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Abstract

The forecast error covariance matrix, B, is essential for data assimilation. However, B is

too big to be directly computed and stored. To overcome this problem, it is common to

diagonalize B through a two step process. The first step transforms the forecast errors,

xb, into a set of errors that possess zero cross-covariances, resulting in a block diagonal B

containing only spatial auto-covariances. The second step then removes the spatial auto-

covariances, resulting in a diagonal B. This project focused on the first step and utilized

linear relationships to decorrelate the stream function (ψ) and velocity potential (φ)

forecast errors for the Singapore Variable resolution model, during the Maritime Continent

Northeast monsoon season in 2015. However, the linear regression coefficient matrix

relating φ and ψ is too big to be computed and must thus be modelled.

We will show that the two commonly used regression coefficient matrix models in the

Weather Research and Forecasting Data Assimilation system do not perform well in the

region and season considered. The first model assumes that ψ and φ are disconnected

across model levels and are independent of the horizontal positions of ψ and φ considered.

The second model disposes of the first assumption, but keeps the second assumption. Ex-

aminations of the columns of B (estimated via the National Meteorology Centre method)

revealed that cross-covariances depend on the horizontal positions of the ψ and φ, meaning

that the linear regression coefficients depend heavily on the horizontal positions consid-

ered. This breaks down the common assumption of the two models. We also considered

the efficacy of the models in removing cross-covariances, and found them to be unsurpris-

ingly bad at cross-covariance removal.

Examinations of the columns of B also revealed that the values of forecast error variables

surrounding a point can be taken as samples of the forecast error variables at that point

(neighbourhood equivalence assumption). Following this assumption, the forecast model

grid is broken into subdomains and the regression coefficients are calculated between

pairs of subdomains. This new model was found to be much better at removing cross-

covariances because its assumption holds.
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Chapter 1

Introduction

1.1 Data assimilation background

Need for data assimilation To obtain a good numerical weather forecast, the initial

conditions must accurately represent the true state of the pre-forecast atmosphere (Caron

and Fillion, 2010). Unfortunately, it is difficult in practice to obtain good initial con-

ditions. Observations alone are insufficient to generate a full set of initial conditions —

there are typically far fewer observations than model grid points (Bouttier and Courtier,

2002).1 To make matters worse, while educated guesses (e.g., result of a previous fore-

cast) can easily generate a full set of initial conditions, they are susceptible to error. The

solution is to combine the observations and educated guesses to produce a set of initial

conditions that has the greatest probability of being accurate (Lorenc, 1986; Bannister,

2008a). This combination process is known as data assimilation, or DA.

DA problem To be exact, data assimilation seeks to determine a model state (state

vector, X) that has the maximum probability density of being true, given a set of ob-

servations (observation vector, Y ), and in the light of an educated guess (background

state, Xb). This probability density can be expressed using Bayes’ theorem (Lorenc,

1986; Kalnay, 2003):

p (X|Y ) ∝ p (Y |X) p (X) . (1.1)

Contribution fromXb The prior probability density, p (X), represents the probability

that X is an accurate representation of the atmosphere, before considering the evidence.

1Forecast models typically run on at least O
(
106
)

grid points and O (10) variables. I.e., an unrealistic

O
(
107
)

observations are needed for initialization.
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During this phase, Xb is typically taken to be the best guess at what the the true state

Xt looks like. As such, p (X) is typically modelled by

p (X) ∝ exp

{
−1

2

(
X −Xb

)>
B−1

(
X −Xb

)}
,

where B is the background error covariance matrix (Lorenc, 1986). B is defined as

B ≡ 1

NT

NT∑
t=1

(
Xb (t)−Xt (t)

) (
Xb (t)−Xt (t)

)>
(1.2)

NT is the number of samples considered, Xt is the true state of the atmosphere and t

is an index representing the sample number. For the ease of notation, let us define the

background state error vector,

xb (t) ≡Xb (t)−Xt (t) . (1.3)

This also means that

B =
1

NT

NT∑
t=1

xb (t)
[
xb (t)

]>

Contribution from Y The other term of Eqn (1.1), p (Y |X), is typically modelled by

a similar Gaussian distribution, except that the reference (or the “mean”) is taken to be

X (Lorenc, 1986). Since X exists in a different basis from Y , an operator, H, that maps

X to Y is needed. Taken together, the model is

p (Y |X) ∝ exp

{
−1

2
[Y −H (X)]>R−1 [Y −H (X)]

}
.

The observation error covariance matrix, R, is defined as (Bouttier and Courtier, 2002),

R ≡ 1

NT

NT∑
t=1

[
Y (t)−H

(
Xt (t)

)] [
Y (t)−H

(
Xt (t)

)]>
.

Full DA problem Bringing these two probability densities into Eqn (1.1) yields:

p (X|Y ) ∝ exp

{
−1

2

(
X −Xb

)>
B−1

(
X −Xb

)
− 1

2
[Y −H (X)]>R−1 [Y −H (X)]

}
.
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DA cost function It is immediately apparent that maximizing P (X|Y ) is equivalent

to minimizing

J (X) =
(
X −Xb

)>
B−1

(
X −Xb

)
+ [Y −H (X)]>R−1 [Y −H (X)] . (1.4)

J (X) is known in the literature as the cost function (Kalnay, 2003; Bannister, 2008a). In

short, data assimilation determines the best initial conditions (Xa) by minimizing Eqn

(1.4), given a set of observations and an educated guess.2

1.2 Background error covariance matrix

Roles of B in DA The background error covariance matrix (B), as defined in Eqn

(1.2), plays several important roles in data assimilation. First of all, B weighs the con-

tributions from Y and Xb to Xa, according to their variances. The greater the relative

variance of one component, the smaller its contribution to Xa. Aside from that, B is

also responsible for spreading the difference in the observation and the background state

throughout the model grid and across different variables. This means that B allows a

single observation to affect the entire set of initial conditions. Lastly, when multiple

observations are assimilated, B causes the observations to interact at locations/variables

different from the observation location and variable (Bouttier and Courtier, 2002; Kalnay,

2003; Bannister, 2008a). Clearly, an accurate B is essential for obtaining good initial con-

ditions via data assimilation.3

1.2.1 Overwhelming size and unknown true state

Difficulties in obtaining B Unfortunately, it is impossible to compute B directly

from the definition in Eqn (1.2) due to two problems. First of all the definition in Eqn

(1.2) requires the unobtainable Xt. This is typically handled by the National Meteo-

rology Center method (Parrish and Derber, 1992), which will be covered in Chapter 2.

Furthermore, since B is an N × N matrix (N being the number of grid points times

variables in the model), B typically contains O (1014) elements. In other words, compu-

tations involving B are severely constrained by the impractical amount of computational

memory required (∼ O (102) terabytes). These mean direct computations of B are clearly

impractical (Bannister, 2008b).

2A solution to Eqn (1.4) can be derived under the assumption that the interpolation operator H can
be linearized for small perturbations in x. See Appendix A.1 for the details.

3All three roles of B can be derived from Eqn (1.4). See Appendix A.2 for the details.
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Diagonalizing B by eigenvectors Transforming xb into a vector of mutually uncor-

related elements immediately diagonalizes B (Lanczos, 1957; Bannister, 2008b). Since

there are only N non-zero elements in the diagonalized B, B will not have computa-

tional memory problems. In principle, the ideal way of doing so is through the use of the

eigenvectors of B. When B is transformed to the basis of its eigenvectors, it is diago-

nal. The transformation operator for xb then is simply an N ×N matrix containing B’s

eigenvectors as its rows.

Replace eigenvector transform with control variable transform Unfortunately,

it is difficult to compute the eigenvectors if B cannot be computed in the first place.

As such, the eigenvector transform method is replaced with a two-step transformation

process (Parrish and Derber, 1992; Wu et al., 2002; Bannister, 2008b). Suppose that xb

contains the background error of L variables. The first step transforms xb into a vector,

xb
′
, where the cross-variable covariances (cross-covariance for short) are zero. The second

step then removes the auto-covariances (covariance of the same variable, but between any

pair of model grid points) of xb
′
, resulting in the vector xb

′′
. Since xb

′′
will have zero

cross-covariances and zero-autocovariances, its covariance matrix,

〈
xb
′′
xb
′′>
〉

=
1

NT

NT∑
t=1

xb
′′

(t) xb
′′

(t)> ,

will be diagonal. This two-step transformation is typically called the control variable

transform (CVT)4.

Removing cross-covariances with least squares linear regression residues A

good choice of variables for xb
′
is the residues from performing least square linear regres-

sions between pairs of xb variables (Daley, 1991). To see the transformation, suppose that

xb is arranged into blocks containing only one variable each, or,

xb
>

=
[
xb
>
1 , x

b>
2 , · · · , xb

>
l , · · · , xb

>
L1
, xb

>
L

]
,

and xb
′

is set up in a similar fashion,

xb
′> ≡

[
xb
′>
1 , x

b′>
2 , · · · , xb

′>
l , · · · , xb

′>
L1
, xb

′>
L

]
.

4A detailed description of the CVT method and the underlying mathematics of the first transformation
can be found in Appendix B
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The first transformation step is defined as

xb
′
l (t) = xbl (t)−

l−1∑
`=1

αl,`x
b′
` (t) , (1.5)

where,

αl,` ≡
〈
xbl

(
xb
′
`

)>〉〈
xb
′
`

(
xb
′
`

)>〉−1
, ` = 1, 2, · · · , l − 2, l − 1. (1.6)

In other words, xb
′
l (t) is the residue from performing a least square linear regression of

xbl against xb
′
1, x

b
2, · · · , xb

′
l−1, x

b′
l. This transformation guarantees that

〈
xb
′
l

(
xb
′
`

)>〉
is zero for all l 6= `.5

Regression coefficient matrices must be modelled The CVT transform alone does

not solve the overwhelming size problem – for L variables, there are (L2 − L) /2 regres-

sion coefficient matrices, each with dimensions of N/L × N/L. Furthermore, the auto-

covariance matrices must be invertible to determine αl,`. Unfortunately, there are typi-

cally insufficient samples of xb to ensure that the N/L × N/L auto-covariance matrices

are invertible (Bannister, 2008b). These severely restrict our ability to determine αl,`.

However, it is possible to model αl,` by making some assumptions about how the regres-

sion coefficients vary spatially in the model grid. This modelling is the subject of this

project.

1.2.2 Specificity to region and season

Regional and seasonal dependence The roles of B described earlier clearly imply

that B contains information about how background errors are organized and connected.

That in turn depends on the meteorological features of the region considered. These

features also exhibit seasonal variations. As such, B changes with the region and season

of study. These two dependences must be considered in any study of B (Bouttier and

Courtier, 2002; Kalnay, 2003; Bannister, 2008b).

Paucity of Maritime Continent B literature While there is a wealth of literature

concerning B in the mid-latitudes and on the global scale, scant attention has been

given to B at the Maritime Continent. However, there is ample motivation to study

B in this region. First of all, there is socioeconomic value in such a study: Indonesia,

Malaysia and Singapore have a combined population of 85 million (Badan Perencanaan

5See the proof for Eqn (B.1) in Appendix B for the origin of this zero property.
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Pembangunan Nasional, 2013). Furthermore, two of the most commonly used regression

coefficient models explicitly assume that the regression coefficients do not change with the

horizontal position of any pair of points considered (Chen et al., 2013; Descombes et al.,

2015). In other words, the models assume that the regression coefficients are horizontally

invariant and isotropic. Given the complex topography of the Maritime Continent (Chang

et al., 2016), these models may not hold, necessitating a study of B to test them and

possibly formulate a new model. Unfortunately, to date, we have only been able to find

a single publication concerning B in this specific region (Chen et al., 2013). There is

clearly a need for a study of B in the Maritime Continent.

