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Abstract

Some entanglement  witnesses  in  the  literature  rely on the  assumptions  of  state  tomography –  the

complete knowledge of the measurement device characteristics as well as the Hilbert space dimension

of  the  systems  being  measured.  On  the  other  extreme  end  are  the  Device-Independent  (DI)

entanglement  witnesses,  which  rely  only  on  the  observed  correlations  to  certify  the  presence  of

entanglement without any further assumptions. However, such entanglement witnesses give pessimistic

bounds on the amount of certifiable entanglement and are restricted to correlations that violate a Bell

inequality.

There are  also schemes  which  are  considered  “semi-device independent” which keep some of  the

assumptions of state tomography while relaxing others. One such relaxation involves only assuming the

dimension of the Hilbert space of the systems, and has been tested with ideal statistics [7], certifying

entanglement for correlations that do not violate a Bell inequality and thus cannot be certified in a DI

fashion.  This  project  addresses  the  question  of  quantifying  the  amount  of  entanglement  given

experimental correlations and only the knowledge of the Hilbert space dimension, accounting for the

experimental  fluctuations  arising  from  non-ideal  detectors  as  well  as  finite  sample  size.  The

performance of the semi-DI scheme is then compared against other numerical methods that certify

entanglement  in  a  DI  way [13],  as  well  as  in  the  case  when full  characterization  of  the  setup  is

assumed.
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Chapter 1

Introduction

Entanglement is a valuable resource in many applications of quantum mechanics

and quantum information science. The certification of entanglement thus becomes

useful in applications where the serviceability of the quantum devices employed

needs to be ensured. These applications include but are not limited to quantum key

distribution and quantum random number generation.

When a precise characterization of the measuring equipment is available, one can

use the experimental set-up to certify the presence of entanglement, usually with

the  use  of  some  entanglement  witness,  that  can  be  found  in  a  system.  Such

entanglement  witnesses  usually  rely  on  knowledge  of  the  measurements  being

performed  and  the  Hilbert  Space  dimension  of  the  system  under  study.  For

example, <XX> + <YY> > 1 is an entanglement witness, provided that the system

under study is indeed bipartite qubit and the measurement settings are exactly in

the  X  and  Y bases.  If  either  of  these  assumptions  are  violated,  the  observed

correlations may give a false positive.

In applications related to quantum communication, there exist adversarial scenarios

where a description of the measurement devices of some communicating party is

not  available  or  trusted.  In  these  cases,  it  is  possible  to  quantify entanglement

solely from the observed correlations, provided the correlations violate some Bell

Inequality. These entanglement witnesses are known as Device-Independent (DI)

entanglement witnesses. 

It should therefore be noted that the certification of entanglement depends on the

level of characterization of the devices. DI certification of entanglement requires

virtually no assumptions.  However,  DI certification schemes always require  the

violation of some Bell Inequality, and computational methods using semi-definite

programming (such as the NPA Hierarchy) usually give pessimistic bounds on the

amount  of  certifiable  entanglement.  In  addition,  DI  schemes  are  also

experimentally demanding, since the experimenter has to ensure that the observed

Bell  violation  is  loophole-free.  To  date,  only  three  loophole-free  experimental

realizations have been performed. On the other hand, with the knowledge of the

Hilbert  Space  dimension  and  the  measurement  settings,  one  has  the  same

1



assumptions  as  state  tomography,  which  is  versatile  and  has  been  routinely

implemented  in  experiments.  State  tomography,  in  principle,  allows  for  a  full

reconstruction of the state, which comes at the price of “trusting” the dimension

and measurement settings.

In view of the trade-off above, it is thus useful to consider a Semi-DI approach,

where the dimension is known, but the measurement settings are not. This approach

was  first  taken  by  Moroder  and  Gittsovich  (2012)[11],  who  discussed  how  to

certify  the  presence  of  entanglement  and  provided  analytical  bounds  on  the

correlations for some cases.  Later work by Goh, Bancal and Scarani (2016) [7]

explores  the  minimal  amount  of  certifiable  entanglement  (in  terms  of  the

concurrence) for a given set of correlations and the knowledge of the dimension for

the case of bipartite qubits. In the project, I explore the scheme proposed in Goh et

al  (2016)  with  a  modification  that  accounts  for  experimental  fluctuations,  and

implement  the scheme on data  obtained from experiments  on entangled photon

pairs  generated  by  Type  II  crystals.  I  determine  the  minimum  amount  of

entanglement  certifiable  using  the  negativity  of  the  state,  given  a  set  of

experimental  correlations  with fluctuations  arising  from non-ideal  detectors  and

finite sample size.
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Chapter 2

Preliminaries

This chapter provides a summary of the important notions for the project. There are

well-established notions, and I have synthesized them here as part of the summary

of the project repertoire and for an uninitiated reader (which was where I began) to

grasp the basic operational notions. 

2.1 Qubits

2.1.1 A Qubit

In QIS, a qubit is a unit of quantum information. It can be thought of as a quantum

analog of a (classical) bit, which encodes either a 1 or a 0. Any two-level quantum

system, such as a single photon polarization or electron spin,  can be used as a

physical realization of a qubit. 

Unlike its classical analog, a qubit does not necessarily have to either be in the '0'

state or the '1' state. Qubits are allowed to be in a superposition of the two. A qubit

state can then be represented by a state vector, with basis states that a state can be

measured in. One such basis would be the “standard” basis:

A general pure qubit state can be written as:

for some real numbers a,b, Ω and φ, bearing in mind that quantum states are unique

up to a global phase and normalization. For any state |ψ>, we can also consider the

projector onto that state

The reason it is called a projector is due to its projection property:
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The vector space that the state resides in is known as the Hilbert Space, and qubits

have  Hilbert  space  dimension  2,  or  alternatively  can  be  said  to  reside  in  ℂ2 .

Measurements  that  can  be  made  on  the  state  can  be  represented  by  their

measurement  operators  as  matrices  in  ℂ2.  The  measurement  operators,  denoted

PI(x,a), have the following properties:

– For  each  measurement  setting  x  and  output  a,  Π
x
a is  the  associated

measurement operator.

– For each setting, the measurement operators are complete: 

– All the measurement operators Π
x
a are positive semi-definite.

When  the  measurement  operators  are  mutually  orthogonal,  the  measurement  is

projective (and they take the form of a projector onto some subspace of the Hilbert

Space of the system). Some measurements are not projective, and the most general

measurement  can  be  defined  using  Positive  Operator  Valued  Measurements

(POVMs).  They  similarly  satisfy  the  properties  for  measurement  operators  as

above, with the relaxation that they may have full rank, and may not be trace 1

unlike projective measurements. 

For  projective  measurements  on  ℂ2,  their  corresponding  observables  M can  be

constructed in the following form:

The above form is also known as the spectral decomposition of M, since |ψ> and

|ψ
┴
> are orthogonal. The operator M corresponds to the physical observable, which

may  be  spin  or  polarization  in  the  direction  specified  by  the  state  |ψ> .  The

operators M are typically constructed with the following properties:

1. They  are  Hermitian,  which  means  that  their  eigenvectors  are  mutually

orthonormal and span the Hilbert space in which they reside. Consequently,
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the  operator  can  be  decomposed  in  terms  of  its  eigenvectors,  which

corresponds  to  the  basis  in  which  the  measurement  of  the  associated

observable takes place. Its eigenvalues are real, and are assigned to be +1

and –1.

 

2. They  are  unitary.  As  a  consequence  of  their  construction,  measurement

operators  satisfy  M2 =  1.  Along with  being  Hermitian,  this  means  they

satisfy M†M = 1.

3. They are traceless. Since their eigenvalues are +1 and –1, they must also

satisfy tr(M) = 1 – 1 = 0.

Of course, the matrix representation of the observable depends on the choice of

measurement basis. If the representation is constructed using the three following

bases:

We  obtain  the  well  known  Pauli  matrices.  In  this  text,  the  three  bases  will

sometimes  be  referred  to  as  the  computational  or  “standard”  basis,  the  “plus-

minus” or “diagonal” basis, and the “circular” basis respectively. This alludes to

their assignment to the respective polarization states for photons. In the cases of

electron spin, they are the angular momentum eigenstates along the Z, X and Y

axes respectively. In some presentations, the Pauli matrices are denoted as Z, X and

Y respectively.

These  matrices  satisfy  the  above  three  properties  and  also  are  all  unitarily
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equivalent to each other. They satisfy the trace orthonormality relation:

2.1.2 Bloch Sphere

Pure States

For  the  case  of  qubits,  the  projectors  for  the  pure  states  have  one-to-one

correspondence to points on a unit sphere. This can be seen by considering a qubit

pure state, and decomposing it in terms of the Pauli matrices. 

The  parameters  φ and  θ can  then  be  interpreted  as  the  azimuthal  and  polar

coordinate respectively,  and  n denotes the Bloch vector. Each pair of anti-nodal

points  on the unit  sphere S2 corresponds to pair  of mutually orthonormal basis

states: so the pair of points on the z-axis (θ = 0) correspond to the standard basis,

while the pair on the x-axis (θ = π/2, φ = 0) corresponds to the diagonal basis, while

the pair on the y-axis (θ  =  π/2,  φ =  π/2) corresponds to the circular basis. The

matrix representation of the observable can similarly be expressed using 2 degrees

of freedom. 

Mixed states

In general, a state can also be a statistical ensemble of multiple pure states. In such

a situation, a ket vector is no longer sufficient for the description of the state, but

rather necessitates the density operator:
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It should be noted that the states |i> need not be orthogonal. A density operator ρ

must be positive semi-definite, trace 1 and must be an element of a linear operator

on ℂ2. For n-dimensional systems, the density operator can be represented by an n-

by-n matrix.

For qubits, the density operator can also be written in terms of the Pauli matrices,

with the same form as for projectors of pure states. In the case of pure states, the

Bloch vector has magnitude 1. For mixed states, the Bloch vector has magnitude

less than 1. It is instructive to consider the following examples of density operators.

