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Abstract

The evolution of colours in living things have long been a huge

area of interest in fields like evolution biology. In particular, struc-

tural colours may have important applications in material science.

However, the formation of such thin and fine structures was not well

understood.

The method of analysing easily obtainable optical microscope im-

ages was explored in this report. A Bayesian approach to segment a

Bicyclus butterfly scale was used and have shown to be very success-

ful. With that image segmentation, the motifs, or patterned spatial

distribution, of colours could be studied with a soft clustering algo-

rithm and proven to have some persistent features.

This series of development may lead to a new and practical way of

characterising the diverse colours of different butterflies.
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1 Introduction

1.1 Overview

Colours in living things, for a very long time, have been a topic of interest to

biologists and philosophers. In the last few centuries, scientists worked hard

to identify the mechanisms to produce, as well as understand the purpose of,

those colours [1, 2, 3]. While most of the scientific studies were focused on the

evolutionary aspects, some of them can have huge implications in materials

science [2].

Figure 1: A section of a butterfly wing. Image taken by Anupama Prakash.

In general, colours in living things can be created by selective absorption

of light by pigments (pigment colour), by interference scattering of light from

highly structured tissues (structural colour) and by a combination of these

elements.

1.2 Butterfly scale

The brilliant blue colours of a butterfly scale was thought to be a result from

inference effects due to the fine structures on the scale, in contrast to the

absorptive colours (brown) resulting from pigmentation. In particular, the

blue colours on the Bicyclus butterflies was found out to be produced by thin
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film interference at the base as illustrated in Figure 2 [4] .

These fine structures were believed to be created from a single cell

Figure 2: Model of a butterfly scale showing the distribution of (LEFT) pigment
colour and (RIGHT) structural colour. For a Bicyclus butterfly, the structural
colour is mainly produced at the base.

when a caterpillar metamorphoses into a butterfly [5]. Within a butterfly,

the genetic information codes for the variations in the proteins and enzymes

which ultimately result in the structural and pigment colours. Furthermore,

between neighbouring cells, the chemical signals were sufficient to trigger the

cells to differentiate and to look different from each other, for example, during

the formation of eye spots, neighbouring scales communicate each other to

form the different coloured rings [6].

Within a species, the gender differentiation can determine the differences

in these structures and thus result in the different dominant colour for each

gender. Equipped with a better understanding of these structures for the

different gender within a species, one can possibly obtain better insights on

how gender differentiation relates to the structural colours.

1.3 The Problem

In order to study the structures which produce such structural colours, a

Transmission Electron Microscope (TEM) will be needed to resolve the fea-
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Figure 3: The close up image of a typical butterfly cover scale shows the intricate
features at about 1 micron scale [7]. Such fine features can only be resolved by an
equipment with a high resolution.

tures on a butterfly scale. However, in using this technique, at best, one can

only observe the 3D reconstruction, without any colour information. With

TEM, it is not possible to recover the colour of the structural colour, which

are the colours observable to other butterflies.

The other issue of studying structural colours using TEM is that it is

expensive and slow. This makes studying the changes in the structures, from

genetic variations, a very costly and tedious task. At a reasonable resolu-

tion, it would cost a researcher an order of about a thousand dollar (SGD)

to study a small section of the butterfly wing.

The next best method for studying 3D structures is to use 3D X-ray

ptychography with the capacity to image 3D structures at a high resolution

of 16nm [8, 9]. However, similar to TEM, any information of the colour is

lost. Thus, studying the variations in the formation of structural colours may

require other techniques.

1.4 The Solution

A novel approach to this problem is to apply image processing techniques as

well as statistical clustering techniques on high-resolution optical images of

butterfly scales. Optical microscopes are commonly found in most imaging

laboratories and obtaining a high-resolution optical image is not prohibitively

expensive. Furthermore, optical microscope images retain the colour infor-
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mation which may be useful to study their chemical origins.

However, the typical laboratory-grade optical microscope have a resolu-

tion of about 1 µm and is unable to resolve the small features which leads to

the structural colour. Instead, it is able to capture the regions which produce

such colours as shown in Figure 4.

Motifs refer to a pattern and for this report, the pattern or spatial dis-

Figure 4: Cover scale Female pansy butterfly (left). Close up of the cover scale
(right). Image taken by Anupama Prakash.

tribution of colours was investigated. Using this method, characterising the

diverse colours of butterflies may become a relatively cheap and fast process

and this may result in better insights on the different and diverse mecha-

nisms for such colours. The techniques used were described in the following

sections.
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2 Methodology

Image processing techniques as well as clustering techniques was applied on

an optical image of a butterfly scale to quantitatively study the structural

features on them. For the optical image to be of quantitative use, the image

was first segmented, then restructured and finally fed into a clustering algo-

rithm. Section 2.1 explains the process of image segmentation while Section

2.2 describes the process of restructuring and re-labelling the image so that

quantification is possible. Section 3.2 is focused on using the restructured

image to obtain quantifiable information which could be used for further

analysis.

Figure 5: Optical microscope image of a Bicyclus butterfly scale.

2.1 Image Segmentation

2.1.1 RGB-space clustering

With a colour image of the butterfly scale, the RGB values of each pixel was

obtained and plotted as points on a 3 dimensional scatter graph where each

axis represents the individual colour channels as shown in Figure 6 (LEFT).

Observing the number of “groups” or clusters, one can identify how many

major colours are present on the image. The number of points in a cluster will

indicate how often those colours appear. The spread of the cluster can tell

us how much do the colours deviate from its centre and finally, the spread
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between clusters can tell us about the “inter-mixing” between two major

colour groups.