Paucity of Northeast monsoon B literature To make matters worse, the above-

mentioned singular study was only performed during the Southwest monsoon season (Chen

et al., 2013). The climate of equatorial Southeast Asia has two monsoon seasons (Chang

et al., 2005; Fong and Ng, 2012): the Southwest monsoon (July to September), the

Northeast monsoon (December to March)6. In other words, a study B in the Northeast

monsoon season (NEM) of the Maritime Continent is warranted.

Northeast monsoon season The Northeast monsoon season (NEM) begins in De-

cember when the latitude of maximal solar heating is in the Maritime Continent-northern

Australian region. This generates a pressure trough south of the Equator. The cool-

ing of the northern Eurasian landmass prompts the formation of a surface, cold-core,

high pressure system over Siberia (Ding, 1994). The pressure gradient drives the general

near-surface northeasterly monsoon flow that characterizes the Northeast monsoon.

Cold surges Southward bursts of intense cold air have also been observed to emanate

from this system when it moves towards the coastline of China and the western Pacific

(Wang, 2006). These bursts, also known as cold surges, arrive at the Maritime Continent

from the northeast, and amplify the near-surface northeasterlies (Fong and Ng, 2012) due

to the orientation of the region’s topography (Chang et al., 2005). The topography of the

Maritime Continent also acts to channel the cold surge towards the Equator (Chang et

al., 2005). These cold surges are typically moistened by their trajectories over the South

China Sea, and are associated with enhanced convection in the Maritime Continent (see

Figure 6 of Chang et al., 2005).

6The two monsoon seasons are separated by intermonsoon seasons.
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1.2.3 Dependence on source of Xb

B varies with source of Xb B is also dependent upon the source of educated guesses

used for data assimilation. Consider the scenario where Xb comes from the region’s cli-

matology and another scenario where Xb is the outcome of a previous numerical forecast.

Intuitively, the two Xb will exhibit different errors, and thus have different B’s. Clearly,

these dependences must be accounted for when studying B.

SINGV Xb source Given this dependence, a source of Xb must be selected in this

project. The Singapore Variable resolution model (SINGV) is a forecasting model de-

veloped collaboratively by the Centre for Climate Research Singapore (Meteorological

Services Singapore) and the UK MetOffice to enhance the forecasting capabilities of Sin-

gapore. To further enhance Singapore’s forecasting capabilities, a study of B, using

SINGV as its source, is needed.

1.3 Overview

Goal The goal of this project is to determine an appropriate model for the regression co-

efficient matrices involved in the CVT, over the Maritime Continent, during the Northeast

monsoon season, for the Singapore Variable resolution model.

Wind field B As a first approach to this topic, we will only consider 2 forecast error

variables: the velocity potential forecast error, φ, and the stream function forecast error,

ψ, of the horizontal wind components . Their corresponding forecast variables are denoted

by the corresponding capitalized Greek letters, Φ and Ψ. The two variables, and their

errors, are related to the horizontal wind field (Bijlsma et al., 1986), and its error, via

UH =∇
H

Φ−∇
H
× (Ψẑ) , (1.7)

uH =∇
H
φ−∇

H
× (ψẑ) , (1.8)

where

∇H ≡ x̂
∂

∂x
+ ŷ

∂

∂y
.

The gradient term and curl terms can be viewed as the diverging part of the wind (wind

error) and rotating part of the wind (wind error) respectively.

7



CVT formulation As such, the state vector of forecast errors at time t is

xbt =
[
ψ>t , φ

>
t

]>
, (1.9)

where ψt is a vector of N/2 elements containing the forecast errors of ψ at all positions on

the forecast model grid at time t, and likewise for φ. The corresponding control variable

transform for this study is ψ = ψ′

φ′ = φ−αφ,ψψ′.
(1.10)

Two commonly used αφ,ψ models A total of three ways to model αφ,ψ will be con-

sidered in this project. The first model assumes that ψ and φ are only related when they

are on the same model level, and that their relationship is independent of the horizontal

positions considered. The second model removes the same-level restriction, allowing for

inter-model level relationships. However, the horizontal invariance assumption applies to

the second model as well. The algorithms for these models are illustrated in Figures 1.1

and 1.2.

New αφ,ψ model The third model will follow a completely different assumption: the

evaluations of φ and ψ in the vicinity of a selected model point are equivalent to samples

of the evaluations of φ and ψ at the said model point. The resulting third model can

be thought of as a coarse-resolution version of B, allowing both horizontal and vertical

variations in the relationship between ψ and φ. The way which regression coefficients are

computed and employed in this model are illustrated in Figures 1.3 and 1.4, respectively.

Overview – Setup and checks We will begin with explaining how xb can be deter-

mined by using pairs of forecasts, via the National Meteorology Center (NMC) method,

in Chapter 2. Following that, Chapter 2 will detail the process of SINGV data genera-

tion and subsequent processing to produce xb. The SINGV forecast outputs will then be

checked to ensure that it is capturing the general characteristics of the Northeast monsoon

in Chapter 3.

Overview – modelling αφψ Upon establishing the sanity of the SINGV model, we will

then examine some of the forecast error covariance features estimated by the NMC method

in Chapter 47. The negative implications of the observed features for the two commonly

used models (shown in Figures 1.1 and 1.2) will then be elaborated. In response, Chapter

7Essentially, we will be looking at columns of a B estimated by the NMC.
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4 will formulate new way of modelling regression coefficient matrices (the third model

illustrated in Figures 1.3 and 1.4). Chapter 5 will then compare the performance of two

commonly used models against that of the new model, and show that the new model far

outperforms the former two. We will then conclude with some comments and directions

for future work in Chapter 6.
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Figure 1.1: Illustration of how the first model computes regression coefficients (top) and
how it is utilized for the control variable transform (bottom). Each colored box represents
a model grid point with the indicated error variable indicated. The panels are to be read
in sequence of the labelled numbers. This model assumes that ψ and φ are disconnected
across model levels and their relationship on the same model level is invariant of horizontal
position. In other words, there are only NZ regression coefficients, one for each model
level. Note that lon, lat and k refer to the longitude, latitude and model level of the model
grid. The subscripts appended to the averages indicate the dimensions of averaging.

10



Figure 1.2: Illustration of how the second model computes regression coefficients (top)
and how it is utilized for the control variable transform (bottom). Each colored box
represents a model grid point with the indicated error variable indicated. The panels are
to be read in sequence of the labelled numbers. This model assumes that the relationship
between ψ and φ is invariant of horizontal position. In other words, there are only NZ

regression coefficients, one for each model level. Note that lon, lat and k refer to the
longitude, latitude and model level of the model grid. The subscripts appended to the
averages indicate the dimensions of averaging.
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Figure 1.3: Illustration of how the third model computes regression coefficients. The
panels are to be read in sequence of the labelled numbers. Each colored box represents
a model grid point with the indicated error variable indicated. The panels are to be
read in sequence of the labelled numbers. This model assumes that within a subdomain,
all values of ψ and φ can be treated as samples of the center of the subdomain. The
subscripts appended to the averages indicate the dimensions of averaging.

12



Figure 1.4: Illustration of how the third model is used in the control variable transform.
The panels are to be read in sequence of the labelled numbers. Each colored box represents
a model grid point with the indicated error variable indicated. The panels are to be read
in sequence of the labelled numbers. This model assumes that within a subdomain, all
values of ψ and φ can be treated as samples of the center of the subdomain.

13
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Chapter 2

Materials and methods

Overview In this chapter, we will explain how xb can be estimated using the National

Meteorology Center method, in spite of the unknown Xt. Following that, the setup of the

Singapore Variable resolution model (SINGV) will be discussed. During that discussion,

the exact manner which the National Meteorology Centre method is applied will also

be elaborated. To obtain the velocity potential and stream functions, we utilized the

GEN BE package created by the National Corporation for Atmospheric Research and the

UK Met Office.

2.1 Overcoming the Xt requirement with the NMC

method

Purpose The National Meteorology Centre (NMC) method mitigates the requirement

of the unobtainable Xt in any computation of B (Parrish and Derber, 1992). In essence,

if two different Xb from the same source can be obtained for the same time, t, B can be

approximated by

B ≈ 1

2NT

NT∑
t=1

(
Xb

(1),t −Xb
(2),t − µ

) (
Xb

(1),t −Xb
(2),t − µ

)>
, (2.1)

where,

µ ≡ 1

NT

NT∑
t=1

(
Xb

(1),t −Xb
(2),t

)
.
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Assumptions of NMC method The NMC method operates under under two assump-

tions. First of all, it is assumed that the auto-covariance of the two background errors

are equivalent on average. In other words,

NT∑
t=1

(
xb(1),t x

b>
(1),t

)
≈

NT∑
t=1

(
xb(2),t x

b>
(2),t

)
,

where xb(1),t and xb(2),t are the errors of Xb
(1),t and Xb

(2),t respectively. The second

assumption is that xb(1),t and xb(2),t are mutually uncorrelated, or,

NT∑
t=1

(
xb(1),t x

b>
(2),t

)
=

NT∑
t=1

(
xb(2),t x

b>
(1),t

)
= 0.

NMC derivation The NMC method in Eqn (2.1) can be shown to be consistent with

the definition of B in Eqn (1.2) under these assumptions. Starting from Eqn (2.1), and

drawing on the fact that xb(1),t ≡Xb
(1),t −Xt

t and likewise for xb(2),t,

1

NT

N−1∑
t=1

{
Xb

(1),t −Xb
(2),t

}{
Xb

(1),t −Xb
(2),t

}>
=

1

NT

N−1∑
t=1

{(
xb(1),t +Xt

t − xb(2),t −Xt
t

) (
xb(1),t +Xt

t − xb(2),t −Xt
t

)>}
=

1

NT

N−1∑
t=1

{(
xb(1),t − xb(2),t

) (
xb(1),t − xb(2),t

)>}
=

1

NT

N−1∑
t=1

{
xb(1),t x

b>
(1),t − xb(1),t xb

>
(2),t − xb(2),t xb

>
(1),t + xb(2),t x

b>
(2),t

}
≈ 1

NT

N−1∑
t=1

{
xb(1),t x

b>
(1),t + xb(2),t x

b>
(2),t

}
≈ 2

N−1∑
t=1

{
xb(1),t x

b>
(1),t

}
≈ 2B.

Modification due to bias There is a hidden pitfall in using the NMC method: the

average of Xb
(1),t −Xb

(2),t may not be zero. As the general definition of a covariance

matrix calls for mean removal before computing the covariance, the NMC method must

be modified. The NMC method employed in this project is thus (Descombes et al., 2015):

B ≈ 1

2NT

NT∑
t=1

(
Xb

(1),t −Xb
(2),t − µ

) (
Xb

(1),t −Xb
(2),t − µ

)>
,

where,

µ ≡ 1

NT

NT∑
t=1

(
Xb

(1),t −Xb
(2),t

)
.
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Figure 2.1: Plot of the surface heights of the SINGV simulation domain.

This also means that the background error at time t, xbt, can be viewed as:

xbt ≈
1√
2

(
Xb

(1),t −Xb
(2),t −

〈
Xb

(1),t −Xb
(2),t

〉)
.

