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Abstract

Covert communication allows two parties to communicate with low probability of

detection by the adversaries. As a trade-off, it usually takes a long time to send

a message covertly. In this report, we consider the covert communication scheme

proposed in Ref. [2] and perform an optimization over protocol parameters in order

to significantly reduce the number of channel uses and the time required to transmit

a classical message of fixed length. We propose a model in which the noise in one

channel is due to the leakage from another neighboring channel, in which open

communication is happening using bright signals. We also consider variations of the

implementation and encoding of the protocol.
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Chapter 1

Introduction

Cryptography is the science of sending secure message in the presence of an adver-

sary. This is usually done by encrypting the message such that the adversary cannot

retrieve the message from the ciphertext in a short time. Using one-time pad, this

can be done even if the adversary’s power is only limited by the laws of physics.

Furthermore, the discovery of quantum key distribution (QKD) enables exchange

of secret key that is required for the information-theoretic secure encryption [7]. In

most cases, encryption based cryptography is sufficient.

However, there are situations where the sole fact that two parties are commu-

nicating can be incriminating to them. For example, suppose that Alice is a secret

agent who is working as an undercover spy. Even if the content of the communica-

tion is encrypted, if anyone detects that she is communicating with her spy agency

can be problematic for her mission. In this case, she requires a method for covert

communication, which is undetectable by any potential adversaries.

Covert communication has been practiced using different schemes in the past. In

Ref. [6], it was shown that secure steganography could be performed by hiding in-

formation in the quantum shot-noise of digital photographs. It has also been shown

that it is possible to communicate covertly via noisy optical channels [4], with a

square-root law stating that O(
√
N) bits of message can be transmitted given N

channel uses. Such communication can even be kept covert against quantum adver-

saries [3]. More recently, covert communication has been extended into the quantum

realm [2], where it was shown that qubits can also be transmitted covertly over noisy

channels, while providing a protocol for covert QKD. In the light of these recent de-

velopments, it becomes increasingly important to optimize the performance of covert

communication protocols in order to bring them closer to practical demonstrations.
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In this report, we consider the simple protocols for covert communication of

Ref. [2] and perform an optimization over protocol parameters in order to signif-

icantly reduce the number of channel uses and the time required to transmit a

classical message of fixed length. We consider the situation in which the noise in the

channel is due to the leakage from a neighboring channel, in which open communi-

cation is happening using bright signals. This permits a control of the noise level

in the covert channel by adjusting the brightness of the signals, which leads to the

possibility of attaining optimal values for the noise level.

The key parameter in the security proof of covert communication is the detection

bias. It is challenging to bound the detection bias analytically, thus we performed

a numerical optimization of protocol parameters. Furthermore, due to the nature

of covert communication, a significant decoding error is expected. We consider a

simple repetition code, which is straightforward to implement in the protocol.

In Chapter 2, we will introduce some notions that will be used extensively

throughout this report. In Chapter 3, we will described the protocol that was

proposed in Ref. [2]. In Chapter 4, we will optimize the protocol to minimize the

number of channel uses and time taken to transmit classical messages. Finally, in

Chapter 5, we will consider different variations in the encoding or implementations

of the protocol.
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Chapter 2

Preliminaries

In this chapter, we introduced some important notions which will be used extensively

in the following chapters.

2.1 The density operator

In quantum mechanics, we can represent the state of a quantum system using the

density operator ρ which has the following properties [8]:

1. It is positive semi-definite, that is if {p1, p2, ..., pN} are the eigenvalues of ρ,

then ∀i, pi ≥ 0.

2. Tr ρ = 1.

Given some pure states |ψi〉, and some real numbers pi ≥ 0, the density matrix ρ

can be written as

ρ =
∑
i

pi |ψi〉〈ψi| (2.1)

The real number pi gives the probability of finding the system in state |ψi〉. ρ is a

pure state if and only if there exists i such that pi = 1.

Now, suppose if the system that ρ describes have two subsystems, described by

ρA and ρB, the state ρ can be written in terms of the tensor product of the states

of its subsystems

ρ = ρA ⊗ ρB (2.2)

3



2.2. FUNCTIONS OF THE DENSITY OPERATOR

In particular, if we are interested in M modes of a system, we can decompose

its state into

ρ =
M⊗
i=1

ρi (2.3)

where ρi is the state of the i-th mode.

2.2 Functions of the density operator

Some quantities in quantum information theory are functions of the density operator.

To evaluate this function, first, we have to find the eigenvalues and eigenvectors of

the density operator. Suppose that we have done that, we can perform the spectral

decomposition of the density operator ρ such that

ρ =
∑
i

pi |ϕi〉〈ϕi| (2.4)

where the eigenvectors are orthogonal, i.e. 〈ϕi|ϕj〉 = δij. Then a function f of the

density operator ρ is given by

f(ρ) =
∑
i

f(pi) |ϕi〉〈ϕi| (2.5)

In particular, when the density matrix is diagonal

ρ =


p1

p2

...

pD

 (2.6)

then

f(ρ) =


f(p1)

f(p2)

...

f(pD)

 (2.7)

Sometimes, we are also interested in a function of tensor products of states.

For example, we consider the log function which is used frequently in quantum

4



CHAPTER 2. PRELIMINARIES

information theory.

Theorem 2.2.1. Let ρA ∈ L(HA) and ρB ∈ L(HB) be density operators, then

log(ρA ⊗ ρB) = 1A ⊗ log(ρB) + log(ρA)⊗ 1B (2.8)

Proof. We express ρA and ρB in terms of their spectral decompositions

ρA =
∑
i

pi |ψi〉〈ψi|

ρB =
∑
j

qj |ϕj〉〈ϕj|

Then

log(ρA)⊗ 1B + 1A ⊗ log(ρB) =

(∑
i

log pi |ψi〉〈ψi|

)
⊗

(∑
j

|ϕj〉〈ϕj|

)

+

(∑
i

|ψi〉〈ψi|

)
⊗

(∑
j

log qj |ϕj〉〈ϕj|

)
=
∑
i,j

log pi |ψiϕj〉〈ψiϕj|+
∑
i,j

log qj |ψiϕj〉〈ψiϕj|

=
∑
i,j

(log pi + log qj) |ψiϕj〉〈ψiϕj|

=
∑
i,j

log(piqj) |ψiϕj〉〈ψiϕj|

= log

(∑
i

pi |ψi〉〈ψi| ⊗
∑
j

qj |ϕj〉〈ϕj|

)
= log(ρA ⊗ ρB)

This completes the proof of Theorem 2.2.1.

2.3 The quantum relative entropy

The quantum relative entropy (also known as Kullback-Leibler divergence) is a func-

tion of two density operators that measures the difference between them. As we shall

see later, the quantum relative entropy will determine the detection bias of our proto-

col, which is an important parameter in the security proof of covert communication.

Given two density matrices ρ and σ, the relative entropy is defined as

D(ρ||σ) = Tr [ρ(log ρ− log σ)] (2.9)
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2.3. THE QUANTUM RELATIVE ENTROPY

Although the relative entropy quantifies how ’far’ is one density operator from the

other, it is not a distance measure in the mathematical sense since it does not satisfy

the triangle inequality neither is it symmetric in its arguments, i.e. in general

D(ρ||σ) 6= D(σ||ρ) (2.10)

The relative entropy is rather difficult to calculate since we have to diagonalize

the state ρ and σ first. However, there is a special case in which the relative entropy

can be calculated easily. This case corresponds to the situation when both density

operators are diagonal in a given basis which we will use frequently in this report,

as many states that we consider are diagonal in the Fock basis.