In addition, every density operator admits a spectral decomposition. i.e. For any

density operator, a decomposition of the form:

where the state vectors |i> are mutually orthonormal, is always possible. 

2.1.3 Multiple Qubits

In cases where the system comprises more than one qubit, one would consider the

state to reside in the composite Hilbert space ℂ2⊗n. In the case of two qubits, each

one in a pure state, one would write the bipartite state as a tensor product of the two

states. For example, if one qubit is in the  |0> state, while the other is in the  |+>
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state, we have

Composite states can also be in superposition of any tensor product combination

over the two subsystems. For example,  we can consider a superposition of two

qubits both being in the |0> state and both being in the |1> state.

In terms of the Bloch vectors, bipartite qubit states have the following form:

The notion of composite states can be extended to three or more qubits, as well as

higher dimensional systems. 

Mixed states arise when considering a bipartite state in a composite Hilbert space

H1 ⊗  H2 (say ℂ2 ⊗  ℂ2), and one half of the composite system is not accessible to

the observer. The state in one of the Hilbert spaces H1 is then the partial trace of the

composite state over H2. For example, we consider again |Φ+> as denoted in (21):

It is also known that any mixed state in Hilbert space H can be seen as a reduced

state  of  some higher  dimensional  pure  state  in  H  ⊗ H .  This  is  known as  state

purification, and can be summarized as follows:
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A simple criterion for determining if a state ρ is mixed is to take the trace of ρ2. If

tr(ρ2) = 1, the state ρ is pure, and otherwise it is mixed.

2.1.4 Statistics obtained by measurements

It would be useful to consider the statistics obtained by measurements on quantum

states. For a state p, the expectation value <A> of an observable A is given by tr(ρ

A).  For  a  pure  state  |ψ>,  this  expectation  value  reduces  to  <ψ|A|ψ>.  In  state

tomography,  many  copies  of  the  state  are  measured  with  the  appropriate

measurement operators to obtain their expectation values (known as moments), and

the  moments  are  used  to  reconstruct  the  state.  For  a  qubit,  these  measurement

operators will be the Pauli matrices or linear combinations thereof.

The fact that the Pauli matrices are traceless, unitary and Hermitian allows for a

very neat property for measurement statistics on qubits: The expectation values for

any  observable  n∙σ for  a  state  ½(1 +  m∙σ),  will  simply  depend  on  the  angle

between the associated Bloch vectors. In particular, 

<n∙σ> = tr(½(1 + m∙σ) n∙σ) =  m∙n

P(±|measurement setting ±n∙σ, state ½(1 + m∙σ)) = ½(1 ± m∙n)

In experiments, because of the finite sample size and non-ideality of the detectors,

fluctuations  in  the  data  are  expected.  In  the  case  of  quantum state  estimation

(QSE), fidelity may be used as a figure of merit that quantifies the quality of the

estimate[10].  Fidelity  can  be  understood as  the  closeness  of  two states,  and is

defined as the following:

 

9

  (25)

  (26)
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 if one state is pure

  (28)



     

where  the  square  root  of  a  matrix  is  defined  using  the  spectral  decomposition

theorem. For pure states, the fidelity is equivalent to the absolute value of the inner

product  of  the  two state  vectors,  sometimes also called the overlap  of  the two

states.

In cases where the state is composite, and a local measurement is performed on

each partition, the expectation values obtained will be:

For bipartite qubits, this expression reduces to <A> = Tr(ρ A1 ⊗  A2). At this point it

is  also useful  to  note that  the expectation value  <A> is  invariant  under  a local

unitary transformation on ρ and the measurements.1 

2.1.5 Qutrits and higher dimensions

For higher dimensional systems, there exist generalizations of the Pauli matrices

and bloch sphere. For example, a 3-dimensional quantum system, also known as a

qutrit, can be expressed as a state vector

where |a|2 + |b| 2 + |c|2 = 1. Analogously to qubits, projectors and density operators

for qutrits are represented by 3-by-3 matrices. Pure states and mixed states can be

distinguished in the same way that was described earlier by computing the trace of

the square of the density operator. For qutrits, the analog to the Paul matrices are

the Gell-Mann Matrices:

1 Of course, the local unitary transformation needs to be the same for both the state and 
measurements. To see why, apply local unitary transformations on the state and measurements 
and use the cyclic property of the trace to eliminate the matrices using U†U = 1.
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There is a simple way to construct analogous matrices for higher dimensions as

well.  These  matrices  are  Hermitian  and  traceless,  and  also  satisfy  the  trace

orthonormality  relation  tr(λiλj)  =  2δij.  Along  with  the  identity  matrix,  form  a

complete basis for any 3x3 Hermitian matrix. Indeed, it is known that any qutrit

state can be represented as

for an eight-dimensional vector  n,  where |n|2 ≤  3.  Unlike qubits,  qutrits  do not

enjoy the same symmetries in the evaluations of expectation values stated earlier

for  the  reason  that  Hermitian  matrices  in  ℂ3 cannot  be  unitary  and  traceless

simultaneously. An easy way to see this is to consider the spectral decomposition of

a 3x3 matrix analogously to (5)

if the eigenvalues are real and M is unitary, then λ2 = 1. However, no permutation

of ±1 between the three of them will satisfy the traceless requirement λ1 + λ2 + λ3 =

0. 

Other generalizations of Pauli Matrices

There  also  exist  other  generalizations  of  Pauli  matrices.  These  have  certain

desirable  properties  such  as  unitarity,  correspondence  to  the  Pauli  matrices,

generalization  to  all  dimensions,  while  trading  off  other  properties  such  as

Hermiticity. For example, for the generalization of σz, there is the clock operator:
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where χ is the d-th root of unity.  

In the case of σx, the generalization is known as the shift operator:

where i is evaluated modulo d.

Generalized Bloch sphere

The form (32) suggests the existence of an 8-dimensional vector space into which a

qutrit density operator can be decomposed. Indeed, for any qudit (d-dimensional

quantum system), there exist methods to construct a Generalized Bloch Sphere. The

boundary of the Bloch sphere for any dimension can be determined by computing

the positivity condition from the characteristic polynomial of the density operator,

expressed in terms of the Bloch vector. The boundaries are known to be closed

surfaces, and their geometries depend on the choice of basis used to decompose the

density operators.

For qubits, the positivity condition is the following when decomposed in terms of

the Pauli matrices:

which constrains a valid Bloch vector for qubits to the 3-dimensional sphere of

radius 1. In this case, all points in the sphere correspond to a valid qubit state. For

qutrits,  the  Bloch  vector  for  pure  states  (using  the  G matrices  as  a  basis)  has

magnitude  √3,  but  the  positivity  condition  is  more  nuanced.  The  characteristic

polynomial is given by:
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From the characteristic polynomial, it can be seen that |n|2 ≤ 3 is still a necessary

condition for the matrix to represent a valid state (consider the coefficient of  λ1).

However, it is not a sufficient condition, and some density operators represented by

points on the |n|2 = 3 hypersphere do not correspond to physical states. An explicit

example can be found by considering the anti-nodal point of a pure state. If |ψ><ψ|

= 1/3(1  + n∙λ), then the eigenvalues of  n∙λ must be 2, –1 and –1. The anti-nodal

point, which corresponds to 1/3(1 –  n∙λ), will then represent an indefinite matrix

since its eigenvalues will be 2/3, 2/3 and –1/3. 

For this reason, the 8-dimensional Generalized Bloch sphere for qutrits is not a true

hypersphere. In fact, it is known that no 3-D slice of the qutrit GBS is a sphere of

radius √3.[8] A study characterizing the 2-D and 3-D slices of the qutrit GBS also

determined  that  wide  classes  of  3-D  slices  have  similar  geometries.  These

geometries  include  spheres  (not  of  radius  √3,  but  radius  1),  prolate  ellipsoids,

cones, and obese tetrahedrons[8]. 

An observation: Rank of the density operators on the Bloch Sphere

An elementary property of the density operator is its rank. In the case of qubits,

every point on the boundary of the Bloch Sphere corresponds to a rank 1 density

operator,  while  every point  in  the interior  corresponds to  a  rank 2 operator.  In

higher  dimensions,  it  can be seen  by considering the  eigenvalues,  that  singular

matrices must lie on the boundary of the GBS, so all points in the interior of the

qutrit GBS correspond to rank 3 density operators. It can also be shown that for any

dimension,  points  on  the  boundary  must  necessarily  represent  singular  density

matrices,  thus  making  the  singularity  of  the  density  matrix  a  necessary  and

sufficient condition to characterize the GBS for any dimension. As it turns out,

points on the boundary of the qutrit GBS not at a distance of  √3 from the origin

correspond to rank 2 density operators, while points on the boundary at a distance

of √3 are rank 1 density operators (i.e. pure states). 

In Appendix A, I describe an easy method that exploits this observation to plot 3-D

sections of the Generalized Bloch sphere for qutrits (or any dimension, for that

matter) numerically using MATLAB.  
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2.2 Entanglement

2.2.1 An Entangled State

In the quantum model,  a  quantum state  is  said to  be  entangled when the  state

cannot be written as a (mixture of) tensor product of states in the respective Hilbert

Spaces of each sub-system. For pure states, a simple method to determine if the

state is entangled is to consider the partial trace over one subsystem to obtain the

reduced density operator. If the trace of the square of the reduced density operator

is less than 1, the original state has to be entangled. 

Recall the earlier example in (21). The state |Φ+> is a maximally entangled state of

two qubits. The state can be written as:

If one were to take the partial trace over one subsystem (say B), one will obtain the

maximally mixed state of a single qubit as in (18).