Forecast perturbation-based NMC Since the source of Xb in this project is the

Singapore Variable resolution model forecasts (SINGV), the NMC requires pairs of fore-

casts valid at the same time to form B (Parrish and Derber, 1992; Bannister, 2008b). If

the time of data assimilation is T hours, then SINGV forecasts were initiated 12 hours

and 6 hours before T , and their outputs at T are used as as the two Xb at time T .

2.2 SINGV model setup

Background and computational resource This study employed the Singapore Vari-

able Resolution Model, version 2.1 (SINGV), which is modified from the UK MetOffice’s

(UKMO) Unified Model (UM). The SINGV v2.1 is produced by a multi-year collabora-

tion project between the UK MetOffice and the Center for Climate Research Singapore

to build a tropical convective-scale NWP for Singapore and the surrounding region. The

model was run using the Center for Climate Research Singapore’s High Performance Com-
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Figure 2.2: Illustration of how pairs of forecasts are set up, to be utilized by the NMC
method. See text for the complementing description.

puting Cluster, Athena. Forecasts from the SINGV model were obtained over 15 days of

the Northeast monsoon of 2015, from 5th December 2015, 0000 UTC, to 19th December

2015, 1800 UTC.

Model grid setup The simulation domain spans over a geographical region from

94.543°E to 109.2445°E and 5.74°S to 8.2325°N, with a horizontal spatial resolution of

4.5 km1. The model employed a total of 80 static, terrain-following, hybrid height model

levels. The orography of the simulation domain has been plotted out in Figure 2.1.

Employing the NMC method As mentioned earlier, the NMC method can be used

to sidestep the Xt requirement in computing B. Pairs of Xb valid at the same times

are needed for that approximation. In the case of SINGV, pairs of 12-hour and 6-hour

forecasts were used. In other words, the NMC estimate of xbt is

xbt ≈
1√
2

(
Xb

12-hr,t −Xb
06-hr,t − µ

)
, µ ≡ 1

NT

NT∑
t=1

(
Xb

12-hr,t −Xb
06-hr,t

)
(2.2)

We will use Figure 2.2 to illustrate the how the forecast pairs were set up. Suppose that

a 12-hour forecast was initiated at 0000 UTC. Then to obtain the second forecast for

the NMC, a 06-hour forecast was initiated at 0600 UTC. The initial conditions used for

both forecasts were taken from the UM Global analysis data, released at 0000 UTC and

0600 UTC respectively. Both forecasts utilized the same set of hourly boundaries obtained

1Horizontal grid arrangement: 364 (longitudinal) by 346 (latitudinal).
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from the 36-hour UM Global that was released at 0000 UTC. The pair of forecasts at 1200

UTC forms the first forecast pair for the NMC. This process is repeated at 0600 UTC,

1200 UTC, 1800 UTC, and so forth, every 6 hours. Note that this method of matching

boundary conditions is known to enhance the accuracy of the NMC method (Berre et al.,

2006; Bannister, 2008a).

Initial and boundary conditions The boundary and initial conditions for SINGV

were taken from the UM Global 36-hour global forecasts. These global forecasts are

performed daily at 00, 06, 12 and 18 hours UTC and are released to the Center for Climate

Research Singapore upon completion. The SINGV system then performs a vertical linear

and horizontal bilinear interpolation to pass the UM Global data into the aforementioned

SINGV grid.

2.3 GEN BE processing

2.3.1 Pre-GEN BE processing

Need for pre-GEN BE processing To use the GEN BE package, the forecasts must

be converted from the UK Met Office PP files into the Weather Research and Forecasting

model NetCDF output files. Aside from the file format difference, the SINGV model uses

a height-based, terrain following, vertical coordinate system, whereas the WRF model

uses a pressure-based, terrain following, vertical coordinate system (η levels). The η level

value of a point with pressure PWRF with a model top pressure P top and model surface

pressure P sfc is:

η =
PWRF − P t

P sfc − P t

Hybrid height to η-level transform The WRF Preprocessing system is capable of

transforming fields from hybrid height coordinates to η levels via vertical linear interpo-

lation (metgrid step). To maximize interpolation accuracy, η levels that minimize the

difference between η level pressure and hybrid height pressure were used. I.e.,

∂

∂ηk

(
P SINGV
ijk − PWRF

ijk

)2
= 0 (2.3)
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Figure 2.3: Plots of the average and standard deviation of η with respect to each model
height, for the 12-hour forecast (left) and the 6-hour forecast (right).

Since η =
PWRF − P top

P sfc − P top
implies PWRF

ijk = ηk
(
P sfc
ij − P

top
ij

)
+ P top

ij , the set of η values that

solves Eqn (2.3) is thus found to be:

ηk =
P top
ij P top

ij − P
top
ij P SINGV

ijk − P sfc
ij P

top
ij + P sfc

ij P
SINGV
ijk

P top
ij P top

ij − 2P top
ij P sfc

ij + P sfc
ij P

sfc
ij

(2.4)

η-levels are similar across 54 forecasts Surprisingly, despite the fact that Eqn (2.4)

does not guarantee that the η values of each forecast set will be different, the η values

ultimately turned out to be virtually identical. The average η value, and the standard

deviation of η, across model levels, for both the 12-hour forecast (unstaggered) and the

6-hour forecast (staggered) are as shown in Figure 2.3.

ARW-WRF conversion After the η level and WPS procedure, the WRF model was

run for 0 time steps to produce the SINGV data in the appropriate NetCDF format with

the WRF model variables.

2.3.2 GEN BE

Uses of GEN BE The GEN BE package was utilized on the WRF-processed forecast

pairs to produce the velocity potential (Φ) and stream function (Ψ) for each pair. GEN BE

then follows Eqn (2.2) to produce the NMC-estimated forecast error.
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Φ and Ψ determination As mentioned in the introduction, Φ and Ψ are defined for

the horizontal wind field. In other words, for the k-th model level, Φ and Ψ are related

to the horizontal wind field at level k, U k, by (Descombes et al., 2015)

∇H · U k (x, y) = ∇2
HΦ (x, y, k) , {∇H ×U k (x, y)} · ẑ = ∇2

HΨ (x, y, k) (2.5)

where

U k (x, y) ≡ Ux,k (x, y) x̂+ Uy,k (x, y) ŷ , ∇H ≡ x̂
∂

∂x
+ ŷ

∂

∂y
,

and x̂, ŷ and ẑ are the usual right-handed Cartesian unit vectors. The GEN BE package

solves Eqn (2.5) using a discrete sine transform, with zero boundary conditions. It then

utilizes Eqn (2.2) to determine the forecast errors at time t, xbt.

Removal surface level and boundaries The GEN BE removes the first model level

during its processing. Also, to prevent the boundary conditions of SINGV coming from

the UM from interfering with the analysis, 18 points are cropped from both the north

and south boundaries of the model grid and 17 points are cropped from both the east

and west boundaries. This turns the model grid from a 364× 346× 80 cuboid lattices of

points (in longitude, latitude, vertical order) to 330× 310× 79.
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Chapter 3

Sanity checking the SINGV outputs

Purpose of chapter Before examining the features of the forecast error, it is important

to ensure that the SINGV outputs display the general features of the Northeast monsoon.

This acts as a sanity check to ensure that SINGV is behaving as expected. As such, we

will now examine the synoptic features of the SINGV data set.

Overview This chapter will start with examining and confirming that the time-averaged

thermodynamic and horizontal wind fields of the SINGV forecasts are as expected of the

Northeast monsoon season. Afterwards, the forecasts will be examined for cold surges

(important feature in the Northeast monsoon) as a further confirmation that the model is

capturing the key Northeast monsoon features. We will then comment on an intriguing,

short-lived, low-level, counter-clockwise circulation feature observed in the forecasts.

Hybrid height model levels will be used Before discussing the features of the

SINGV dataset, note that the data in this section will be plotted based on the hybrid

height model levels used in the SINGV model. However, the model level index will not be

stated: instead, the rough atmospheric pressure level that corresponds to that model level

will be stated. The correspondence between the model level and atmospheric pressure,

and between model level and geopotential height, are as plotted in Figures 3.1 and 3.2.
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Figure 3.1: Plots of temporally and horizontally averaged pressure with respect to
SINGV model levels. The solid red and sashed blue lines respectively indicate the averaged
pressure profile of the 12-hour and 06-hour forecasts. Note that we have actually shaded
one standard deviation on the left and right of pressure curve (see Figure 3.2 for example).
However, the standard deviations are so small that they cannot be distinguished from the
average curves. Also, both pressure profiles are virtually identical.

Figure 3.2: Plot of horizontally averaged geopotential height with respect to SINGV
model levels. The shaded grey area indicates one standard deviation on either side of the
averaged curve, per model level. Note that only one geopotential height curve is needed
as the geopotential height of each model level remains the same across all forecasts in this
study.
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Figure 3.3: SkewT-logP plots of the two forecast sets (left: 06-hour forecasts, right:
12-hour forecasts), obtained by averaging pressure, specific humidity and temperature for
every model level. The average is performed across the horizontal domain of each model
level, across all forecasts with the same length. Temperature and dewpoint temperature
profiles are as indicated by the solid red and blue lines respectively. The solid green curve
indicates the profile of a surface air parcel as it ascends adiabatically. Note that the base
of the green curve actually coincides with the base of the red curve. The green “leg”
jutting out from the base of the blue curve traces the isotherm of the surface dew point
temperature as surface parcel ascends. The place where the “leg” and the green curve
meet is where the relative humidity of the surface parcel has reached 100%.

3.1 Time-averaged thermodynamic profile is as ex-

pected

Tropopause pressure level is correct SkewT-logP diagrams are useful for examin-

ing the likelihood of convection and the type of convection in the atmosphere. In Figure

3.3, skewT-logP1 diagrams of both forecast sets are shown. The plotted profiles are con-

structed by taking the horizontal and temporal average of temperature, specific humidity

and pressure for each model level. It is clear that the temperature minima occurs slightly

above the 100 hPa level, suggesting that the tropopause resides roughly at that level.

This is as expected for an equatorial region.

1These skewT-logP plots are produced with a modified version of the SkewT package in Python, released
by Thomas Chubb, Department of Mathematical Sciences, Monash University, copyrighted 2014.
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Figure 3.4: Contour plots of the time-averaged wind of the 06-hour forecasts (left col-
umn) and the 12-hour forecasts (right column), overlaid with arrows indicating the direc-
tion of wind flow, at the SINGV model levels with average pressures of 900 hPa (top) and
200 hPa (bottom). Note that the arrows only indicate the time-averaged wind direction,
meaning that all arrows have the same lengths.

Atmosphere is unstable Figure 3.3 also shows that the atmosphere for both forecast

sets are unstable and prime for deep convection. While the temperature of a surface air

parcel undergoing dry adiabatic ascension is cooler than the environmental temperature

for the bottom 100 hPa of the atmosphere, the difference is rather slight. In other words,

only a small amount of energy is needed for the parcel to overcome the barrier to adiabatic

ascension in the first 100 hPa of the atmosphere. Once the parcel passes the 900 hPa level

(which is the level of free convection), the parcel ascends via a moist adiabat and remains

continuously warmer than the atmosphere, allowing it to freely ascend, until it reaches

the 130 hPa level. Clearly, the atmosphere is rather unstable. The closeness of this level

to the tropopause indicates that the atmosphere is prime for deep convection. This is

expected for the Maritime Continent during the Northeast monsoon (Chang et al., 2005).
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Figure 3.5: Same type of plots as Figure 3.4, but on the SINGV level corresponding to
the 900 hPa. The data shown are snapshots of the cold surges at 0600 UTC, 7th December
(top), and 0600 UTC, 17th December (bottom), observed in the 06-hour forecasts (left)
and 12-hour forecasts (right).