Theorem 2.3.1 (Relative entropy of diagonal density matrices). When the

density operators ρ and σ are both diagonal in the same basis, then the quantum

relative entropy reduces to the classical relative entropy

D(ρ||σ) =
∑
n

ρ(n) log

(
ρ(n)

σ(n)

)
(2.11)

where ρ(n) and σ(n) are classical probability distributions.

Proof. We let ρ and σ be diagonal in certain basis

ρ =
∑
n

ρ(n) |n〉〈n|

σ =
∑
n

σ(n) |n〉〈n|

Then the relative entropy is given by

D(ρ||σ) = Tr

[∑
n

ρ(n) log

(
ρ(n)

σ(n)

)
|n〉〈n|

]

=
∑
n′

〈n′|

[∑
n

ρ(n) log

(
ρ(n)

σ(n)

)
|n〉〈n|

]
|n′〉

=
∑
n′,n

ρ(n) log

(
ρ(n)

σ(n)

)
〈n|n′〉 δnn′

=
∑
n

ρ(n) log

(
ρ(n)

σ(n)

)

6



CHAPTER 2. PRELIMINARIES

Furthermore, the quantum relative entropy has the additivity property that will

be used extensively in this report

Theorem 2.3.2 (Additivity of quantum relative entropy). Given the states

ρ1, ρ2, σ1, σ2, the quantum relative entropy is additive in this sense

D(ρ1 ⊗ ρ2||σ1 ⊗ σ2) = D(ρ1||σ1) +D(ρ2||σ2) (2.12)

Proof.

D(ρ1 ⊗ ρ2||σ1 ⊗ σ2) = Tr

[
(ρ1 ⊗ ρ2)

(
log(ρ1 ⊗ ρ2)− log(σ1 ⊗ σ2)

)]
applying Theorem 2.2.1

= Tr

[
(ρ1 ⊗ ρ2)

(
11 ⊗ log ρ2 + log ρ1 ⊗ 12

− 11 ⊗ log σ2 − log σ1 ⊗ 12

)]
= Tr

[
(ρ1 ⊗ ρ2)

(
11 ⊗ (log ρ2 − log σ2) + log(ρ1 − log σ1)⊗ 12

)]
= Tr[ρ1 ⊗ ρ2(log ρ2 − log σ2) + ρ1(log ρ1 − log σ1)⊗ ρ2]

= Tr[ρ1(log ρ1 − log σ1)] Tr ρ2 + Tr ρ1 Tr[ρ2(log ρ2 − log σ2)]

= D(ρ1||σ1) +D(ρ2||σ2)

Since Tr ρ1 = 1 = Tr ρ2.

We can deduce a simple corollary by repetitive applications of Theorem 2.3.2.

Given the states ρ and σ and an integer N , we have

D(ρ⊗N ||σ⊗N) = ND(ρ||σ) (2.13)

This corollary is important since when both states are independent and identically

distributed (i.i.d.), to calculate the relative entropy between the two states, it is

sufficient to consider only two states which have much smaller dimension.

Next, we will give two theorems that we will also use in this report. But before

that, we will give a definition of a convex function.

Definition (Convex function). A function f(x) is convex over (a, b) if for all

x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (2.14)

7



2.3. THE QUANTUM RELATIVE ENTROPY

Theorem 2.3.3 (Joint convexity of quantum relative entropy). Let pX(x) be

a probability distribution over finite alphabet X . Let ρx and σx be density matrices

for all x ∈ X . Set ρ̄ =
∑

x pX(x)ρx and σ̄ =
∑

x pX(x)σx. The quantum relative

entropy is jointly convex in its arguments.∑
x

pX(x)D(ρx||σx) ≥ D(ρ̄||σ̄) (2.15)

In particular, when X = {1, 2} and pX(x) = {p, 1− p}, then

pD(ρ1||σ1) + (1− p)D(ρ2||σ2) ≥ D(pρ1 + (1− p)ρ2||pσ1 + (1− p)σ2) (2.16)

The second theorem is the Pinsker’s inequality which relate the relative entropy

with a distance measure called the trace distance.

Definition (Trace distance). Given two operators ρ, σ, the trace distance T (ρ, σ)

is as follows

T (ρ, σ) =
1

2
‖ρ− σ‖ =

1

2
Tr
√

(ρ− σ)†(ρ− σ) (2.17)

Unlike the relative entropy, the trace distance is symmetric in its arguments

and it satisfies the triangle inequality. It is also non-negative. Thus, it has the

metric property. The quantity ‖ρ− σ‖ is sometimes referred as the trace norm.

The trace distance is an important parameter in quantum state discrimination since

the minimum probability of error in distinguishing state ρ from state σ is given

by [5]

Pmin error =
1

2

[
1− T (ρ, σ)

]
(2.18)

Theorem 2.3.4 (Pinsker’s inequality). Let ρ and σ be density operators, then

D(ρ||σ) ≥ 1

2 ln 2
‖ρ− σ‖2 (2.19)

As such, the Pinsker’s inequality provides the bound on the probability of error

in distinguishing ρ from σ in terms of relative entropy. This method is also used

when we bound the detection bias in covert communication.

The proofs for Theorem 2.3.3 and 2.3.4 are given in Section 11.9 of Ref. [10]

8



CHAPTER 2. PRELIMINARIES

2.4 Some states of light

There will be some states of light which will be used in this report, they are Fock

states, thermal states, coherent states.

2.4.1 The Fock state

The Fock state |n〉 is the state of well defined photon number n. It is the eigenstate

of the number operator N̂ with eigenvalue n

N̂ =
∑
i

a†iai (2.20)

where ai is the annihilation operator corresponding to the i-th mode. Since N̂ is

Hermitian, then for any n′ and n, we have

〈n′|n〉 = δnn′ (2.21)

The state |0〉i is the ground state the i-th mode. Any state |n〉i can be expressed

in terms of the ground state

|n〉i =
1√
n!

(
a†i

)n
|0〉i (2.22)

A state that we use quite often in this report is the vacuum state |vac〉, which

is what we have if every mode is in the ground state

|vac〉 = ...⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ ... (2.23)

2.4.2 Thermal states

The thermal state can be expressed in terms of the Fock basis as

ρn̄ =
∞∑
n=0

n̄n

(1 + n̄)n+1
|n〉〈n| (2.24)

where n̄ is the mean photon number of the state.

9



2.4. SOME STATES OF LIGHT

The thermal state is significant in the study of covert communication because

it describes the photon number distribution of the blackbody radiation which is

naturally present. In fact, the mean photon number n̄ is related to the temperature

T of the system by

n̄ =
1

exp(~ω/kBT )− 1
(2.25)

where ω is the angular frequency of the mode, ~ is the Planck constant and kB is

the Boltzmann constant. Unfortunately, in room temperature, the mean photon

number of the thermal state is too low for practical covert communication.

2.4.3 Coherent states

The coherent state |α〉 is the eigenstate of the annihilation operator a with eigenvalue

α

a |α〉 = α |α〉 (2.26)

where α is a complex number.

In the Fock basis, it can be written as

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (2.27)

and when the phase of the coherent state is randomized, we obtain a mixed state

ρ =
∞∑
n=0

e−µµn

n!
|n〉〈n| (2.28)

which corresponds to the Poisson distribution of Fock states. The mean of the Pois-

son distribution µ corresponds |α|2.

The coherent state is significant because many experiments use lasers which are

approximately coherent state sources. In this work, we will use mainly coherent

states with phase randomization for both signal and the noise.

10



Chapter 3

Quantum Covert Communication

In this chapter, we outline the covert communication scheme proposed by Arrazola

and Scarani in Ref. [2]. This scheme allows covert transmission of qubits using

single photon or coherent state encoding. We shall focus on the security proof of

the protocol, however, the notions that are introduced in this chapter will be used

extensively in the following chapters.