Figure 6: (LEFT) Scatter plot of the butterfly scale shows the distribution of RGB
values for each pixel. Instead of distinct colors, a spread or smearing of colours can
be observed. (RIGHT) The Gaussian mixture model clustering of the RGB plot.
The red points were classified as the valleys and the green points were classified as
the ridges.

2.1.2 Gaussian mixture model

A Gaussian mixture model was used to classify the points into two clusters,

one for points from the ridges and another for points from the valleys. The

idea used here is that the ridges and the valleys of the scale would have

distinctively different RGB values. For the case of this butterfly scale, the

blue values would be more intense for the valleys since they were mainly

responsible for the blue colour as shown in Figure 6 (RIGHT). With the

scatter points in the RGB-space, the Gaussian mixture model will be able to

determine, for each pixel, the probability of it being in each cluster.

With this clustering, it is now possible to determine the probability of a

point, of a particular RGB value, to be classified as either a ridge or a valley.

Mapping the probabilities back to the original scale, it is observed that the
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clustering does indeed correspond to the actual ridges and valleys, as shown

in Figure 7. It is with this reorganisation of the image that one can possibly

quantify the image.

Figure 7: (LEFT) Close up of a male cover scale. (RIGHT) The probability map
of a scale, where a value closer to 1 represents a high likelihood of being in the
ridge and a value closer to 0 represents a high likelihood of being in the valley.

2.1.3 Gabor filter

With the probability map, a gabor filter was used to further modify the map

so that the image can be properly segmented. A gabor filter is a filter com-

monly used for edge detection in computer vision applications. In this case,

it was utilised to segment the ridges from the valleys in the probability map.

It serves the purpose of better refinement of the classification between the

ridges and valleys since there were regions where it was incorrectly classified
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by the Gaussian mixture model classification.

Figure 8: (LEFT) The probability map of a male cover scale. (RIGHT) The real
component of the gabor filter with a frequency of 0.1. The frequency of 0.1 was
chosen to suit the interval of the repeating linear pattern, which in this case, is
visually identifiable as the valleys or ridges.

2.2 Reshaping the scale

With the proper image segmentation of the ridges and the valleys, one will

be able to restructure the way he/she view the scale and finally to obtain new

insights and findings. A restructured view of the scale will possibly provide

a quantitative way of looking at the scale that could be used to be compared

with other scales.
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2.2.1 Fitting with parameters

After thresholding and labelling individual ridge and valleys as shown in

Figure 9. The coordinates of ridges and valleys were, separately, fit to a 4th

order polynomial and a line was plotted for each of them in Figure 9. A

4th order polynomial was chosen because it was sufficient to accurately fit

the shape of the ridges and valleys, while not compromising on computation

speed.

With this 4th order polynomials, it is possible to retrieve the pixel values

at positions relative to the line. This can be done by substituting the “x”

values onto the polynomial equations to retrieve the “y” values. This greatly

simplifies the process of retrieving the relevant coordinates on the scale.

Figure 9: (LEFT) After threshold was applied and the ridges labelled with an index.
(RIGHT) Fitted equation for the ridges was plotted against the original image of
the cover scale to compare the quality of the fit.
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2.2.2 Realigning the scale

From the polynomial parametrisation, it is now easier to obtain the “x” and

“y” coordinates of the valleys or ridges on the scale. This implies that it is

possible to also obtain the “x” values that are perpendicular to line, using

the line that is normal to the polynomial. This is shown in Figure 10.

Figure 10: (LEFT) Normal lines were drawn perpendicular to the polynomials.
A representative coordinate that is perpendicular to the polynomial was chosen to
illustrate the perpendicular positions. (RIGHT) The probability map of a straight-
ened scale where the valleys were straightened such that the centre of the valleys
were at the centre of each column. Note the periodicity of the occurrence of the
white “spots”.

The straightened scale unlocks new possibilities in quantifying the diverse

nature of butterfly scales. This straightening utilises the regularities between

the ridges and valleys, ultimately providing some avenues for quantitative

comparisons between different butterfly scales.
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2.2.3 Box-plot of probability

With the fitted polynomials, the points of ridges were retrieved from the

probability map and one can observe quantitatively how the average ridge

looks like along the length of the scale as shown in Figure 12. This could be

used to quantify the differences in structures between different scales from

different butterflies.

Figure 11: Statistical box-plot of a particular ridge. For every pixel along the ridge,
the probability of the pixels to be classified as the ridge were tallied as a function of
the distance to the central pixel. This box-plot shows the variations of the average
ridge when looking at the neighbouring pixels.
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2.3 Soft clustering for motifs

Another method to quantitatively analyse a butterfly scale is to look at the

persistent motifs of the shape of the valleys. This is interesting to consider

because it may serve as an indicator on the number of hidden variables for

the formation of such structures as described in Section 1.

This section contains the description of the soft clustering algorithm

which used to obtain the motifs. Section 2.3.2 explains the scoring func-

tion used to measure the difference between two images which is a crucial

component for the algorithm to function.

2.3.1 Clustering algorithm

Input: images (I), classes (C)
Output: classes (C

′
), weights (ρ

′
)

Initialization;
for each k in Ik do

for each n in Cn do
for each r in roll do

Sk,n,r = a
exp[

−(Ik,r−In)2

∆
]

∆

end

end
Normalise the score;
for each n in Ci do

for each r in roll do
C
′
n += Ik,r · Sk,n,r

ρ
′
n += Sk,n,r

∆ += Sn,r · (Cn − In,r)2

end

end

end
Algorithm 1: Soft clustering algorithm
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2.3.2 Scoring function

While there are many types of scoring functions, the suitability of the func-

tion depends on the use case and affects the rate of convergence.

