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Abstract 

Optical transitions play a role in the formation of excitons in Stontium Titanate (STO). It is 

known that the interband transitions between the valence band of STO to the conduction band of 

STO is the contributor of the Wannier excitons that are found in STO when a STO sample is 

irradiated with light. Resonant excitons in STO on the other hand, are the result of optical 

transitions between higher energy states. By curve fitting of the resonant excitonic peaks of the 

imaginary part of the temperature difference data of the complex dielectric function of STO 

obtained through spectroscopic ellipsometry and subsequently inputting the curve of best fit into 

the a Kramers-Kronig transformation, we obtain the corresponding “curve of best fit” for the real 

part of the temperature difference data of the complex dielectric function of STO. By comparing 

this result to the experimental data points of the real part of the temperature difference data of the 

complex dielectric function of STO, we deduce if the majority of the optical transitions between 

these higher energy states responsible for the resonant exciton are interband transitions. In 

addition, we also determine the sample quality of STO used in terms of the presence of 

impurities and defects via the curve fitting procedure. 
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Chapter 1: Introduction 

In this section, the background of spectroscopic ellipsometry, electromagnetic waves, behaviour 

of electromagnetic waves as they transit from one medium to another and of dielectrics in the 

presence of an applied external electric field is discussed. In addition, we discuss the various 

exciton types and a brief description of STO. 

1.1 Electromagnetic waves 

Electromagnetic waves travel at a constant speed, the speed of light in a vacuum or air medium. 

They arise from two oscillating electric and magnetic fields that oscillate about one another and 

are lying in planes perpendicular to each other. The wave propagation in three dimensional space 

for the oscillating electric field vector component   and oscillating magnetic field vector 

component   can be described by the following relations (1.1.1) and (1.1.2) respectively.  

                                 

                                 

Here,    is the amplitude of the electric field oscillation,    is the amplitude of the magnetic 

field oscillation,   is the angular frequency,   is the wave vector and   is the phase angle. The 

picture below illustrates the propagation of an electromagnetic wave. 

 

Fig 1.1.1: An electromagnetic wave propagating in three dimensional space [1] 
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When light transits from a vacuum/air medium to a new medium that is of a higher density, it 

can be reflected, absorbed or transmitted through the new medium. The transmitted light travels 

at a speed lesser than the speed of light in the new denser medium. As a result, the light bends at 

the surface of the new denser medium, which is the interface between the vacuum/air medium 

and the new medium of higher density. This is a phenomenon known as refraction. The extent of 

refraction can be determined by the refractive index   which is defined by relation (1.1.3) below. 

  
 

 
             

Here,   is the speed of light in a vacuum/air medium and   is the speed of light in the denser 

medium. When light transits from an initial medium call it medium one, to a new medium, call it 

medium two, the relation between the refractive indices of the mediums one and two can be 

related to one another by relation (1.1.4) below known as Snell’s Law. 

                            

Here,    is the refractive index of medium one,    is the angle of incidence,    is the refractive 

index of medium two and    is the angle of refraction. The picture below shows the bending of 

light as it passes through the interface between two mediums of different densities, air and water.  

 
Fig 1.1.2: A light ray being refracted at the air-water interface [2] 



5 
 

When the refraction of light is accompanied by the attenuation of light as light passes through the 

optical medium, the refractive index is no longer a real value but a complex value. 

In addition, electromagnetic waves obey Maxwell’s equations [3]. The four of them are given 

below. 

    
 

  
             

                  

     
  

  
             

           
  

  
              

Here,   is the amount of charge enclosed by the Gaussian surface,   is the amount of current 

density enclosed by the Amperian loop,    is the permittivity of free space and    is the 

permeability of free space. Equation (1.1.5) says that the amount of electric flux leaving a 

surface of an enclosed volume is proportional to the amount of charge enclosed inside the 

volume. Equation (1.1.6) says that no magnetic monopoles exist in nature. Equation (1.1.7) says 

that the amount of electromotive force induced in a closed loop is proportional to the rate of 

change of magnetic flux being enclosed by the loop. Finally, equation (1.1.8) says that the 

magnetic field generated around a closed loop is proportional to the sum of the electric current 

passing perpendicularly through the circular surface enclosed by the loop and the rate of change 

of electric flux being enclosed by the loop. Equations (1.1.5) and (1.1.6) are known as Gauss’ 

Law for electric and magnetic monopoles respectively, equation (1.1.7) is known as Faraday’s 

Law and equation (1.1.8) is known as Ampere’s Law. 
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1.2 Fresnel equations 

When light is polarized, it can either be p-polarized or s-polarized. “p” and “s” refer to its 

oscillating electric field lying on a plane that is parallel and perpendicular to the plane of 

incidence respectively. 

The picture below illustrates the difference between light with “p” and “s” polarization. 

 

Fig 1.2.1: The p-polarized wave lies on the incident plane but the s-polarized wave is perpendicular to the 

incident plane [4] 

The Fresnel equations describe the amount of reflection and transmission when light waves are 

incident on an interface between two different mediums. The reflection coefficient is the ratio of 

the amplitude of intensity of the reflected wave to that of the incident wave, while the 

transmission coefficient is the ratio of the amplitude of intensity of the transmitted wave to that 

of the incident wave.  

The set of Fresnel equations that give the reflection coefficient for p-polarized    and s-polarized 

   light respectively are given below. 
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The set of Fresnel equations that give the transmission coefficient for p-polarized    and s-

polarized    light respectively are given below. 

   
        

               
             

   
        

               
             

Here,    is the angle of incidence,    is the angle of transmission,    is the refractive index of the 

medium the incident ray passes through and    is the refractive index of the medium the 

transmission ray passes through.  

The Fresnel equations also apply to mediums with complex refractive indices. 

1.3 Dielectric polarization 

A dielectric material is in general a material where all charges are not free to move around the 

material like in conductors, but are tightly attached to their respective atoms or molecules. 

However, they are given some extent to move about within their respective atoms or molecules. 