The trace of the square of the reduced density operator can then be shown to be less

than one:

One notable feature about entangled states are the correlations exhibited when the

appropriate measurements are made. Consider the following scenario: 

   

Figure 2.2.1.1: Two devices each measure one half of a maximally entangled pair of qubits, and

output a measurement outcome in the form of a bit.
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Let two photons be separated, and an observer at each point (call them Alice and

Bob) makes a measurement on the standard (Z) basis. If the two photons are in the

state |Φ+>, whenever Alice obtains the outcome 0, Bob is also guaranteed to obtain

the outcome 0.  Similarly,  if  Alice obtains  the outcome 1,  Bob is  guaranteed to

obtain the outcome 1. Each pair of outcomes (00) and (11) occur with probability

½, while  the outcomes (01) and (10)  do not  occur.  The matrix  of probabilities

would look like this:

Bob 

gets 0

Bob 

gets 1

Alice 

gets 0
½ 0

Alice 

gets 1
0 ½

Figure 2.2.1.2: The matrix of probabilities for Alice's and Bob's joint outcomes. In this scenario,

Alice's and Bob's measurement outcomes are fully correlated.

2.2.2 Entanglement Measures

When  characterizing  an  entangled  state,  one  can  speak  about  the  amount  of

entanglement present. In the earlier example, we referred to |Φ+> as the maximally

entangled state, and there is well-established reason for doing so. |Φ+> is maximally

entangled as it gives the maximal value for entanglement measures relevant to two-

qubit  states2.  For  bipartite  qubits  one  such  entanglement  measure  is  the

concurrence:

where {e1,e2,e3,e4} are the eigenvalues of the matrix M = (√ρ ρ'√ρ)½ in decreasing

order.  The density operator  ρ'  = (σy   ⊗ σy)ρ(σy   ⊗ σy).  The concurrence quantifies

entanglement  as  follows:  C  =  0  for  a  separable  state,  0  <  C <  1  for  an  non-

maximally entangled state and C = 1 for a maximally entangled state. 

For density operators of higher dimension, one can use the negativity:

2 The fact that the partial trace of |Φ+> is the maximally mixed state is also part of its definition. 
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where λi are the eigenvalues of the partial transpose of ρ, commonly denoted ρTA.

The  negativity  is  simply  the  sum  of  the  negative  eigenvalues  of  the  partial

transpose. If N[ρ] = 0, ρ is said to have Positive Partial Transpose, and is called a

PPT state. If N[ρ] > 0, ρ is said to have Negative Partial Transpose, and is called an

NPT state. The negativity is a convex function of the state, meaning that:

The relation of the negativity to entanglement is known as the Peres-Horodecki

Criterion[18], which states that:

– For a 2x2 or 2x3 dimensional composite Hilbert Space, ρ is separable iff ρ

is PPT.

– For any other dimension, ρ is entangled if ρ is NPT.

The necessity of  PPT for  separability can be easily seen in  the  definition  of  a

separable  state.  A general  separable  state  ρ is  defined as  a  state  which  can  be

written in the form:

for some pi > 0 and density operators φi and σi. Then the partial transpose of ρ will

be positive semi-definite, since  ρTA  =  Σi(pi  σi
T ⊗ φi ) is still a mixture of positive

semi-definite density operators. 

NPT entangled  states  further  have  the  property of  distillability,  which  involves

transforming  multiple  copies  of  non-maximally  entangled  states  to  produce  an

asymptotically  pure  entangled  state  [2].  For  a  bipartite  d-dimensional  quantum

system, N ≤ ½(d – 1), with equality for maximally entangled states. Therefore, in

addition to being an entanglement witness, negativity is also frequently used as a

dimension witness.

The  Concurrence  and  Negativity  are  entanglement  monotones.  Entanglement

monotones are non-increasing with local operations and classical communication

(LOCC) such as local unitary transformations and local measurement. In particular,

local unitary transformations do not change the values of entanglement monotones,

and classes of states equivalent to each other under local unitary transformations
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tend to have the same value for the same entanglement measure. One example of a

class of  states  in  this  sense would be the maximally entangled two-qubit  state.

Below are  four  maximally entangled  two-qubit  states,  known as  the  Bell  basis

states:

And  it  can  easily  be  shown  that  they  are  equivalent  up  to  local  unitary

transformations. In addition, all states of the form:

can be shown to be maximally entangled, and they all  share the same maximal

values of concurrence (C=1) and negativity (N = ½).

LOCC operations can be used to perform tasks in QIS experiments. For example,

suppose Alice and Bob share one pair of maximally entangled qubits either in the

state |Ψ– > or |Φ+>, which they wish to distinguish by performing LOCC operations.

Alice  and Bob will  simply need a  classical  communication  channel  (such as  a

phone or the internet), and each of them performs a projective measurement on

their  respective  qubit  in  the  computational  basis.  They  then  share  their

measurement output with each other via the classical communication channel. If

they obtained the same measurement result, they know their state is |Φ+>, otherwise

it  is  |Ψ–  >.  Other  LOCC  operations  include  local  unitary  transformations  and

numerical processing. 

2.2.3 Entanglement for Certifiable Randomness

It  is  known  that  the  outcomes  of  quantum  measurements  are  truly  random.

However, not all randomness produced by quantum measurements are certifiable.

Entanglement is a resource for generating certifiable true randomness. It would be

pertinent  to  first  introduce  the  notion  of  randomness.  Consider  the  day-to-day

scenario of rolling a six-sided dice labeled '1' to '6'. Assuming an ideal fair dice, the

probability of obtaining any one of the six outcomes is 1/6. Notationally, we say 
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P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6 

The probability distribution is uniform, so if one were to guess the outcome of a

particular roll without any additional information, there would be no guess that is

better than another, since all outcomes are equally likely. In a sense, one can talk

about the uniform probability distribution being “maximally random”. A quantity

that can be used to quantify randomness is the min entropy, defined as

H = – log pguess

where  pguess  is  the  guessing  probability,  or  the  probability  of  the  most  probable

outcome. One can easily see that for any experiment with n discrete outcomes, the

deterministic  probability  distribution  has  the  minimum entropy H =  0  and  the

uniform probability distribution has  the maximum entropy H = log(n).  For  this

reason, H can function as a measure of randomness – a deterministic probability

distribution  is  minimally  random  and  a  uniform  probability  distribution  is

maximally random.

One  probably  would  not  consider  a  deterministic  probability  distribution  a

“random”  process,  but  any  non-deterministic  probability  distribution  would  be

considered  “random” at  least  to  some degree  (which  one  could  quantify  using

entropy). This intuitive comparison can in fact be called uniformity, and one should

see it as distinct from randomness. 

What is then worth noting is when one considers the 6-sided dice roll a random

process, one actually speaks with the assumption that the experimenter does not

have any information that will allow them to predict the outcome. In principle, the

information is actually there – if the dynamical variables were calculated, it would

greatly increase the ability of the experimenter to determine the outcome of the

dice roll. The main barrier to reducing the randomness of the dice roll this way is

the  computational complexity of calculating the dynamical variables of the dice,

and not any fundamental principle of physics.3 

What this illustrates therefore is that randomness has to be spoken of relative to the

information  possessed  by  the  observer.  While  computational  complexity  and

uniformity makes it less likely that the outcome can be predicted by naive guessing,

3 To put it  more rigorously,  the dice roll  is  chaotic because its  evolution is  sensitive to initial

conditions, nevertheless, chaotic behavior is deterministic in principle.
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it  is not fool-proof against an observer that has knowledge of the variables that

produce the outcomes of the process. A process where no information is available

that can predict its outcome is thus said to be intrinsically random. By definition,

any classical  process  that  is  used to  generate  its  outputs  must  necessarily have

information that can predict the outcome. 

On  the  other  hand,  outcomes  of  measurements  on  quantum  systems  are  truly

random, and there is no information that allows for the prediction of the outcome of

a particular measurement other than the statistical behavior of ensembles of the

same system under measure. However, it is also known that measurements made on

separable  states  can  always  be  reproduced  by classical  strategies.  (read  section

2.3.5 for an illustration of this)

Entangled states are therefore a necessary ingredient for producing behavior that

allow us to certify the intrinsic randomness of a process. These will be elaborated

on in the subsequent section on Bell Non-locality with examples.

2.3 Bell Non-locality

2.3.1 First notion: A Bell Experiment

In this text, the discussion shall be limited to a specific class of experiments of the

following form:

   

Figure 2.3.1.1: Schematic diagram of a Bell test for two parties. Communication channels between

the devices are not specified in the above diagram, but it is assumed in general that the Alice and

Bob may have precommunicated and the devices may be pre-loaded with some shared information.
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Otherwise, Alice and Bob do not influence each other at the point of measurement.

Two parties (our beloved Alice and Bob), each own a device that reads in their

inputs x and y respectively, and outputs a value a and b respectively. No a priori

assumptions are made on the devices, and they may well be black boxes to Alice

and  Bob.  These  are  a  specific  subset  of  experiments  sometimes  called  Bell

experiments.  The scenario described at  the end of Section 2.2.1 regarding local

measurements  on  two  maximally  entangled  qubits  is  simply  an  ideal  quantum

realization of a Bell Experiment for a particular pair of settings x and y. 

2.3.2 The Correlation Matrix: The two setting, two output case

In most cases, the inputs x and y are picked from the integer values {0,1,2..., n – 1}

for a n-input scenario. The values of a and b are chosen depending on the context,

and in most studies involving two outputs either use a,b ϵ {0,1} or a,b ϵ {+1,–1}.

Either  way,  once  Alice  and  Bob  finish  their  local  measurements,  they  will

communicate classically and collate their measurement outcomes to form their joint

probability matrix or correlation matrix p(ab|xy):

  P(b|Y = 0)   P(b|Y = 1)

P(b = +1) P(b = –1) P(b = +1) P(b = –1) 

P(a = +1|X=0) P(++|00) P(+–|00) P(++|01) P(+–|01)

P(a = –1|X=0) P(–+|00) P(––|00) P(–+|01) P(––|01)

P(a = +1|X=1) P(++|10) P(+–|10) P(++|11) P(+–|11)

P(a = –1|X=1) P(–+|10) P(––|10) P(–+|11) P(––|11)

Figure 2.3.2.1: The correlation matrix. The eight entries outside the main 4x4 block are the marginal

probabilities, while the sixteen entries in the 4x4 block are the joint probabilities. 