3.1 A model of noisy channel

Consider the setup illustrated in Fig. 3.1. In this model, Alice and Bob are connected

by a noisy optical channel, which is modeled as a beam splitter of transmittivity η.

The noise is originated from Alice’s lab (represented by the red box). Eve has no

control over the noise level coming into the channel.

BobAlice Eve

signals

noise

Alice’s Lab

Figure 3.1: A model of the optical channel where the noise comes from Alice’s lab

11



3.2. DETECTION BIAS

For concreteness, let Alice encodes her qubit states into the polarization degree

of freedom of single photons. Suppose further that Alice and Bob have access to N

time-bins, each of which may be used to send a qubit signal, and let the noise be

thermal (the formalism does not rely on these assumptions and can be applied to

other methods of implementation). The beam splitter reflects some of the noise into

the channel such that Eve’s two-mode state when Alice is not sending any signal to

Bob is given by

ρE = ρn̄′ ⊗ ρn̄′ (3.1)

where n̄′ = (1− η)n̄ is the mean photon number of the thermal state.

When a signal is sent, let the two-mode state after the beam splitter be ρS.

When there is communication in the channel, for each time-bin, Alice will decide

with constant probability q � 1, whether or not she will send a signal to Bob.

Therefore, Eve’s two-mode state when there is a communication in the channelis

given by

σE = qρS + (1− q)ρE (3.2)

Now, since Alice and Bob have access to N time-bins, Eve’s 2N -mode states are

simply the tensor products of the two-mode states

ρ = (ρE)⊗N (3.3)

σ = (σE)⊗N (3.4)

where ρ is the state when there is no communication and σ is the state when Alice

and Bob are trying to communicate covertly.

3.2 Detection bias

Eve might still attempt to detect whether or not there is any communication be-

tween Alice and Bob. To prove the security of the protocol, we consider Eve’s

detection error, which is her probability of incorrectly guessing whether there is a

communication in the channel. This probability is given by

Pe =
1

2
− ε (3.5)

where we want ε > 0 to be small (we do not want Eve to perform much better than

a random guess). We refer ε as the detection bias.

12



CHAPTER 3. QUANTUM COVERT COMMUNICATION

Now, we want to get a bound on the detection bias. Eve’s attempt to determine

whether or not there is a communication in the channel is equivalent to quantum

state discrimination between ρ and σ. The probability of error in achieving this task

is given by [5]

Pe ≥
1

2
− 1

4
‖ρ− σ‖ (3.6)

where ‖ρ− σ‖ is the trace norm

Comparing (3.5) and (3.6), the bound on the detection bias is given by

ε ≤ 1

4
‖ρ− σ‖ (3.7)

and using Pinsker’s inequality from Theorem 2.3.4

‖ρ− σ‖ ≤
√

2 ln 2
√
D(ρ||σ) (3.8)

and we can obtain the bound on the detection bias in terms of the relative entropy

ε ≤ 1

4
‖ρ− σ‖

using Pinsker’s inequality

≤
√

ln 2

8
D(ρ||σ)

since ln 2 < 1

≤
√

1

8
D(ρ||σ)

and by additivity

=

√
N

8
D(ρE||σE) (3.9)

which, given ρE and σE, can be computed directly.

3.3 Covert communication using coherent states

In the beginning of this chapter, we briefly mentioned that Alice can encode her

qubit into the polarization of a single photon. However, the formalism does not

rely on this assumption. It is still valid for other implementations of the protocol

and there are cases where we want to encode our qubit differently. In particular,

it is more practical to use coherent state signals rather than single photon. In this

section, we are going introduce the coherent state mapping [1], a set of rules to map

protocols that use single photon qubit into its coherent state encoding counterpart.

13



3.3. COVERT COMMUNICATION USING COHERENT STATES

After that, we will consider the upper bound on detection bias for a particular case

where we want to send covert signals using coherent state source in the presence of

thermal noise.

3.3.1 Coherent state encoding

In general, the state |ψ〉 of a qubit, defined by the polarization a single photon, can

be written as

|ψ〉 = λ1 |H〉+ λ2 |V 〉 (3.10)

where |H〉 and |V 〉 corresponds to a single photon in horizontal and vertical polar-

ization modes respectively. We can map this single photon state into the coherent

state

|α, ψ〉 = |αλ1〉H ⊗ |αλ2〉V (3.11)

where the value of α is a free parameter of the mapping and can be chosen freely to

suit the requirements of the protocol. |α|2 = µ is the mean photon number of the

coherent state and the states |αλ1〉H and |αλ2〉V are coherent states with parameters

αλ1 and αλ2 in their own respective polarization modes. Intuitively, we map the

original Hilbert space of the qubit protocol with canonical basis {|H〉 , |V 〉} into

orthogonal optical modes with corresponding annihilation operators {aH , aV } that

corresponds to each polarization mode.

3.3.2 Approximating the relative entropy

In this project, we will consider coherent states with phase-randomization which

correspond to Poisson distribution of Fock states. For such coherent state with

mean photon number µ, the density matrix is given by

ρµ =
∞∑
n=0

e−µµn

n!
|n〉〈n| (3.12)

where |n〉 is the Fock state that corresponds to n photons.

The state for the signal can be calculated by considering the different numbers

of photons that come from the ’Alice’ and the ’noise’ input modes and then taking

partial trace. The state is given by

ρS =
∞∑
k=0

∞∑
l=0

p(k, l)σkl (3.13)
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CHAPTER 3. QUANTUM COVERT COMMUNICATION

where σkl is the state when there is k photons coming from the ’noise’ input mode

and l photons coming from the ’Alice’ input mode and p(k, l) is the probability of

that occurring. The calculation of σkl is given in Appendix A whereas p(k, l) is given

by

p(k, l) =
n̄k

(1 + n̄)k+1

e−µµl

l!
(3.14)

since we assume independence between the number of photons coming from the

’noise’ input mode and the number of photons coming from the ’Alice’ input mode.

Now, calculating ρS using (3.13) directly would be impossible to do because there

are infinite terms to compute. However, we can assume that the protocol utilizes

coherent state with low mean photon number µ� 1 but is still much greater than

the noise level µ� n̄ such that we can approximate the state for the signal as

ρS ≈
1∑

k=0

2∑
l=0

n̄k

(1 + n̄)k+1

e−µµl

l!
σkl (3.15)

because p(k, l) ≈ 0 for higher order terms and therefore it suffices to consider just

the first few terms.

The quantum relative entropy when both the noise and signal is diagonal in the

Fock basis reduces to classical relative entropy (Theorem 2.3.1)

D(ρE||σE) =
∞∑
n=0

ρE(n) [log ρE(n)− log σE(n)] (3.16)

In the scenario that we considered (i.e. when n̄ � µ � 1), for n > 0, we have

[log ρE(n)− log σE(n)] < 0 and therefore, to consider the upper bound of D(ρE||σE),

it also suffices to only consider the first few terms.

3.4 The upper bound on detection bias

Due to the complicated expression of the relative entropy as well as σE, the analyt-

ical calculation of the detection bias is rather difficult to do. Nevertheless, we can

give the numerical bound on the detection bias by considering a few photons (since

the terms with higher photon numbers contribute negatively to the relative entropy,

as discussed in the previous section).