When an external electric field is applied on a dielectric material, the positively charged nucleus 

and the negatively charged electron cloud within each atom or molecule experience an electric 

force in opposite directions causing them to move apart from each other in opposite directions. 

They move apart from each other until equilibrium is reached when the mutual forces of 

attraction holding them together are balanced by the forces of repulsion they experience as a 

result of the applied external electric field. This results in a slight shift of the positive charges in 

one direction and the negative charges in the opposite direction. Every atom or molecule 

possesses a small dipole moment as a result, which points in the opposite direction of the applied 

external electric field. The dielectric as a whole will have a net dipole moment pointing in the 

opposite direction of the applied external electric field contributed from the sum of all the small 

dipole moments of individual constituent atoms or molecules. This phenomenon is known as 

dielectric polarization. The extent of polarization is typically measured by the number of dipole 

moments per unit volume and is a vector quantity denoted by  . 
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1.4 Permittivity 

The permittivity of a dielectric material is a measure of the resistance encountered when an 

electric displacement field is generated in the material due to the application of an external 

electric field or in other words, the amount of electric displacement field that is generated in the 

material due to the application of an external electric field. For an instantaneous response of a 

dielectric material to an applied external electric field, the electric displacement in the material 

  due to the application of the external electric field   is given by relation (1.4.1) below. 

                 

Here,   is the permittivity. It is a scalar for an isotropic medium but a tensor for an anisotropic 

medium. In addition it can also be a function of position, frequency of the applied external 

electric field for oscillating applied fields and other physical parameters. The electric 

displacement in the material   due to the application of the external electric field   can 

alternatively be expressed in terms of the applied external electric field   and the polarization   

by relation (1.4.2) below. 

                    

For many dielectric mediums, the polarization   is directly proportional to the applied external 

electric field [5] which can be expressed by relation (1.4.3) below. 

                   

Here,   is called the susceptibility which is a measure of how easily polarization occurs for a 

particular dielectric medium subject to an external electric field. After substituting (1.4.3) into 

(1.4.2), we can express the electric displacement in the material   by relation (1.4.4) below. 

                       

By comparing (1.4.1) and (1.4.4), we find that the permittivity is related to the susceptibility by 

relation (1.4.5) below. 
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Physically, this means that when a particular dielectric medium polarizes more easily, the lesser 

the resistance encountered when an electric displacement field is generated in the material due to 

the application of an external electric field. 

In reality, an instantaneous response of a dielectric material to an applied external electric field is 

unrealistic. Naturally, there is a response time or time lag to dielectric polarization which would 

imply a non-instantaneous response rather than an instantaneous response. In order to model 

such non-instantaneous response, we need to replace the permittivity that can only take on real 

values with a complex permittivity that can take on complex values. This is because the phase 

difference of a complex value can be used to represent a delay in response, that is, the dielectric 

polarization depends on the external electric field applied in the past. The complex permittivity is 

defined by the complex number which can be given by relation (1.4.6) below. 

                     

In the case that there is instantaneous response, the imaginary part of the complex value is zero and hence 

the complex permittivity is only given by the real part of the complex value and so the complex 

permittivity reduces to the original definition of permittivity as discussed previously which is a 

real value. In terms of the physical meaning, the real part of the complex permittivity is related to 

the energy stored in the medium due to dielectric polarization and the imaginary part of the 

complex permittivity is related to the energy absorbed by the medium and lost to heat or other 

forms of energy. The complex permittivity can be referred to as a dielectric function of angular 

frequency   when the applied external electric field is oscillating with angular frequency  , with 

the real and imaginary parts both being functions of the angular frequency  . 

 

 

 

 

 



10 
 

1.5 Kramers-Kronig relations 

The real part of the dielectric function is related to the complex part of the dielectric function and 

vice versa. The Kramers-Kronig relations are a pair of integral formulas that describe the 

mathematical connection between the two functions. They are given below. 

      
 

 
     

      
  

      

 

  

                

       
 

 
     

    
    

      

 

  

                

P.V. denotes the Cauchy principal value. For a function that is to be integrated but has a 

singularity existing in between its lower and upper limits, the Cauchy principal value enables the 

integral to be evaluated to a real value for an integral which would otherwise be undefined. The 

definition of the Cauchy principal value is given by relation (1.5.3) below. 

               
    

                
 

   

   

 

 
 

 

             

Once one knows the complex part of the dielectric function for all frequencies, one can obtain 

the real part of the dielectric function for all frequencies through the Kramers-Kronig relations 

and vice versa. 
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1.6 Excitons 

When a light photon is absorbed by an optical medium, exciting an electron from the valence 

band to the conduction band, a hole is created in the valence band. An electron-hole pair is 

formed. If the electron-hole pair does not recombine, they are held together by Coulomb 

attraction due to the positive charge on the hole and the negative charge on the electron 

analogous to that of the hydrogen atom. This electron-hole pair taken together as a single particle 

is known as an exciton. There are two well known types of exciton, one type being the Wannier 

exciton and the other being the Frenkel exciton. 

The Wannier type exciton has its electron weakly bound to its hole. Hence, there is a large 

average electron-hole distance. The binding energy is approximately 10meV and the atomic 

radius is approximately 100 . The exciton is also delocalized from the atom of origin and is free 

to move around the crystal structure. Wannier type excitons are typically found in 

semiconductors. 

The Frenkel type exciton has its electron tightly bound to its hole. Hence, there is a small 

average electron-hole distance. The binding energy is approximately 1eV and the atomic radius 

is approximately 10 . The exciton is also localized to the atom of origin. However, it is able to 

move through the crystal structure by hopping from atom to atom in a wavelike manner. Frenkel 

type excitons are typically found in alkali halides and organic materials. The picture below 

compares a Wannier type exciton and a Frenkel type exciton in a crystal lattice. 

 

Fig 1.6.1: The difference between a Wannier type and Frenkel type exciton [6] 
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In semiconductors, the exciton energy levels are all just below the direct band gap of the 

conduction band for Wannier type excitons. These are where the electronic part of the exciton 

resides. 