2.3.3 Local Variables, No-Signaling and Pre-established Agreement

In  everyday  life,  correlations  between  distant  parties  is  commonplace.  People

communicate with each other in order to synchronize their schedules, and establish
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agreements on how to take subsequent action in their own individual posts in their

workplace.  These  two  examples  illustrate  two  classical  mechanisms  that  can

explain distal correlations: signaling and pre-established agreement. From the idea

of pre-established agreement one can formally characterize local variables – that

the behavior of each device must be planned in advance for all possible pairs of

inputs in such a way that the device can produce its output based on the input it

receives but not the other device's. This would be equivalent to distributing a list of

instructions, labeled using the variable λ. One can imagine such a list to look like

this:

λ = 1: x = 0 → output a with probabilities P(a|x=0,λ=1)

          x = 1 → output a with probabilities P(a|x=1,λ=1)

           y = 0 → output b with probabilities P(b|y=0,λ=1)

           y = 1 → output b with probabilities P(b|y=1,λ=1)

λ = 2: x = 0 → output a with probabilities P(a|x=0,λ=2)

           x = 1 → output a with probabilities P(a|x=1,λ=2)

           y = 0 → output b with probabilities P(b|y=0,λ=2)

           y = 1 → output b with probabilities P(b|y=1,λ=2)

etc.

The distribution  of  λ should  be  independent  of  the  inputs,  i.e.  p(λ|x,y)  = p(λ),

known as the  measurement independence criterion.4 The process that generates a

and  b  can  be  stochastic  as  implied  by  the  distributions  P(a|i,j)  above,  but  the

process generating a should not depend on y and b on x. Then the joint probability

distribution  is  obtained  by  averaging  out  over  λ (which  may  be  a  continuous

variable):

A joint  probability  distribution  created  this  way,  called  a  Local  Variable  (LV)

model,  can  be  said  to  be  created  through classical  shared  randomness,  or  pre-

established agreement. 

A final note on LV models: The statistics can be explained using deterministic local

variables if and only if it can be explained with pre-established agreement. This

4 If y influences λ and thus p(a|x,λ), the marginal probabilities (see point 5) of a will depend on y.
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notion is important for understanding that if  a LV model can be constructed to

produce the probability distribution for the outputs of a process, then there exists a

local variable that can deterministically predict the output of the process.  

Notice how we have assumed that p(a)5 is independent of y and p(b) of x; this is the

no-signaling condition.   One  can  first  consider  no-signaling  in  the  context  of

quantum theory. With reference to the example of Alice and Bob measuring two

halves of a maximally entangled state (Figure 2.2.1.1), it should be noted that no

information can be transmitted to Bob faster than light via Alice's measurement

despite the apparent correlation between Alice's and Bob's measurement outcomes.

Bob cannot detect from his measurement outcome nor his measurement statistics

the result of Alice's measurement unless they have made prior agreement on the

choice  of  measurement  basis.  Indeed,  if  Alice  and  Bob  were  not  allowed  to

communicate prior to the measurement, even with the prior knowledge of the state

being distributed to them, Bob's  (as well  as Alice's)  measurement statistics will

appear completely random (he will  simply get 0 or 1 with probability ½).  This

makes  sense,  as  it  is  the  statistics  obtained  from  measurements  made  on  the

maximally mixed state obtained in (18) after taking the partial trace of  |Φ+> over

Alice's subsystem. Furthermore, the full correlation of the measurement outcome is

contingent on the choice of basis – both Alice and Bob must measure in the same

basis in order to obtain those correlations. 

On the other hand, allowing Alice and Bob to have prior agreement on the basis

negates  the  use  of  the  measurement  for  signaling,  since  their  measurement

outcomes would already be known to each other before measurement.

In a more general sense, no signaling is an assumption that assures that both Alice

and Bob cannot communicate via their observed probabilities during the process of

a  measurement.  If  one  complies  with  the  assumption,  then  the  only  remaining

mechanism that is consistent with LV would be pre-established agreement. 

In  terms  of  the  correlation  matrix,  no-signaling  imposes  a  constraint  on  the

probabilities that appear in the table. Mathematically, the constraint is:

which can be verbally interpreted as saying that the marginal probability for Alice

5 p(a) and p(b) are the marginal probabilities of a and b.
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(read off one of the four entries outside the square) must equal the sum of the joint

probabilities across all of Bob's possible outputs for any input by Bob. One can

easily show that all LV and quantum correlations must satisfy no-signaling.

2.3.4 The EPR paper: What is the big deal about Local Variables?

Here I  shall  briefly outline the arguments Einstein-Podovsky-Rosen paper[5]  to

provide the historical motivation for discussing local variables in physics.

Evolving out of the field theories of classical physics, locality is the idea that for

any  object  at  a  point  to  exert  influence  on  another  object  at  another  point,

something must exist in the space between them (such as a wave or a particle) that

can mediate the interaction. The Theory of Relativity further limits the speed at

which the wave or particle (collectively called fields) can propagate between two

points to the speed of light. Developments in physical theories preceding quantum

mechanics were developed to be consistent with the principle of locality, which was

essential for the preservation of causality. 

Realism is the idea the an objective description of reality exists independent of the

observation  of  observer.  The  fact  that  even  if  the  measurement  result  of  a

measurement that has not yet been performed does not exist, it is still a real entity

and not a creation of the observer's mind. In the EPR paper, it defines an “element

of reality” in the following fashion: if one can predict with certainty the outcome of

a  measurement  of  a  quantity  that  has  not  yet  been  performed,  that  quantity

corresponds to some element of reality. 

Einstein's  principle  of local  realism holds to two key ideas:  (1) that cause-and-

effect is limited by the speed of light, and (2) that a particle must possess a pre-

existing value for any possible  measurement  that  can be performed on it,  even

measurements that have not been performed. Local realism is a feature of Einstein's

field equations,  but Quantum Mechanics was deemed by him to be inconsistent

with the principle, a representative example being measurements made on a distant

pair of entangled states, which Einstein termed “spooky action at a distance”.  

In that paper, Einstein held the view that Quantum Mechanics was an incomplete

theory for  several  reasons.  Contending that  a  complete  theory must  predict  the

outcome  of  any  possible  measurement  on  a  system with  certainty  even  if  the
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corresponding measurement has not yet been performed lead him to conclude that

Born's rule was an unsatisfactory explanation. He was not in favor of the idea that

an  individual  measurement  outcome  cannot  be  predicted  but  only  statistics

produced by ensembles are well-defined.

The existence of non-commutating observables in QM, whose values cannot be

simultaneously measured, led to what Einstein believed to be a contradiction if the

wavefunction is assumed to provide a complete description of the state. In the EPR

paper,  a  counterexample  of  two  physical  observables  of  an  entangled  pair  of

particles  was  presented  involving  the  momenta  and  the  position  of  the  two

particles.  However,  the  example  was contrived such that  the observables  under

study were actually commuting, which was used to (wrongly) conclude that there

has  to  be  a  way to  simultaneously  measure  the  position  and  momenta  of  any

particle. The argument is briefly outlined here:

Consider two particles, with their position q1, q2 and momenta p1, p2. Using the

commutation relation [q,p] = ih1, it  can be checked that q1 – q2 are p1 + p2 are

compatible  observables.  It  is  then  possible  to  construct  a  simultaneous

eigenfunction of both observables:

What this means is that if an experimenter were to measure the position of particle

1,  the  position  of  particle  2  will  automatically  be  known.  Similarly,  the

experimenter can then measure the momentum of  particle 2, and determine the

momentum of particle 1. Apparently, the position and momentum of both particles

are now simultaneously known!

The  EPR  paper  said  that  therefore,  that  there  must  exist  some  underlying

mechanism (later known as LV or LHV/LR models) influencing the variables to

give  the  observed  effect  of  correlations  produced  by  entangled  states,  non-

commutating  observables  and  Born's  Rule.  However,  the  EPR  paper  did  not

provide such a theory that can provide the description of these mechanisms. 

The subtle aspect that EPR missed in presenting the above argument was that while

the measurement outcomes of the above experiment can be reproduced by local

variables, not all measurement outcomes on entangled states can be reproduced by
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LV.6 Therefore LV cannot  be an explanation for  QM as  a  whole,  even if  some

measurements on certain entangled states admit LV explanations. 

2.3.5 Measurements statistics of single qubits can be reproduced by LV 

Here an example of how an LV model can reproduce the measurement statistics of

a single  qubit  is  provided.  For  any qubit  state  ½(1  +  n∙σ),  the probabilities  of

obtaining the measurement outcome a = +1 or –1 for the observable A =  A∙σ is

given by P(a|A) = ½(1 + a m∙A), and so <A> = m∙A .

To reproduce these statistics, consider a vector  L uniformly distributed7 over the

unit  sphere  S2 in  R3,  and  the  system is  represented  by the  vector  m,  and  the

measurement setting by  A. Then the measurement outcome is computed via a =

sign((m – L)∙A) = +1 or –1. One can then show that 

Caveat: If measurement statistics on a single qubit can be reproduced by LV, then

local measurements on any separable qubit state can always be reproduced by LV,

since the LV strategy can always be implemented independently on each subsystem

and mixed classically.

2.3.6 Bell Inequalities

A Bell inequality can be understood operationally as a condition on the observed

statistics that rules out LV explanations. From here it will become useful to clarify

the  following  notions.  Looking  back  at  the  Bell  experiment  selected  earlier  in

section 2.1.1, let Ma and Mb  be the number of settings available for Alice and Bob

respectively, and ma and mb be the number of outputs available for each of their

devices. 