Sk,n,r = a
exp[

−(Ik,r−In)2

∆
]

∆
, (1)

where a is a normalising constant such that
∑
Sk,n,r = n(I) ∗ n(C) ∗ n(roll).

This scoring function describes the differences between the classes and im-

ages by a Gaussian distribution. The sensitivity of the scoring function is

controlled by the value of ∆ in the exponent, a smaller value of ∆ will cause

score to be closer to zero while a larger value will cause the score to be

closer to one. Hence, choosing an ideal value for ∆ is important so as to not

under-fit and over-fit the classes. The algorithm includes a section where it

automatically fine tunes this parameter so that an optimal value of ∆ can

be obtained.
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3 Discussion

The next two sections addresses the capacity of the methods described in

Section 2 to quantify the features on different butterfly scales by comparing

across butterflies of different genders in a particular species. Section 3.3

analyses the possible issues with reproducibility that was not considered.

Section 3.4 discusses the extensions of this technique and how it could be

extended to future studies.

3.1 Box-plot of probability

The image segmentation techniques as discussed in Section 2 was applied

on male and female Bicyclus butterfly scales and showed promising results.

Observing the differences of the box plots between the scale from differ-

Figure 12: Box plot of an average ridge of (LEFT) male and (RIGHT) female
Bicyclus butterfly scale. The deviation at the peak of the ridge is small and becomes
larger when it is not at the peak. The difference in distribution were caused by
difference in appearance of the butterfly scales and this features were likely to be
caused by gender differentiation.

ent gender of the Bicyclus butterfly, one can conclude that there is indeed a

statistical difference in the average shape of their ridges. Namely, the male

ridge on the male Bicyclus butterfly varies more than the female variety.
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Moreover, with the probability map of the scale, it is possible to recon-

struct the 3D structure of the scale as shown in Figure 13. This was done

with the assumption that the thickness of the scale is directly related to the

probability that it is part of ridge. However, the limitation in this assumption

is that the regions with zero probability would mean that the scale would

have zero thickness. While this method produces a visually pleasing image,

it may not correspond well with the actual ridge heights since the assumption

of the relationship between probability and height may not hold true.

Figure 13: 3D surface plot of (LEFT) male and (RIGHT) female Bicyclus butterfly
scale. The probability was used as the height in the z-axis.

3.2 Motifs on a butterfly scale

The soft clustering algorithm as described in Section 2 was applied to a but-

terfly scale in order to obtain the motifs. Recall that the purpose of studying

the motifs is to attempt to answer the question of hidden variables, or at

least provide insights to that issue.

From the different attempts as shown in Figure 14, it can be observed that

the motifs were not consistent with each other despite being from the same

scale. This clustering algorithm was further applied to the red channel of the
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Figure 14: (TOP) Straightened probability map of the butterfly scale. (BOTTOM)
Multiple attempts of different initialisation of the soft clustering algorithm. Cn

refers to the nth motif.

same section of the same butterfly scale and the motifs are shown in Figure

15 and showed similar results.

This results were unexpected since one would expect the motifs to ap-

pear the same for an identical image. To gain a better understanding, a

fictional butterfly scale with known motifs was generated and the algorithm

was applied, its results were reported in Appendix A. From the simulation,

it was noted that the soft clustering algorithm was unable to obtain the same

motifs if there are too many different motifs present on the image. This is

likely to be the case since the valleys on the scale does look very different

from each other.

While this may be a big hint that there may be too many hidden vari-

ables, there are still room for development to be able to provide a better
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Figure 15: (TOP) Straightened red channel values of the butterfly scale. (BOT-
TOM) Multiple attempts of different initialisation of the soft clustering algorithm.
Cn refers to the nth motif.

gauge of the number of motifs. For example, one could naively do a pair wise

comparison between motifs in a single attempt as well as between different

attempts. The idea here is that a truly persistent motif would appear in

most, if not all, of the attempts and it could provide a rough estimate on the

number of motifs present.

3.3 Limitations and considerations

While being affordable and accessible, imaging butterfly scales with optical

microscope images does have a multitude of limitations as well as factors to

consider. In the development of a technique for a high throughput screening

of butterfly scales, it is impartial that most, if not all, of these factors must

be accounted for.
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3.3.1 Type of microscopy

The butterfly scales would look different under different types of microscope

and this will definitely affect the comparison studies. Consider the most

common set-ups available in the common laboratory, namely, transmission

microscopy and reflectance microscopy.

Figure 16: (LEFT) Schematic of light rays in transmission microscopy. (RIGHT)
Schematic of light rays in reflectance microscopy.

Transmission microscopy is where the microscope illumination passes

through the sample, followed by the microscope objective and finally to the

viewer. Reflectance microscopy is where the microscope illumination reflects

onto the surface of the sample and passes through the microscope objective

and finally to the viewer as shown in Figure 16.

This is an important consideration when collecting optical microscopy

images since butterfly scales have different optical properties under these

lighting conditions. Most of the structural colour will show up in the re-

flectance microscopy images while both pigment and structural colour show

up from the transmission microscopy.
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A possible way of improving the way of fingerprinting of the structures

is to compare the differences between the image from reflectance microscopy

and the image from transmission microscopy. By comparing the two images,

of the same butterfly scale, we can have a better contrast for the structural

colours and thus providing a better fingerprint of the butterfly scale for its

structural colour. This is provided that the butterfly scale images could be

superimposed onto each other to obtain the differences.

3.3.2 Colour balance

Ideally, the optical image of the butterfly scale would look the same when

using different optical microscopes. However, this is not usually true because

of difference in the image capturing device on the microscope as well as the

background illumination.