The picture below illustrates this. 

 

Fig 1.6.2: The exciton levels a Wannier type exciton in a semiconductor 

Electron-electron and electron-hole pairs can interact with one another due to Coulomb forces of 

attraction and repulsion in a many body problem. When both the electron-electron and electron-

hole interactions are strongly coupled, it can give rise to a novel type of exciton termed as the 

resonant exciton. Unlike the Wannier excitons, resonant excitons occur at higher energy bands 

and they can occur at energies well above the corresponding optical band gap of the material [7]. 

This is a relatively new phenomenon that has yet to be studied in detail. A suggested useful tool 

to experimentally probe such resonant excitons is via spectroscopic ellipsometry.  
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1.7 Spectroscopic ellipsometry 

Spectroscopic ellipsometry is an experimental technique that studies the change in polarized light 

upon the reflection and transmission of light in an optical medium. The measured optical 

properties of the medium are the amplitude ratio   and the phase difference   between the p-

polarized and s-polarized light waves. Spectroscopic ellipsometry is typically carried out in the 

infrared-visible to ultraviolet region. Spectroscopic ellipsometry measures the       spectra 

across a continuous range of incident photon energies   . Here,   is the Planck’s constant and   

is the frequency of the incident photon. Subsequently, an optical model that assumes the medium 

has a perfectly flat surface and infinite thickness is employed to obtain the pseudo dielectric 

function (PDF)     directly from the       spectra. If the medium is isotropic and atomically 

flat, then the PDF     approaches the true dielectric function  . Spectroscopic ellipsometry plays 

an important role in the study of excitonic effects as it is able to probe neutral excitations that 

give rise to electron-hole pairs and excitons.   

The complex reflectance ratio    is defined by relation (1.7.1) below. 

   
  
  

             

When light reflection is measured in spectroscopic ellipsometry, the amplitude ratio    and the 

phase difference    between the p-polarized and s-polarized light waves are related to the 

complex reflectance ratio by relation (1.7.2) below. 

                               

Here,    is the amplitude ratio between the reflected p-polarized and s-polarized light waves and 

   is the phase difference between the reflected p-polarized and s-polarized light waves. 

The PDF can be obtained by relation (1.7.3) below. 
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Here,    is the angle of incidence of the light beam which is pre-determined in the spectroscopic 

ellipsometry experiment and    is the complex reflectance ratio which can be found directly 

using (1.7.2) with values obtained from the         spectra which is measured during the 

spectroscopic ellipsometry experiment. Assuming the medium used in the spectroscopic 

ellipsometry experiment to be isotropic and atomically flat, the true dielectric function   can be 

considered to be equivalent to the PDF     and can hence be given by (1.7.3).  

General restrictions that have to be imposed on the optical medium being used for spectroscopic 

ellipsometry are that the surface roughness of the sample is small and the measurements have to 

be conducted at an oblique incidence. The rational for the former being that the light scattered by 

a rough surface reduces the reflected light intensity severely, rendering the polarization state 

difficult to measure. The rationale for the latter being that at normal incidence, p-polarized and s-

polarized waves cannot be distinguished making measurements of the polarization state 

impossible [8]. 

The picture below shows how spectroscopic ellipsometry works. 

 

Fig 1.7.1: Spectroscopic ellipsometry on a sample 

A beam of light is incident on the medium at a fixed angle of incidence  . The medium has an 

intrinsic refractive index   which affects the amplitude ratio   and extinction coefficient   

which affects the phase difference  . The reflected light is measured by a detector which records 

the         spectra across a continuous range of incident photon energies. 
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1.8 Strontium Titanate 

Strontium titanate (STO) is a perovskite-type titanate. A perovskite is a material that has the 

same crystal structure as calcium titanate. A perovskite has a general chemical formula ABX3 

where A and B represent cations of different sizes and X is an anion.  

The crystal structure of STO is shown in the picture below. 

 

Fig 1.8.1: The crystal structure of STO or a perovskite in general [9] 

The Wannier exciton in STO has its electronic part well localized on the Ti atom, while the hole 

is localized on the neighbouring O atom [10]. STO has a band gap of 3.2eV separating the 

valence and conduction band at zero Kelvin [11]. The six fold coordination of Ti ions by 

surrounding O ions result in a crystal field splitting of the degenerate Ti-3d states at 2.4eV into 

two states Ti-3d t2g and Ti-3d eg. Speaking in terms of bands, the valence band of STO which is 

the band with highest occupied molecular orbitals is the mainly the O-2s and O-2p states of 

oxygen and the conduction band which is the band with lowest unoccupied molecular orbitals is 

mainly the titanium empty Ti-3d states of titanium. 

There are all together three excitonic peaks for STO named Ex1, Ex2 and Ex3. The Ex1 peak at 

3.75eV at 4.2K is identified as a Wannier excitonic peak while the Ex2 and Ex3 peaks at 4.67eV 

and 6.11eV respectively at 4.2K are identified as resonant excitonic peaks [12].  
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Chapter 2: Data Analysis Methodology 

In this section, we will discuss a brief overview of the spectroscopic ellipsometry procedure used 

to generate the data that is being collected for the data analysis. We will then discuss the curve 

fitting procedure with the aid of Mathematica for the temperature difference of the imaginary 

component of the complex dielectric function of STO. This will be followed by a discussion on 

the application of the Kramers-Kronig relations on the curve fitted function of the temperature 

difference of the imaginary component of the complex dielectric function to obtain the graph of 

the temperature difference of the real component of the complex dielectric function of STO with 

the aid of Mathematica. Last but not least, the graph of the temperature difference of the real 

component of the complex dielectric function generated from the above procedure is compared 

to the experimental data of the temperature difference of the real component of the complex 

dielectric function of STO for analysis. 

