ψ0 =
∑
k

Ckψk.

Assuming the largest eigenvalue of matrix M , λ1 = max{λi} is non-degenerate. As long as

Ψ0 has non-zero component in ψ1, after a large number of iterations, the flux will eventually

approaches the eigenstate Ψj ≈ λj1C1ψ1.
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With this understanding, we can conveniently define the eigenvalue in a similar fashion for

MCNP

k = lim
j→∞

kj = lim
j→∞

Φj+1

Φj

, Φj =
1

V

∑
i

Vi

∫
dEφj(ri, E).

j represents the iteration index and i the radial index. φj(ri, E) is the (average) value of scalar

flux at radius ri. The eigenvalue k defined this way is consistent with equation(1.2).

As a matter of fact, it is hard for one to accurately obtain the eigenvalue in MCNP, since

the asymptotic value undergoes constant fluctuation due to ”the statistical noise inherent in

the random walks” (Brown etc., 2007). Nonetheless, relevant researches have developed meth-

ods to test for convergence using Shannon entropy[3]. This technique is, however, beyond the

scope of this project and not adopted in our program.

In an alternative point of view that takes into account of neutron kinetics, the ratio between

subsequent batch of neutron must reflect the relative value between the fission and absorption

probabilities, with some correction introduced from leakage:

k = PNLk∞ = PNL
νσf
σa

,

PNL is called the non-leakage probability, and ν again is the multiplicity of fission. The kinetics

is seen by bringing back the time parameter.

PNL
d

dt
n(t) =PNLS(t) + PNL(νσf )v̄n(t)− σav̄n(t)

d

dt
n(t) =S(t) +

k − 1

l
n(t) =

ρ

Λ
n(t). (3.8)

where v̄ is the average velocity of neutron population considered, S(t) a resource term, l =

PNL/v̄σa has a unit of time and represents the neutron lifetime[11], ρ =
k − 1

k
is the reactivity,

and Λ =
l

k
means the prompt generation time, which is the average time from a prompt neu-

tron emission to a capture that results only in fission. This equation known as neutron balance

equation merely restates the transport equation without looking at the spatial details.
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Eigenvalue k indicates the criticality condition of the reactor:

k


> 1 supercritical

= 1 critical

< 1 subcritical,

but gives little information about reaction rate. The latter is related with the fraction of delayed

neutron in the population. Further discussion on delayed neutron will continue in section fission

3.3.2.

3.3 Collision Physics

The possibility of honest simulating the energy change of the neutron population characterizes

an advantage of MCNP over deterministic method. The latter finds numerical solutions of the

flux by discretizing energy into groups, hence making the cross-section energy dependence inac-

curate. Also, the inter-group down scattering caused by loss of neutron kinetic energy may turn

out to be troublesome in deterministic calculation. The following sections show the standard

technique in MCNP involving the neutron energy change through different reactions.

As mentioned in section 3.1.2, different reactions happen with different probability after colli-

sion, depending on the cross-sections at where the collision happens and at the incident neutron

energy. Reaction type can hence be determined by generating a random number 0 < ξ < 1:

ξ <
σs
σ
→ neutron is scattered

σs
σ
< ξ <

σs + σf
σ

→ neutron induces a fission

ξ >
σs + σf

σ
→ neutron is absorbed

3.3.1 Scattering

Scattering event changes the travelling direction of neutron as well as decreases its kinetic

energy. In the centre of mass frame, we idealize the scattering to be a hard-sphere scattering.

To find the angular dependence of the cross section, consider an electron colliding into an atom
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Figure 3.3: hard sphere scattering
graph by Tan Yan Ren

depicted as the sphere in figure 3.3. The scattering angle θ = π − 2α. Its cosine

χ = cos(π − 2α) = 2 sin2 α− 1 = 2(
b

R
)2 − 1

is also the dot product between the two velocity unit vectors before and after the scattering.

Due to the azimuthal symmetry, we introduce the angular dependence as σs(χ) = σsf(χ). The

notation is a bit confusing due to limited symbols. But we can easily identify σs(χ) = σs(Ω̂ · Ω̂′)

as the cross section appearing in neutron transport equation 1.1. And σs is simply its average

value over angle cosine χ. Thus f(χ) is the probability distribution function of χ. By matching

cross section differentials, we have the following relation

2πb

πR2
db = f(χ)dχ, f(χ) ≡ 1

2

After transforming back to the lab frame, the scattering angle would appear narrowed.

tan θlab =
sin θCM

cos θCM +m/M
=

sin θCM
cos θCM + 1/A

χlab =
1 + AχCM√

A2 + 2AχCM + 1
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This provides a convenient method to generate the scattering angle in lab frame. From here

on the change in neutron traveling direction upon scattering can be simulated with the correct

probability.

Figure 3.4: angle change upon scattering

In Figure 3.4, the two blue lines shows two segment of paths before and after a scattering event.