We consider the case where Alice sends 20 photons covertly to Bob, using a

15



3.4. THE UPPER BOUND ON DETECTION BIAS

coherent state source with mean photon number of µ = 10−3 in the presence of

thermal noise with mean photon number n̄ = 10−5. The plot of the upper bound of

detection bias against the number of time-bins is given in Fig. 3.2.
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Figure 3.2: Log-log plot of the upper bound of detection bias ε as a function of the
number of time-bins N . We set η = 0.5, µ = 10−3 and n̄ = 10−5. This plot of mine
reproduces the plot in Fig. 2 of Ref. [2]

From Fig. 3.2, we can see that the square root law from Ref. [4] also applies

to coherent state encoding implementation of covert communication. To reduce

the upper bound on detection by one order of magnitude, it takes an increase of

approximately two order of magnitude in the number of time bins.
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Chapter 4

Practical Covert Communication

Due to the enormous amount of classical post-processing that quantum key distribu-

tion (QKD) requires, demonstrating covert QKD with current level of technology is

very challenging. In the light of this difficulty, we decided to do practical demonstra-

tion of classical covert communication instead. That being said, there are also some

challenges in performing classical covert communication that we have to address.

These challenges are:

1. The thermal noise in room temperature and in the frequency range that is

feasible for practical communication is rather low. To communicate covertly

within reasonable duration, we need higher noise level.

2. The low signal-to-noise ratio that is demanded by the nature of covert com-

munication induces high probability of decoding error. As such, we need to

do an error correction which in general is detrimental to the security of the

protocol. Therefore, we need to find the optimal parameters that achieve both

acceptable decoding reliability and detection bias.

To address these challenges, we will consider a protocol where Alice uses Poisson

distribution of Fock states for both the signal and the noise, with mean photon

number µ and n̄ respectively. These states correspond to coherent states with phases-

randomization. Alice has full control of both µ and n̄ so she can tune them such

that she can minimize the ”cost” of covert communication. In this chapter, we will

consider two different resources as the ”cost”: the number of time-bins (the number

of channel uses) N and the actual time t that Alice and Bob need to spend in the

experiment.
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4.1. ANOTHER MODEL OF NOISY OPTICAL CHANNEL

4.1 Another model of noisy optical channel

We consider the case where each coherent state source produces photons in two

different modes. Suppose that the modes are centered around 1550 and 1560 nm

and there are some overlap between the two modes as illustrated by the intensity

profiles in Fig. 4.1. The noise in the channel is induced by the overlap.

1530 1540 1550 1560 1570 1580

Wavelength

nm

Intensity

Figure 4.1: The plot of intensity against wavelength of two signals that have dif-
ferent frequency modes, the overlap between the two modes induces a noise in the
channel between Alice and Bob which can be used to hide the signal for covert
communication.

In Fig. 4.2, we make an adjustment to the model to suit our implementation

that uses the induced noise to communicate covertly in the frequency range of the

overlap region. In this model, the two modes in Fig. 4.1 correspond to two different

communication channels. In the first channel, Alice is communicating non-covertly

with Charlie by sending bright signals. Her communication with Charlie induces a

background noise in the second channel which connects her to Bob. This background

noise allows her to communicate covertly with Bob.
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Bob
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Figure 4.2: A model of noise for covert communication. Conducting open communi-
cation with Charlie induces a background noise in the covert channel (represented by
the dashed arrow) connecting Alice and Bob. Note that since Alice has full control
over both the signal and the noise level.

In this model, the states in the Fock basis are given by

ρn̄ =
e−n̄n̄k

k!
|k〉〈k| (4.1)

ρ(µ+n̄) =
e−(µ+n̄)(µ+ n̄)k

k!
|k〉〈k| (4.2)

and therefore

ρE = ρn̄ ⊗ ρn̄ (4.3)

ρS = ρ(µ+n̄) ⊗ ρn̄ (4.4)

σE = qρS + (1− q)ρE (4.5)

where ρE is Eve’s state when there is no communication and σE is the state when

there is communication.

4.2 Error correction

In non-ideal situations, the channel connecting Alice and Bob will also be lossy. Due

to losses and noise, Bob will observe significant errors in the signals sent by Alice.
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4.2. ERROR CORRECTION

To quantify Bob’s ability to decode Alice’s message correctly, we let Bob’s decoding

error probability be E . We want this probability to be reasonably low. Suppose

that Alice sends a message of length b bits, then Bob’s bit error probability δ can

be expressed in terms of E and b

δ = 1− (1− E)1/b (4.6)

Since for each of the N time-bins, Alice decides with equal probability q whether

or not she is going to send a signal, the expected number of signals d is given by

d = Nq (4.7)

In addition to the loss in the fiber, Bob’s detector will also have certain ineffi-

ciency. This will result in not all of the photons that Alice sends will be detected.

To model this loss, we consider a lossless channel, a perfect detector and a beam

splitter with transmitivity τ between them.

The probability pC that Bob detects a click in the correct mode is

pC = 1− Pr[no click in the correct mode]

= 1− exp[−τ(µ+ n̄)] (4.8)

while the probability pW that Bob detects a click in the wrong mode is

pW = 1− Pr[no click in the wrong mode]

= 1− exp(−τ n̄) (4.9)

Ignoring the probability of having clicks in both modes, the probability of having a

click is approximately (pC + pW ). Then, we get the probability that a click is in the

correct mode, given that there is a click is given by

pg =
pC

pC + pW
(4.10)

where pC and pW is given by (4.8) and (4.9) respectively.

Now, to correct these errors, we use the repetition code with majority vote

decoding scheme. Repetition code Rk repeats every bit k times such that

d = bk (4.11)
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For example, suppose Alice wants to send the bit ’0’. Instead of sending one ’0’ bit,

she will send the string
′00...00...00′︸ ︷︷ ︸

k times

Next, Bob will look at the string he receives. Bob will decode the bit as ’0’ if he

receives more ’0’ bits than ’1’s, otherwise he will decode it as ’1’. We then obtain

an expression for δ

δ =
k∑
i=0

Pr[i clicks] Pr[correct clicks are not majority]

=
k∑
i=0

Pr[i clicks]

bi/2c∑
j=0

Pr[j correct cliks |i clicks] (4.12)

The number of clicks C is binomially distributed with probability (pC +pW ) and

number of trials k. Now, since k is large and the probability of registering a click is

small, C is also approximately Poisson distributed. We let µC and σC be the mean

and standard deviation of the number of clikcs C respectively. It suffices to consider

the range of 5 standard deviations σC from the mean µC in the first summation in

equation (4.12). We get the equation

δ ≈
µC+5σC∑
i=µC−5σC

(
k

i

)
(pC + pW )i(1− pC − pW )k−i

bi/2c∑
j=0

(
i

j

)
(pg)

j(1− pg)i−j (4.13)

≈
µC+5σC∑
i=µC−5σC

(µC)ie−µC

i!︸ ︷︷ ︸
Poisson

bi/2c∑
j=0

(
i

j

)
(pg)

j(1− pg)i−j︸ ︷︷ ︸
Binomial

(4.14)

where for Poisson distribution, µC and σC are given by

µC = k × (pC + pW )

σC =
√
k × (pC + pW )

Using the above equations and (4.14), we can find the codeword length k that will

achieve the desired bit error probability δ.

4.3 Experimental implementation

In this section, we will describe some of the experimental considerations and con-

straints. To provide an overview of the experiment, we can refer to Fig. 4.3 for
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4.3. EXPERIMENTAL IMPLEMENTATION

the experiment. We use the 1550 nm laser as the source for the noise and the 1560

nm laser for the signal. Note that while the experiment uses time-bin encoding, our

calculation assumes polarization encoding. However, we do not expect significant

differences.

Figure 4.3: Illustration of the experimental setup provided by our collaborators. In
this experiment, Alice uses time-bin encoding. We use a sync laser and time-to-
digital converter (TDC) to synchronize Alice’s and Bob’s clock. Both the signal and
the noise are passed through a beam splitter and go into the optical fiber. Bob uses
the superconducting single-photon detector (SSPD) to detect the photon. Then he
decodes the signal by measuring the time of arrival of the photon.