2.1 Experiment background 

STO (100) samples from Crystec are being used for the spectroscopic ellipsometry 

measurements. They are all of size 10mm by 10mm by 0.5mm and single side polished with rms 

roughness less than 5 . Spectroscopic ellipsometry is carried out with a commercial rotating 

analyser ellipsometer from J.A. Woollam Inc which covers a photon energy range from 0.6eV to 

6.5eV in steps of 0.02eV. The lowest temperature that the STO samples are at is 4.2K and the 

highest temperature that the STO samples are at is 350K. The low temperature measurements are 

carried out in an open cycle cryostat with base pressures within the regime of      Torr, created 

by a mixture of liquid helium and liquid nitrogen. The angle of incidence for all measurements 

made by the cryostat is fixed at 70 .  
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2.2 Experimental determination of the complex dielectric function 

The STO samples are measured in air. Hence, the optical model employed is an air-sample 

interface. The optical model also assumes a sample of infinite thickness. This assumption is valid 

as the depth of the STO sample is much greater than the light beam penetration depth which does 

not exceed 1  m. In addition, the optical model assumes an atomically flat surface which is valid 

because all the STO samples have rms roughness less than 5 . Hence, the PDF which is 

experimentally obtained directly from the spectroscopic ellipsometry measurements can be 

considered to be the true complex dielectric function of STO. 
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2.3 Curve Fitting of the complex dielectric function peaks 

The analysis of the peak data points obtained from spectroscopic ellipsometry requires 

knowledge of the dielectric function pertaining to the sample. However, we do not know the 

dielectric functions pertaining to the sample. We attempt to curve fit the peaks with bell-shaped 

distributions, namely the Gaussian, Lorentz and Voigt profile.  

We curve fit the imaginary component of the complex dielectric function as it is the imaginary 

component that is dependent on the energy absorption of the material, which is in turn linked to 

the material’s behavior in terms of photon absorption in order to form the exciton.  

The Gaussian profile is a Gaussian distribution defined by relation (2.3.1) below. 

            
      

  
              

Here,           are parameters that describe the height of the peak, the   position and the 

standard deviation of the bell-shaped curve of the Gaussian distribution respectively. Note that 

that the standard deviation is related to the half-width at half-maximum of the bell-shaped curve 

of the Gaussian distribution. 

The Lorentz profile is a Cauchy distribution defined by relation (2.3.2) below. 

     
   

         
             

Here,           are parameters that describe the height of the peak, the   position and the scale 

parameter determining the half-width at half-maximum of the bell-shaped curve of the Cauchy 

distribution respectively. It is worth to mention that the Lorentz profile looks like a Gaussian 

profile with a bell-shape but with lighter tails, that is, tails that go down less rapidly. 

The Voigt profile is a profile that is obtained from the convolution of the Gaussian profile and 

the Lorentz profile. The Voigt profile is defined by relation (2.3.3) which follows where the 

asterisk is the notation for a convolution operation. 
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For the convenience of computation, the Voigt profile is often approximated by the pseudo-Voigt 

profile which is much easier to work with [13]. The pseudo-Voigt profile is given by the linear 

combination of or a weighted sum of the Gaussian and Lorentz profiles. The pseudo-Voigt 

profile is defined by relation (2.3.4) below. 

                                       

Here,   and     are the weights attached to the Gaussian profile and the Lorentz profile 

respectively and they must both sum to unity and hence,   is a value that must be bounded below 

by zero and bounded above by one. In addition, the parameters           in the pseudo-Voigt 

profile must be same for both the Gaussian profile and the Lorentz profile involved. 
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2.4 The curve fitting procedure 

The experimental data of the temperature difference of the imaginary component and real 

component of the complex dielectric function of STO is obtained from the Singapore 

Synchrotron Light Source (SSLS). The temperature difference of the imaginary component of 

the complex dielectric function is defined by relation (2.4.1) that follows. 

                                      

Here,   takes the value 1 for the real component and the value 2 for the imaginary component.   

is the temperature the STO samples are at when the measurements are taken in Kelvin. The curve 

fitting procedure is done on the experimental data of the temperature difference of the imaginary 

component (   ) at       ,      ,        and       . The curve fitting 

procedure can be categorized into three main steps. 

Step 1: Plotting of the data plots in Mathematica. 

The experimental data of the temperature difference of the imaginary component at   

    ,      ,        and        are imported into the Mathematica software via a 

CSV version of the original excel file. The Mathematica command for the procedure using 

       as an example is as follows: 

                                                      

The data plots of the        against incident photon energy in electron volts are then plotted for 

the various temperatures. The Mathematica command for the procedure using        as an 

example is as follows: 

                                           

Here,                               are all the data points imported from the csv file by 

evaluating the “Import” command.  
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The data plot using        as an example is shown below. 

 

Fig 2.4.1: The data plot for      across the whole range of photon energies 

Step 2: Zooming into the photon energy neighbourhood of the excitonic peak in order to find the 

location of the peak data point. 

There are all together three excitonic peaks for STO, Ex1, Ex2 and Ex3. 

For each peak, there is a corresponding peak data point that is very close to the true peak. The 

photon energy neighbourhood for which the peak data point has        value that is the local 

maximum of all        values of all the data points within the neighbourhood is determined. 

This can be done by referring to the data plot generated in step 1.  

The data plot of        against photon energy restricted to the photon energy neighbourhood 

determined is then plotted. The Mathematica command for the procedure using        for the 

Ex1 peak as an example is as follows:  

                                          

Here,                              are all the data points chosen to be in the restricted 

neighbourhood of photon energy.  
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The data plot using        for the Ex1 peak as an example is shown below. 

 

Fig 2.4.2: The data plot for      within the neighbourhood of the Ex1 peak 

The photon energy and the        values corresponding to the peak data point are then found. 

The Mathematica command for the procedure using        for the Ex1 peak as an example is 

as follows: 

                                                 

The “MaximalBy” command picks out the data point that has the largest        value within the 

restricted neighbourhood of photon energy when evaluated. This corresponds to the peak data 

point. The Mathematica output is shown below. 

                

Step 3: Finding the curve of best fit. 

The sum of square error (SSE) is defined by relation (2.4.1) below. 