In the case of ma = mb = Ma = Mb = 2 (sometimes known as the 2,2,2-scenario), the

correlation  matrix  denoted  by  p(ab|xy),  despite  having  24  entries  (see  Figure

2.3.2.1), can be reduced to eight independent terms. For each setting x and y, under

6 It can be checked that the “counterexample” given by EPR can be reproduced by LV.
7 L does not need to be generated randomly – it can also be pre-registered with uniform relative 

frequency (i.e. deterministically)
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no-signaling, one should easily see that the entries have the following relationship:

p(b=0|y) p(b=1|y) 

= 1 – p(b=0|y)

p(a=0|x) p(00|xy) p(01|xy)

= p(a=0|x) – p(00|xy)

p(a=1|x) 

= 1 – P(a=0|x) 

p(10|xy) 

= p(b=0|y) – p(00|xy)

p(11|xy) 

= 1 – (the other three)

Figure 2.3.6.1: Joint probability matrix for one pair of settings x,y, showing the interdependence of

the entries.

The eight independent terms are therefore:

– p(a=0|x=0),  p(a=0|x=1),  p(b=0|y=0),  p(b=0|y=1),  also  known  as  the

marginals

– p(00|00), p(00|01), p(00|10) and p(00|11), the joint probabilities 

In other contexts it may be more useful to consider the correlation coefficients Exy=

p(a=b|xy) – p(a≠b|xy), and marginals <Ax> = p(a=0|x) – p(a=1|x), <By> = p(b=0|y)

–  p(a=1|y).   The  correlation  coefficients  are  sometimes  referred  to  as  the

expectation values of the observable or moments AxBy, which they would be if the

outcomes a,b are labeled ±1. The following notation is used interchangeably:

Exy = <AxBy>

Whichever choice of the eight numbers one uses, they define a vector in R8, known

as the correlation vector P. 

P = (A0, B0, A1, B1, A0 B0, A0 B1, A1B0 , A1B1)

A valid correlation vector will have all eight of its components have magnitude less

than or equals one. 

2.3.7 The Local Polytope and CHSH inequality

One can thus view probability distributions for the 2,2,2-scenario as living in an 8-

dimensional space. The probability distributions that can be produced by LV thus
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form a set on R8 space, and this set L is a convex set. It is known for any scenario

(more settings or outputs) that this is also the case. This is simply due to the fact

that any two LV probability distributions can be taken in convex combination to

produce another LV probability distribution. A convex set can be characterized by

knowledge  of  its  extremal  points,  and  any  LV probability  distribution  can  be

decomposed as a convex sum of deterministic LV probability distributions. One can

thus see that the deterministic points form the extremal points of the convex set L8.

For 222, L has 16 extremal points, representing the 16 possible deterministic LV

probability distributions. A convex set with a finite number of extremal points is

referred to as a polytope. 

An  eight-dimensional  polytope  is  bounded  by seven-dimensional  hypersurfaces

succinctly known as facets, and each facet must have at least eight extremal points

on it,  all of which must be on the same side of the polytope. One can define a

vector n in R8 such that for all points on a facet, they satisfy n∙P = f. Then all points

in the polytope L must satisfy n∙P ≤ f. 

For higher values of ma, mb, Ma, Mb, L can be completely embedded in a fashion

similar to above in RD space, where D = Ma  Mb  (ma – 1)(mb – 1) + Ma (ma – 1) +

Mb(mb – 1).

It is known that,  for any scenario,  all  facets of L are either Bell  inequalities or

positivity conditions (sometimes known as trivial facets). A classic example of a

Bell  Inequality  would  be  the  Clauser-Horne-Shimony-Holt  (CHSH)  Inequality,

which can be represented by:

S(P) = E00 + E01 + E10 – E11 ≤ 2

It is known that there are eight non-trivial facets of L, which correspond to the

eight variations of the CHSH inequality and they are all equivalent in the sense that

the eight facets are symmetric up to a relabeling of inputs x and y. These facets are

non-trivial in the sense that a valid correlation vector that does not belong to L,

such as P = (+1,+1,+1,–1), can violate this inequality giving S(P) = 4. It can be seen

from  here,  that  for  the  2,2,2-scenario,  the  CHSH  inequality  is  the  only  Bell

inequality. It was derived first by Clauser, Horne, Shimony and Holt in 1969 [4]

8 This is implied by the fact that any LV model is simply a mixture of deterministic strategies – it's
why the variable in LV models, such as the example in section 2.3.5 can simply be pre-
registered.
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and is the most studied Bell inequality of all to date. 

2.3.8 Loophole-free Bell Violations

Bell  inequalities  are  the  constraints  of  LV,  and  as  such  the  violation  of  Bell

inequalities can be used as the certification that simulation of the statistics using LV

is impossible. However, a Bell experiment can falsely violate a Bell inequality with

a  LV strategy by having one  of  the  detectors  refuse  to  provide  an  output.  For

example, Pearle (1970)[15] gives an explicit case of an LV model that reproduces

statistics produced by a maximally entangled state of two spin-½ particles if one of

the  outputs  of  the  LV model  (corresponding  to  the  'no-detection'  outcome)  is

discarded in the data processing. This leads to recognizing an important pitfall in

tests  aimed  at  certifying  non-locality:  post-selection  is  not  an  allowed  data

processing method. To avoid this pitfall, Alice and Bob can either: (1) include the

no-detection  outcome  as  an  additional  outcome,  or  (2)  lump  the  no-detection

outcome into one of the outcomes by default (either +1 or –1). Either way, Alice

and Bob should consider the whole sample when computing the statistics in order

to ensure the violation of the Bell inequality is conclusive.  

In  most  experimental  implementations  of  Bell  experiments,  the  devices  are

characterized – meaning that their nature and efficiencies are known, and the cause

of the devices' lowered efficiencies are ensured to not depend on the input choice.

In the absence of characterization, it leaves room for possible Bell violations solely

with the use  of  LV. The earlier  example  is  a  detection loophole,  and there  are

various other loopholes that can be opened due to experimental limitations. Another

example  of  a  loophole  for  Bell  violation  is  the  locality  loophole.  The  locality

loophole  is  opened  if  there  exists  a  way for  the  two  devices  to  communicate

classically,  such  as  failing  to  place  them  sufficiently  far  apart  during  the

measurement process, allowing for signaling to occur. 

To date, only three experimental implementations of loophole-free Bell tests have

been performed.[6][9][17] These implementations use various methods to close the

loopholes, such as using detectors of high efficiency for the detection loophole, fast

selection of measurement basis (combined with sufficient spatial separation) for the

locality  loophole,  and  high  quality  entanglement  sources  to  reduce  noise.  It  is

worthwhile to point out here the authors themselves concede that closing loopholes

for  Bell  violation  is  an  experimentally  demanding  feat,  and  only  these  three
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relatively recent (at the time of writing) experiments have been able to close the

most  significant  loopholes  simultaneously.  These  three  experiments  obtain  a

violation of the CHSH inequality to some degree of significance used to test the

null hypothesis which is LV. The p-values come in the range of 10–7 to 10–31.

2.3.9 Other remarks

Violation of the CHSH Inequality by Quantum States

One then can consider an example of a quantum scheme that violates the CHSH

inequality. Suppose we set up a Bell experiment where Alice and Bob share two

halves  of  a  maximally  entangled  qubit  state.  They  choose  the  following

measurement settings:

Alice

X = 0 ½(1 + aZ)

X = 1 ½(1 + aX)

Bob

Y = 0 ½(1 + b/√2(Z+X))

Y = 1 ½(1 + b/√2(–Z+X)) 

It can be shown that the probabilities obtained are 

Putting  this  into  the  CHSH  inequality  gives  S  =  2√2,  which  is  the  maximal

violation of the CHSH inequality for quantum states. 

Do all statistics produced by entangled states violate Bell Inequalities?

Once one understands that although correlations that do violate Bell inequalities

must necessarily be attained by entangled states, but some correlations produced by

entangled  states  can  still  be  reproduced  by  local  realistic  models,  the  EPR

contradiction  disappears.  Consider  the  measurement  scheme  of  the  BBM92

protocol:
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Alice

X = 0 ½(1 + aZ)

X = 1 ½(1 + aX)

Bob

Y = 0 ½(1 + aZ)

Y = 1 ½(1 + aX)

The statistics obtained are given by p(ab|xy) = ¼(1 + δxyab), and the correlations

are producible by both an entangled state as well as a local variable model (see the

later  section  on  Device  Independence  for  a  proof).  It  should  then  come as  no

surprise  that  the  statistics  produced by the  BBM92 protocol  do  not  violate  the

CHSH inequality:

SBBM92 =  E00 – E01 + E10 + E11 = 1 – 0 + 0 + 1 = 2 

This  example,  along  with  the  example  presented  in  (LV  and  pre-established

agreement), also illustrate a small but subtle point about the power of LV. While

one may be in a hurry to prove “quantum superiority” over LV, local variables are

resources  in  their  own  right,  and  they  can  be  used  for  relevant  purposes.

Implementations  (particularly  experimental)  of  Bell  experiments  usually  also

require that Alice and Bob pick their inputs randomly with equal frequency, but it

would be costly to require that they also use a quantum mechanism to generate

their inputs – it makes little sense to have Alice measure a single qubit in order to

decide which measurement setting to select for the measurement of another qubit.

In this case, the use of LV would be sufficient for practical purposes. 

One will find that, the BBM92 measurements on a different state, or the CHSH

measurements on the maximally entangled state, indeed do rule out pre-established

agreement – so the logical conclusion is that a local realistic model underlying all

of QM cannot be found. 

30

  (50)



Chapter 3

Device-Independence and Semi-Device-Independence

In this chapter, I outline the notions in the study of Device-independence and Semi-

device-Independence  relevant  to  my  project.  I  provide  an  example  using  an

elementary  QKD  protocol  that  demonstrates  the  trade-off  between  full

characterization and device-independence in terms of the security of the protocol. 

3.1 Device-Independence

3.1.1 Introducing Device Independence

Notice  that  in  our  discussion  on  Bell  Inequalities,  there  was  no  need  for  any

consideration of how the statistics are obtained – the fact that measurements on

quantum states incidentally produce correlations that violate the CHSH inequality

has  nothing  to  do  with  the  fact  that  violation  of  Bell  inequalities  rule  out  LV

explanations.  One  can  say  that  any  violation  of  a  Bell  inequality  implies  the

presence of non-locality, regardless of the choice of explanation for the non-locality

(of which QM is the most famous one). Thus Bell inequalities provide a way to

certify non-locality in a device-independent way.