The difference in the illumination will cause the colours on the butterfly

scale to appear significantly different when captured by a camera. For ex-

ample, when using a yellow sodium lamp as compared to a mercury vapour

lamp, the image will appear to be more yellow or more blue respectively.

This will cause the butterfly scale to look discoloured and thus skewing the

results from the colour fingerprinting.

Colour correction will be needed to ensure that the optical images were

compared with the same conditions. A possible implementation is to image

the butterfly scale beside a standard colour chart. The colour chart could be

used to calibrate any camera and any lighting such that quantitative com-

parison studies can be done.

3.3.3 Refractive index of medium

The medium in which the butterfly scales were immersed in will also alter the

colours captured by the optical microscope. For example, if a transmission

microscope was used to capture butterfly scale images, immersing the but-

terfly scale in a solution with similar refractive index will reduce the contrast
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between ridges and valleys. This is because less light will be reflected and

hence more light will be transmitted, reducing contrast on the images. This

is evident in Figure 17.

Figure 17: Transmission microscopy images of Bicyclus butterfly scales immersed
in various mediums. The scales show a larger contrast in air as compared to clove
oil. The refractive index of clove oil is similar to that of the butterfly scale. Images
taken by Anupama Prakash.
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3.4 Future works

The future works can be broadly categorised into two categories, namely,

development phase and application phase.

In the development phase, a deeper understanding of obtaining the motifs

is needed. As suggested by Section 3.2, obtaining an ideal number of motifs

may not be a trivial implementation. Furthermore, it is vital to be able to

correlate this persistence in motifs with known and controlled changes in the

butterfly scale. As a next step in the development phase, for example, one

can look at motifs of butterfly scales where a particular gene was not ex-

pressed or purposely suppressed and compare to that of a wild type butterfly

scale.

In the application phase, one has to consider the the myriad of factors that

will affect the quality of the optical image. As suggested in 3.3, a standard

chart could be used to calibrate different microscope and different lighting

conditions. However, colour correction schemes are non-trivial and must be

customised to suit the purpose of imaging butterfly scales, since the scales

are usually and translucent may oversaturate the camera.

As a further extension to the project, it is possible to consider other types

of motifs on a butterfly. For example, one can look at the motif of colours

on a butterfly scale across the whole wing of a single butterfly. This process

eliminates the need for having genetic variations and instead considers chem-

ical signals between scales as a potential source of hidden variables. With

these type of studies, one would be able to know how many type of colours

there are on a butterfly. Using this knowledge, one can infer the number of

mechanisms the butterfly has to produce such colours. This is an exciting

approach because there must be an finite number of ways a butterfly can

produce colours, since there are only a limited number of genes. However,

the risk may be that the finite list of ways may be too large of a list to provide

useful insights.
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4 Conclusion

Overall, the study of structural colours in butterfly scales using microscope

images was discussed. Gaussian mixture model have shown spectacular re-

sults as a general implementation of segmenting an optical image of the

butterfly scale. This led to the possibility of identifying and quantifying the

features on the scales. Statistical comparison using box-plots of probability

maps could be used as a method to compare between scales.

The use of motifs to characterise similar features on a butterfly scale was

implemented and, despite being preliminary and developmental, have shown

some promising results. The methods discussed could have a big impact

on the study of the mechanisms of genetic variations on structural colour

because of its high throughput capabilities.
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A Appendix - Simulation

A.1 Simulation of a butterfly scale

A fictional butterfly scale was prepared in the following sequence of steps.

First, 4 unique classes of valleys were drawn and each multiplied to a Gaus-

sian blur as shown in Figure 18 and finally added with a 10% normally

distributed noise as shown in Figure 19 (LEFT). Next, they were stitched

together in random sequences to form a segmented section of a fictional but-

terfly scale.

Figure 18: (LEFT) Mask for the valleys. (CENTRE) Gaussian blur array.
(RIGHT) Classes of valleys.

Figure 19: (LEFT) Classes for valleys with 10% noise. (RIGHT) The simulated
butterfly scale.
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A.2 Proof of concept

The simulated scale was put into the soft clustering algorithm and the number

of classes was varied to observe the quality of the clustering when there was

an excess of classes or when there was a lack thereof.

Figure 20: Top to bottom: 3, 4 and 6 classes were used in 40 iterations of the soft
clustering algorithm. Cn = 0.489 indicates the fraction of the valleys (48.9%) that
were labelled as class 1.

With reference to Figure 20, it can be observed that if an exact amount

(4) of classes was provided to the soft clustering algorithm, the clustering

algorithm was able to accurately retrieve the 4 simulated classes of valleys.

However, if too few or too much classes were provided, one or some of the

retrieved class will have a non-unique superposition of multiple classes. Ad-

ditionally, when too many classes were provided to the soft clustering algo-

rithm, the excess classes will have a smaller fraction of valleys to be labelled

in that class.
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B Appendix - Soft clustering package

The package for image segmentation and soft clustering was written in python.

B.1 Usage

The code was run for multiple images and the result is shown in Figure 21.

Figure 21: Code applied onto microscope images of Bicyclus butterfly scales. Im-
ages taken by Anupama Prakash.
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Figure 22: Code snippet for the usage of the package.