             
          

 
 

   

             

Here,        
  is the estimated value from the curve of fit and         is the value from the 

experimental data point, while   labels the data points and   is the total number of data points 

used in the curve fitting.  
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The mean square error (MSE) is defined by relation (2.4.2) below. 

    
   

 
             

For a particular type of curve with variable parameters, the curve of best fit is attained when the 

MSE is minimized. Knowing the values of the respective parameters when the MSE is 

minimized will give the equation of the curve of best fit. The process of obtaining the equation of 

the curve of best fit can be split into two cases. When curve fitting any peak, we may assume 

case 1. If case 1 does not suffice, then we proceed to case 2.  

For each peak, we start by finding the equation of the curve of best fit for the Gaussian and 

Lorentz profile respectively. We guess that the parameters   and   respectively take the values 

of        and the photon energy of the corresponding peak data point found previously in step 2. 

For the   parameter, we start by setting it to take the value of 0.1. Starting from the 

corresponding peak data point found previously in step 2, 10 data points to its left and 10 data 

points to its right are chosen. Any data points that have negative        value are discarded as 

these are in the invalid range of values for a Gaussian or Lorentz profile. 

Next, we find the equation of the curve of best fit for the Gaussian and Lorentz profile 

respectively. The Mathematica commands for the procedure using        for the Ex1 peak as 

an example for the Gaussian and Lorentz profile respectively are as follows: 

                                                            

                                        

                                                          

                                      

For all the curve fittings done, it has been observed that the   parameter of every curve of best fit 

for the Gaussian or Lorentz profile always takes values close to 0.1. Hence, it suffices to use 0.1 

as a guess for all curve fittings involving the Gaussian and Lorentz profile. Furthermore, since 

the pseudo Voigt profile is a linear combination of the Gaussian and Lorentz profile, we expect 

the   parameter of every curve of best fit for the pseudo Voigt profile to take values close to 0.1 

as well. 
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Case 1: The unconstrained pseudo Voigt profile suffices. 

For each peak, we start by trying to curve fit the pseudo Voigt profile. We guess that the 

parameters   and   respectively take the values of        and the photon energy of the 

corresponding peak data point found previously in step 2 and the   parameter takes the value 

0.1. We initially fix the   parameter to take the value of 0.5. That is, assuming half Gaussian and 

half Lorentz profile. Starting from the corresponding peak data point found previously in step 2, 

10 data points to its left and 10 data points to its right are chosen. Any data points that have 

negative        value are discarded as these are in the invalid range of values for a pseudo Voigt 

profile. 

Next, we find the equation of the curve of best fit for a pseudo Voigt profile. The Mathematica 

command for the procedure using        for the Ex1 peak as an example are as follows: 

                                                                        

                                                                 

Here,                            are all the data points chosen for the curve fitting, and a, b, c 

and d are the parameters of the pseudo Voigt profile. The “FindFit” command picks out the 

particular values of the parameters that give the pseudo Voigt profile with the minimum MSE 

and hence gives the equation of the curve of best fit for the pseudo Voigt profile. The 

Mathematica output is shown below. 

                                             

                                          

Only the   parameter that needs to be varied when guessed. The   parameter is bounded below 

by 0 and above by 1. As a rule of thumb, we can first guess the   parameter to take the value of 

0.5. Should unreasonable estimates of any of the parameters be obtained, we guess the   

parameter again in increasing or decreasing steps of 0.1. In the case of the        Ex1 peak 

example, the guessed parameter values all turn out to be close to the parameter values that give 

the minimum MSE and hence, a reasonable answer is obtained immediately.  
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Case 2: The unconstrained pseudo Voigt profile does not suffice. 

In this case, regardless of the guessed   parameter value, the estimated value of   that gives the 

minimum MSE violates the bounded range of  . There are three possible scenarios for this. 1) A 

pure Gaussian fit is better than a pseudo Voigt fit. 2) A pure Lorentz fit is better than a pseudo 

Voigt fit. 3) There exists a pseudo Voigt fit subject to specific parameter constraints which is 

better than a pure Gaussian fit or a pure Lorentz fit. In such a case we use equation of the curve 

of best fit for the Gaussian and Lorentz profile respectively found earlier. The Mathematica 

commands for the procedure using        for the Ex2 peak as an example are as follows: 

                                                               

                                        

                                                             

                                      

Here,                               are all the data points chosen for the curve fitting and a, 

b and c are the parameters of the Gaussian or Lorentz profile. The Mathematica output for the 

Gaussian and Lorentz profiles respectively are shown below. 

                                             

                     

                                                                 

The respective parameter estimates obtained from the Gaussian and Lorentz curves of best fit are 

then used as the upper and lower parameter limits in the constrained pseudo Voigt profile curve 

fitting. The Mathematica commands for the procedure using        for the Ex2 peak as an 

example are as follows: 
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Here,                  refers to the set of values of        
  in (2.4.1) and              refers 

to the set of values of         in (2.4.1). The set of values of          
          

 
 in (2.4.1) is 

given by               and the MSE is given by        which is obtained by summing all the 

elements in the               set divided by the total number of data points which is 13 in this 

example. The “NMinimize” command picks out the particular values of the parameters that give 

the pseudo Voigt profile with the minimum MSE subject to the upper and lower limits set on the 

parameters. The operation of the “NMinimize” command here in case 2 is essentially the same as 

the “FindFit” command in case 1 with the difference that all the parameters are subjected to 

constraints, whereas in case 1, the parameters are not subjected to any constraints. The 

Mathematica output is shown below. 

                                              

                                           

If the   parameter takes a value that tends to 1, then it implies scenario 1). On the other hand, if 

the   parameter takes a value that tends to 0, then it implies scenario 2). Lastly if the   parameter 

takes a value that is in between 0 and 1, then it implies scenario 3). This example fits scenario 1). 