4.3.1 Loss and detector inefficiency

Due the losses in the fiber and detector inefficiency, some of the photons will not be

detected. To model this, we consider that there is no loss in the channel and the

detector is 100% efficient. However, we will add a beam splitter with transmittivity

τ across the channel. Based on the loss and the detector inefficiency, we approximate

the channel transmittivity to be τ ≈ 0.1.

4.3.2 Noise level

The noise level in the channel is fixed at 106 photons/s. However, we can adjust the

pulse width such that for each time-bin, we get the noise level that we desire. Thus,
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CHAPTER 4. PRACTICAL COVERT COMMUNICATION

the mean photon number for the noise n̄ is given by

n̄ = 106w (4.15)

where w is the pulse width. We also note that the smallest pulse width that we can

achieve is wmin = 1 ns.

4.3.3 Extinction ratio

The extinction ratio re is given by

re =
µon

µoff

(4.16)

where µon is the number of photons when the laser is on and µoff is the number of

photons when the laser is off.

For our experiment, the extinction ratio is 1000 : 1. This will affect our expression

for ρE. When we take into account the extinction ratio, it is given by

ρE =
∑
k

e−n̄
′
n̄′k

k!
|k〉〈k| (4.17)

where n̄′ = n̄+ 0.001µ and |k〉 is the Fock state with photon number k.

4.4 Optimization of parameters

Now, we have all the necessary tools to perform our optimization. Since the upper

bound on the detection bias is a function of a number of parameters, namely the

mean photon number of the signal (µ) and the noise (n̄), as well as the probability

of sending a signal q. The probability of sending a signal, in turn, depends on the

number of of time-bins that are available (N), the length of the message b, and the

length of the repetition code (k), which depends on our tolerance on the decoding

error. Hence, in principle, optimizing the protocol is an optimization problem over

several number of parameters. Since it is challenging to do analytical optimization,

we will perform a numerical optimization over all the parameters (µ, n̄, q).
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4.4. OPTIMIZATION OF PARAMETERS

4.4.1 Number of time-bins as objective function

To find the optimal performance of the protocol, we set a tolerance level for Eve’s

detection bias and Bob’s decoding error. Next, we fix the number of bits that Alice

is going to send and search for the values of µ and n̄ that will achieve the desired

performance using the least number of time-bins. To do so, we have created a nu-

merical routine that outputs optimal values of µ and n̄ for any protocol.

We aim to achieve the following performance:

• Number of bits in the message that Alice sends b = 35 bits (7 letters).

• Bob’s decoding error probability E = 0.01

• Eve’s detection bias ε = 0.1

Interestingly, when we have high signal-to-noise ratio, i.e. µ � n̄, Bob’s decod-

ing error is very small, hence Alice can send a smaller number of signals. However,

at the same time, high signal-to-noise ratio is also detrimental to the security of the

protocol because Eve can easily distinguish the bright signals from the noise. The

optimal region actually, lies in the low signal-to-noise ratio, where Eve has difficulty

distinguishing signals and noise, but Bob can still, through a large enough code

length, retrieve the messages reliably.

A plot of the protocol performance with optimal parameters is shown in Fig. 4.4.

As it can be clearly seen, compared to the values suggested in Ref. [2], which rely

on thermal background noise at infrared frequencies, our protocol offers a reduction

in the number of time-bins of several orders of magnitude.

4.4.2 Time as objective function

In most practical situations, the important resource is time. As such, it may be

more important to minimize the duration of the protocol rather than minimizing

the number of time-bins (number of channel uses). For a given pulse width w, the

total time needed to execute the protocol t is related to the total number of time-bins

N by

t = Nw (4.18)

We also have to keep in mind that w is determined uniquely by equation (4.15).

Therefore, in finding the optimal parameters that will minimize the running time of
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Figure 4.4: Plot of the upper bound on detection bias ε against the number of time-
bins N . The target detection bias for Eve is ε = 0.1, as shown by the black solid line.
The red curve corresponds to the optimal parameters: n̄opt = 0.640, µopt = 0.855,
and d = 13305. The dashed blue curve corresponds to n̄ = 10−5, µ = 10−3 and
q = 3.4023× 10−7, as proposed in Ref. [2].

the experiment, equation (4.15) puts an additional constraint on the noise level n̄.

After taking into account these changes, we can use a similar numerical routine to

find the optimal parameters.

In this optimization, we consider two different cases. In both cases, we tolerate

decoding error probability E = 0.01.

1. Long message with higher detection bias

• Alice sends b = 35 bits (7 letters)

• Eve can only detect communication with detection bias not higher than

ε = 0.1

• optimal parameters: µ = 0.0180, n̄ = 1.0× 10−3.

2. Short message with lower detection bias

• Alice sends b = 10 bits (2 letters)
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• Eve can only detect communication with detection bias not higher than

ε = 0.01

In both cases, we obtain the optimal noise level n̄ = 0.001 as this corresponds

to the smallest pulse width that we can achieve w = 1 ns. In this optimization, the

optimal signal-to-noise ratio is not very low. Due to the physical constraints that

force us to operate at much lower n̄ and µ (unlike in our first optimization where

both n̄opt and µopt are relatively high), means that we need higher mean photon

numbers for the signal to accommodate the losses in the channel.

The plots for the upper bound on detection bias against the duration of the

experiment are given in Fig. 4.5 (for the first case) and Fig. 4.6 (for the second

case). In both cases, we can see that the optimal signal-to-noise ratio is much larger

than the optimal signal-to-noise ratio when we consider time-bin as our objective

function.
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Figure 4.5: Plot of the upper bound on detection bias ε against total running time
T to send b = 35 bits. The target detection bias for Eve is ε = 0.1, as shown by the
black solid line. The red curve corresponds to the optimal parameters: n̄opt = 0.001,
µopt = 0.018, and d = 208357. Total running time t = 146 s. The blue curve
corresponds to n̄blue = 0.001 and µblue = 0.008 and the green curve corresponds to
n̄green = 0.001 and µgreen = 0.028.
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Figure 4.6: Plot of the upper bound on detection bias ε against total running time
t to send b = 10 bits. The target detection bias for Eve is ε = 0.01, as shown by the
black solid line. The red curve corresponds to the optimal parameters: n̄opt = 0.001,
µopt = 0.0095, and d = 107034. Total running time t = 875 s. The blue curve
corresponds to n̄blue = 0.001 and µblue = 0.006 and the green curve corresponds to
n̄green = 0.001 and µgreen = 0.012.
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Chapter 5

Other Attempts to Improve

Covert Communication Protocols

In the previous chapter, we optimized the protocol by only considering the experi-

mental parameters. In this chapter, we consider other strategies that Alice can use.

In other words, we want to consider some modifications to our basic protocol. Here,

we consider the case where the number of channel uses is the objective function.

5.1 Block implementation of covert communica-

tion

Now, consider the protocol where access to N channel uses corresponds to an access

to N time-bins. Suppose Alice and Bob have K blocks, each containing N time-

bins. For each block, Alice independently decides with probability p whether she

will perform the basic protocol and with probability (1− p), she will do nothing in

that block of N time-bins. For each block, let

ρ = (ρE)⊗N

σ = (σE)⊗N

where ρE and σE is the same as before. Now let σ∗ be

σ∗ = pσ + (1− p)ρ (5.1)
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Thus, Eve’s 2KN -mode state is given by

ρ′ = ρ⊗K (5.2)

σ′ = (σ∗)⊗K = (pσ + (1− p)ρ)⊗K (5.3)

The detection bias ε for the block protocol is bounded by

ε ≤
√

1

8
D(ρ′||σ′) =

√
K

8
D(ρ||σ∗)

=

√
K

8
D(ρ||(pσ + (1− p)ρ))

≤
√
K

8
pD(ρ||σ) =

√
NK

8
pD(ρE||σE) (5.4)

where we used the joint convexity of relative entropy, that is for states ρ1, ρ2, σ1, σ2

and for all 0 ≤ p ≤ 1, we have from Theorem 2.3.3

D(pρ1 + (1− p)ρ2||pσ1 + (1− p)σ2) ≤ pD(ρ1||σ1) + (1− p)D(ρ2||σ2) (5.5)

and by setting

ρ1 = ρ2 = σ2 = ρ

σ1 = σ

the second term in (5.5) vanishes and we get the inequality that we want.