The traveling direction Ω̂′ before scattering is taken as the z direction, and the line connecting

scattering point and center of sphere lies in the x-z plane. The scattering angle is renamed χ

to differentiate it from the angle between ẑ and r̂. Another azimuthal angle ω is temporarily

used to find new direction Ω̂. Again due to symmetry, ω is uniformly sampled in [0, 2π].

r̂ = cos θ ẑ + sin θ x̂

Ω̂ = cosχ ẑ + sinχ cosω x̂+ sinχ sinω ŷ

cos θ′ = r̂ · Ω̂ = cos θ cosχ+ sin θ sinχ cosω (3.9)

then gives the new cos θ′ we need as a coordinate parameter after the scattering.

For more general geometry tracking without such high symmetry, three parameters are re-
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quired to represent the direction of neutron and the corresponding calculation is[12]

Ω′x =
sinχ√
1− Ω2

z

[Ωy sinω − ΩyΩx cosω] + Ωx cosχ,

Ω′y =
sinχ√
1− Ω2

z

[Ωx sinω − ΩzΩy cosω] + Ωy cosχ,

Ω′z = sinχ
√

1− Ω2
z cosω + Ωz cosχ.

Finally, the energy change for the neutron is considered for elastic scattering. Using conserva-

tion laws, one can arrive at the following formula

E ′ =
E(A2 + 2Aχcm + 1)

(A+ 1)2
(3.10)

This implies that incidental neutron with energy E might end up with energy in range αE ≤

E ′ ≤ E with constant probability

p(E → E ′) =
1

(1− α)E
,

where α = (
A− 1

A+ 1
)2. A quantity called ’slowing down decrement’ can then be naturally defined

as

ξ ≡ ln(E/E ′) =

∫ E

αE

ln(E/E ′)
1

(1− α)E
dE ′ = 1 +

α

1− α
lnα. (3.11)

Slowing down decrement is independent of the initial and final energy and only dependent on

atomic mass of the nuclear. In A >> 1 limit, ξ ≈ 2

A+ 2/3
.

3.3.2 Fission

Energy released in a fission of heavy nucleus is mainly divided between the kinetic energy of the

fission products and the fission neutrons. The energy distribution of the fast neutrons released

in a fission event are commonly represented either by a Maxwellian distribution or a Watt

Distribution. The latter is considered more accurate than the former by taking into account

the kinetic energy of the fission fragments.[13]
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A semi-empirical formula for the Watt spectrum of U-235 is[18]

P (E) = 0.4865 sinh(
√

2E)e−E MeV−1.

This formula is formally consistent with a slightly more general one[7].

P (E) =
2e−ab/4√
πa3b

e−E/a sinh
√
bE

In the latter equation, two additional parameters a and b are related to the mean neutron

energy and average kinetic energy of the fission fragments[4]. The former equation is more

concise and hence is used in our code. Figure 3.5 below illustrate the shape of energy spectrum

obtained through a rejection sampling with 100000 population size.

Another detail to be dealt with is the fission multiplication, which works against absorption and

leakage to maintain the neutron population. The average fission multiplication is around 2.43

for for U-235 and 2.70 for U-238[1]. The numbers remain nearly constant throughout thermal

and intermediate range of the energy spectrum, and only starts to rise significantly when the

incoming neutron carries an energy of the order 10 MeV (figure 3.6)[2]. Fission products also

dictate that there are either 2 or 3 neutrons release for each fission. Hence the distribution of

multiplication number is taken as discrete. Namely, in 53.6% cases of all fissions, 3 neutrons

are released; In other 46.4%, 2 neutrons are released. When the enrichment of U-235 is varied,

multiplication number is taken as that of U-235 for convenience. This might be a source of

error in the simulation, but it is considered a valid approximation since the cross-section of

U235 is much larger than that of U238 for the energy ranged concerned. In general, more

than 99% of the secondary neutrons will be prompt neutron, while the remaining are delayed

neutrons coming from precursors with distinct liftime. Their presence modifies the neutron

balance equation (3.8) to

d

dt
n(t) = S(t) +

ρ− β
Λ

n(t) +
∑
i

λiCi(t)

d

dt
Ci(t) =

βi
Λ
n(t)− λiCi(t), i = 1, 2, ..., 6. (3.12)
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Figure 3.5: (a)Fission spectrum following Watt distribution.
picture taken from J. Watterson, 2007, lecture 31 on Fission Spectrum
(b)Fission spectrum generated through rejection sampling using 100000 population size

Here Ci represents the number of precursors of type i, whose decay rate is λi and whose delayed

neutron fraction is βi. Obviously delayed neutron has no effect on steady state solution, but

they can significantly affect the multiplication rate of the neutron population, and thus the

power generated inside the reactor.

The solution to this neutron balance equation with delayed neutron assumes a form

n(t) =
7∑
j=7

Aj exp(ωjt).
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Figure 3.6: graph showing average secondary neutron number for prompt and delayed neutron
separately as a function of primary neutron energy.
Figure retrieved from JAEA Nuclear Data Center, JENDL-4.0 data file

The exponential powers are can be solved numerically using the famous ’in-hour equation’

ρ =

(
Λ +

∑
i

βi
ω + λi

)
ω. (3.13)

Our program skips on the extra calculation relating to delayed neutron, for they do not have

effect on steady state solution. Therefore each secondary neutron is represented by adding an

extra entry in the neutron list for next batch. These fission neutrons share the same spatial po-

sition r as the parent neutron that induces fission, but their energies are individually generated

according to the Watt distribution and their traveling direction θ are generated isotropically.