The pure Gaussian curve of best fit is the best curve that can be fitted as compared to the pure 

Lorentz curve or the pseudo Voigt curve of best fits. 
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2.5 Kramers-Kronig transformations of the curves of best fit 

For each peak, after obtaining the curve of best fit from the curve fitting procedure, the 

substitution       is used where   is the photon energy converted from electron volts to 

Joules and   is the Planck’s constant in the integration that results from the application of (1.5.1) 

on the curve of best fit in order to obtain the corresponding relationship of the temperature 

difference of the real component of the complex dielectric function of STO against the frequency 

of the incident photons. Due to the Cauchy principal value of the integral not having a closed 

form, a graph that describes the relationship is obtained for each peak. The Mathematica 

command for the procedure using        for the Ex1 peak as an example are as follows: 

                                                                 

                                                                

                                      

                                                                       

The “NIntegrate” command gives the best approximation to the integral arising from (1.5.1) at 

every value of photon frequency within the valid range and the “Plot” command plots out the 

graph.  

The temperature difference data of the real component at       ,      ,        and 

        is given in terms of        against incident photon energy in electron volts. It has to 

be converted into        against frequency of the incident photons so that the data points when 

plotted can be directly compared with the graph obtained via the Kramers-Kronig 

transformation. This conversion is done to the temperature difference data of the real component 

at       ,      ,        and         in the relevant CSV files before being 

imported into the Mathematica software. The data plots of the        against incident photon 

frequency in      Hertz are then plotted for the various temperatures. The Mathematica 

command for the procedure using        for the Ex1 peak as an example is as follows: 
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We then compare the graph obtained for the temperature difference of the real component via the 

Kramers-Kronig transformation of the fitted curve with the experimental data points for the 

temperature difference of the real component.  
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Chapter 3: Results and Discussion 

In this section, we will discuss the physical insight that we can gain from the curve fitting results 

of the experimental data points of the temperature difference of the imaginary component of the 

complex dielectric function and the results of the Kramers-Kronig transformation on the curve 

fitted results. By considering the temperature difference of the imaginary component in (2.4.1), 

we are assuming that interband transitions do not exist in the formation of the resonant exciton. 

By performing the curve fitting and subsequently comparing the Kramers-Kronig transformation 

of the best fit curve to the experimental data points of the real component of the complex 

dielectric function, we should be able to tell if this assumption is valid for the resonant exciton.  

3.1 The curve fitting results 

The following table shows the respective curves of best fit and the corresponding excitonic peaks 

in the temperature difference data of the imaginary component of the complex dielectric function 

across the different temperatures. 

Excitonic 

Peak 

Temperature Curve of 

Best Fit 

A 

Parameter 

B 

Parameter 

C 

Parameter 

D 

Parameter 

Ex1  4.2K Pseudo-

Voigt 

1.54740 3.80914 0.0965302 0.328874 

Ex2 4.2K Pure 

Gaussian 

0.699867 4.70630 0.0650239 - 

Ex3 4.2K Pure 

Gaussian 

0.211112 6.24982 0.102759 - 

Ex1 50K Pseudo-

Voigt 

1.46836 3.81599 0.0962429 0.437108 

Ex2 50K Pure 

Gaussian 

0.678594 4.71109 0.0641915 - 

Ex3 50K Pure 

Gaussian 

0.175823 6.26828 0.112125 - 
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Ex1 200K Pseudo-

Voigt 

0.715669 3.86117 0.106052 0.637435 

Ex2  200K Pure 

Gaussian 

0.347736 4.74147 0.0733798 - 

Ex3 200K Pure 

Gaussian 

0.205221 6.31673 0.0935796 - 

Ex1  325K Pseudo-

Voigt 

0.198958 3.89597 0.190069 0.310657 

Ex2 325K Pure 

Gaussian 

0.0224115 4.70546 0.0388894 - 

Ex3 325K No Peak - - - - 

Table 3.1.1: The estimated parameter values for the respective curves of best fit 

It has been estimated that the error bar of the data points for the imaginary component of the 

complex dielectric function cannot exceed 0.001. Hence we use the value 0.001 as the value for 

our error bars. 

For the Wannier exciton that gives rise to the Ex1 peak, the pseudo Voigt is the best curve of fit 

as compared to the Gaussian or Lorentz curves. The Gaussian character suggests inhomogeneous 

broadening which in turn suggests the presence of impurities or defects perturbing the local 

potential [14]. The Gaussian character increases as the temperature increases from 4.2K to 50K 

to 200K but drops at 325K, suggesting that the effect of the perturbation increases with 

increasing temperature in general. 

We also note that although the general shape of the pseudo-Voigt curve of best fit mimics that of 

the data points, we note that the pseudo Voigt curve fits are not within most of the error bars for 

any of the temperatures. This could most likely be attributed to the slight asymmetry of the 

experimental data points giving rise to the Ex1 peaks.  
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The graphs below show the pseudo-Voigt curve of best fit together with the experimental data 

points and their corresponding error bars for temperature 4.2K and 200K as an example. 

 

Fig 3.1.1: The data plot for Ex1 with the pseudo Voigt curve of best fit at 4.2K  

 

Fig 3.1.2: The data plot for Ex1 with the pseudo Voigt curve of best fit at 200K  

For the resonant exciton which gives rise to the Ex2 peak in STO, the Gaussian is the best curve 

of fit as compared to the Voigt or Lorentz curves. The pure Gaussian nature could be due to 

Gaussian broadening occurring to a large extent such that the Lorentz contribution to the pseudo 

Voigt profile is outweighed, regardless of the temperature. It could hint that the resonant exciton 

responsible for Ex2 has its electronic component in a region where there is much more 

perturbation to the local potential due to defects or impurities as compared to the Wannier 

exciton responsible for Ex1. 
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We also note that the general shape of the Gaussian curve of best fit mimics that of the data 

points and is also within most of the error bars for any of the temperatures, suggesting that the 

Gaussian is indeed a good fit for the data points of the Ex2 peak.  

The graphs below compare the fitted Gaussian curve and the fitted Lorentz curve with the data 

points and their corresponding error bars for temperature 4.2K as an example. The Gaussian 

curve fits better than the Lorentz curve. 