If we want the expected number of signals d to be the same, we need p = 1/K

and thus we get back the bound that we had in the original protocol and there is

no improvement.

5.2 Sending multiple bits per photon

Alice can also consider encoding multiple bits into a single photon. She can do this

by exploring other degrees of freedom of the photon (for example we can consider

both polarization and time of arrival of the photon). By encoding more bits into

a photon, she hopes that it would be harder for Eve to detect the communication

since Alice can send less number of photons to send the same number of bits.
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5.2.1 Eve’s states and detection bias

For fair comparison, we assume that Alice and Bob still have access to 2N modes.

Suppose Alice encodes M bits into one photon. Now, for each channel use, the state

when there is no communication

ρ′E = ρ⊗2M

n̄ (5.6)

and the signal state is given by

ρ′S = ρ(µ+n̄) ⊗ ρ⊗(2M−1)
n̄ (5.7)

where ρ(µ+n̄) is the same as in (4.2). Eve’s state when there is communication is

therefore given by

σ′E = q′ρ′S + (1− q′)ρ′E (5.8)

where q′ is given by

q′ =
bk/M

2N/2M
=

2M−1

M
q (5.9)

Eve’s 2N -mode states are given by

ρ = (ρ′E)⊗N/2
M−1

(5.10)

σ = (σ′E)⊗N/2
M−1

(5.11)

Therefore the upper bound on detection bias is given by

ε ≤ 1√
2M−1

√
N

8
D(ρ′E||σ′E) (5.12)

We can check that we obtain the formulae in Chapter 4 when M = 1. The factor

of 1/
√

2M−1 is favourable for covert communication. However, we can easily check

that q′ > q for M > 2. This will increase the relative entropy and therefore the

detection bias. Additionally, we have not taken into account any effect on Bob’s

reliability in decoding the message.

5.2.2 Decoding error probability

Since we operate at multiple modes, Bob’s error probability will be different from

our basic scheme’s. The probability pC that the detector detects a photon in the
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5.2. SENDING MULTIPLE BITS PER PHOTON

correct mode is still the same

pC = 1− Pr[no click in the correct mode]

= 1− exp[−τ(µ+ n̄)] (5.13)

while the probability pW that the detector detects a photon in one of the wrong

modes is given by

pW = 1− Pr[no click in any of the wrong modes]

= 1− exp(−τ n̄)(2M−1) (5.14)

For any M > 1, pW in (5.14) is larger than pW in (4.9). It follows that the proba-

bility pg that a click is in the right mode, given that there is a click, is smaller.

Meanwhile, the relationship between decoding error probability E and δ will be

δ = 1− (1− E)M/b (5.15)

Note that δ no longer of the interpretation as bit error probability since each signal

now contains M bits of information.

For error correction, if we use repetition code of length k, to guarantee correct

decoding, we demand that there should be at least (bk/2c+ 1) clicks in the correct

mode. Typically, a smaller number is sufficient to achieve majority, however, in the

worst case scenario (where all the errors are contributed by the same mode), we

need at least that number of clicks. Therefore, the expression for δ in (4.14) is still

valid in this protocol.

Since pW is larger in this protocol, we need longer codeword to correct the errors.

Consequently, we will need more time-bins if we want to keep the probability of

sending a signal q unchanged.

5.2.3 Numerical results

Since it is inconclusive from our analysis whether there will be an improvement to

the protocol, we will do numerical optimization of the new scheme. We will con-

sider the case where M = 2 and M = 3 (as q′ increases with M , we do not expect

improvement in higher values of M) and compare it to the basic protocol (M = 1).
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Unfortunately, it turns out that the modification does not improve the efficiency

of the protocol even after the optimization of the parameters. We observes that

increasing the number of bits encoded in one photon actually worsens the perfor-

mance of the protocol as shown in Fig. 5.1. We learn that it is not enough to

increase the length of the repetition code to compromise the increase in pW . Alice

needs to increase her signal-to-noise ratio, which leads to higher detection bias.
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Figure 5.1: The plot of the upper bound on detection bias ε against the number of
time-bins N to send a message of length b = 35 bits. We set the decoding error
probability E = 0.01. The red curve corresponds to our basic protocol where we send
one bit per photon. The mean photon numbers are µred = 0.855 and n̄red = 0.640
for the signal and the noise respectively. The blue dotted curve corresponds to the
case when we encode two bits into per photon with µblue = 0.170 and n̄blue = 0.021.
The green dashed curve corresponds to the case when we encode three bits into per
photon with µgreen = 0.160 and n̄green = 0.007. The horizontal black line is the
target detection bias ε = 0.1.

5.3 Switching-off the noise

In situations when Alice has full control over both the signal and the noise level,

like the one discussed in Chapter 4, one could think of turning-off the noise when a

signal is sent. In implementation like ours (Fig. 4.1), this may be problematic since

the modes are different: by sitting at 1550 nm, Eve could notice that there is no
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light when a covert signal is sent. By assuming implementations where the modes

are equal, like the one in Chapter 3, does this actually help? Here, we prove that it

doesn’t.

In this implementation of the protocol, when a signal is sent, Bob will no longer

get a click from the noise. However, as the noise does not contribute to the error,

now we need to take into account the error coming from the alignment of Bob’s

polarizing beam splitter (PBS). Suppose Alice sends a photon with horizontal po-

larization, when Bob’s PBS is not perfectly aligned, the PBS sees some vertical

component in the photon’s polarization. There is a non-zero probability that the

photon’s polarization is measured as vertical. In this section, we will consider im-

perfect alignment as the main source of error, which is insignificant in our original

scheme.

On the other hand, now Eve can also distinguish the noise level when there is a

communication and when there is no communication. Intuitively, this will increase

her detection bias. Thus, we need to perform optimization of this protocol and see

whether the overall effect will lead to an improvement.

This modification can be applied to both the original protocol and the proto-

col where Alice encodes multiple bits into one photon. As the main drawback of

the multiple bits per photon scheme is the increase in error, this modification can

eliminate the problem.

5.3.1 Single bit per photon

When Alice encodes one bit per photon, the expression for signal state is replaced

by

ρS = ρµ ⊗ |0〉〈0| (5.16)

where ρµ is the coherent state with mean photon number µ and phase-randomization

and |0〉 is the vacuum state.

The state when there is communication in the channel is given by

σE = q(ρµ ⊗ |0〉〈0|) + (1− q)(ρn̄ ⊗ ρn̄) (5.17)
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To calculate Bob’s bit error probability, we model the imperfect alignment as a

beam splitter that sometimes reflects a photon to the wrong mode. Let v be the

transmittivity of Bob’s beam splitter. Then the probability pC that Bob detects a

photon in the correct mode

pC = 1− exp(−τµv) (5.18)

while the probability pW that Bob get a click in the wrong mode is

pW = 1− exp(−τµ(1− v)) (5.19)

5.3.2 Multiple bits per photon

When Alice encodes M bits into one photon, the expression for the signal state is

ρS = ρµ ⊗ |0〉〈0|⊗(2M−1) (5.20)

The probability of sending a photon is given by (5.9).

To compute δ (here, we use the expression of δ in (5.15)), we use the same model

for the alignment of Bob’s PBS. The expression for the probability of having click in

the correct mode (pC) is the same as (5.18) while to calculate pW we also consider

the following sources of error:

1. Imperfect alignment of the PBS.

2. Dark count of Bob’s detector. We let the detector to have a dark count at

constant rate of PD = 10−6.