B.2 Package

1 # -*- coding: utf -8 -*-
2 """
3 Created on Mon Mar 20 17:54:02 2017
4 This package contains two classes: Clusterer and Butterfly_Segmentation
5
6 -Butterfly_Segmentation segments the butterfly scale image.
7 -Clusterer implements the soft clustering algorithm on the segmented image.
8
9 @author: yeo zhen yuan

10 """
11
12 from skimage.filters import gabor
13 from scipy import ndimage as ndi
14 from skimage import feature
15 from matplotlib import pyplot as plt
16 import numpy as np
17 from sklearn import mixture
18 from sklearn import decomposition
19 from scipy.ndimage.interpolation import rotate
20 from skimage.measure import label
21 #%%
22 class Butterfly_Segmentation:
23 """
24 Segments an optical image of a butterfly scale.
25 Applies gaussian mixture model to seperate the ridges from the valleys.
26 Reshapes the valleys into a straight line.
27
28 Print functions:
29 showRawImg ()
30 printCropProp ()
31 printBox ()
32 printStraightenedValley ()
33 printOriginalValley ()
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34
35 """
36 def __init__(self ,rawImg ,name):
37 self.name = name
38 self.rawImg = rawImg
39 #printCropProp variables
40 self.rot_plots = None
41 self.boxpoints = None
42 self.plotrect0 = None
43 self.plotrect1 = None
44 self.angle = None
45
46 self.croppedImg = None
47 self.probmapridge = None
48 self.probmapvalley = None
49 #print box variables
50 self.newbinarised = None
51 self.croppedImg = None
52 self.ridge_label = None
53 self.valley_label = None
54 self.scale_eqn = None
55 self.scale_yp = None
56 self.ridgedatapoints = None
57 #printStraighten variables
58 self.straightened_roi = None
59 self.relabeled_w3 = None
60 #process the image
61 self.process_image ()
62 #%% public functions
63 def showRawImg(self ):
64 """
65 Displays the input image.
66 """
67 self.__showRe(self.rawImg ,self.name)
68 def printCropProp(self ):
69 """
70 Prints the probability map.
71 """
72 figusize = 20
73 figu = plt.figure(figsize =(figusize , figusize ))
74 afigu=figu.add_subplot (2,3,1)
75 imgplot = plt.imshow(self.rawImg , interpolation=’none ’)
76 afigu.set_title(self.name)
77 afigu=figu.add_subplot (2,3,2)
78 afigu.set_title (" rotated+crop")
79 for each_point in self.rot_plots:
80 plt.scatter(each_point [0], each_point [1],c=each_point [2])
81 plt.scatter(self.boxpoints [::,1], self.boxpoints [::,0], color="g")
82 plt.plot( self.plotrect0 ,self.plotrect1 , ’g--’)
83 plt.imshow(rotate(self.rawImg ,self.angle ,reshape=False))
84 afigu=figu.add_subplot (2,3,3)
85 afigu.set_title (" cropped ")
86 imgplot = plt.imshow(self.croppedImg , interpolation=’none ’)
87 #showRe(croppedImg ," cropped img") #3
88 afigu=figu.add_subplot (2,3,4)
89 afigu.set_title (" ProbValley ")
90 imgplot = plt.imshow(self.probmapvalley ,cmap=’gray ’,
91 interpolation=’none ’)
92 plt.colorbar(imgplot)
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93 #showRe(probmapvalley ,"prob valley ") #4
94 afigu=figu.add_subplot (2,3,5)
95 afigu.set_title (" ProbRidge ")
96 imgplot = plt.imshow(self.probmapridge ,cmap=’gray ’,
97 interpolation=’none ’)
98 plt.colorbar(imgplot)
99 #showRe(probmapridge ,"prob ridge ") #5