There are, however, several standard way of calculating delayed neutron fractions and powers

in MCNP[14, 19]. To include such calculations appear to be a suitable future extension for this

project.
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Wener (2002) from Los Alamos National laboratory reported an accurate modeling of delayed

neutrons using Spriggs method[17] and has shown a power calculation using the following for-

mula.

i(t) = l
m+1∑
j=1

eωjt

l +
∑

i

βiλi
(ωj + λj)2
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Chapter 4

Simulation Results

4.1 Pure U-235 sphere

It can be seen that among the three parameters (r, µ, E) describing the kinetics of neutrons, the

two spatial parameters have been carefully revised in almost every step of simulation. While

the energy profile of the batch seldom change drastically. In fact, a simulation without en-

ergy concern can also be valid when only fast neutrons are involved. This will be assuming

that all neutron do not undergo enough times of scattering before it triggers a fission or es-

capes or gets absorbed. As a first example, a reactor made of pure U-235 sphere is considered.

The simulation result using constant cross-section is compared to the steady solution obtained

from deterministic method by Tan Yanren, whose method assumes constant microscopic cross-

sections σ = 7.62 barn, σs = 6.33 barn, σf = 1.22 barn in his program.
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Figure 4.1: comparison between scalar fluxes (top) and eigenvalues (bottom two) obtained from
deterministic calculation by Yanren (2016) and from MCNP in this project. Monte-Carlo is
based on 100000 starting neutrons

Figure(4.1) shows a direct comparison between two methods of studying neutron distribution

inside the U-235 spherical reactor. The critical radius of the spherical reactor is determined to

be rc = 8.07cm from deterministic method. The exact same radius is then used in MC method

to check for consistency.

Monte-Carlo method distribute 100000 neutrons uniformly inside the sphere in the first batch.

After 50 iterations, the last batch contains 64405 neutrons. The scalar flux calculated based

on the collision estimator of the last batch is drawn in green in figure 4.1(a). Deterministic

method starts with a constant function φ(r) = 1 as the trial solution. After 500 iterations, the

final solution converges as the blue curve. The green curve of MC flux has been carefully scaled

to match the blue curve. This scaling is necessary due to the lack of normalization in both

fluxes. The scaling factor is calculated by requiring the total flux inside sphere to be equal.

The flux from MC method in green appear to be slightly larger everywhere, this discrepancy

might be the result of the error in shell volumes.
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In both methods, the eigenvalue is calculated by taking the ratio between total scalar fluxes

from two subsequent iterations kj = limj→∞
Φj+1

Φj

. It can be seen that the deterministic method

converges very fast. Its eigenvalue has reached 1 after roughly 25 iterations. For this reason, we

only performed 50 iterations in MC method to save calculation time. The eigenvalue plot for

MC (green) suggests that convergence has been achieved despite of the small iteration number.

It also suggests an asymptotic value of k ≈ 1. This confirms the consistency between the two

methods. Using the kj data for 26 ≤ j ≤ 50, the mean and standard error for eigenvalue is

calculated to be k = 0.9995± 0.0033.

From this step on, the energy dependence of cross-sections can be introduced. As such, using

the energy modifying techniques mentioned in section 3.3.1, the MC method can simulate the

energy change of neutron more accurately than the energy group approximation of determinis-

tic method. Simulation is run on the same physical problem and the radius of the U-235 sphere

is changed to recover critical condition. The new critical radius is rc ≈ 10.8cm. The scalar flux

based on the last batch of neutron (red curve) is drawn together with deterministic solution

(blue curve) in figure 4.2(a). The initial batch again contains 100000 neutrons and the ending

batch has 71383 left. The mean and standard error for the eigenvalues between 25th and 50th

iteration is k = 0.9998± 0.0034.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

r/cm

ph
i(r

)

 

 
DM
MC

30



0 10 20 30 40 50
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

iter

−10 −8 −6 −4 −2 0 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

Watt
final batch
DM fixed E

Figure 4.2: Monte-Carlo simulation result for r=11.0cm reactor, showing the scalar flux (a),
eigenvalue (b) and spectrum (c) under critical condition

The energy spectrum is shown in figure 4.2(c). The green curve is the Watt distribution

that fission neutrons would follow. The red curve shows the actual energy distribution for

the last batch. There is a clear decrease of peak energy due to scattering energy decrements.

The red curve also seem to be less skew than the original distribution. Almost all neutrons
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Figure 4.3: interpolation graph shows that when cross-section has value σs = 6.33barn, the
energy is at value lg(E/MeV) = −0.43

are within the fast energy range, hence the assumption used in deterministic calculation is

confirmed. Furthermore, with the help of our cross-section interpolation graph, we can check

the energy value corresponding to the constant cross-sections used in the previous simulation

(σs = 6.33barn, σf = 1.22barn). This energy is around 10−0.43 = 0.37MeV and is marked out as

a blue vertical line. The most probable energy in last batch is slightly lower. This explains why

the critical radius has increased after we introduce the energy dependence — in the 0.1 ∼ 1

MeV range, an energy decrease will cause the scattering cross-section to increase at a faster

rate than the fission cross-section. As a result, multiplication effect of the system is suppressed.