3.2 900 hPa monsoon flow is as expected

Observed monsoon flow features Aside from that, on average, the 06-hour forecasts

and the 12-hour forecast both show a low-level northeasterly wind entering the domain

from the northeastern corner of the domain (Figure 3.4, 900 hPa plots). This wind flow is

deflected leftwards as it approaches and crosses the Equator, resulting in a northwesterly

low-level wind exiting the domain at the southeastern corner. This monsoon flow pattern

is as expected from the monsoon’s historical climatology (Chang et al., 2005; Fong and

Ng, 2012).2

2The monsoon flow pattern is explained by the paragraph labelled “Northeast monsoon season” in
the introduction.
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Figure 3.6: Same type of plots as Figure 3.4, but on the SINGV level corresponding to
the 900 hPa. The data shows the Borneo vortex that appeared in the 06-hour forecast
(left) and 12-hour forecast (right) valid on 0600 UTC, 8th December 2015. The vor-
tex shows up as a closed, counterclockwise wind direction pattern (red circles) in both
forecasts.

3.3 Cold surges manifested in the simulations

Cold surges observed Another important feature observed would be cold surges –

bursts of low-level cold air that occasionally emanate from the Siberian surface high

pressure system. The cold surge is a characteristic of the Northeast monsoon (Fong

and Ng, 2012).3 Two clear cold surges were observed in the forecasts. The cold surges

appeared in the 06-hour and 12-hour forecasts valid from 5th December, 1200 UTC, to

9th December, 1200 UTC (Figure 3.5), and from 15th December, 0000 UTC, to the end

of the simulations. Clearly, the SINGV forecasts are able to resolve this key feature of

the Northeast monsoon season.

3.4 Interesting vortex features

Vortex-like feature observed We also observed a rather interesting large-scale counter-

clockwise circulation (several hundred kilometres across) over equatorial South China Sea

(Figure 3.6). The circulation shows up as a low-level closed, counter-clockwise, circulation

loop on the forecasts, valid from 0000UTC, 8th December to 0600 UTC, 9th December

(Figure 3.6). Interestingly, the Australian Bureau of Meteorology’s Gradient Wind Anal-

ysis on the 9th of December 2015 also shows a similar circulation at the place where our

3A description and explanation of the cold surge can be found in the introduction, in the paragraph
labelled ”cold surges”.
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Figure 3.7: Streamlines plotted by the Australian Bureau of Meteorology (Regional
Specialized Meteorological Center) on 9th December 2015, 0000 UTC. These streamlines
show the wind flow at 1 km above the sea level. Note the vortex feature indicated in the
red circle. This plot is modified from the analysis charts stored in the Australian Bureau
of Meteorology Analysis Chart Archive (Australian Government, 2016).

circulation appears in the forecast (Figure 3.7). In other words, this circulation pattern

may not be a spurious artefact of the model.

Uncertainty over identity of circulation At the time of writing, we are uncertain

if the circulation is a Borneo vortex4, which is a characteristic of the Northeast monsoon.

While the scale and morphology of the circulation pattern matches, its position is too far

west: Borneo vortices usually occur in the region between the western tip of Borneo and

off the east coast of the Malay Peninsula (Chang et al., 2005).

Circulation unlikely to affect error covariances significantly Even if the circu-

lation ultimately is not the characteristic Borneo vortex of the Northeast monsoon, the

4Low-level, converging, cyclonic vortices that tend to occur over the western part of Borneo (near the
Equator, and east of the model domain), and are typically accompanied with deep convection.

29



short duration of this circulation means that it is unlikely to have much of an impact

on the overall error covariance of the region. The circulation clearly vanished from the

forecast after 0600 UTC, 10th December. In other words, the circulation only persisted

for 12% of the 15 days considered. Furthermore, the circulation itself wandered from

the southeastern part of the domain to the northeastern part of the domain, diluting the

influence of any errors relating to the circulation over a large trajectory. As such, we can

safely ignore the influence of the circulation when analysing the forecast error covariances.

3.5 Summary

In summary, we have confirmed that the SINGV forecasts are behaving as they should in

the presence of the Northeast monsoon: the identified tropopause is in the correct pressure

level, the monsoon flow is as expected and the characteristic cold surges are observed. The

unusual circulation observed in the forecasts is also unlikely to have a great influence on

the covariances of the forecast error. We can thus infer that the forecast error covariances

estimated from these forecasts to representative of the Maritime Continent’s Northeast

monsoon.
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Chapter 4

Error covariance features and

regression coefficient models

Using NMC to examine error covariance features While it is impossible to de-

termine B due to memory problems, it is possible to determine several columns of B.

In this chapter, we will utilize the NMC method to determine several columns of the B

matrix. Each column of B contains the covariance between the forecast error of a partic-

ular variable, at a particular point on the model grid, against the forecast error of both

variables, across the entire model grid. Such columns can be used to diagnose whether a

regression coefficient model’s assumptions holds.

Overview We will begin with explaining the physical meaning of the two error variables

we are studying in this project. Following that, we will explain how the single-observation

solution to the data assimilation cost function can be used to interpret physical meaning

from columns of B. Several columns of B will then be displayed and interpreted. Us-

ing these columns, we will overturn the horizontal invariance assumption utilized in two

commonly used models of the control variable transform regression coefficients1. A new

assumption will then be proposed from examining the columns of B and a new model

will be formulated based on that2.
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Figure 4.1: Diagrams showing the directions of the horizontal wind error vector field,
induced by φ (left) and ψ (right). Note that the z-axis is pointing out of the page.

4.1 Physical meaning of φ and ψ

Meaning of φ As mentioned in the introduction, the error in the horizontal wind field

can be written as

uk =∇φ (x, y, k)−∇×
(
ψ (x, y, k) ẑ

)
. (4.1)

The general appearances of both parts of the wind field’s forecast error can be directly

inferred from the contour lines of φ and ψ. For the case of the divergent part of the

wind (∇φ), consider the fact that the gradient of a scalar is perpendicular to the scalar’s

contour, and points in the direction of maximum increase (Figure 4.1, left panel). In other

words, a positive hill of φ corresponds to a local flow convergence that is centered around

the maximum and vice versa for a valley of φ (see Figure 4.2 for illustrations).

Meaning of ψ It is slightly more difficult to interprete ψ. Defining uψ ≡ −∇H× (ψẑ),

consider the following integral over an area bounded by a ψ contour line on a fixed model

level: ∫
S

∇2
HψdA =

∫
S

∇H × uψ · ẑdA.

1These are schematically illustrated in Figures 1.1 and 1.2.
2The computation of the regression coefficients under the new model is schematically illustrated in

Figure 1.3. Figure 1.4 shows how this model is utilized in the control variable transform.
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Figure 4.2: Contour plots showing examples of hills (left column) and valleys (right
column) of φ (top row) and ψ (bottom row), overlaid with vector arrows indicating the
respective components of wind implied by these two variables. The unfilled contours
indicate horizontal divergence (top row) and the z-component of vorticity (bottom row).

Applying the 2D form of the divergence theorem and Green’s theorem yields,∮
∂S

∇Hψ · dl⊥ =

∮
∂S

uψ · dl‖.

where dl⊥ is a vector pointing out of area S and perpendicular to the contour, and dl‖

is a length vector element along the contour, oriented such that S lies on the left of dl‖.

Since the contour is on a fixed model level, then

dl‖ × ẑ = dl⊥.
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Applying this relation and considering (∇Hψ) ·
(
dl‖ × ẑ

)
=
(
dl‖
)
· (ẑ ×∇Hψ) yields,∮

∂S

(
dl‖
)
· (ẑ ×∇Hψ) =

∮
∂S

uψ · dl‖,

or,

(ẑ ×∇Hψ) · dl‖ = uψ · dl‖.

Since the gradient is horizontal and perpendicular to the contour line, (ẑ ×∇Hψ) yields

a vector is either antiparallel or parallel to dl‖. The right panel of Figure 4.1 illustrates

how uψ can be inferred from ψ fields using this idea. For the case of a ψ hill bounded by

the contour line, (ẑ ×∇Hψ) is antiparallel to dl‖. In other words, cyclonic circulation

will be represented by a ψ valley (see Figure 4.2 for illustrations).

4.2 Columns of B

4.2.1 Interpreting columns of B

Single-observation solution interprets B To understand the physical meaning of a

column of B, we need a way to relate the information in the column of error covariances

to the result of data assimilation itself. Interpreting B through the lens of the single-

observation solution to the data assimilation cost function in Eqn (1.4) is one intuitive

way.

Single-observation solution conditions and statement Supposing that the ob-

servation corresponds to the n-th element on the model state vector, X, then the `-th

element of the analysis state vector, Xa, can be shown to be (Bannister, 2008a)

Xa
` −Xb

` = B`n
Y −Xb

n

σ +Bnn

. (4.2)

This is the single-observation solution3, and it operates under three conditions. First of

all, only one observation, Y , is assimilated. Secondly, this observation must be on the

same location as one of the forecast model’s grid points. Lastly, the observation must be

an observation of one of the variables in the model. Henceforth, Xa −Xb will be called

the “analysis increment”.

3The derivation of this solution is available in Appendix A.
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An analysis increment is proportional to a column of B As can be seen from Eqn

(4.2), the analysis increment is proportional to the n-th column of B, with Y−Xb
n

σ+Bnn
as the

proportionality constant. In other words, we can simply infer how Xb will be modified

to form Xa from a column of B. We will use this framework to determine the physical

implications of the information contained in B.

4.2.2 Computing columns of B from NMC

General form of B As mentioned earlier, we can determine several columns of B via

the NMC method, without suffering from computer memory problems. We will explain

this procedure in detail. For that, we need the form of B. It is simply

xb ≡

[
ψ

φ

]
=⇒ B =

[〈
ψψ>

〉
t

〈
ψφ>

〉
t〈

φψ>
〉
t

〈
φφ>

〉
t

]
,

where ψ and φ are vectors containing the respective forecast errors (N/2 elements each)

and the averaging is done over time.

Meaning of a column of B The m-th column in the left half ofB (m < N/2) contains

2 sets of information. It contains the covariance between ψ at the position corresponding

to m-th element on the ψ, versus ψ and φ everywhere on the model grid. Likewise, the

m′-th column on the right half of B (m′ > N/2) contains the covariance between φ at

the m′ −N/2 position on φ vector, versus ψ and φ everywhere on the model grid.

NMC B column computation method From Eqn (2.2), we can compute the vectors

of the NMC-estimated forecast errors at time index t via

ψt ≈
1√
2

(
ψ12-hr fcst,t −ψ06-hr fcst,t −

〈
ψ12-hr fcst,t −ψ06-hr fcst,t

〉
t

)
,

and likewise for φ. As such, to compute the column of B corresponding to ψ at model

index (i, j, k) (longitudinal, latitudinal, vertical), we simply use

〈ψ ψ (i, j, k)〉t ≈
1

NT

NT∑
t=1

ψt (i, j, k) ∗ψt,

〈φψ (i, j, k)〉t ≈
1

NT

NT∑
t=1

ψt (i, j, k) ∗ φt.
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A similar method can be utilized to compute the column of B corresponding to φ at

(i, j, k). When interpreting the columns of B, we will view the covariances on the left

hand side at all displayed locations on the model grid.