100 plt.subplots_adjust(wspace =0.1, hspace =0.1)
101 plt.show()
102 def printBox(self ):
103 """
104 Prints the box plot for a particular ridge.
105 """
106 figusize = 20
107 figu = plt.figure(figsize =(figusize , figusize ))
108 plt.subplots_adjust(wspace =0.1, hspace =0.2)
109 afigu=figu.add_subplot (2,3,1)
110 afigu.set_title ("freq =0.085")
111 plt.imshow(np.real(self.newbinarised),
112 interpolation=’none ’,cmap=’gray ’)
113 afigu=figu.add_subplot (2,3,2)
114 afigu.set_title (" cropped ")
115 plt.imshow(np.real(self.croppedImg),
116 interpolation=’none ’,cmap=’gray ’)
117 afigu=figu.add_subplot (2,3,3)
118 afigu.set_title (" ridgesnonzero ")
119 plt.imshow(np.real(self.ridge_label),
120 interpolation=’none ’,cmap=’gray ’)
121 afigu=figu.add_subplot (2,3,4)
122 afigu.set_title (" valleysnonzero ")
123 plt.imshow(np.real(self.valley_label),
124 interpolation=’none ’,cmap=’gray ’)
125 afigu=figu.add_subplot (2,3,5)
126 for idx ,eqn in enumerate(self.scale_eqn ):
127 if idx != 6 :
128 plt.plot( eqn(self.scale_yp) ,self.scale_yp ,"--")
129 else:
130 plt.plot( eqn(self.scale_yp) ,self.scale_yp ,"-")
131 afigu.set_title ("blk=eqn6=ridge")
132 plt.imshow(self.croppedImg ,interpolation ="none")
133 """
134 Boxplot functionality.
135 """
136 afigu=figu.add_subplot (2,3,6)
137 plt.boxplot(self.ridgedatapoints , whis=’range ’)
138 plt.ylim ((0 ,1))
139 afigu.set_title(’box plot of multiple ridges for ’+str(self.name))
140 def printStraightenedValley(self ):
141 c_label = np.expand_dims(self.relabeled_w3 ,axis =1)/2
142 straightenedValley = np.append(self.straightened_roi ,c_label ,axis =1)
143 self.__showRe(straightenedValley ," Straightened Valley ")
144 def printOriginalValley(self ):
145 self.__showRe(self.original_roi ," Straightened Valleys , width = "+
146 str(self.width))
147 def process_image(self ):
148 print(" Processing image ...")
149 #%% crop and rotate
150 print(" Cropping and rotating ...")
151 edges1 = feature.canny(self.rawImg.mean(axis=2), sigma =90)
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152 filled_edges = ndi.binary_fill_holes(edges1)
153 coords = np.where(filled_edges ==1)
154 points = np.concatenate (([ coords [1]],[ coords [0]]) , axis =0).T
155 #%% pca on the scatter
156 pca = decomposition.PCA(n_components =2)
157 pca.fit(points)
158 pcaScale0 = pca.transform(points)
159 #%% the 4 important points
160 value1 = np.where(pcaScale0 [:: ,0]== np.min(pcaScale0 [:: ,0]))
161 value2 = np.where(pcaScale0 [:: ,0]== np.max(pcaScale0 [:: ,0]))
162 value3 = np.where(pcaScale0 [:: ,1]== np.max(pcaScale0 [:: ,1]))
163 value4 = np.where(pcaScale0 [:: ,1]== np.min(pcaScale0 [:: ,1]))
164 #%% from 4 points rotate
165 a=points[value1 [0]][0]
166 b = points[value2 [0]][0]
167 angle = np.rad2deg(np.arctan2( a[-1] - b[1],a[0] - b[0])+ np.pi/2)
168
169 self.rot_plots = [[ points[value1 [0] ,0][0] , points[value1 [0] ,1][0] ,"r"],
170 [points[value2 [0] ,0][0] , points[value2 [0] ,1][0] ,"r"],
171 [points[value3 [0] ,0][0] , points[value3 [0] ,1][0] ,"r"],
172 [points[value4 [0] ,0][0] , points[value4 [0] ,1][0] ,"r"]]
173 boxpoints = np.array ([[]])
174 for value11 in [value1 ,value2 ,value3 ,value4 ]:
175 newpoint = self.__rotate_point(points[value11 [0],1],
176 points[value11 [0],0],
177 angle ,
178 self.rawImg.shape [0]/2,
179 self.rawImg.shape [1]/2)
180 if boxpoints.shape == 0 :
181 boxpoints = newpoint
182 else:
183 boxpoints = np.append(boxpoints ,newpoint)
184 boxpoints= boxpoints.reshape (-1,2)
185 self.boxpoints = boxpoints
186 xwidth = np.abs(boxpoints [0,0]- boxpoints [1 ,0])//5
187 ywidth = np.abs(boxpoints [2,1]- boxpoints [3 ,1])//5
188 if boxpoints [2,1]> boxpoints [3,1]:
189 y2 , y1 = boxpoints [2,1], boxpoints [3,1]
190 else:
191 y2,y1 = boxpoints [3,1], boxpoints [2,1]
192 x1 = boxpoints [0,0]
193 x2 = boxpoints [1,0]
194 self.plotrect0 = [y1+ywidth ,y2-ywidth ,y2-ywidth ,y1+ywidth ,y1+ywidth]
195 self.plotrect1 = [x2-xwidth , x2 -xwidth ,x1+xwidth ,x1+xwidth ,x2-xwidth]
196 self.angle = angle
197 #%% from 4 points rotated , crop and then continue
198 rotatedImg = rotate(self.rawImg ,angle ,reshape=False)
199 croppedImg = rotatedImg[int(boxpoints [0 ,0]+ xwidth ):
200 int(boxpoints [1,0]- xwidth),
201 int(y1+ywidth ):
202 int(y2 -ywidth )]
203 #%% gaussian mixture model to get the seperation
204 print(" Applying gaussian mixture model clustering ...")
205 g = mixture.GMM(n_components =2)
206 coords5 = croppedImg.reshape (-1,3)
207 #%% add pcascale to coords
208 g.fit(coords5)
209 w=g.predict_proba(np.array(coords5 ,dtype="int64 "))
210 #%% finding the correct class for valleys or ridges
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211 c_shape = croppedImg.shape [:2]
212 prob_class_0 = w[: ,0]. reshape(c_shape)
213 prob_class_1 = w[: ,1]. reshape(c_shape)
214 class0x = np.where(prob_class_0 ==np.max(prob_class_0 ))[0][0]
215 class0y = np.where(prob_class_0 ==np.max(prob_class_0 ))[1][0]
216 class1x = np.where(prob_class_1 ==np.max(prob_class_1 ))[0][0]
217 class1y = np.where(prob_class_1 ==np.max(prob_class_1 ))[1][0]
218 class0_brightness = np.sum(croppedImg[class0x ,class0y ])
219 class1_brightness = np.sum(croppedImg[class1x ,class1y ])
220 #compares between the brightest points to identify ridge from valleys