The leakage l goes up and eigenvalue k goes down in equation(3.8). a larger radius is needed

to raise the non-leakage probability to recover the critical condition.
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4.2 Enriched Uranium sphere

A direct modification on the previous problem will be to substitute the pure U-235 sphere by

an enriched Uranium sphere. Cross-sections are still assumed uniform throughout the sphere.

Its value is calculated according to equation(3.2). Several interpolations on natural Uranium

cross-sections at different enrichment can be found in appendix A.

The program provides a straightforward way to check how the eigenvalue changes with en-

richment of Uranium. We have chosen a fixed radius r = 50.0cm for reactor while varying the

enrichment between three values e = 30%, 50%, 70%. Eigenvalue over 50 to 70 iterations and

the energy spectrum of the last neutron batch are analyzed. Scalar fluxes are not drawn as the

fission is generally not critical, the amount of flux will continue to build up or fade down after

more and more iterations, causing their value to differ by magnitudes.
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Figure 4.4: different enrichment at fixed reactor radius R = 50.0cm. brown: e = 0.7, blue:
e = 0.5, green: e = 0.3

A quantitative comparison is given by studying the asymptotic behavior of the eigenvalues. The

eigenvalue converges to k = {1.0213 ± 0.0014, 0.9997 ± 0.0032, 0.9888 ± 0.0042} respectively

for enrichment e = {0.7, 0.5, 0.3}.

The energy spectrum of the last batch of neutron reflects how many scattering a neutron

undergoes before absorption or leakage. The most probable energy value clearly decreases as

the enrichment goes down. This is intuitive as U-235 has higher cross-section than U-238 and

accounts for most of the fission events.

Another result obtained from this model is the relation between critical radius and enrich-

ment. For several enrichment values from e = 1.0 to e = 0.5, a rough value of critical radius is

found by adjusting its value until eigenvalue converges to 1. Table 4.1 below summarizes the

critical radius and asymptotic eigenvalue at their corresponding enrichment. The eigenvalue

plots based on which we determine criticality are all shown in appendix B.
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enrichment e critical radius Rc/cm eigenvalue k
1.00 10.8 1.0024±0.0035
0.90 12.4 0.9994±0.0029
0.80 14.9 1.0001±0.0034
0.70 19.0 1.0007±0.0028
0.60 25.2 1.0002±0.0023
0.55 32.0 0.9999±0.0026
0.50 50.0 1.0006±0.0031

Table 4.1: table showing critical radius and estimated eigenvalue for reaction to be critical at
various enrichments
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Figure 4.5: critical radius Rc against enrichment

In figure 4.5, predicted critical radius is drawn against enrichment to illustrate the trend. For

e < 0.5, our method is unable to find an accurate enough critical radius, either because it would

be too large or because the system simply never goes critical. The result, however, seems to

seriously overestimate the critical radius. For highly enriched U-235 sphere, the critical mass

is known to be 49.12 ± 0.15 kg (H. C. Paxton, 1975). This converts to a critical radius of

8.555 ± 0.008 cm. which is smaller than our critical radius at e = 1.0. The reason for this

discrepancy may be due to our crude simulation on the average neutron multiplication number.
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As mentioned in section 3.3.2, the multiplication ν shows a significant rise in energy range 1 10

MeV. Judging from the energy spectrum in figure 4.4, a non-negligible proportion of neutron

fall in this range. Thus, the multiplication power of the reactor must have been underestimated

and the critical radius obtained would be unnecessarily large. Also, the semi-empirical formula

for fission spectrum might not be accurate enough. Fissions with two secondary-neutron and

three secondary-neutron should give different fission spectra, but the difference is not correctly

distinguished here. Nonetheless, the result does show qualitatively that a limit on enrichment

level exists, below which the chain reaction can not be self-maintaining.

4.3 Uranium in paraffin reflector layer

In reactor designs, the core is usually either embedded in moderator or covered by a layer of

reflector, which consists of non-multiplying material with high scattering cross-sections. Re-

flectors serve to scatter escaping neutrons back into fissile core material, hence significantly

reduce the neutron loss due to leakage. This allows reactor to achieve critical condition at

lower multiplication power, i.e. smaller critical mass. An example problem considered here is

to use paraffin (CnH2n+2) reflector shell to wrap the enriched Uranium core. The effect of this

paraffin layer is studied by varying its thickness.

We consider particularly the core with enrichment e = 55% and Uranium core radius Ru =

15.0cm. With information from the previous part, this radius at this enrichment level is sub-

critical. We then wrap the Uranium with a layer of paraffin of width w, so that the radius of

the total sphere becomes R = Ru + w. Table 4.2 below shows at various paraffin shell width,

what will the average scalar flux inside Uranium core (after 60 iterations) and eigenvalues be.