4.3 Features observed in columns of B

4.3.1 Deep convection

Recap: forecasts show deep convection tendencies With the single-observation

solution framework to interpret columns of B and the NMC column estimation laid out,

we are ready to examine the physical meaning implied by the columns of B. We will

begin with deep convection. As per the skewT-logP discussion in Chapter 3, the forecasts

of the Northeast monsoon display a tendency for deep convection. As such, we would

expect to see the forecast error covariances to reflect that.

Auto-covariances of φ at the surface level To confirm that, 9 columns of the
〈
φφ>

〉
sub-matrix of B were computed. The 9 columns are such that their φ reference points

are all located on the lowest model level (indicated by the 9 green dots in Figure 4.3).

The covariances between φ at each of these 9 locations (green dots), and φ in a 450 km

by 450 km square centred on each location, are plotted out in Figure 4.3.

Mesoscale surface convergence with positive φ observation increment Let us

suppose that we are assimilating an observation of φ that is bigger than the corresponding

background state’s φ (i.e., positive φ observation increment). Following the discussion

on interpreting the columns of B through Eqn (4.2), Figure 4.3 implies that assimilating

that observation at any green dot causes a hill of φ (O (102) km diameter) to appear in

the analysis increment, centred on the said green dot. Physically, this means that the

assimilation process enhances mesoscale convergence (O (102) km wide) on the surface

level.

Deep atmosphere mesoscale divergence with positive φ observation increment

Furthermore, when we consider the vertical structure of these φ-φ covariances, we notice

that the positive observation increment at the surface triggers a φ valley aloft. This is

demonstrated by Figure 4.4, which shows the vertical structure of the said covariances,

from the three three green dots at 1◦N in Figure 4.3. Clearly, assimilating the observation
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Figure 4.3: The contour plot shows the covariance between φ at the green dots and φ
in squares centred on the green dots, on the surface level. The dimensions of each square
is 450 km × 450 km, or roughly 4◦ × 4◦. The landmasses in the domain are outlined in
thick, solid black lines.

enhances divergence aloft (O (102) km across). Furthermore, the valley feature occurs in

the vicinity of the 50-th model level, which corresponds to the 110 hPa layer, according

to Figure 3.1. In other words, the data assimilation triggers deep atmosphere mesoscale

divergence.

Deep convection error feature Taken together, the mesoscale surface convergence

and ∼100 hPa mesoscale divergence pattern implies that the error covariances are orga-

nized in a deep convection pattern. Furthermore, given the ubiquity of this pattern, it

seems that using a positive φ observation increment anywhere on the surface enhances

convection. In other words, the φ-φ covariances reflect the tendency for deep convection

(as discussed in Chapter 3).

Foreshadow – Covariances ≈ variances near green dots An interesting observa-

tion can be made from Figures 4.3 and 4.4. Notice that the covariances tend to vary slowly
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Figure 4.4: The contour plot shows the covariances of φ from the green dots along the
1◦N latitude in Figure 4.3, and φ everywhere on a vertical slice of φ, along the 1◦N latitude.
This plot is separated into 3 vertical strips, each centred on a the green dot, spanning 4◦

longitude in the horizontal and all 79 model levels in the vertical. The horizontal axis is
longitude and the vertical axis is model level.

immediately around the green dots. In other words, the covariances immediately around

the green dots are roughly equal to the variance of φ at the green dots. This intriguing

property will be used later when formulating our own regression coefficient model.

4.3.2 Vortex patterns

Surface circulations from ψ observation increment When we computed the co-

variance between ψ at the same 9 points, and ψ everywhere on the surface of the model,

hills similar to those of φ-φ surface covariances appear (Figure 4.5). However, the physical

meaning for the analysed wind field is completely different from that of φ. Assimilating a

positive ψ observation increment generates positive ψ hills in the analysis increment. Fol-

lowing the interpretation in Figure 4.2, these ψ hills mean that this assimilation enhances

clockwise (or anticyclonic) circulation surrounding the green dots.
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Figure 4.5: The contour plot shows the covariance between ψ at the green dots and ψ
in squares centred on the green dots, on the surface level. The dimensions of each square
is 450 km × 450 km, or roughly 4◦ × 4◦. The landmasses in the domain are outlined in
thick, solid black lines.

Foreshadow – Covariances ≈ variances near green dots At the time of writing,

we are unable to determine the physical origin of these patterns for ψ, both on the surface

(Figure 4.5) and in the vertical (Figure C.1 in Appendix C). However, like the case of φ-φ

covariances, we notice that the covariances tend to be similar to variances immediately

around the green dots. This pattern will be utilized later to formulate our own regression

coefficient model.

4.3.3 Horizontally variant and anisotropic cross-covariances

φ-ψ covariance columns are horizontally variant and anisotropic We will now

turn our attention to the cross-covariance between φ and ψ. The covariances between φ

at the same 9 reference positions and ψ elsewhere in 450 km by 450 km squares centred

on the reference positions are computed and plotted in Figure 4.6. It is immediately

apparent that unlike the φ-φ and ψ-ψ columns of B, these φ-ψ columns show vastly

39



Figure 4.6: The contour plot shows the covariance between φ at the green dots and ψ
in squares centred on the green dots, on the surface level. The dimensions of each square
is 450 km × 450 km, or roughly 4◦ × 4◦. The landmasses in the domain are outlined in
thick, solid black lines.

different error patterns from column to column. Furthermore, the covariances do not

vary isotropically around the green dots. In other words, the cross-covariance columns

exhibit huge variations between horizontal locations and are severely anisotropic.4

Horizontal variations and anisotropy may be due to complicated topographic

interactions The variations and anisotropy may be due to complicated topographic

interactions. As an illustration, we will examine the cross-covariances connected to the

green dot at 1◦N, 97◦E of Figure 4.6. Figure 4.7 display the cross-covariances between φ

at the green dot, and everywhere else in the model grid, on the surface level.5 When an

assimilated observation of φ at the green dot (1◦N, 97◦E) increases φ at that location, the

analysis increment will contain a φ hill centered on the green dot (see Figure 4.3) and a ψ

dipole, with the negative patch to the northwest and the positive patch to the southeast

4Similar observations are also made when we consider the 9 columns corresponding to the covariance
between ψ at the same 9 positions and φ everywhere on the surface (Figure C.2 in Appendix C).

5Essentially, an expanded version of the square in Figure 4.6 that is centred at 1◦N, 97◦E.
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Figure 4.7: The contour plot shows the covariance between φ at the green dot, surface
level, and ψ everywhere else on the surface level of the model grid. The landmasses in
the domain are outlined in thick, solid black lines.

(Figure 4.7). This analysis increment can be interpreted as a southwesterly enhancement

of the wind flowing through the green dot6. The southwesterly impinges on the island

beside the green dot, resulting in surface convergence due to topographic obstruction,

giving rise to the φ hill. Downstream of the green dot, this enhanced wind encounters the

pass of the mountain range that runs along Sumatra (see Figure 2.1). As such, the wind

partially diverges to the northwest and southeast and the remainder passes through the

mountain pass. The divergence explains the intense ψ dipole feature on the windward

side of the mountain range, while the jet resulting from the passage through the mountain

pass explains the weaker dipole seen downstream of the pass. In the other locations of the

domain, the topography is completely different, meaning that different interactions, and

thus cross-covariance patterns, are to be expected.7 In other words, topography may be

part of the reason behind the dramatic horizontal variations and anisotropies observed.

6Refer to Figure 4.1 to see how the ψ part of the wind field can be interpreted from ψ contours
7Also, the atmospheric forcing can be different. In the eastern half of the domain, the error cross-

covariances are likely influenced by the monsoon flow.
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4.4 Regression coefficient models

4.4.1 Conventional regression coefficient models and their flawed

assumptions

Flawed conventional regression coefficient models These horizontal variations

and anisotropies are contrary to the assumptions of the two commonly used regression

coefficient models (see Figures 1.1 and 1.2). The first model assumes that there are

no horizontal variations in the regression coefficient and that there are zero covariances

between variables on different model levels (Chen et al., 2013). The second model relaxes

the second assumption, but keeps the assumption of horizontal invariance (Descombes et

al., 2015). On top of that, these models assume that the relationship between variables

on two model grid points are isotropic (Bannister, 2008b). This manifests in the lack of

any horizontal directionality in these definitions of regression coefficients. However, as

observed earlier, the cross-covariances are hardly horizontally invariant or isotropic. I.e.,

the regression coefficients are likely to be horizontally variant and anisotropic! We can

already foresee that these conventional models will have bad performance in our study.

Conventional models will still be used Despite the breakdown of the assumptions,

these two models are still worth testing. First of all, the performance of these two models

can be used to benchmark the performance of our own model (which will be introduced

later). Furthermore, these two models result in very small matrices of α, and can thus be

easily computed. Lastly, due to the limited number of forecast pairs, any computation of

regression coefficient matrices must contend with the problem of undersampling. If there

are insufficient samples of forecast errors, the forecast error auto-covariance matrices are

definitely singular. In other words, inverting these matrices to determine the regression

coefficients is out of the question. However, these two models circumvent this undersam-

pling problem by considering all the points in each model level as a sample. This typically

overcomes the problem of undersampling.

4.4.2 New regression coefficient matrix model

Requirements A better model than the two conventional models would be one that

uses more realistic assumptions while preserving the benefit of computational ease and

circumvents undersampling. Here, we will deduce a more suitable assumption from ex-

amining the earlier plots of the columns of B.
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Assumption: points near reference point are samples of a specified point The

assumption that we have decided to use is: the valuations of φ and ψ in the immediate

vicinity of a specified point are equivalent to samples of φ and ψ at the specified point.

For the ease of writing, this assumption will be called the neighbourhood equivalence

assumption. We will justify this assumption mathematically and from examining the

earlier auto-covariance plots.

Mathematical justification of neighbourhood equivalence assumption Con-

sider the Taylor expansion of ψ as a function of position and time. The expansion about

a position r, up to the linear order of h, is simply,

ψ (r + h, t) ≈ ψ (r, t) + h · ∇ψ (r, t) .

For the ease of discussion, the coordinates are Cartesian and ∇ is the 3D Cartesian

gradient operator. We will also set the temporal mean of ψ to zero. Clearly, the temporal

auto-covariance and variance of ψ in this small region are

Var

{
ψ (r)

}
=
〈
ψ (r)2

〉
,

Covar

{
ψ (r) , ψ (r + h)

}
≈
〈
ψ (r)2

〉
+ h · 〈ψ (r)∇ψ (r)〉 .

In other words, in the vicinity of r, the valuation of the auto-covariance can be very close

to the variance at r! This implies that if the valuations of ψ on two nearby points, they

can be treated as two samples of the same quantity.8

Justification from columns of B: horizontal view The auto-covariance columns

of B also support this notion. As mentioned in the earlier parts of this chapter, we

noticed that the auto-covariances tend to be similar to the variances of the green dots

immediately around the green dots. In fact, when we divide the auto-covariances of φ

with the variance of φ, and likewise for ψ, in Figure 4.8, the resulting ratio tends to be

within 0.2 of 1 within the 0.5◦ of the green dot. In other words, we can roughly consider

φ and ψ within a 1◦×1◦ square centred at a point to be samples of φ and ψ at that point.