221 if class0_brightness < class1_brightness:
222 probmapvalley = prob_class_1
223 probmapridge = prob_class_0
224 else:
225 probmapvalley = prob_class_0
226 probmapridge = prob_class_1
227 self.croppedImg = croppedImg
228 self.probmapvalley = probmapvalley
229 self.probmapridge = probmapridge
230 #%% doing analysis on the probmap
231 print(" Running gabor filter ...")
232 for freq in [0.085]:
233 filt_real , filt_imag = gabor(probmapridge , frequency=freq)
234 newbinarised = filt_real >0
235 valley_label = label(1- newbinarised)
236 ridge_label = label(newbinarised)
237 self.newbinarised = newbinarised
238 self.valley_label = valley_label
239 self.ridge_label = ridge_label
240 #%% fitting eqns to ridges and valleys
241 print(" Fitting eqns to ridges and valleys ...")
242 eqn_ridge =()
243 for i in range(1,np.max(ridge_label )):
244 coords = np.where(ridge_label == i)
245 coef= np.polyfit(coords [0], coords [1], 4)
246 p3 = np.poly1d(coef)
247 if len(coords [0]) >200 and len(coords [0]) <5000:
248 eqn_ridge = p3 if eqn_ridge.count ==0 else eqn_ridge + (p3 ,)
249
250 eqn_valley =()
251 for i in range(1,np.max(valley_label )):
252 coords = np.where(valley_label == i)
253 coef= np.polyfit(coords [0], coords [1], 4)
254 p3 = np.poly1d(coef)
255 if len(coords [0]) >200 and len(coords [0]) <5000:
256 eqn_valley = p3 if eqn_valley.count ==0 else eqn_valley +(p3 ,)
257 #%### drawing lines on the original image
258 yp = np.linspace(0, croppedImg.shape [0]-1, croppedImg.shape [0])
259 self.scale_eqn = eqn_ridge
260 self.scale_yp = yp
261 #%### observing one particular ridge over the length of the scale
262 xp = np.linspace (10, croppedImg.shape [0]-21, croppedImg.shape [0] -30)
263 widthh = 5
264 one_ridge = np.array ([])
265 for ridge in [4,5,6]:
266 temp = self.__imcurvecorrected(probmapridge ,xp ,
267 eqn_ridge[ridge],widthh)
268 one_ridge = temp if len(one_ridge )==0 else np.append(temp ,
269 one_ridge ,
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270 axis =0)
271 r_pts = np.array ([])
272 for row in range(len(one_ridge )):
273 roww = [one_ridge[row]]
274 r_pts = roww if len(r_pts )==0 else np.append(r_pts ,roww ,axis =0)
275 #%% ###
276 self.ridgedatapoints = r_pts
277 # cropping to the top half of the probability map
278 crop_height1 = 0
279 crop_height2 = 107
280 yp=np.arange(crop_height1 ,crop_height2 )# probmapvalley.shape [0])
281 for wid in [7]:
282 highestpoints1 = self.__imcurvecorrected(probmapvalley ,
283 yp,eqn_valley [3],wid)
284 highestpointsShow = np.copy(highestpoints1)
285 for vnumber in range(4,len(eqn_valley )-3):
286 temp = self.__imcurvecorrected(probmapvalley ,yp ,
287 eqn_valley[vnumber],wid)
288 highestpoints1 = np.append(highestpoints1 ,temp ,axis =0)
289 highestpointsShow = np.append(highestpointsShow ,temp ,axis =1)
290 straightened_roi = np.copy(highestpoints1)
291 original_roi = np.copy(highestpointsShow)
292 #%% clustering by gausion
293 g3 = mixture.GMM(n_components =3)
294 feature_set = straightened_roi #croppedImg.reshape (-1,3)
295 pca3 = decomposition.PCA(n_components =15)
296 pca3.fit(feature_set)
297 pcaScale3 = pca3.transform(feature_set)
298 g3.fit(pcaScale3)
299 w3=g3.predict_proba(pcaScale3)
300 relabeled_w3 = np.argmax(w3,axis =1)
301 ## saving straighted ridge
302 self.straightened_roi = straightened_roi
303 self.original_roi = original_roi
304 self.width = wid
305 self.relabeled_w3 = relabeled_w3
306 #%% helper methods
307 def __saveRe(self ,array ,title):
308 """
309 Prints and saves real part of an array , with title as string
310 """
311 width = 10
312 height = 10
313 plt.cla
314 plt.figure(figsize =(width , height ))
315 imgplot = plt.imshow(np.real(array),cmap=’gray ’, interpolation=’none ’)
316 plt.colorbar(imgplot)
317 plt.title(str(title))
318 plt.savefig(str(title )+". png")
319 def __showRe(self ,*arg):
320 """
321 Prints real part of an array , with title as string
322 """
323 array = arg[0]
324 width = 10
325 height = 10
326 plt.cla
327 plt.figure(figsize =(width , height ))
328 imgplot = plt.imshow(np.real(array),cmap=’gray ’, interpolation=’none ’)
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329 plt.colorbar(imgplot) #, interpolation=’none ’,aspect=’auto ’
330 if len(arg) == 2:
331 plt.title(str(arg [1]))
332 def __between(self ,p1 ,ratio ,p2):
333 return 1.0*p1*(1-ratio )+1.0* p2*ratio
334 def __bilinear(self ,im ,row ,col): #row , col
335 """
336 Returns the value of the interpolated pixels.
337 """
338 # input the row and col of the interested region
339 a, b =im.shape [:2] #row col
340 row ,col = np.clip([row ,col],[0,0],[a-2,b-2])
341 col1 , row1 = int(col), int(row)
342 col2 , row2 = col1+1, row1+1
343 p1 = self.__between(im[row1 ,col1],row -row1 ,im[row2 ,col1])
344 p2 = self.__between(im[row1 ,col2],row -row1 ,im[row2 ,col2])
345 return self.__between(p1 ,col -col1 ,p2)
346 def __rotate_point(self ,x1 ,y1,angle ,xcentre ,ycentre ):
347 """
348 Returns rotated points based on angle and centre of rotation.
349 """
350 centeredx = x1 - xcentre
351 centeredy = y1 - ycentre
352 s = np.sin(angle /180* np.pi)
353 c = np.cos(angle /180* np.pi)
354 newx1 = centeredx*c - centeredy *s +xcentre
355 newy1 = centeredx*s + centeredy *c +ycentre