Figure 4.6 draws three of these results on the same graph.

In figure 4.6(a), the fluxes clearly appear to be flattened out by the presence of reflector. The

green curve corresponding to subcritical reaction at w = 2.0cm has more neutrons concentrated

in the central region, but the flux drops drastically neat the boundary of Uranium core. At

critical condition represented by red curve, the back-scattering from paraffin layer effectively

help maintain the concentration of neutron inside the core. The red flux is seen to exceed green
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R/cm w/cm φ60/10−5cm−2s−1 k
17.0 2.0 3.1116 0.9881±0.0033
19.0 4.0 3.6703 0.9979±0.0032
21.0 6.0 3.2380 1.0009±0.0034
23.0 8.0 2.8648 1.0036±0.0023
25.0 10.0 2.2838 1.0032±0.0022

Table 4.2: average flux in Uranium core of radius Ru=15.0cm and eigenvalues for different
paraffin shell width

flux at the boundary. When paraffin layer width keeps increasing, the system become super-

critical, but graph (b) reveals that the change in eigenvalue is not significant from w = 6.0cm

to w = 10.0cm. Also, the flux graph shows that even though flux decreases slowly toward the

outer sphere, the actual flux inside Uranium core is not very high. Hence, Despite that high

scattering cross-section of paraffin can reduce leakage, the multiplication power of the system

is compromised due to redistribution of flux toward peripheral non-fissile medium. For this

reason, the critical mass of Uranium cannot be decreased to arbitrary value. The effectiveness

of reflector is not necessarily proportional to the its thickness. Figure 4.7 shows the overall

trend of eigenvalue when the reflector layer is thickened. the eigenvalue is expected to stop

rising or even start to drop for further increase in w.

Comparing to the result in previous part, where we found Rc at 55% enrichment U sphere

free of reflector to be 32.0cm. We see that this 6cm paraffin has so effectively reduced the mass

of Uranium required for sustainable reaction.
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Figure 4.6: (a)Top: flux at three different reflector widths. (b)Middle: three eigenvalue curves.
(c)Bottom: three energy spectra of the 60th batch
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Figure 4.7: plot of eigenvalue against reflector thickness
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Chapter 5

Conclusion

We have developed a working program that is capable of simulating the scalar flux and eigen-

value in a neutron transport problem for spherical reactor kernel. The performance of this

program on three example problems provides results that agree with existing theory and past

data. Through a direct comparison between Monte-Carlo simulation using fixed-energy cross-

section at E = 0.37MeV and one-group deterministic calculation at the same group energy,

we have confirmed the consistency between these two methods. By bringing in an energy de-

pendent cross-section curve and a neutron fission spectrum, we have discovered a drop in the

multiplication ability of the reactor core, which we explained by highlighting the larger scatter-

ing to fission probability at the new neutron peak energy. Even though this modified result is

in less agreement with the existing data for critical mass of highly enriched Uranium, the MC

method provides a way to examine the evolving energy distribution due to down-scattering.

Determining critical condition tend to be tricky in MC method. However, using larger popula-

tion and longer iteration cycles is seen to provide accurate enough estimation on the eigenvalue.

The second example confirmed a negative correlation between Uranium enrichment and criti-

cal mass for fast reactor. The energy spectrum is clearly shifted toward lower energy side as

more U-238 is introduced, indicating more scattering in low-enriched Uranium. This shift in

energy mainly appears as a skewing of the peak, while the width remains relatively stable, and

negligibly little neutron reach energy outside 100eV ∼ 10MeV range. That is, all neutrons can

be considered fast or intermediate neutrons. Extrapolating the rising curve of critical radius

against decreasing enrichment, we predict that a limit exist below which critical reaction of
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unmoderated Uranium sphere is no longer possible.

The third example illustrate the effect of reflector in reactor design. Starting with the subcrit-

ical reactor with Ru = 15.0cm unmoderated Uranium core, we could reach a critical reaction

when w = 4.0cm layer of paraffin is wrapped around it. Using the previous result for critical

radius rc = 32.0cm at 55% enrichment, the critical mass required will be 2570 kg, which is un-

realistically large. However, a 6cm paraffin reflector can reduce critical mass to 265kg, nearly
1

10
of its original value. This gives a simple but strong justification on such engineering design.
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Appendices
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Appendix A

all interpolation graphs

fission (red), scattering (green), and total (blue) cross-sections for U-238 based on

ENDF/B-VII.1 experiment data.
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scattering (green), and total (blue) cross-sections for C-12 based on TENDL-2014 data.
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scattering (green), and total (blue) cross-sections for H-1 based on TENDL-2014 data.
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Appendix B

supplementary graph for enriched

Uranium eigenvalues

e = 1.0, Rc = 10.8cm, k = 1.0024± 0.0035
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e = 0.9, Rc = 12.4cm, k = 0.9994± 0.0029

e = 0.8, Rc = 14.9cm, k = 1.0001± 0.0034
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e = 0.7, Rc = 19.0cm, k = 1.0007± 0.0028

e = 0.6, Rc = 25.2cm, k = 1.0002± 0.0023

viii



e = 0.55, Rc = 32.0cm, k = 0.9999± 0.0026

e = 0.5, Rc = 50.0cm, k = 1.0006± 0.0031
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Appendix C