Justification from columns of B: vertical view The same argument also applies

in the vertical. From Figure 4.9, we infer that within roughly 5 model levels of a reference

8We acknowledge that there are scenarios where covariance of two variables can be equal to their
variances, even though the two variables are clearly different. However, since we are dealing with auto-
covariances, it seems intuitive to consider them the same quantity.
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Figure 4.8: The horizontal contour plots show the ratio between the auto-covariances
in Figures 4.3 (top left, for φ) and 4.5 (top right, for φ), against the local variances. The
local variances have been plotted in the corresponding columns of the bottom row.

point, the neighbourhood equivalence assumption applies.9

Neighbourhood equivalence assumption allows affordable α computation The

neighbourhood equivalence assumption causes the regression coefficient matrix computa-

tion to be affordable. Since the equivalence appears to hold for a set of points within a

subdomains with sides 1◦-by-1◦-by-5 model levels, we can split the entire model grid into

such subdomains. The regression coefficients only need to be calculated between each pair

of such subdomains. This drastically reduces the size of the regression coefficient matrix,

making it affordable to compute.

Neighbourhood equivalence assumption prevents undersampling Furthermore,

the assumption prevents undersampling from happening. Under the assumption, all points

9However, due to computational speed limitations, we will consider groups of 10 model levels later.
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Figure 4.9: The vertical contour plots show the ratio between the auto-covariances in
Figures 4.4 (top left, for φ) and C.1 (top right, for φ), against the local variances. The
local variances have been plotted in the corresponding columns of the bottom row.

within a subdomain are samples. This dramatically increases the number of samples by

a factor of the number of points in the subdomain. Furthermore, the size of the auto-

covariance matrices needed to compute the regression coefficients is reduced by the same

factor, reducing the number of samples needed to prevent singular matrices. Clearly,

formulating a model of regression coefficients under this assumption is feasible.

Need for sampling pattern of new model However, the assumption alone does not

tell us the exact way to compute the reduced auto-covariance matrices. Suppose that we

want to determine the auto-covariance of ψ between subdomain A and subdomain B. By

the definition of covariance, we need to multiply the mean-removed samples of ψ in both

subdomains to compute the covariance.

Point-by-point multiplication sampling We must avoid multiplying each mean-

removed sample in subdomain A to all the mean-removed samples in subdomain B (Figure
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Figure 4.10: Two ways to use the samples in a pair of subdomains (A and B) to compute
the multiples needed to generate auto-covariance of ψ between A and B.

4.10, top row). Mathematically, such an approach is exactly the same as taking the mean

of all the values in A and B and use that as the sample. This approach kills off the

increase in available samples. Instead, we should create the multiplication samples as

per the second row in Figure 4.10. In other words, there is a one-to-one pairing of

samples across the two subdomains. That will utilize all the samples, without causing

undersampling.

Formulation of new model Following this sampling method, we can define the math-

ematical formulation of the new model. First, we will consider the (i, j, k)-th subdomain

(counting from the bottommost-southmost-westmost subdomain) on the model grid to be

the n-th subdomain. For the ease of computation, we will use subdomains that have the

size of 1◦ by 1◦ by 10 model levels (to be precise, 20 by 20 by 10 model grid points). This
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means that the model grid is split into a 3D array of 16× 15× 7 subdomains. Thus, we

can define the mapping from (i, j, k) to n,

n (i, j, k) = i+ j ∗ 16 + k ∗ 16 ∗ 15. (4.3)

Then, we can define the full mathematical formulation of the model (see Figure 1.3 for

an intuitive schematic illustration of the model).

ψ′
n;t

(3)
= ψn;t

(3), φ′
n;t

(3)
= φb;t

(3) −
16∑
i′=1

15∑
j′=1

7∑
k′=1

α
(3)
φ,ψ′ (n, n′)ψ′

n′;t
(3)

C
(3)
ψ′,ψ′; n,n′ ≡

NT∑
t=1

ψ′
n;t

(3) ·ψ′
n′;t

(3)

20 ∗ 20 ∗ 10 ∗NT

, C
(3)
φ,ψ′; n,n′ ≡

NT∑
t=1

φn;t
(3) ·ψ′

n′;t
(3)

20 ∗ 20 ∗ 10 ∗NT

α
(3)
φ,ψ′ (n, n′) ≡

{
Cφ,ψ′

(3)
(
Cψ′,ψ′

(3)
)−1}

nn′
. (4.4)

4.5 Summary

In summary, we have shown that the columns of the auto-covariance submatrices of B

implicates deep convection and that the cross-covariance submatrices are not horizontally

invariant and isotropic. Following this variance and anisotropic idea, we argued that

the assumption behind two commonly used regression coefficient models (Figures 1.1 and

1.2) do not hold. A new assumption was then formulated from realizing that within the

vicinity of a specified point, auto-covariances tend to be approximately equal to variances.

A new model was then formulated based on this realization.
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Chapter 5

Results from regression coefficient

models

Overview The three regression coefficient models are now applied onto the outputs

of the GEN BE system. The first model assumes that the regression coefficients are

horizontally invariant and isotropic, and that there is no relationship between different

model levels (Figure 1.1). The second model also assumes horizontal invariance, but does

not assume that error variables are disconnected across different model levels (Figure 1.2).

The third method simply follows the neighbourhood equivalence assumption (Figures 1.3

and 1.4. The performance of the modelled regression coefficients are evaluated by their

ability to remove cross-covariances after applying the first step of the CVT. Another

result of interest would be the amount of φ variance that the linear φ–ψ relationship can

account for. If most of the variance of φ can be explained by the φ–ψ relationship, we

can consider φ′ to be completely decoupled from all other meteorological error variables

in future works.

5.1 Performance

Basis of metric If a perfect set of regression coefficients can be produced, then the

cross-covariance between variables in xb
′

is zero1. We can utilize this to determine the

performance of the modelled regression coefficient matrices.

1See the proof for Eqn (B.1) in Appendix B for the details.
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Figure 5.1: Box-and-whiskers plots of s (r, r′). These metrics were evaluated at the 72
r′ locations specified in the text, for the first model (left), the second model (middle)
and the third model (right). The boxes bound the interquartile range, the red vertical
line indicates the median and the whiskers bound the 10th and 90th percentiles of the
9 ∗ 160 ∗ 150 evaluations at each of the 8 level.

Description of s We used a metric to evaluate the performance of the regression coef-

ficient models pairs of points in the model. The mathematical formulation is

s (r, r′) ≡

∥∥∥∥∥
NT∑
t=1

φ′ (r, t)ψ′ (r′, t)

∥∥∥∥∥
/{

NT∑
t=1

φ (r, t)ψ (r′, t)

}
, (5.1)

where r and r′ are position vectors. This metric computes the ratio of the residual cross-

covariance after the first step of CVT, against the original cross-covariance. The ideal

value of s is thus zero. Naturally, the best model would be one that turns s to the smallest

absolute value, when employed in the CVT.

s computer memory constraint Due to computational memory constraints, only 72

r′ were sampled. Likewise, r was sampled every two grid points in the horizontal, and

every grid point in the vertical. The 72 r′ positions are split across 8 model levels2, 9 per

model level. The horizontal positions of each set of 9 points are the same as the green

dots in Figure 4.8.

Plotting the s data The s valuations from these 72 test locations are grouped accord-

ing to the 8 model levels of the test locations and then plotted in Figure 5.1. In other

words, each box and whisker plot in Figure 5.1 contains 9 ∗ 160 ∗ 150 evaluations of s.

2Model level indices are k = 0, 10, 20, · · · , 60, 70.
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Third model outperforms the first model According to Figure 5.1, 50% of the

s evaluations for third model (below the median) have values less than 0.2. In other

words, after applying the CVT, 50% of all tested points have cross-covariances with

magnitudes that are less than 20% of the original cross-covariances. Furthermore, median

to 90% percentile evaluations of s for the third model indicate that 40% of the new cross-

covariances range from 20% to 100% of the original cross-covariances. In contrast, 40% of

the s evaluations for the first model (10th percentile to median) indicate that the absolute

value of the new cross-covariances are more than 80% of the original. To make matters

worse, 40% of the s evaluations for the first model (median to 90th percentile) indicate

that applying the first model resulted in larger cross-covariances! Clearly, the third model

is far more adept at removing cross-covariances than the first model.

Third model outperforms the second model Similarly, the third model outper-

forms the second model. The 10th percentile to median evaluations of s for the second

model indicates that applying the second model can only remove less than 80% of the

cross-covariances for 40% of the points. In contrast, for the same range, the third model

removes more than 80%. To make matters worse for the second model, the median to 90th

percentile range of s evaluations indicate that applying the second model amplifies the

cross-covariances! For the same percentile range, the third model is still able to constrain

the absolute values of the new cross-covariances to be smaller than that of the original

cross-covariances. The third model is clearly more suited to removing cross-covariances

than the second model.

First and second model are unsuitable for our region The first model is clearly

unsuitable for our region as it only modifies the cross-covariances by 20%, and it does

amplify cross-covariances for 50% of the evaluated cases. While the second model is

able to remove between more than 40% of the cross-covariances for 25% of the points

tested (below the 25th percentile in Figure 5.1), the second model actually amplifies

cross-covariances for roughly half the tested points (above the medians in Figure 5.1).

Furthermore, 25% of the tested points (upwards of the 75th percentile) indicate that the

second model actually amplifies the cross-covariances by more than 30%, and 10% of the

tested points (upward of the 90th percentile) indicate that the second model actually

increased the cross-covariance by more than 150%. These results mean that the first and

second model are highly unsuitable for use in the CVT for our region of interest.

Violation of assumptions is the reason for first and second models’ perfor-

mance As per the discussion in the preceeding chapter, it is hardly surprising that the
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performance of the first and second models is terrible in our region. In the preceeding

chapter, we observed from Figure 4.6 that cross-covariances vary tremendously with the

horizontal position considered and show great anisotropy around said position. As ex-

plained, this violates the horizontal invariance and isotropy assumption that underlies the

first and second model. In other words, the bad performance by the two models are as

expected.

5.2 Variance occupation

An additional boon for third model Of course, if the third model can also account

for most of the variance of φ, future work utilizing this model can also neglect relationships

between φ′ and other meteorological variables. To examine this, we defined the following

fraction

f (r) ≡

{
Nt∑
t=1

φ (r)φb (r)

}/{
Nt∑
t=1

φ (r)φ (r)

}
, (5.2)

where

φb ≡ αφ,ψψ′.

In essence, if f is close to 1, then the linear relationship between φ and ψ is able to account

for most of the variance in φ. The f evaluated for all three methods, across the model

grid, are aggregated by model levels and displayed as box-and-whisker plots in Figure 5.2.

Third model explains most of φ variance Two observations can be made from

Figure 5.2. First of all, from the horizontal scales of Figure 5.2, it is clear that utilizing

the third model results in the greatest f valuations (which are very close to 1). In other

words, when the third model is used, most of the variance in φ can be explained by ψ. In

contrast, the other two methods only explain a small portion of the variance. As such,

if the third model is implemented, subsequent studies can simply consider error variables

apart from ψ to be largely unrelated to φ.

Fall-off in third model’s f at upper level The second observation is that in the

upper levels, there is a notable fall in the f valuations of the third model. This is most

likely because the subdomains only cover the bottom 70 levels of the model and neglect

the remaining 9 levels.
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Figure 5.2: Box-and-whiskers diagrams of f obtained by the three methods of modelling
regression coefficients. The boxes bound the interquartile range, the red vertical line
indicates the median and the whiskers bound the 10th and 90th percentiles of the 9 ∗
160 ∗ 150 evaluations at each of the 8 level.