 

Fig 3.1.3: The data plot for Ex2 with the Gaussian curve of best fit at 4.2K 

 

Fig 3.1.4: The data plot for Ex2 with the Lorentz curve of fit at 4.2K 
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Similarly, for temperature 200K as an example, the Gaussian curve fits better than the Lorentz 

curve. The graphs below compare the fitted Gaussian curve and the fitted Lorentz curve with the 

data points and their corresponding error bars for temperature 200K as an example. 

 

Fig 3.1.5: The data plot for Ex2 with the Gaussian curve of best fit at 200K 

 

Fig 3.1.6: The data plot for Ex2 with the Lorentz curve of fit at 200K 
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curve of fit as compared to the Voigt or Lorentz curves. Like the resonant exciton responsible for 
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in a region where there is much more perturbation to the local potential due to defects or 

impurities as compared to the Wannier exciton responsible for Ex1. 
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curve of best fit mimics that of the data points, it is not within a majority of the error bars for any 

of the temperatures. In addition, there is no well defined peak for Ex3 at temperature 325K 

possibly due to the small difference in values of the imaginary component of the complex 

dielectric function experimental data points between the temperatures 325K and 350K resulting 

in a roughly general uniform temperature difference data. 

The graphs below compare the fitted Gaussian curve and the fitted Lorentz curve with the data 

points and their corresponding error bars for temperature 4.2K as an example. The Gaussian 

curve fits better than the Lorentz curve. 

 

Fig 3.1.7: The data plot for Ex3 with the Gaussian curve of best fit at 4.2K 

 

Fig 3.1.8: The data plot for Ex3 with the Lorentz curve of fit at 4.2K 
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Similarly, for temperature 200K as an example, the Gaussian curve fits better than the Lorentz 

curve. The graphs below compare the fitted Gaussian curve and the fitted Lorentz curve with the 

data points and their corresponding error bars for temperature 200K as an example. 

 

Fig 3.1.9: The data plot for Ex3 with the Gaussian curve of best fit at 200K 

 

Fig 3.1.10: The data plot for Ex3 with the Lorentz curve of fit at 200K 
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3.2 The Kramers-Kronig transformation results 

The following graphs show the resulting temperature difference of the real component of the 

complex dielectric function curves by applying the Kramers-Kronig transformation to the curves 

of best fit to the temperature difference of the complex component data points for the Ex1 peak 

compared to the experimental data points of the temperature difference of the real component of 

the complex dielectric function for the Ex1 peak. 

 

Fig 3.2.1: The data plot compared against the curve obtained via Kramers-Kronig transformation at 

temperature 4.2K 

 

Fig 3.2.2: The data plot compared against the curve obtained via Kramers-Kronig transformation at 

temperature 50K 

9.0 9.2 9.4 9.6
100 THz

1.0

0.5

0.5

1.0

Epsilon1

9.0 9.2 9.4 9.6
100 THz

1.0

0.5

0.5

1.0

Epsilon1



37 
 

 

Fig 3.2.3: The data plot compared against the curve obtained via Kramers-Kronig transformation at 

temperature 200K 

 

Fig 3.2.4: The data plot compared against the curve obtained via Kramers-Kronig transformation at 

temperature 325K 

It has been estimated that the error bar of the data points for the real component of the complex 

dielectric function cannot exceed 0.001. Hence we use the value 0.001 as the value for our error 

bars. 

We observe that the curves do not fit within the error bars. This is to be expected for the 

Kramers-Kronig transformed curve of best fit for the Ex1 peak as the Ex1 peak corresponds to a 

Wannier exciton. A Wannier exciton is formed through the interband transition of an electron 

from the valence band to conduction band and this violates the assumption of no interband 

transitions. However, the general shape of the Kramers-Kronig transformed curve of best fit still 

follows the general shape of the experimental data points for the real component of the complex 

dielectric function.  
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The following graphs show the resulting temperature difference of the real component of the 

complex dielectric function curves by applying the Kramers-Kronig transformation to the curves 

of best fit to the temperature difference of the complex component data points for the Ex2 peak 

compared to the experimental data points of the temperature difference of the real component of 

the complex dielectric function for the Ex2 peak. 

 

Fig 3.2.5: The data plot compared against the curve obtained via Kramers-Kronig transformation at 

temperature 4.2K 

 

Fig 3.2.6: The data plot compared against the curve obtained via Kramers-Kronig transformation at 

temperature 50K 
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Fig 3.2.7: The data plot compared against the curve obtained via Kramers-Kronig transformation at 

temperature 200K 

 

 

Fig 3.2.8: The data plot compared against the curve obtained via Kramers-Kronig transformation at 

temperature 325K 
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that the assumption interband transitions do not play a role in the formation of the Ex2 resonant 

exciton is not valid.   

The following graphs show the resulting temperature difference of the real component of the 

complex dielectric function curves by applying the Kramers-Kronig transformation to the curves 

of best fit to the temperature difference of the complex component data points for the Ex3 peak 

compared to the experimental data points of the temperature difference of the real component of 

the complex dielectric function for the Ex3 peak. 

 

Fig 3.2.9: The data plot compared against the curve obtained via Kramers-Kronig transformation at 

temperature 4.2K 

 

Fig 3.2.10: The data plot compared against the curve obtained via Kramers-Kronig transformation at 

temperature 50K 
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Fig 3.2.11: The data plot compared against the curve obtained via Kramers-Kronig transformation at 

temperature 325K 

Similarly, we observe that not only the do the curves not fit within the error bars, the general 

shape of the Kramers-Kronig transformed curve of best fit fails to follow the general shape of the 

experimental data points for the real component of the complex dielectric function. This implies 

that the assumption interband transitions do not play a role in the formation of the Ex3 resonant 

exciton is not valid.   