MATLAB code

1 %============ main ============
2 global Ru Rp; Ru=15.0; Rp=17.0;
3 global maxi; maxi = 30; %dividing radial direction into 20 segments
4 H0 = 100000;
5 iter = 60;
6 ri = linspace(0,Rp,maxi+1);
7 V = 4/3*pi*Rp*Rp*Rp;
8 global Vi; Vi = 4/3* pi* ri.*ri.*ri;
9 Vi = Vi(2:end)-Vi(1:maxi);

10 global splineU235 splineU238 splineC12 splineH1;
11 MCtest2E splineU235();
12 MCtest2E splineU238();
13 MCtest2E splineC12();
14 MCtest2E splineH1();
15 eigen = zeros(1,iter);
16

17 rng(10);
18 global queueB phiB;
19

20 queueB = zeros(3,H0);
21 phiB = zeros(1,maxi);
22

23 %main program starts here
24 %0th batch
25

26 global lenB; lenB = 0;
27 for h=1:H0
28 r=randˆ(1/3)*Rp; %generate starting position
29 mu = 2*rand -1; %generate direction cosine
30 E = MCtest2E spectrum; %energies are actually lg(E)
31 [sigmau, sigmasu, sigmafu] = MCtest2E crossecu(E);
32 [sigmap, sigmasp, sigmafp] = MCtest2E crossecp(E);
33

34 MCtest2E walk(r,mu,E,sigmau,sigmap);
35 end
36 phitotB = sum(phiB)/V/H0;
37 phiB = phiB./Vi/H0;

x



38 figure;
39 plot(ri(2:end),phiB,'b-');pause(0.01);
40

41 %1st batch until nth batch
42 for n=1:iter
43

44 phitotA=phitotB; phiB=zeros(1,maxi);
45 lenA = lenB; lenB = 0;
46 queueA = queueB(:,1:lenA); queueB = zeros(3,lenA*3);
47

48 for h=1:lenA
49 %retrieve r and mu
50 r = queueA(1,h);
51 mu = queueA(2,h);
52 E = queueA(3,h);
53

54 [sigmau, sigmasu, sigmafu] = MCtest2E crossecu(E);
55 [sigmap, sigmasp, sigmafp] = MCtest2E crossecp(E);
56 if r<Ru
57 prob1 = sigmasu/sigmau; %probability of scattering
58 prob2 = (sigmasu+sigmafu)/sigmau;
59 elseif r<Ru+Rp
60 prob1 = sigmasp/sigmap;
61 prob2 = (sigmasp+sigmafp)/sigmap;
62 else
63 fprintf('Err:radius out of reactor\n');
64 end
65

66 %decide collision type
67 xi = rand;
68 if xi<prob1 %scattering
69 if r<Ru
70 A = 235.0439/1.0087;
71 else
72 A = 14.016/1.0087;
73 end
74 chi = 2*rand -1;
75 E = E+log10(A*A+2*A*chi+1)-2*log10(A+1);
76

77 omega = 2*pi*rand;
78 omega = cos(omega);
79 chi = (1+ A*chi)/sqrt(A*A+2*A*chi+1);
80 mu = mu*chi + sqrt((1-mu*mu)*(1-chi*chi))*omega;
81 MCtest2E walk(r,mu,E,sigmau,sigmap);
82 elseif xi<prob2 %fission
83 yield = 2+ ceil(0.43-rand); %nu=2.43
84 for p=1:yield
85 mu = 2*rand -1;
86 E = MCtest2E spectrum;
87 MCtest2E walk(r,mu,E,sigmau,sigmap);
88 end
89 end
90 end
91

92 phitotB = sum(phiB)/V/H0;
93 phiB = phiB./Vi/H0;
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94 eigen(n) = phitotB/phitotA;
95 plot(ri(3:end),phiB(2:end),'b-');pause(0.01);
96 end
97 xlabel('r/cm'); ylabel('phi(r)');
98 %{
99 iu = ceil(Ru/Rp*maxi);

100 phiinu = sum(phiB(1:iu).*Vi(1:iu))/sum(Vi(1:iu));
101 %}
102

103 figure;
104 hold on;
105 plot(1:iter,eigen,'g-');
106 xlabel('iter');
107 grid;

1 %========== U235 spline ===========
2 %interpolation from E=-9.0 to E=1.2
3 function MCtest2E splineU235()
4 global splineU235;
5 h = 0.2;
6 n1 = int16((-7+9)/h)+1;
7 n2 = int16((1.2+2.6)/h)+1;
8 N = n1+n2;
9 hlong = -2.6+7;

10 m = int16(hlong/h)-1;
11

12

13 sigTOT = [3.57226,3.47188,3.37072,3.26857,3.16582,...
14 3.06139,2.95499,2.84614,2.73349,2.61384,...
15 2.48880,...
16 ...
17 1.29549,1.25801,1.22252,...
18 1.19162,1.17414,1.15135,1.13057,1.10688,...
19 1.07737,1.04497,1.00122,0.94349,0.88391,...
20 0.83236,0.83312,0.87812,0.89863,0.84237,...
21 0.76524,0.77441];
22