356 return [newx1 ,newy1]
357
358 def __imcurvecorrected(self ,im ,rows ,eqn ,width ):
359 """
360 Returns values of interpolated pixel values in im based on eqn.
361 """
362 pixels = np.array ([])
363 for height in rows:
364 normgrad = np.polyder(eqn)( height)
365 inv_norm_grad = 1. / normgrad
366 n =1.0/ np.sqrt (1.+ inv_norm_grad **2)
367 (c, r) = (inv_norm_grad*n, -1.*n)
368 row = np.array ([])
369 for wid in range(-width ,width +1):
370 i_polated = self.__bilinear(im,height+r*wid ,eqn(height )+c*wid)
371 row = np.append(row ,np.array([ i_polated]),axis=None )
372 pixels = row if len(pixels )==0 else np.append(pixels ,row ,axis =0)
373 if len(im.shape )==3:
374 return pixels.reshape(len(rows),width *2+1 ,3)
375 else:
376 return pixels.reshape(len(rows),width *2+1)
377
378
379 class Clusterer:
380 """
381 Given a straighted valley , locates clusters of persistent motifs.
382
383 Print functions:
384 printClasses ()
385 """
386 def __init__(self , im,window_height ,window_width ,num_of_class ,curr_delta ):
387 self.im = im
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388 self.window_height = window_height # 7
389 self.window_width = window_width # 15
390 self.num_of_class = num_of_class # 7
391 self.iter_count = 0
392 #initalise the zeros / random arrays
393 self.set_of_classes = np.random.rand(self.num_of_class ,
394 self.window_height ,
395 self.window_width)
396 self.new_set_of_classes = self.set_of_classes * 0
397 self.roll_for_each_class = np.zeros(self.set_of_classes.shape [0])
398 self.count_addition = np.zeros(self.num_of_class)
399 self.weights = np.zeros(self.num_of_class)
400 self.curr_delta = curr_delta
401 self.new_delta = 0.
402 #%% helper classes
403 def __center_class(self ,s_set_of_classes ):
404 s_new_set_of_classes=np.zeros(s_set_of_classes.shape)
405 for class_index in np.arange(s_set_of_classes.shape [0]):
406 amax = s_set_of_classes[class_index ].sum(axis = 1). argmax ()
407 unrolled = np.roll(s_set_of_classes[class_index],
408 -amax +(len(s_set_of_classes[class_index ]))//2 ,
409 axis =0)
410 s_new_set_of_classes[class_index ]= unrolled
411 return np.copy(s_new_set_of_classes)
412 def __reorder_classes(self ):
413 """
414 Reorder the classes so that the max is in front.
415 Reorder the count_addition correspondingly.
416 """
417 set_of_classes ,count_addition =( self.set_of_classes ,self.count_addition)
418 new_count = np.sort(count_addition)
419 new_set_of_class = set_of_classes[count_addition.argsort ()]
420 self.set_ofclasses = np.copy(new_set_of_class [:: -1])
421 self.count_addition = np.copy(new_count [:: -1])
422 #%% proper run iter
423 def runIter(self ,num):
424 for times in np.arange(num):
425 #initialise:
426 self.weights = np.zeros(self.num_of_class)
427 self.new_set_of_classes = np.copy(self.set_of_classes * 0)
428 #scoring function:
429 num_windows = self.im.shape [0]// self.window_height -1
430 for k in np.arange(num_windows ):
431 score = np.zeros((len(self.set_of_classes),self.window_height ))
432 window_arr = self.im[int(k*self.window_height ):
433 int((k+1)* self.window_height )]
434 for n , class_arr in enumerate(self.set_of_classes ):
435 for r in np.arange(window_arr.shape [0]):
436 rolled_window = np.roll(window_arr ,r,axis =0)
437 var=np.mean(np.abs(class_arr -rolled_window )**2)
438 #print (var)
439 score[n,r] = np.exp(-var/self.curr_delta)
440 #normalising the score:
441 score/= score.sum()
442 #updating clusters
443 window_arr = self.im[int(k*self.window_height ):
444 int((k+1)* self.window_height )]
445 for n , class_arr in enumerate(self.set_of_classes ):
446 for r in np.arange(window_arr.shape [0]):
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447 rolled_window = np.roll(window_arr ,r,axis =0)
448 self.new_set_of_classes[n] += score[n,r]* rolled_window
449 self.weights[n] += score[n,r]
450 average = np.mean(np.abs(class_arr -rolled_window )**2)
451 self.new_delta += score[n,r]* average
452 #scaling updated clusters with weights
453 self.curr_delta = self.new_delta/num_windows/n/r
454 self.new_delta = 0.
455 print (" Current delta = " + str(self.curr_delta ))
456 for n , class_arr in enumerate(self.set_of_classes ):
457 if self.weights[n] > 0:
458 self.new_set_of_classes[n] /= self.weights[n]
459 #setting up for next iteration
460 print(" Iteration "+str(self.iter_count +1))
461 self.set_of_classes = np.copy(self.new_set_of_classes)
462 self.count_addition = np.copy(self.weights)
463 #recenter classes every 10 iteration.
464 if (self.iter_count %10 == 0):
465 self.set_of_classes = self.__center_class(self.set_of_classes)
466 self.__reorder_classes ()
467 self.iter_count += 1
468 #%% print classes
469 def printClasses(self ):
470 figusize = 20
471 figu = plt.figure(figsize =(figusize , figusize ))
472 for n in np.arange(self.set_of_classes.shape [0]):
473 afigu=figu.add_subplot (1,self.set_of_classes.shape[0],n+1)
474 percent = 100.0* self.count_addition[n]/ self.count_addition.sum()
475 afigu.set_title ("C"+str(n)+"=" +"%0.1 lf"%( percent )+"%")
476 afigu.imshow(np.real(self.set_of_classes[n]),cmap=’gray ’,
477 interpolation=’none ’)
478 plt.suptitle ("run = "+str(self.iter_count ))
479 plt.subplots_adjust(wspace =0.1, hspace =0.1)
480 plt.show()