A plausible reason for the general lineshape of the Kramers-Kronig transformations of the best fit 

curves for the resonant excitonic peaks deviate more than that of the Kramers-Kronig 

transformations of the best fit curves for the Wannier excitonic peaks is that the interband 

transitions involved in the formation of the resonant exciton span across a few different pairs of 

higher energy band types, as compared to the interband transitions involved in the formation of 

the Wannier exciton that involves only the valence and conduction band. 
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Chapter 4: Conclusion & Future Work 

4.1 Conclusion 

The Ex1, Ex2 and Ex3 excitonic peaks of the temperature difference of the imaginary component 

of the complex dielectric function were curve fitted with well known bell-shaped profiles based 

on the least mean square error criterion. All the curve-fitted peaks displayed a Gaussian character 

which implies the presence of impurities or defects in the STO sample leading to inhomogeneous 

broadening, with the resonant excitons experiencing greater perturbation than the Wannier 

excitons. 

The Kramers-Kronig transformations of the best fit curves of the peaks do not fit within error 

bars of the data points of the temperature difference of the real component of the complex 

dielectric function. This implies that like the Ex1 Wannier exciton, interband transitions exist in 

the formation of the Ex2 and Ex3 resonant excitons. In addition the general lineshape of the 

Kramers-Kronig transformations of the best fit curves for the excitonic peaks deviate from the 

general lineshape of the data points of the temperature difference of the real component of the 

complex dielectric function for the Ex2 and Ex3 resonant excitons. While for the Ex1 Wannier 

exciton, the general lineshape of the Kramers-Kronig transformations of the best fit curves for 

the excitonic peaks mimic the general lineshape of the data points of the temperature difference 

of the real component of the complex dielectric function. This implies that while interband 

transitions between the valence and conduction bands can give rise to the Ex1 Wannier exciton, 

interband transitions involving several pairs of higher energy bands can give rise to the Ex2 and 

Ex3 resonant excitons.  
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4.2 Future work 

There is a slight asymmetry in the Ex1 Wannier excitonic peak for the imaginary component of 

the complex dielectric function data points. Hence, an asymmetric pseudo Voigt profile which 

has to take into account many body effects multi-electron excitations in the sample [15]  might 

be considered in future curve fitting purposes.  

As the Gaussian character in all the curve fittings seem to suggest the presence of impurities or 

defects in the sample being used, future experiments may be carried out on STO samples with 

known levels of doping to check if indeed the level of Gaussian character in the new curve 

fittings increase with the level of doping.  

The data points towards higher photon energies also tend to fluctuate more making it more 

difficult to do curve fitting. Future spectroscopic ellipsometry experiments could consider taking 

a few repeated runs and taking the average of the readings corresponding to each reading of 

photon energy for photon energies that are within the neighborhood of the Ex3 peak. 

Finally, we should seek the higher energy bands responsible for the interband transitions that are 

responsible for the formation of the Ex2 and Ex3 resonant excitons in STO in future research. 

 

 

 

 

 

 



44 
 

References 

[1] Hewitt, Paul G, 2006, Conceptual Physics, San Francisco: Pearson Addison Wesley. 

[2] Halliday, D., Resnick, R., and Walker, J., 2008, Fundamentals of physics (8th ed.), Hoboken, NJ:   

Wiley. 

[3] Huray, Paul G, 2010, Maxwell’s Equations, Wiley-Blackwell. 

[4] Mannan Ali, 1999, Growth and study of magnetostrictive FeSiBC thin films, for device applications  

[5] Griffiths, 2014, Introduction to Electrodynamics 4
th
 edition-Electromagnetic Waves, Pearson. 

[6] Martin Pope and Charles E Swenberg, 1999, Electronic Processes in Organic Crystals and Polymers 

2
nd

 edition, Oxford University Press 

[7] Z. Yong, P.E. Trevisanutto, L. Chiodo, I. Santoso, A.R. Barman, T.C. Asmara, S. Dhar, A. Kotlov, A. 

Terentjevs, F. Della Sala, V. Olevano,  M. Rubhausen, T. Venkatesan and A. Rusydi, Phy. Rev. B93, 

205118 (2016) 

[8] Fujiwara, 2007, Spectroscopic Ellipsometry: Principles and Applications, John Wiley & Sons, Ltd 

[9] T. Leisegang, H. Stöcker, A. A. Levin, T. Weißbach, M. Zschornak, E. Gutmann, K. Rickers, S. 

Gemming, and D. C. Meyer, Phy. Rev. Lett102,087601 (2008) 

[10] Prócel, L. M., Tipán, F., & Stashans, A. (2003). Mott–Wannier excitons in the tetragonal BaTiO3 

lattice. International Journal of Quantum Chemistry, 91(4), 586590. doi:10.1002/qua.10471 

[11] F.M.F. De Groot, M. Grioni, J.C. Fuggle, J. Ghijsen, G.A. Sawatzky and H. Petersen, Phys. Rev. B 

40 (1989), pp. 5715–5723. 

[12] P.K. Gogoi, L. Sponza, D. Schmidt, T.C. Asmara, C. Diao, J.C.W. Lim, S.M. Poh, S. Kimura, P.E. 

Trevisanutto, V.Olevano and A. Rusydi, Phy. Rev. B92,035119 (2015) 

[13] Bales, B. L., Peric, M., & LamyFreund, M. T. (1998). Contributions to the gaussian line broadening 

of the proxyl spin probe EPR spectrum due to magneticfield modulation and unresolved proton hyperfine 

structure. Journal of Magnetic Resonance, 132(2), 279286. doi:10.1006/jmre.1998.1414 

[14] P.K. Gogoi, Z. Hu, Q. Wang, A. Carvalho, D. Schmidt, X. Yin, Y. H. Chang, L.J. Li, C.H. Sow, 

A.H.C. Neto, M.B.H. Breese, A. Rusydi and A.T.S. Wee (2017) .Oxygen Passivation Mediated 

Turnability of Trion and Excitons in MoS2. 

[15] Schmid, M., Steinrück, H., & Gottfried, J. M. (2014). A new asymmetric pseudovoigt function for 

more efficient fitting of XPS lines: New asymmetric pseudovoigt function for efficient XPS line fitting. 

Surface and Interface Analysis, 46(8), 505511. doi:10.1002/sia.5521 

 