23 sigEL = [1.20507,1.19680,1.19114,1.18759,1.18528,...
24 1.18320,1.18165,1.17945,1.17753,1.17449,...
25 1.16963,...
26 ...
27 1.07417,1.07761,1.08478,...
28 1.07176,1.06624,1.05345,1.04062,1.01535,...
29 0.98268,0.94079,0.87365,0.78375,0.68378,...
30 0.56189,0.51741,0.58380,0.64223,0.56554,...
31 0.40574,0.45068];
32

33 sigF = [3.4949,3.3941,3.2925,3.1898,3.0867,...
34 2.9824,2.8768,2.7689,2.6558,2.5329,...
35 2.4005,...
36 ...
37 0.7662,0.6645,0.5166,...
38 0.4437,0.3890,0.3292,0.2802,0.2456,...
39 0.1996,0.1502,0.1064,0.0819,0.0466,...
40 0.0791,0.0971,0.1009,0.0561,-0.0575...

xii



41 -0.1263,-0.2525];
42

43 mat=4*h*diag(ones(1,N))+h*diag(ones(1,N-1),-1)+h*diag(ones(1,N-1),1);
44 mat(1,1)=1; mat(1,2)=0; mat(end,end-1)=0; mat(end,end)=1;
45 mat(n1,n1)=2*(hlong+h); mat(n1,n1+1)=hlong;
46 mat(n1+1,n1+1)=2*(hlong+h); mat(n1+1,n1)=hlong;
47 %display(mat);
48 y=zeros(N,3);
49 for i=2:N-1
50 y(i,1)=3/h*(sigTOT(i+1)+sigTOT(i-1)-2*sigTOT(i));
51 y(i,2)=3/h*(sigEL(i+1)+sigEL(i-1)-2*sigEL(i));
52 y(i,3)=3/h*(sigF(i+1)+sigF(i-1)-2*sigF(i));
53 end
54 y(n1,1)=3/hlong*(sigTOT(n1+1)-sigTOT(n1))-3/h*(sigTOT(n1)-sigTOT(n1-1));
55 y(n1+1,1)=3/h*(sigTOT(n1+2)-sigTOT(n1+1))-3/hlong*(sigTOT(n1+1)-sigTOT(n1));
56 y(n1,2)=3/hlong*(sigEL(n1+1)-sigEL(n1))-3/h*(sigEL(n1)-sigEL(n1-1));
57 y(n1+1,2)=3/h*(sigEL(n1+2)-sigEL(n1+1))-3/hlong*(sigEL(n1+1)-sigEL(n1));
58 y(n1,3)=3/hlong*(sigF(n1+1)-sigF(n1))-3/h*(sigF(n1)-sigF(n1-1));
59 y(n1+1,3)=3/h*(sigF(n1+2)-sigF(n1+1))-3/hlong*(sigF(n1+1)-sigF(n1));
60

61 c = linsolve(mat,y);
62 a = transpose([sigTOT;sigEL;sigF]);
63 b = (a(2:end,:)-a(1:end-1,:))/h - (2*c(1:end-1,:)+c(2:end,:))*h/3;
64 b(n1,:) = (a(n1+1,:)-a(n1,:))/hlong - (2*c(n1,:)+c(n1+1,:))*hlong/3;
65 d = (c(2:end,:)-c(1:end-1,:))/3/h;
66 d(n1,:) = d(n1,:)*h/hlong;
67

68

69 a = [a(1:n1,:);zeros(m,3);a(n1+1:end-1,:)];
70 b = [b(1:n1,:);zeros(m,3);b(n1+1:end,:)];
71 c = [c(1:n1,:);zeros(m,3);c(n1+1:end-1,:)];
72 d = [d(1:n1,:);zeros(m,3);d(n1+1:end,:)];
73

74

75 for i=n1+1:n1+m
76

77 for j = 1:3
78 a(i,j)= a(i-1,j)+h*b(i-1,j)+h*h*c(i-1,j)+hˆ3*d(i-1,j);
79 b(i,j)= b(i-1,j)+2*h*c(i-1,j)+3*h*h*d(i-1,j);
80 c(i,j)= c(i-1,j)+3*h*d(i-1,j);
81 d(i,j)= d(i-1,j);
82 end
83 end
84

85 splineU235 = transpose([a,b,c,d]);
86

87 end

1 function [sigma,sigmas,sigmaf] = MCtest2E crossecu(E)
2 enrich = 0.55; %the enrichment of U235
3

4 global splineU235;
5 global splineU238;
6 N=52; h=0.2; Eleft=-9.0;
7
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8 i = floor((E-Eleft)/h)+1;
9 if i<=0