Figure 3.1.1.1 A Bell test where the devices are black boxes and the nature of the source is unknown

is known is known as a device-independent (DI) Bell test. If the correlations between the outputs

violate Bell inequalities, non-locality can be certified in a DI way.

In the specific case where a Bell violation is observed in the context of quantum

theory,  it  certifies the presence of entanglement solely by the knowledge of the
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observed correlations.

In the field of quantum communication, entangled states are a necessary ingredient

for  generating  certifiable  randomness  and  secrecy.  However,  most

implementations,  both  theoretical  and  experimental,  require  at  least  some

assumptions regarding the nature of their devices. One of the basic assumptions

include the physical degree of freedom being measured and the fact that the device

does  not  write  in  nor  read  from any other  degrees  of  freedom.  While  in  most

laboratory  implementations  the  experimenters  are  reasonably  well-protected

against  adversarial  mechanisms,  these  assumptions  made  on  the  experimental

setups can open loopholes which may compromise the tasks the setups seek to

perform in “real-world” applications of these setups. i.e. Applications of quantum

communication typically require characterization of the devices in order to work –

be it  randomness generation or  secrecy extraction – failure to  comply with the

assumptions made on the devices will compromise the security of the protocols. 

In the case where one has minimal characterization, one has Device Independence

(DI), which describes a suite of tests that can certify entanglement with the sole

assumption of no-signaling. The disadvantage of DI is that implementations of DI

only work with correlations that violate Bell inequalities, which must be loophole-

free  –  making  them  experimentally  demanding.  Furthermore,  DI  entanglement

witnesses usually give pessimistic bounds. On the other hand, knowledge of the

measurement  settings  and  the  Hilbert  Space  dimension  will  allow  for  a

reconstruction of the state (up to some precision), which requires more assumptions

and thus opens more potential loopholes. This trade-off can be illustrated by an

example.

3.1.2 An Example Using Secrecy Extraction

The correlations obtained from measurements on entangled states, along with prior

agreement on the choice of basis, can be used as a resource for secrecy extraction.

However, the security of the protocols depend on the level of characterization of

the setup. For illustration purposes, consider a simple example of a Quantum Key

Distribution  (QKD)  protocol,  with  ideal  states  and  detectors.  In  the  Bennett-

Brassard-Mermin (1992) protocol, two parties Alice and Bob share two halves of a

maximally entangled bipartite qubit state[3]. They first communicate classically,

and establish two choices of measurement basis, say Z and X. 
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Figure 3.1.2.1: The scheme of the BBM92 protocol. Alice and Bob share two halves of a maximally

entangled qubit state. Their detectors are set to measure either in the Z or X basis, and they collate

their measurement outcomes (either 0 or 1) after finishing their local measurements on a sequence

of qubit pairs.

Alice and Bob then share two halves of a sequence of maximally entangled qubits,

and make a sequence of measurements on each qubit they receive. Alice and Bob

will flip a coin for each qubit that they measure and select a measurement basis

based on the coin flip result (thus randomizing the basis choice). Alice and Bob

will  each  then  have  a  list  of  measurement  outcomes  (a  bit  string)  that  would

resemble:

Qubit

sequence

no.

Measurement

result

Basis

Choice

1 0 Z

2 1 Z

3 1 Z

4 1 X

5 1 X

6 0 Z

7 0 X

8 1 X

9 0 Z

10 1 X
Figure 3.1.2.2 A table simulating what the list of outcomes Alice or Bob would look like after

performing their measurements.
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At first glance, both Alice and Bob will on average have ½ of their measurement

results  being 0 and half  being 1 for each setting,  as well  as in total.  If  Alice's

measurement outcome is a and Bob's is b, then P(a = 0|Z or X) = ½ = P(a = 1|Z or

X) and P(b = 0|Z or X) = ½ = P(b = 1|Z or X). This can be calculated from the fact

that the partial trace of the maximally entangled bipartite qubit state over either

Alice or Bob will obtain the maximally mixed state for the other. 

The aforementioned probabilities are the marginal probabilities, and indeed neither

Alice nor Bob will be able to learn anything about what the other party did upon

performing their local measurement (such as which basis they chose), until they

reveal  their  choice  of  basis  via  some other  subluminal  means.  If  they were  to

mutually reveal their basis choice and collate their joint probabilities, they will be

able to construct their joint probability matrix, p(ab|xy), where x and y are Alice's

and Bob's basis choice respectively.

The joint probability matrix will look like:

  Bob measures Z Bob measures X

Obtains

0

Obtains

1

Obtains

0

Obtains

1

Alice

measures Z

Obtains

0
½ 0 ¼ ¼

Obtains

1
0 ½ ¼ ¼

Alice

measures X

Obtains

0
¼ ¼ ½ 0

Obtains

1
¼ ¼ 0 ½

Figure  3.1.2.3  The  correlation  matrix  displaying  the  probability  of  a  joint  outcome  given  the

measurement settings of Alice and Bob. If Alice and Bob select the same measurement setting, their

results  are  fully  correlated,  otherwise  they  are  maximally  random (uniform  probability  for  all

possible joint outcomes).

In  the  BBM92 protocol,  Alice  will  reveal  her  basis  choice  (with  the  sequence

numbers) to Bob via the classical channel. Bob will then answer on the classical

channel which measurements they had performed with the same basis choice, and

both Alice and Bob will discard those bits in their bit string which are obtained via

a different measurement basis from the other. On average, this will retain half of
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their original bit string. In the ideal case, where the state and detectors are perfect,

their bit strings will be fully correlated and secret.9

Introducing the adversary Eve

At this point, it is useful to consider if the protocol is secure. The field of QKD

deals with wide ranges of attacks by adversaries, which will not be discussed in

detail.  This  example  shall  consider  an adversary that  attempts  to  reproduce the

behavior of the protocol using LV resources.  If  Alice and Bob ensure that they

indeed have a source of qubit pairs10 in the state |Φ+>, and that their detectors are

indeed  measuring  in  the  Z  and X bases,  the  protocol  is  secure  against  such  a

reproduction. 

Now we consider relaxing these assumptions. What if an adversary Eve wanted to

devise a counterfeit set-up that can reproduce the same behavior as the maximally

entangled state under Alice and Bob's measurement scheme? It can be shown that

there is indeed such a strategy possible, and this allows Eve to have full knowledge

of the bit string that Alice and Bob end up with.

So now suppose Alice and Bob's measurement devices were pre-programmed by

Eve in the following way, and then later distributed to them as QKD devices:

Figure 3.1.2.4: If Eve were the manufacturer of the QKD devices used by Alice and Bob, the above

diagram illustrates what she could possibly do: she could pre-program the devices with instructions

on how to respond locally to the inputs selected by their users.

9 There are other problems not addressed here: before the point of measurement, the state is 
quantum, but once the outputs are generated, everything is classical – so the secrecy is only 
guaranteed right after the point of measurement.

10 One example would be a non-linear crystal providing down-converted pairs of photons.
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p(λ) λ az bz ax bx

¼ 1 + + + +

¼ 2 + + – – 

¼ 3 – – + +

¼ 4 – – – – 
Figure 3.1.2.5: The list of instructions that Eve could preload into Alice and Bob's devices to

generate the statistics of the BBM92 protocol.

We can  see  that  this  strategy will  be  able  to  reproduce  the  exact  correlations

produced by an “honest” measurement of a maximally entangled state under the

BBM92 protocol. The expectation values can be explicitly worked out to be:

<ZZ> = <XX> =  ½ + ½ – 0 – 0 = 1

<ZX> = <XZ> = ¼ + ¼ – ¼ – ¼ = 0

<Z> = <X> = ½ – ½ = 0

So under this strategy, as far as Alice and Bob are concerned, they will still obtain a

random string of bits that they mutually share and are apparently secret. However,

since  the  devices  are  pre-programmed,  the  bit  string  will  be  deterministic  with

respect to Eve. This is a consequence of the fact that randomness is relative and

depends on the  information  possessed by the  observer.  In  modern  applications,

generators  of  classical  randomness  such  as  random number  generators  rely  on

uniformity and computational complexity to prevent prediction of the generators'

outputs. However, these generators are not truly random by design. For example,

classical random number generators use a  seed state that determines its outputs.

Although the output is random with respect to the end user, it is deterministic with

respect to the designer (in the above example, Eve is the designer who decides how

λ is chosen and output).

Back to LHV, one last time

In this example, the “hidden variable” is λ, which determines which of the four pre-

established sets of outputs are selected in each run. The model is local as the output
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of each device is only influenced by variables in its subluminal vicinity (the pre-

programming  and  distribution  by Eve  are  all  bound by relativistic  limits),  and

hidden because the model generates the quantum behavior of the system without

being part of the quantum theory. However, the fact that there exist some quantum

behavior that can be reproduced by a classical (LV/LHV) model, does not mean

that an LV explanation for all of QM exists. Finally, it should be noted that the use

of the term LHV is more a matter convention – in the absence of context (in the

above example, the context is QKD) there is no necessity for the pre-established

agreement to be hidden.11

Considerations in experimental implementations

The  aforementioned  possibility  of  reproducing  the  correlations  in  the  BBM92

protocol therefore requires that the characterization of the devices be done in order

to ensure its security. In practice, very often one does not have full control over the

characterization  of  the  device,  and  the  imperfections  in  real  detectors  open

loopholes for adversarial attacks, breaking the security of these QKD protocols. 

Certifying that the source is indeed entangled, is therefore one way to assure the

protocol is secure. In the case of full characterization, one has already made the

necessary assumptions  which  would  lead  one  to  reconstruct  the  state  fully  and

conclude  that  the source  is  indeed quantum. In the  DI case,  the  statistics  must

violate  Bell  inequalities  in  order  to  certify  entanglement,  which  the  BBM92

statistics do not. Experimental implementations that attempt to certify non-locality

and entanglement in a DI fashion need to show that the experimental correlations

violate  some  Bell  inequality  to  a  sufficient  degree  of  significance  (i.e.  after

accounting  for  fluctuations  in  the  data),  and  also  ensure  the  Bell  violation  is

loophole-free.