Therefore, the probability of Bob having a click in the wrong mode is given by

pW = 1− exp(−τµ(1− v))︸ ︷︷ ︸
alignment

(1− PD)2M−2︸ ︷︷ ︸
dark count

(5.21)

5.3.3 Evaluation of the protocol

Taking into account the extinction ratio, we change the vacuum state |0〉〈0| to the

coherent state ρn̄′ with mean photon number n̄′ = n̄/re = 0.001n̄. However, after

optimization, the overall performance of both protocols (single bits per photon and

multiple bits per photon) is still significantly below the basic protocol. We conclude
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that the effect of switching-off the noise on the detection bias is more significant

than its effect on the decoding error. Thus, this modification fails to improve the

efficiency of covert communication.

5.4 Multiplexing

Multiplexing is a method by which the multiple signals are combined into one sig-

nal over shared medium. A common technique of multiplexing is the frequency-

division multiplexing (or sometimes called the wavelength-division multiplexing).

Frequency-division multiplexing (FDM) allows a number of signals to be modulated

onto different carrier frequencies and then carried simultaneously. It is used widely

in our day-to-day communication technologies, such as radio and television set. To

perform frequency-division multiplexing, the bandwidth of the medium must exceed

the bandwidth of the signals. Secondly, the carrier frequencies must be well sepa-

rated such that the bandwidth of the signals do not overlap [9]. In this section, we

are looking of the possibility of implementing frequency-division multiplexing of the

noise in covert communication to shorten the duration of the experiment.

The noise level in the channel connecting Alice and Bob depends on the profile of

the intensity of the source as a function of wavelength by which they communicate.

For concreteness, we assume that Alice and Bob communicates in two different

carrier wavelengths λ1 and λ2 and the noise level in these two wavelength is given

by

n̄1 ≡ n̄(λ1) (5.22)

n̄2 ≡ n̄(λ2) (5.23)

Similarly, for the mean photon number of the signal

µ1 ≡ µ(λ1) (5.24)

µ2 ≡ µ(λ2) (5.25)

We define the effective number of channel uses T

T ≡ t

w
(5.26)

where t is the duration of the experiment and w is the pulse width.
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Now if T0 is the effective number of channel uses when we do not use FDM, then

T0 = N (5.27)

where N is the total number of channel uses. Therefore, when we use FDM, we get

T =
N

2
(5.28)

since for every pulse, we use the channel twice (we use both the λ1 and λ2 channel).

In general, Alice does not need to send equal number of signals in the two

frequencies. In other words, suppose Alice is sending b bits to Bob, she can send ηb

bits in λ1 and (1−η)b bits in λ2 where 0 ≤ η ≤ 1. Furthermore, for error correction,

the length of the codewords sent in λ1 would be different from the length of the

codewords sent in λ2. Thus, the number of signals sent in each wavelength is given

by

d1 = ηbk1 (5.29)

d2 = (1− η)bk2 (5.30)

where d1 and d2 are the number of signals sent in λ1 and λ2 with k1 and k2 as

the length of the codewords in the respective wavelength. Then, the probability of

sending a signal in each wavelength is given by

q1 =
d1

N/2
(5.31)

q2 =
d2

N/2
(5.32)

Now, let

ρ1 = ρn̄1 ⊗ ρn̄1 (5.33)

ρS1 = ρ(µ1+n̄1) ⊗ ρn̄1 (5.34)

ρ2 = ρn̄2 ⊗ ρn̄2 (5.35)

ρS2 = ρ(µ2+n̄2) ⊗ ρn̄2 (5.36)

where ρn̄i
and ρ(µi+n̄i) are coherent states with mean photon number n̄i and (µi+ n̄i)
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respectively and i = 1, 2. We also let

σ1 = q1ρS1 + (1− q1)ρ1 (5.37)

σ2 = q2ρS2 + (1− q2)ρ2 (5.38)

Then, we can compute Eve’s states

ρ = ρ
⊗N/2
1 ⊗ ρ⊗N/22 (5.39)

σ = σ
⊗N/2
1 ⊗ σ⊗N/22 (5.40)

Thus, the detection bias is bounded by

ε ≤

√
1

8

N

2

(
D(ρ1||σ1) +D(ρ2||σ2)

)
(5.41)

By the same token, we can further generalize the protocol to allow communica-

tion in X wavelengths by setting

di = ηibki (5.42)

qi =
di

N/X
(5.43)

ε ≤

√√√√1

8

N

X

X∑
i=1

D(ρi||σi) (5.44)

T =
N

X
(5.45)

where i = 1, 2, ..., X and
∑

i ηi = 1. However, considering the number of parame-

ters that are involved, we will not optimize the protocol for the most general case.

Instead, we will optimize the protocol in which Alice and Bob communicate in two

wavelengths simultaneously. In this case, the parameters that we need to consider

are η, n̄1, n̄2, µ1, µ2.

For optimal performance of the protocol, we demand that

n̄1 = n̄opt (5.46)

µ1 = µopt (5.47)

where n̄opt and µopt are the optimal mean photon number of the noise and the signal

in the basic protocol.
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Furthermore, since λ1 is the more efficient wavelength for the communication,

we want to send more bits in λ1 than in λ2. We can set

η ≥ 1− η

⇒ η ≥ 1

2
(5.48)

In general, whether multiplexing leads to an improvement in the protocol de-

pends on how the noise level depends on the wavelengths in which the communi-

cation take place. In this report, we do not consider a particular function which

governs the relationship of the noise level with the wavelength associated to the

channel. Instead, we consider how different noise level and evaluate what is the

range of noise level, in which multiplexing is suitable.

Again, we consider the case where Alice sends b = 35 bits covertly, with Eve’s

detection bias of ε = 0.1 and Bob’s decoding error probability E = 0.01. As some

may have expected, the optimal case is when n̄2 = n̄opt and µ2 = µopt as well with

η = 0.5. In this case, we have

T = 1.8951× 109 ≈ Nopt

2
(5.49)

where Nopt is the optimal number of channel uses in the original protocol.

We may also be interested to know whether we still get an improvement when

the n̄2 differs from the optimal noise level. Suppose we can achieve µ2 = µopt and

setting η = 0.5, we want to know how much deviation from optimal noise level can

we tolerate while still having an improvement from multiplexing. In Fig. 5.2, we

plot the graph of the effective number of channel uses (T ) against the noise level in

λ2 channel (n̄2).

We can see that multiplexing can lead to improvement in relatively large range

of noise level (from less than half of the optimal noise level to more than twice

of the optimal noise level). Although this result may sound promising, whether

multiplexing is practically feasible also depends on the relationship of the noise level

and the wavelength in which the communication take place.
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Figure 5.2: The plot of effective number of channel uses (T ) against the noise level in
the λ2 channel (n̄2) to send 35 bits covertly with detection bias ε = 0.1 and decoding
error probability E = 0.01. The black horizontal line represents the optimal number
of channel uses Nopt ≈ 3.4× 109 in the basic protocol.
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Chapter 6

Conclusion

6.1 Summary

The recent developments in covert communication has made it very important to

optimize the performance of covert communication protocols in order to bring them

closer to practical demonstrations. To do that, we propose a model where the noise

in Alice-Bob channel arises from the leakage in Alice-Charlie channel where an open

communication is taking place. Using this model, we minimize the number of chan-

nel uses and the time taken to send a classical message covertly.

Our method of optimization is as follows. First, we set a target for detection bias

and tolerance on Bob’s decoding error probability. Next, we perform a numerical

routine to find the experimental parameters that will minimize the number of time-

bins or the time taken to perform the experiment. We discovered that the optimal

signal-to-noise ratio that will minimize the number of channel uses is relatively low.