5.3 Summary

In summary, because the assumptions underlying the two commonly used models do not

hold in reality, while the third model’s assumption is based off the features observed in B,

the third model shows the greatest ability to remove cross-covariances. Furthermore, the

third model has the additional benefit of accounting for most of φ’s variance, meaning that

φ′ can be essentially considered to be decoupled from all other error variables introduced

by future work.
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Chapter 6

Conclusions and future work

Commonly used models are inadequate The goal of this project is to determine

an appropriate model for the regression coefficient matrices involved in the CVT, over

the Maritime Continent, during the Northeast monsoon season, using forecasts from the

Singapore Variable resolution model. After sanity checking SINGV forecasts (5th Decem-

ber 2015 to 19th December 2015), we examined several columns of B and realized that

the cross-covariance between φ and ψ exhibits large variations depending on the hori-

zontal location of the reference points. This means that any regression coefficient model

based on the assumption that regression coefficients are invariant in the horizontal are

unlikely to work well in the Maritime Continent, during the Northeast monsoon. Later

tests confirmed their inadequate performance in this scenario.

Neighbourhood equivalence assumption and the third model is the best Ex-

aminations of the columns of B also revealed that there is a tendency for the auto-

covariances between evaluations of an error variable at two nearby points to be approxi-

mately equal to their variances. A third model was formulated based on this assumption

(neighbourhood equivalence assumption), and then tested. When utilized in a CVT, the

third model removed most of the cross-covariances φ and ψ, making it an adequate model

for our scenario, fulfilling our goal.

Third model’s affordable computational cost It must be said here that the third

model has a much higher computational cost than the other two. This is to be expected:

the regression coefficient matrix generated by the third model is much bigger than the

first and second model. However, this cost is still affordable! We were able generate

the regression coefficients within 6 hours of computation in a laptop with an Intel i7

quad-core and 16 gigabytes of Random Access Memory, without using parallel computing
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(only 1 core was employed). Furthermore, when we ran a CVT based on the third model,

using the same laptop, without parallel programming, the first step of the CVT took

only 3 minutes. Also, the algorithm that utilizes the third model for the CVT is actually

an embarrassingly parallel algorithm (many repetitive matrix multiplications). It seems

likely that if the model was rewritten for parallel computing, it would be affordable for

data assimilation in operational forecasting.

Future work: increase number of subdomains in third model Even though

our new model has much better performance than the other two, it is not optimal yet.

In Chapter 4, we mentioned that the neighbourhood equivalence assumption appears to

hold for 5 model levels. However, we utilized subdomains with 10 model levels each due

to computational time limitations. Future work on this model can further enhance the

performance of the model by using half the number of model levels per subdomain.

Future work: apply neighbourhood equivalence assumption to CVT’s second

step Aside from subdomain size optimization, another avenue of future work would be

to apply the neighbourhood equivalence assumption to the second step of the CVT: the

removal of auto-covariances in xb
′
. We can safely say from Figure 4.5 that the assumption

should hold fairly well when dealing with the auto-covariance of ψ as it is unchanged by

the first step of the CVT. However, work is needed to determine if the assumption does

hold for φ′. If that is true, it may be feasible to model the auto-covariance of xb
′

using

the eigenvectors of the auto-covariance matrix of the subdomains. Future work can then

test this new model against other pre-existing models of auto-covariances.

Future work: generality of neighbourhood equivalence assumption and third

model A third avenue of future work would be to determine whether the neighbour-

hood equivalence assumption can be utilized on other commonly used variables in data

assimilation (e.g., air temperature and relative humidity). If so, then it may be possible

to utilize the third model when removing their cross-covariances through the CVT.

Outlook for the future Advancements in computer technology have worked wonders

for operational forecasting. In a mere three decades, the resolution of global circulation

forecast models has improved from several hundreds of kilometres to the current less than

20 km resolution (the European Centre for Medium Range Weather Forecasts currently

uses a 9 km horizontal resolution in their 36-hour global forecasts). In fact, at the time of

writing, numerical weather prediction and limited area models with a horizontal resolution

of less than 5 km are fairly common. It would not be surprising if sub-convective scale
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(sub-kilometre scale) forecast models become common by the end of the next decade.

However, it is difficult to expect the density of observation to match up to the resolution

of forecast models. Clearly, B’s capacity for spreading the influence of observations from

their sparse locations throughout a model’s initial conditions during data assimilation

will prove to be important in this future. The art of data assimilation and studies on

modelling B will remain invaluable for a long time.
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Appendix A

The roles of the background error

coviance matrix in DA

Overview Here, the roles of B in data assimilation (mentioned in Chapter 1) will be

shown through the single-observation and double-observation assimilation solutions that

minimize Eqn (1.4). As such, this chapter will be divided into two sections: the derivation

of the solutions to Eqn (1.4) and the application of said solutions to demonstrate said

roles of B. Afterwards, this chapter will conclude with a brief summary. Note that the

single-observation solution and several roles of B in data assimilation will be referenced

in later chapters of this document to interpret columns of B.

A.1 Solutions to Cost Function

A.1.1 Best linear unbiased estimate solution

Starting point – cost function As mentioned in Chapter 1, goal of data assimilation

is to determine a model state that minimizes Eqn (1.4). In the field’s parlance, this model

state is called the analysis state, Xa. Xa will be derived in this section. For convenience,

the cost function is rewritten in tensor notation,

J (X) =XiB
−1
ij Xj + Xb

iB
−1
ij X

b
j − XiB

−1
ij X

b
j − Xb

iB
−1
ij Xj

+ YmR
−1
mnYn + H (X)mR

−1
mnH (X)n − YmR

−1
mnH (X)n − H (X)mR

−1
mnYn.
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Consider the gradient of the cost function:

∂J (X)

∂xl
=B−1lj Xj + XiB

−1
il − B−1lj X

b
j − Xb

iB
−1
il

+
∂

∂xl

{
H (X)mR

−1
mnH (X)n − YmR

−1
mnH (X)n − H (X)mR

−1
mnYn

}
.

Since X = Xa minimizes the cost function, then,

∂J (X)

∂xl

∣∣∣∣∣
X=Xa

= 0 = B−1lj X
a
j + Xa

i B
−1
il − B−1lj X

b
j − Xb

iB
−1
il

+
∂H (X)m

∂xl

∣∣∣∣∣
X=Xa

R−1mnH (Xa)n + H (Xa)mR
−1
mn

∂H (X)n
∂xl

∣∣∣∣∣
X=Xa

− YmR
−1
mn

∂H (X)n
∂xl

∣∣∣∣∣
X=Xa

− ∂H (X)m
∂xl

∣∣∣∣∣
X=Xa

R−1mnYn.

Symmetric B−1 and R−1 Before going any further, it is useful to note that B and

R are, by definition, symmetric and positive definite matrices. In other words, B and R

are invertible and their inverses are symmetric. Applying these ideas condenses the cost

function differential:

∂J (X)

∂xl

∣∣∣∣∣
X=Xa

= 0 = 2B−1lj X
a
j − 2B−1lj X

b
j + 2

{
∂H (X)m

∂xl

∣∣∣∣∣
X=Xa

R−1mnH (Xa)n

}

− 2

{
YmR

−1
mn

∂H (X)n
∂xl

∣∣∣∣∣
X=Xa

}
.

Gradient of H Defining

H ≡∇H (X)

∣∣∣∣∣
X=Xa

(A.1)

simplifies the problem even further:

B−1lj X
a
j − B−1lj X

b
j + HlmR

−1
mnH (Xa)n − YmR

−1
mnHnl = 0.

Note that the gradient operator in Eqn (A.1) is in model space. In other words, for a

N -element state vector and a M -element observation vector, H is a M×N matrix. Thus,

B−1lj X
a
j − B−1lj X

b
j = +YmR

−1
mnHnl − HlmR

−1
mnH (Xa)n

=⇒ B−1
(
Xa −Xb

)
= H>R−1 {Y −H (Xa)}
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Tangent linear hypothesis To proceed any further, it is assumed that Xa and Xb

are close enough for H to be linear. In other words, for Xa + δX = Xb,

H (Xa + δX − δX) ≈ H (Xa + δX)−HδX = H
(
Xb
)

+HXa −HXb. (A.2)

This assumption is called the “tangent linear hypothesis” in literature. Thus,

B−1
(
Xa −Xb

)
= H>R−1 {Y −H (Xa + δX − δX)}

=⇒ B−1
(
Xa −Xb

)
= H>R−1

{
Y −H

(
Xb
)
−HXa +HXb

}
=⇒

(
B−1 +H>R−1H

) (
Xa −Xb

)
= H>R−1

{
Y −H

(
Xb
)}

Assume invertibility of
(
B−1 +H>R−1H

)
To proceed any further, it is necessary

to assume that
(
B−1 +H>R−1H

)
is invertible. Thus:

(
Xa −Xb

)
=
(
B−1 +H>R−1H

)−1
H>R−1

[
Y −H

(
Xb
)]

Tidying up In the literature, K is usually written as BH>
(
HBH> +R

)−1
. For

completeness, the two forms of K can be shown to be equivalent. Suppose that:

BH>
(
HBH> +R

)−1
=
(
B−1 +H>R−1H

)−1
H>R−1

Then,

BH> =
(
B−1 +H>R−1H

)−1
H>R−1

(
HBH> +R

)
=
(
B−1 +H>R−1H

)−1 (
H>R−1HB + I

)
H>

=
(
B−1 +H>R−1H

)−1 (
H>R−1H +B−1

)
BH>

= BH>

Thus, the two forms of K are consistent with each other. For consistency with the

literature, the following form of the solution will be used for the rest of this document1:

Xa = Xb +BH>
(
HBH> +R

)−1 [
Y −H

(
Xb
)]
. (A.3)

1An alternative derivation of the solution, based on minimizing the error of the analysis state, can be
found in the appendix.
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A.1.2 Single and double-observation BLUE solutions

Coincidence assumption The roles of B in data assimilation can be directly observed

from considering the solution in Eqn (A.3) for the case where only one observation is

assimilated, and for the case where two observations are assimilated. To simplify the

problem, it will be assumed that the observation(s) is located at a model grid point(s),

and concerns one (two) of the variables in B.

H under coincidence assumption Under this collocation assumption, the operator

H is effectively the matrix H . Let the normalized basis vector for that model point and

position in model basis be X̂n (i.e., the n-th element on X) and likewise, the observation

basis vector be Ŷm. As such, H for the single and double-observation cases are,

H = 1Ŷ X̂n
>
, and, H = 1Ŷ1X̂n1

>
+ 1Ŷ2X̂n2

>
, (A.4)

respectively.

Single-observation solution For the single-observation case, it is clear thatR consists

of a single element (σ2). Applying the single-observation R and H into Eqn (A.3) yields

the single-observation data assimilation equation

Xa
l −Xb

l = Bln
Y −Xb

n

Bnn + σ2
. (A.5)

Note that subscripts refer to the corresponding elements in the relevant vector/matrix.

Double-observation solution For convenience, suppose that the two observations for

the double-observation cases are uncorrelated. Then, R = σ2
1Ŷ1Ŷ1

>
+ σ2

2Ŷ2Ŷ2
>

. It can

be shown that the corresponding BLUE solution is

Xa
l −Xb

l =
Bln1

γ

(
y1 −Xb

n1

)
+
Bln2

γ

(
y2 −Xb

n2

)
+
Bln1Bn2n2 −Bn1n2Bln2

γ

(
Y1 −Xb

n1

)
+
Bln2Bn1n1 −Bln1Bn1n2

γ

(
Y y2 −Xb

n2

)
(A.6)

where γ ≡ Bn1n1Bn2n2 +Bn1n1σ
2
2 +Bn2n2σ

2
1 + σ2

1σ
2
2 −B2

n1n2
.
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Both solutions match It can also be shown that the double-observation solution can

be reduced to the single-observation solution when either σ2
1 or σ2

2 is set to infinity. This

makes sense as when there is infinite observation error, the observation’s impact on data

assimilation should be zero.