3.1.3 The Quantum Set and No-Signaling Polytope

It was mentioned earlier in this text that no-signaling imposes a constraint on the

correlation matrices one can write down. In fact, it is known that for any scenario

{ma,mb,Ma,Mb}, there exists a superset of the local polytope L known as the no-

11 In this case, the variable being hidden does provide an advantage, since Eve would certainly not 
tell anyone that the devices are actually pre-programmed.
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signaling polytope, commonly labeled NS. This polytope has extremal points that

are either  the local  deterministic  points  or  the non-local  Popescu-Rohrlich Box

(PR-box)[16], which are the correlations that attain the algebraic limit of the Bell

correlations.  In the case of  the 2,2,2-scenario,  the algebraic  limit  of  the CHSH

correlation  is  S  =  4,  which  can  be  attained  by  the  following  zero-marginal

correlation matrix:  

½ ½ ½ ½ 

½ 0 ½ ½ 0

½ ½ 0 0 ½

½ 0 ½ 0 ½

½ ½ 0 ½ 0

Figure 3.1.3.1: The correlation matrix for a PR-box.

This correlation matrix can easily be verified to satisfy no-signaling. One can see

that the CHSH correlation evaluates to S = – E00 – E10 – E11 + E01 = 4 (the overall

negative  sign  justified  by  swapping  the  outputs  a  and  b  for  one  device).  The

correlation  vector  is  given  by  PR  =  (0,0,0,0,–1,1,–1,–1),  so  NS  can  also  be

embedded in eight-dimensional real space R8.

Quantum correlations are a subset of no-signaling correlations, characterized by

p(ab|xy)  =  Tr(ρ Π
x
a  ⊗  Π

y
b ),  where  the  measurement  operators  Π satisfy  the

conditions  stipulated  in  section  2.1.1,  and  ρ is  a  density  operator.  The  set  of

correlations  attainable  by  quantum  states  and  measurements  is  known  as  the

Quantum Set Q, and it is known that Q is a convex set. Unlike L and NS, Q is an

elliptope, with a continuously infinite number of extremal points. The difficulty in

characterizing Q lies in the fact that Q bounds correlations attainable by states of

any dimension, including infinite-dimensional systems.

The  following  is  a  2-D  slice  of  the  no-signaling  polytope  studied  during  this

project, for the 2,2,2-scenario.
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Figure 3.1.3.2: A 2-D slice of the eight-dimensional no-signaling polytope. The extremal point of

NS (red)  are the  local  deterministic  points  and PR-boxes,  while  the  quantum set  (green) is  an

elliptope. The statistics on the green curve are attained by bipartite measurements on the singlet

given by in Figure 4.2.1.2.

In the 2,2,2-scenario, the boundary of Q is known to be attainable by measurements

on  pure  qubit  states,  and  the  maximal  violation  (also  known  as  the  Tsirelson

Bound) of the CHSH inequality on Q is 2√2. The following subsections briefly

outline  two  methods  for  computing  Tsirelson  bounds,  the  second  of  which  is

relevant for certifying entanglement in a DI fashion.

The Bell Operator

A Bell inequality can be visualized in the no-signaling polytope as a facet, and any

facet can be described using the equation n∙P = f, where n is a normal vector and P

is  the  correlation  vector.  The  representative  CHSH  inequality  simply  has  n =

(0,0,0,0,1,1,1,–1). One can then consider an operator known as the Bell Operator B,

where 

39

Q
mvM

1

PR

L
1

L
2

M
2

PR'

1

  (55)



and the expectation value of B is

The expectation value of B will simply be the Bell correlation obtained by the state

ρ under the measurements operators, which can be computed if the dimension of

the  state  is  assumed.  In  the  case  of  qubits,  Ax and  By will  simply  be  linear

combinations  of  the  Pauli  matrices,  and  can  be  parametrized  using  the  Bloch

Sphere. The maximal expectation value of B can be obtained via an analytical or

numerical  optimization.  The Tsirelson bounds  obtained using  the  Bell  Operator

always provide a lower bound on the maximal violation.

3.1.4  The  NPA  Hierarchy  and  Local-Level  Moment  Matrix:  Certifying

Entanglement

The  Navascues,  Pironio  and  Acin  (NPA)  hierarchy[13],  is  a  set  of  necessary

conditions that bound the correlations attainable by quantum states. The hierarchy

is complete, in the sense that any correlations that are not found in Q will fail to

satisfy the conditions at some level of the hierarchy, typically labeled Q1 to Qn. 

Figure 3.1.4.1: A geometric visualization of the hierarchy, Q1  Q⊇ 2  Q⊇ 3 …  Q⊇ . Any correlations

not in Q will fail the condition at some level of the hierarchy. 

The conditions  are  formulated  as  a  semi-definite  programming (SDP) problem,

which maps a state to a moment matrix, usually denoted χ. χ is constructed in the
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following way:

where |Ai| and |Bi| are the number of non-identity operators concatenated together.

Some moments in χ  can be found in the observed statistics  p(ab|xy),  while the

others are unknown and left to run free, subject to the positivity of χ.12 This defines

a convex constraint, which the optimization of a desired objective function would

be subjected to. If a moment matrix χ includes moments that are up to 2n-fold

products of the measurement operators, one may say that χ describes Qn. The more

moments are included in χ, the stricter the constraint, and the closer one gets to

describing Q. 

When evaluating Tsirelson bounds, the objective function is chosen to be the Bell

expression N∙P, and all moments are left free. 

The bounds computed using the NPA hierarchy are upper bounds to the maximal

violation of the Bell inequality on Qn, and in the case of 2,2,2, they are tight when

the marginals are zero. 

When it comes to DI certification of entanglement,  a useful and closely related

hierarchy is the local-level moment matrices developed by Moroder et al. (2013)

[12]. These matrices include moments that are up to order 2n for each partition in

the measurement, and may be referred to as QLn. In general, Qn  Q⊇ Ln   Q⊇ 2n  They

are defined in a similar fashion as (57):

12 The mapping of ρ to χ is a positive map.
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χ  can  then  be  referred  to  as  a  moment  matrix  of  local  level  n  (or  order  n),

containing  all  the  2n-fold  products  of  the  local  measurement  operators.  These

matrices  have  a  bipartite  structure,  which  can  be  used  to  compute  their  partial

transpose  and  negativity.  Since  negativity  is  an  entanglement  monotone,  the

negativity of χ serves as a valid device-independent lower bound on the negativity

of the state. 

3.1.5 A final note on Device-independence: Self-testing

A particular family of quantum correlations have an additional property known as

self-testing  [19].  If  a  set  of  correlations  self-test,  it  is  possible  to  identify  the

underlying state solely from the observed correlations, up to a local isometry. Self-

testing statistics also have another neat feature: if a set of statistics are self-testing,

they must necessarily lie on a boundary point or extremal point of the quantum set.

This feature allows for another way of characterizing Q – if the statistics fulfill the

conditions for self-testing [19], one can immediately say that the statistics lie on the

boundary of Q without any additional knowledge. One example of statistics that

self-test are the quantum correlations that produce the maximal violation of CHSH.

3.2 Semi-Device-Independence

3.2.1 Semi-Device-Independence

Semi-Device-Independence describes a range of tests that bring back some of the

assumptions on the devices in  Bell  experiments.  These assumptions  include the

Hilbert space dimension and the measurements being performed. In this text, the

former assumption is dealt with: the Hilbert Space dimension of the system. First,
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one can consider some recent approaches that use the assumption that the measured

state is a two-qubit state. Recent work by Moroder et al. (2012) provided analytical

bounds for  the correlations  that  certify the presence of entanglement[11],  while

Goh et al.  (2016) [7] proposed a scheme that not only certifies the presence of

entanglement, but puts a lower bound on its amount. Goh's scheme will be briefly

described in the subsequent section.

Bringing back the assumption of the dimension is useful for when the degree of

freedom being measured is known, and has been implemented in experiments that

attempt  to  certify  the  presence  of  entanglement[1].  Indeed,  in  most  practical

situations,  it  would seem quite  ridiculous to perform any experiment  where the

experimenter does not even know whether the laser they are using is even a laser.

In addition, Goh et al (2016) showed that the assumption of the dimension allows

for  quantification  of  entanglement  for  statistics  that  do  not  violate  any  Bell

inequality. In the 2,2,2-scenario, the CHSH inequality is the only inequality that

needs to be considered – if the statistics do not violate CHSH, they will not violate

any Bell inequality.

In addition, in comparison to full characterization, assumption on the dimension is

useful for cases where the non-ideality in the detectors are not modeled, for reasons

including the lack of knowledge or the difficulty thereof. 

3.2.2 Semi-DI Scheme by Goh (2016)

Goh (2016) computes the minimum amount of certifiable entanglement for a set of

observed  statistics,  supplemented  with  the  assumption  of  the  dimension  of  the

measured states, which was restricted to be qubits. The entanglement is quantified

using the concurrence,  an entanglement  monotone.  The scheme is  set  up as an

optimization problem, with the following framework:

In  Goh's  implementation  of  this  optimization  scheme,  the  statistics  serve  as  a

constraint, while the state and measurements are left free. The result provides a

lower bound on the amount of entanglement present in the state that is compatible
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with the observed statistics, produced by the associated measurements.