10 i=1;
11 elseif i>=N
12 i=N-1;
13 end
14 delE = E-(Eleft+h*(i-1));
15

16 sigma235 = splineU235(1,i)+ splineU235(4,i)*delE+ splineU235(7,i)*delEˆ2+ splineU235(10,i)*delEˆ3;
17 sigmas235 = splineU235(2,i)+ splineU235(5,i)*delE+ splineU235(8,i)*delEˆ2+ splineU235(11,i)*delEˆ3;
18 sigmaf235 = splineU235(3,i)+ splineU235(6,i)*delE+ splineU235(9,i)*delEˆ2+ splineU235(12,i)*delEˆ3;
19

20 sigma238 = splineU238(1,i)+ splineU238(4,i)*delE+ splineU238(7,i)*delEˆ2+ splineU238(10,i)*delEˆ3;
21 sigmas238 = splineU238(2,i)+ splineU238(5,i)*delE+ splineU238(8,i)*delEˆ2+ splineU238(11,i)*delEˆ3;
22 sigmaf238 = splineU238(3,i)+ splineU238(6,i)*delE+ splineU238(9,i)*delEˆ2+ splineU238(12,i)*delEˆ3;
23

24 sigma = (10ˆ(sigma235)*enrich+10ˆ(sigma238)*(1-enrich))*0.0483278;
25 sigmas = (10ˆ(sigmas235)*enrich+10ˆ(sigmas238)*(1-enrich))*0.0483278;
26 sigmaf = (10ˆ(sigmaf235)*enrich+10ˆ(sigmaf238)*(1-enrich))*0.0483278;
27

28 end

1 function [sigma,sigmas,sigmaf] = MCtest2E crossecp(E)
2 global splineC12;
3 global splineH1;
4

5 N=52; h=0.2; Eleft=-9.0;
6

7 i = floor((E-Eleft)/h)+1;
8 if i<=0
9 i=1;

10 elseif i>=N
11 i=N-1;
12 end
13 delE = E-(Eleft+h*(i-1));
14

15 sigma12 = splineC12(1,i)+ splineC12(3,i)*delE+ splineC12(5,i)*delEˆ2+ splineC12(7,i)*delEˆ3;
16 sigmas12 = splineC12(2,i)+ splineC12(4,i)*delE+ splineC12(6,i)*delEˆ2+ splineC12(8,i)*delEˆ3;
17

18 sigma1 = splineH1(1,i)+ splineH1(3,i)*delE+ splineH1(5,i)*delEˆ2+ splineH1(7,i)*delEˆ3;
19 sigmas1 = splineH1(2,i)+ splineH1(4,i)*delE+ splineH1(6,i)*delEˆ2+ splineH1(8,i)*delEˆ3;
20

21 sigma = (10ˆ(sigma12)+ 2*10ˆ(sigma1))*0.03871;
22 sigmas = (10ˆ(sigmas12)+ 2*10ˆ(sigmas1))*0.03871;
23 sigmaf = 0;
24 end

1 function MCtest2E walk(r,mu,E,sigmau,sigmap)
2 global maxi Ru Rp queueB phiB lenB;
3

4 L = -log(1-rand); %optical path,
5 d = r*sqrt(1-muˆ2); %perp distance of line of motion from centre
6 if r<Ru
7 l1 = -r*mu + sqrt(Ruˆ2-dˆ2);
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8 if L<l1*sigmau
9 l = L/sigmau;

10 sigmathere = sigmau;
11 else
12 l = l1 + (L-l1*sigmau)/sigmap;
13 sigmathere = sigmap;
14 end
15 else
16 if (mu<0 && d<Ru) %going inward and cutting the inner shell
17 l1 = -r*mu - sqrt(Ruˆ2-dˆ2);
18 l2 = 2*sqrt(Ruˆ2-dˆ2);
19 if L<l1*sigmap
20 l = L/sigmap;
21 sigmathere = sigmap;
22 elseif L<(l1*sigmap+l2*sigmau)
23 l = l1 + (L-l1*sigmap)/sigmau;
24 sigmathere = sigmau;
25 else
26 l = l1 + l2 + (L-l1*sigmap-l2*sigmau)/sigmap;
27 sigmathere = sigmap;
28 end
29 else
30 l = L/sigmap;
31 sigmathere = sigmap;
32 end
33 end
34

35 rnext = sqrt(r*r+l*l+r*l*2*mu);
36

37 if rnext<Rp
38 lenB = lenB +1;
39 delta = 1.0/rnext*(r+l*mu);
40 mu = mu*delta + sqrt(1-mu*mu)*sqrt(1-delta*delta);
41 r = rnext;
42

43 queueB(1,lenB) = r;
44 queueB(2,lenB) = mu;
45 queueB(3,lenB) = E;
46 i = ceil(r*maxi/Rp);
47 phiB(i) = phiB(i)+1/sigmathere;
48 end
49 end

1 function Elg = MCtest2E spectrum()
2

3 Elg = 15;
4 while Elg>10
5 Elg0 = rand()*9-8; %generate log(E) between -8 and 1
6 E0 = 10ˆElg0;
7 fE = 0.4865*sinh(sqrt(E0*2))*exp(-E0);
8 u = 0.4*rand();
9 if u<fE

10 Elg=Elg0;
11 end
12 end
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13

14 end
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