A.2 Roles of B in data assimilation

B weighs Y and Xb locally The first role of B in data assimilation can be illustrated

using Eqn (A.5). Expressing and rearranging Eqn (A.5) at the n-th element of the state

vector gives,

Xa
n =

Bnn

Bnn + σ2
Y +

σ2

Bnn + σ2
Xb
n. (A.7)

Clearly, B serves to weigh the contributions of the observation and background state,

according to the relative confidence for the two pieces of information.

B spreads Y −H
(
Xb
)

globally Aside from local weighing, B also spreads the dif-

ference between the observation and background state, throughout the model grid and

across model variables. This can be inferred by considering Eqn (A.5) and the general

form of B for L variables:

B =



〈
xb1x

b>
1

〉 〈
xb1x

b>
2

〉
· · ·

〈
xb1x

b>
l

〉
· · ·

〈
xb1x

b>
L−1

〉 〈
xb1x

b>
L

〉
〈
xb2x

b>
1

〉 〈
xb2x

b>
2

〉
· · ·

〈
xb2x

b>
l

〉
· · ·

〈
xb2x

b>
L−1

〉 〈
xb2x

b>
L

〉
...

...
. . .

. . .
. . .

...
...

〈
xblx

b>
1

〉 〈
xblx

b>
2

〉
· · ·

〈
xblx

b>
l

〉
· · ·

〈
xblx

b>
L−1

〉 〈
xblx

b>
L

〉
...

...
. . .

. . .
. . .

...
...

〈
xbL−1x

b>
1

〉 〈
xbL−1x

b>
2

〉
· · ·

〈
xbL−1x

b>
l

〉
· · ·

〈
xbL−1x

b>
L−1

〉 〈
xbL−1x

b>
L

〉
〈
xbLx

b>
1

〉 〈
xbLx

b>
2

〉
· · ·

〈
xbLx

b>
l

〉
· · ·

〈
xbLx

b>
L−1

〉 〈
xbLx

b>
L

〉



.

(A.8)

Xa is the sum of Xb and a multiple of a column of B. Clearly, any column of B

cuts through an auto-covariance matrix, and L− 1 cross-covariance matrices. The auto-

covariance matrix’s column spreads the observation-background difference throughout the

model grid, for the assimilated variable. At the same time, the columns of the L−1 cross-
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covariance matrices spreads the observation-background difference to different variables,

across the entire model grid. In other words, B spreads the influence of Y − H
(
Xb
)

throughout the entire set of initial conditions.

B overlaps the influences of different observations When multiple observations

are assimilated, B allows their respective influences to overlap, as though two single-

observation solutions were used. This can be inferred from the first line of the double-

observation solution, Eqn (A.6):

Bln1

γ

(
y1 −Xb

n1

)
+
Bln2

γ

(
y2 −Xb

n2

)
.

Notice that for a N -element state vector, for all l ∈ [1, N ] , l ∈ Z, these terms do not

cancel out or vanish. As such, the two observation-background differences are included in

every point on the grid and across all variables, weighed by the corresponding columns of

B. In other words, B causes the influence of observations to overlap in the model grid.

B causes observation interactions Aside from the overlapping effect, B also causes

the observation-background differences to interaction at grid points and/or variables that

differ from the observation location and/or variables. The second line of the double-

observation BLUE solution in Eqn (A.6) alludes to this effect:

Bln1Bn2n2 −Bn1n2Bln2

γ

(
y1 −Xb

n1

)
+
Bln2Bn1n1 −Bln1Bn1n2

γ

(
y2 −Xb

n2

)
In other words, at points/variables different from the observations, an additional in-

teraction between the two observation-background differences pop up. B supplies the

interaction itself.

B limits observation interactions It is also interesting to note that the interacting

term from one observation vanishes at the location/variable of the other observation.

Specifically, Bln1Bn2n2−Bn1n2Bln2 = 0 when l = n2, and, Bln2Bn1n1−Bln1Bn1n2 = 0 when

l = n1. This means that at the position/variable of one observation, the only influence

from the other observation comes from the overlapping part. In other words, B limits

observation interactions to places/variables away from observation points/variables.
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A.3 Summary of derivation

In summary, a general solution to the cost function of Eqn (1.4) have been derived under

the tangent linear hypothesis and the assumption that
(
B−1 +H>R−1H

)
is invertible.

Two specific solutions (single-observation and double-observation) were then derived from

the general solution, and then utilized to demonstrate that B has the following roles in

data assimilation:

1. B weighs Y and Xb locally,

2. B spreads Y −H
(
Xb
)

globally,

3. B overlaps influences of different observations,

4. B causes observation interactions, and,

5. B limits observation interactions.

In the later chapters, the first two roles of B and the single-observation solutions will be

referenced when interpreting the results of this project’s computations.
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Appendix B

Details about the first step of CVT

Purpose of CVT As described in the introduction, the goal of the CVT method is to

transform the inputted state vector of background error variables (xb) into a vector of

control variables (xb
′′
) possessing zero covariances. When this happens, B is effectively

transformed into an easily managed diagonal matrix.

Diagonalisation inspiration The CVT model actually emulates the effect of applying

B’s eigenvector matrices to itself, i.e., linear algebra’s diagonalisation. Consider:

B = V S V >

where V and S are matrices of the same dimensions as B, the columns of V contain the

eigenvectors of B and S is a diagonal matrix of the eigenvalues. In other words, if one

defines xb
′′ ≡ V > xb, i.e., V xb′′ = xb, then,〈
xb
′′
xb
′′>
〉

=
〈
V > xb xb

>
V
〉

= V >
〈
xb xb

>
〉
V = V >V S V >V = S.

In other words, the best CVT operator is none other than V >. However, given that B

must be fully determined before any computation of V , this optimal operator cannot be

used.

Formulation of Up Instead, the CVT method seeks to emulate the diagonalizing effect

of V through the two stages described in the introduction. We will focus on the cross-
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covariance removal stage, whose operator is Up
1. The transformation is simply

xb = Upx
b′,

where xb and xb
′

are as defined in Chapter 1. It should be apparant that

Up =



I 0 · · · 0 0

α1,2 I · · · 0 0
...

...
. . .

...
...

α1,L−1 α2,L−1 · · · I 0

α1,L α2,L · · · αL−1,L I


.

This also means that

B = Up

〈
xb

′
xb

′>
〉
Up
>.

Decorrelated xb
′

If xb
′

has zero cross-covariances (over time), then
〈
xb

′
xb

′>
〉

is a

block diagonal matrix. We will prove this zero cross-covariance property,〈
xb
′
l x

b′>
m

〉
= 0 ∀ l 6= m. (B.1)

First layer of proof for Eqn (B.1) The proof for Eqn (B.1) will be done inductively.

First, consider the scenario where there are only 2 background error variables, then xb
′
1 =

xb1, x
b′
2 = xb2 −α2,1x

b′
1, and, α2,1 ≡

〈
xb2 x

b′>
1

〉〈
xb
′
1 x

b′>
1

〉−1
. Thus,

〈
xb
′
2 x

b′>
1

〉
=
〈
xb2 x

b′>
1

〉
−
〈
α2,1x

b′
1 x

b′>
1

〉
=
〈
xb2 x

b′>
1

〉
−
〈
xb2 x

b′>
1

〉〈
xb
′
1 x

b′>
1

〉−1 〈
xb
′
1 x

b′>
1

〉
= 0.

Since
〈
xb
′
1 x

b′>
2

〉
=
〈
xb
′
2 x

b′>
1

〉>
, then

〈
xb
′
1 x

b′>
2

〉
= 0. As such, Eqn (B.1) holds for the

2 background error variable case.

Inductive proof for Eqn (B.1) Now, assume that Eqn (B.1) holds for a set of n

transformed background error variables and an additional transformed background error

is added. Under this supposition, for Eqn (B.1) to hold for n+ 1 transformed background

error variables, we just need to show that〈
xb
′
n+1 x

b′>
m

〉
= 0 ∀ m < n+ 1.

1In the field, Up is often called the physical balance operator.
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By the definitions in Chapter 1,

〈
xb
′
n+1 x

b′>
m

〉
=
〈
xbn+1 x

b′>
m

〉
−

n∑
p=1

αn+1,p

〈
xb
′
p x

b′>
m

〉
=
〈
xbn+1 x

b′>
m

〉
−

(
m∑
p=1

αn+1,p

〈
xb
′
p x

b′>
m

〉
+αn+1,m

〈
xb
′
m x

b′>
m

〉
+

n∑
p=m+1

αn+1,p

〈
xb
′
p x

b′>
m

〉)

=
〈
xbn+1 x

b′>
m

〉
−αn+1,m

〈
xb
′
m x

b′>
m

〉
−

(
m∑
p=1

αn+1,p

〈
xb
′
p x

b′>
m

〉
+

n∑
p=m+1

αn+1,p

〈
xb
′
p x

b′>
m

〉)

=
〈
xbn+1 x

b′>
m

〉
−
〈
xbn+1 x

b′>
m

〉
−

(
m∑
p=1

αn+1,p

〈
xb
′
p x

b′>
m

〉
+

n∑
p=m+1

αn+1,p

〈
xb
′
p x

b′>
m

〉)

= −
m∑
p=1

αn+1,p

〈
xb
′
p x

b′>
m

〉
−

n∑
p=m+1

αn+1,p

〈
xb
′
p x

b′>
m

〉
.

In the two remaining summations, it is clear that p ≤ n. Since Eqn (B.1) is supposed to

hold for the first n variables, then,
〈
xb
′
p x

b′>
m

〉
= 0 for p ≤ n. This clearly means that

〈
xb
′
n+1 x

b′>
m

〉
= 0. (B.2)

Notice that Eqn (B.2) rests on the supposition that Eqn (B.1) holds for the first n trans-

formed background error variables, where n is an unspecified integer. In other words,

Eqn (B.1) should also hold for n transformed background error variables if it holds for

n−1 transformed background error variables. If we repeat this backtracking continuously,

we will eventually arrive at the 2 transformed background error variables scenario. Eqn

(B.1) has been previously proven to hold for that particular scenario. In other words, by

induction, Eqn (B.1) holds for any number of transformed background error variables.
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Appendix C

Additional plots

Figure C.1: The contour plot shows the covariance of ψ at the green dots on the surface,
at 1◦N, and ψ everywhere on a vertical slice of φ, along the 1◦N latitude. This plot is
separated into 3 vertical strips, each centred on a the green dot, spanning 2◦ longitude in
the horizontal and all 79 model levels in the vertical. The horizontal axis is longitude and
the vertical axis is model level. This plot is referenced to in the discussion near Figure
4.5
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Figure C.2: The contour plot shows the covariance between ψ at the green dots and φ
in squares centred on the green dots, on the surface level. The dimensions of each square
is 450 km × 450 km, or roughly 4◦ × 4◦. The landmasses in the domain are outlined in
thick, solid black lines.

Figure C.3: Contribution fractions (Chen et al., 2013) for the three ways of modelling
regression coefficients. The red data points are for the first model, the blue for the second
model and the black for the third model.
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