This causes difficulty for Eve to distinguish the signal-to-noise ratio, but Bob can

still decode the message reliably through sufficiently large code length. On the other

hand, the optimal mean photon number of both the signal and the noise is relatively

small when we want to minimize the duration of the protocol. This is because the

lower noise level corresponds to smaller pulse width, which is an important factor

which affects the duration of the experiment. To compromise the loss in the fiber,

we need a sufficiently high mean photon number for the signal. Thus, we have a

slightly higher signal-to-noise ratio compared to the case where we want to minimize

the number of channel uses.

Finally, we considered variations on the encoding or implementations of the pro-

tocol but, other than multiplexing, none of those provide any advantage over the
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basic scheme.

6.2 Future directions

In this project, we consider the implementation of covert communication in blocks

where Alice decides in i.i.d. manner whether she will perform the protocol in that

block. This scheme is easy to analyze, however Alice can, in principle, use a different

strategy in which she randomly choose only one block where she will perform the

covert communication protocol. Although it would be more difficult to analyze the

performance of such protocol, since the state will not be of tensor products struc-

ture, it is interesting to know whether this modification will lead to an improvement.

In our model, we consider noise that is induced by communication using bright

signals in the neighbouring channel. Although this gives Alice the ability of con-

trolling the noise level in the channel, such source of noise is rather artificial. The

fact that Alice and Bob is connected by an optical fiber may also be incriminating

to them. We can consider a covert communication protocol that is performed in

free space subjected to the noise naturally present in daylight. The difficulty in this

protocol is in modeling the state for daylight as well as the usual challenges in free

space communication.

So far, we only considered the covert transmission of classical information. It

would also be interesting to perform an optimization of quantum covert communi-

cation protocol. For example, one could look at the signals as encoding a qubit and

perform state tomography to reconstruct its state.
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Appendix A

Calculation of the Signal State

In this appendix, we present the explicit calculation of the signal state ρS. The

signal state ρS can be computed directly by considering Eve’s state when there is k

photons coming from the noise and l photons coming from the signal. We denote

that state by σkl. As discussed in section 3.3.2, it is sufficient to consider only few

number of photons, so we will only consider k ≤ 1 and l ≤ 2.

We first consider the input and output modes of the beam splitter in the model

(Fig 3.1). For simplicity, we associate those modes with their corresponding creation

operators {a†A, a
†
N , a

†
E, a

†
L} and we let the transmittivity of the beam splitter be η,

as illustrated in Fig A.1.

𝑎𝐴
† 𝑎𝐸

†

𝑎𝑁
†

𝑎𝐿
†

Figure A.1: The beam splitter (with transmittivity η) in Fig 3.1 with its input and
output modes
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The transformation of the beam splitter can be written as

a†A →
√
ηa†E + i

√
1− ηa†L

a†N →
√
ηa†L + i

√
1− ηa†E

Using this transformation rule, we will compute the σkl’s. In this appendix, we will

adopt the convention of |nEnL〉 for the Fock state describing nE photons in the E

mode and nL photons in the L mode.

Computing σ00 is trivial. Since we have vacuum in both input modes A and N ,

we will also have vacuum in both output modes E and L. Thus

σ00 = |0〉〈0|

For σ01, we have

a†A |vac〉〈vac| aA → (
√
ηa†E + i

√
1− ηa†L) |vac〉〈vac| (√ηaE − i

√
1− ηaL)

= η |10〉〈10|+ (1− η) |01〉〈01|+ i
√
η(1− η) |10〉〈01|

− i
√
η(1− η) |01〉〈10|

≡ σ′01

To obtain σ01, we take the partial trace of σ′01 with respect to L.

σ01 = TrL(σ′01)

= (1E ⊗ 〈0|L)σ′01(1E ⊗ |0〉L) + (1E ⊗ 〈1|L)σ′01(1E ⊗ |1〉L)

= (1− η) |0〉〈0|+ η |1〉〈1|

Therefore, we can see that the effect of taking partial trace is removing the off-

diagonal terms of the E-L system, and then only keeping nE in the remaining

|nEnL〉〈nEnL|’s. As such, we will skip the details of the partial trace step for rest of

the σkl’s.

For σ02:

σ02 = TrL

[
1√
2

(
√
ηa†E + i

√
1− ηa†L)2 |vac〉〈vac| (√ηaE − i

√
1− ηaL)

1√
2

]
=

1

2
TrL

[(
η(a†E)2 + 2i

√
η(1− η)a†Ea

†
L − (1− η)2(a†L)2

)
|vac〉

〈vac|
(
ηa2

E − 2i
√
η(1− η)aEaL − (1− η)2a2

L

)]
B
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σ02 = (1− η)2 |0〉〈0|+ 2η(1− η) |1〉〈1|+ η2 |2〉〈2|

For σ10:

σ10 = TrL

[
(
√
ηa†L + i

√
1− ηa†E) |vac〉〈vac| (√ηaL − i

√
1− ηaE)

]
= η |0〉〈0|+ (1− η) |1〉〈1|

For σ11:

σ11 = TrL

[
(
√
ηa†E + i

√
1− ηa†L)(

√
ηa†L + i

√
1− ηa†E) |vac〉

〈vac| (√ηaE − i
√

1− ηaL)(
√
ηaL − i

√
1− ηaE)

]
= TrL

[(
(2η − 1)a†Ea

†
L + i

√
η(1− η)(a†L)2 + i

√
η(1− η)(a†E)2

)
|vac〉

〈vac|
(

(2η − 1)aEaL − i
√
η(1− η)a2

L − i
√
η(1− η)a2

E

)]
= 2η(1− η) |0〉〈0|+ (1− 2η)2 |1〉〈1|+ 2η(1− η) |2〉〈2|

For σ12:

σ12 = TrL

[
1√
2

(
√
ηa†E + i

√
1− ηa†L)2(

√
ηa†L + i

√
1− ηa†E) |vac〉

〈vac| (√ηaL − i
√

1− ηaE)(
√
ηaE − i

√
1− ηaL)2 1√

2

]
=

1

2
TrL

[(
iη
√

(1− η)(a†E)3 + (3η − 2)
√
η(a†E)2a†L + i(3η − 1)

√
1− ηa†E(a†L)2

− (1− η)
√
η(a†L)3

)
|vac〉〈vac|

(
− iη

√
(1− η)a3

E + (3η − 2)
√
ηa2

EaL

− i(3η − 1)
√

1− ηaEa2
L − (1− η)

√
ηa3

L

)]
= 3η(1− η)2 |0〉〈0|+ (1− η)(1− 3η)2 |1〉〈1|+ η(2− 3η)2 |2〉〈2|+ 3η2(1− η) |3〉〈3|

In summary, these are the six σkl’s that we compute

σ00 = |0〉〈0| (A.1)

σ01 = (1− η) |0〉〈0|+ η |1〉〈1| (A.2)

σ02 = (1− η)2 |0〉〈0|+ 2η(1− η) |1〉〈1|+ η2 |2〉〈2| (A.3)

σ10 = η |0〉〈0|+ (1− η) |1〉〈1| (A.4)

σ11 = 2η(1− η) |0〉〈0|+ (1− 2η)2 |1〉〈1|+ 2η(1− η) |2〉〈2| (A.5)
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σ12 = 3η(1− η)2 |0〉〈0|+ (1− η)(1− 3η)2 |1〉〈1|

+ η(2− 3η)2 |2〉〈2|+ 3η2(1− η) |3〉〈3| (A.6)

Using those six states, we can calculate the signal state ρS using

ρS ≈
1∑

k=0

2∑
l=0

n̄k

(1 + n̄)k+1

e−µµl

l!
σkl

D
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