Goh  (2016)  dealt  with  ideal  statistics,  as  well  as  one  case  of  simulated  noisy

statistics where the detectors were assumed to have an uncorrelated 'no-detection'

outcome. The study found that in certain cases, the violation of a Bell inequality is

no longer necessary if the assumption of qubits was supplemented, and statistics

that  do  not  violate  the  CHSH  inequality  can  certify  the  same  amount  of

entanglement  as  statistics  that  do.  Of  particular  note  are  the  BBM92 statistics,

which uniquely identify the state to be the maximally entangled state |Φ+> with just

the  knowledge  of  the  dimension  (the  measurements  need  not  even  be

characterized!). This is an example of Semi-DI self-testing, in comparison to the

CHSH statistics which allow for DI self-testing.
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          (a) 

           (b)

 

           (c)

            (d)

Figure 3.2.2.1: A diagram featuring various levels of characterization of a Bell test. (a) when the
dimension on only one party is assumed, as in some semi-DI BB84 protocols (b) when the

dimension on both parties' is known (c) when one side has full characterization and the other has
none (d) Steering, where one untrusted party guesses the outcome of the measurement for the other
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Chapter 4

Main Result

4.1 General Framework

In this project, I work with a modification on the scheme by Goh et al (2016). The

modified scheme seeks to certify lower bounds on the amount  of entanglement

needed  in  an  experimental  source  of  qubit  pairs  to  produce  the  observed

correlations within specified error bounds, supplemented with the assumption that

the state is bipartite qubits. 

The  minimum  amount  of  entanglement  certifiable  by  observing  the  relative

frequencies  pp (ab|xy)  for  a  known  Hilbert  space  dimension  is  obtained  via  an

optimization:

where E is an entanglement monotone of the state ρAB, which is the negativity [18]

for any arbitrary dimension, and the concurrence [20] for dim(HA) = dim(HB) = 2.

The measurements are allowed to be POVMs, and the optimization runs over all

states and measurements compatible with the observed statistics within the error

margin specified by the error matrix εabxy. 

Analytical solutions for such an optimization are difficult, due to the large number

of parameters. Furthermore, it is known that the subset of Q for finite dimensional

systems  is  not  convex[14],  so  the  optimization  is  not  a  semi-definite  program.

Fortunately,  in the case where the state is assumed to be qubits, the number of

parameters is sufficiently small that heuristic optimization algorithms are reliable. 

I also perform a semi-definite program to compare the amount of entanglement
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certifiable in the DI case, and use two noise models, Bell-diagonal and isotropic, to

perform a comparison in the case of full characterization. The figure of merit of

choice is the negativity. In the following sections, I first outline the experimental

scheme and data, followed by the three certification tests, and end off with section

4.6 that compares the three characterization levels and concludes the study.  

4.2 Experimental Scheme and Data

4.2.1 Experimental Setup

In this section, I detail the experimental set-up as reported by the experimenters.13 

Figure 4.2.1.1: Schematic of the experimental setup. The source sends one half of a pair of photons

generated through Type II SPDC, which go through a PBS into either the 0 or 1 channel.

The degree of freedom measured in the experimental set-up is the polarization of

photons. Photon pairs were generated used a Type II down-conversion process, and

each pair of signal and idler were sent through a polarizing beam splitter. Data was

taken when both the a and b channels clicked exactly once. The axis of polarization

of the PBS was chosen depending on the inputs x and y in the following way: Let

Ax, By be the observables corresponding to the polarization direction chosen for the

PBS on settings x,y. Then Ax, By represented on the Bloch sphere, will look like

below.

13 Kudos to Alessandro and Hoh Shun for the data!
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Figure 4.2.1.2: A Slice of the Bloch Sphere, representing the measurement settings.

The range of  θ was taken over θ = 0 to  θ = 0.44 rad, with a sample size of  n ~

330000 for each measurement setting x,y and a given angle θ. No error bars were

provided for the Bloch angles. 

4.2.2 The Correlation and Error Matrices

The data was given in the form of a list of quats (0, 1 2 and 3), corresponding to the

four  possible  measurement  outcomes (00,  01,  10 and 11).  I  wrote  a  MATLAB

script named “Pabxy22” (script in Appendix D) that reads the list  of quats and

record their frequencies, and computes their relative frequencies  pp  from the total

number of quats for each setting (x,y). 

The correlation matrix estimate is constructed by repeating the above computation

for  each  pair  of  measurement  settings.  Under  the  assumption  of  Independent-

Identical-Distribution (IID), the frequencies of photon detection for each channel

pair (a,b) and the total frequency of detection on all channel pairs are treated as

independent random variables N, so σN = √N is an estimator for the uncertainty for

each  of  them.  The  errors  in  the  relative  frequencies  were  computed  using  the

variance formula:
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where Nabxy is the frequency of detection at each pair of output channels and Nxy is

the total frequency of detection for a setting x,y. This defines the error matrix εabxy.

with one error bar for each of the 16 probability estimates.

For the DI certification scheme, it is more useful to compute the correlation vectors

and propagate their associated errors. The statistics are experimental, which means

that  the  estimated  correlation  matrix  will  not  satisfy  no-signaling.  For  the

marginals, this means that in general, Ax(y = 0)  ≠   Ax(y = 1). A unique value is

obtained by taking the average over y:

The same is done for By:
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The  joint  correlations  are  obtained  as  expected,  and  their  error  propagation  is

straightforward using the variance formula:

Geometric Visualization on the NS polytope 

Figure 4.2.3.1: The non-local region of the NS polytope slice in figure 3.1.5.2. 

Therefore each correlation matrix estimate can be visualized on the NS polytope as

a point estimate with error bars. I therefore seek to find the minimum amount of

entanglement certifiable amongst all points within the error margins at the various

levels  of  characterization.  The  statistics  obtained  from  the  measurements

considered in this project approximate the singlet state
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4.3 Full Characterization Case

I now study the case when the knowledge of the measurement settings, as reported

by  the  experimenters,  is  considered  in  the  test  for  entanglement.  With  known

measurement settings and dimension, the optimization is run over the state, which

contains the only remaining free parameters. The algorithm can be summarized as

follows:

I  wrote  two  scripts,  “minfidT2”  and  “minfidT3”,  which  perform  the  above

optimization  for  two different  models  for  the  state.  The algorithms read  in  the

Bloch angle as a parameter, and have the negativity as the objective function to be

minimized under the constraint that the state is a two-qubit state and the statistics

are compatible within errors. The script for minfidT3 can be found in Appendix D.

4.3.1 Noise Models

The state is modeled using two closely related noise models. The first one is known

as the isotropic noise model, which is defined as:

This isotropic noise model is assumes that the noise in the state comes from all

states equally (hence the term isotropic). It is often seen in studies where one wants

to model an uncharacterized noisy quantum channel. More general variations exist

that  use  selected  unitary operators  that  perform rotations  on the state  to  model

decoherence. The rotated states are modeled to occur in a given probability mixture

– the isotropic noise model is the case where the rotated states are equiprobable,

orthogonal, and form a basis that spans the Hilbert space of the state. It is thus clear

that the noise model can thus be chosen according to the nature of the system under
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study. A model characteristic of Type II down-converted photons takes the form of 

The isotropic noise model assumes equal decoherence in all directions. However,

for entangled pairs of photons generated from Type II SPDC, the conservation of

angular momentum allows one to consider modeling the decoherence such that it

preserves the anticorrelation of the photon polarizations. 

In this study, the second noise model I choose to work with is a Bell-diagonal noise

model, defined by:

This  noise  model  is  good for  the  purposes  of  this  study for  the  reason that  it

captures the behavior of the Type II down converted photons (by simply setting v1

+ v2 = 1), and accommodates both models mentioned earlier while allowing for

small probabilities of decoherence in the correlated directions. It also uses very few

parameters,  which  gives  high  reliability  when  used  in  a  heuristic  optimization

program.

4.3.2 Analytical Calculations

With a few-parameter model, I performed an analytical pre-calculation, and cast the

objective  function  and  constraints  explicitly  in  terms  of  the  parameters  v.  The

correlations obtained by the measurements on the singlet state |Ψ– > are given by:

for the other three Bell states, the correlations are:
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These correlations are substituted into the noise models to obtain the correlations

produced by the noisy state. For the isotropic noise model, the correlations read:

For the Bell-diagonal noise model, the correlations are:

The negativity of the state can also be calculated analytically in both cases:

 

These are substituted into the script and a heuristic optimization is run over the

parameters v using minfidT2 and minfidT3. 

53



4.3.3 Results

Unfortunately,  with  the  exception  of  the  two  smallest  angular  settings,  the

optimization problem found no compatible state when the Bloch angles reported by

the experimenters were substituted into the scripts14. Given that the model for the

state is sufficiently general for the nature of the setup, it is likely that there is noise

also in the measurements. If that were the case, in the absence of error bars for the

Bloch angles (since they were not provided), there is a large space of parameters to

explore – maybe the angles between the settings were not the same, or the PBS has

circular basis noise, or the angles simply were not set correctly, etc. The point is,

there  is  no  characterization  provided  for  the  uncertainty  in  the  measurement

settings, and I thus cannot make an informed choice on how to model it.

I chose to make one modification: rather than running the scripts for the reported

Bloch angles, I varied the Bloch angle until I found the closest possible value of θ

where a feasible solution exists. The angles obtained this way deviated from the

reported angles by as little as 7.14% up to as high as 30% (for θ = 0.08). The mean

absolute deviation from the reported Bloch angles is 0.03075 rad or, in terms of the

polarization  angles15,  about  0.89o.  The  optimization  then  certifies  near-maximal

entanglement for all θ > 0, and obtains fidelity F > 0.97 to the singlet state. For the

Bell-diagonal  model,  the  statistics  for  θ  =  0  certify  no  entanglement,  and  can

simply be understood by noting that both |Ψ–> and |Ψ+> obtain the same statistics

for the measurement settings, and so an equal mixture of both is also a compatible

state.

14 It can be easily judged whether an optimization is feasible when the number of parameters is so 
small.

15 Polarization angles are in 2-to-1 correspondence to the Bloch angles, allowing this simple 
conversion.
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Figure 4.3.3.1 Plot of N[ρ] against θ. We find that other than θ = 0, both the isotropic model Nisotropic

(black data points) and the Bell-diagonal model Nbell-diagonal  (red data points) certify near-maximal
entanglement. 

Figure 4.3.3.2 Plot of  fidelity to the singlet  against  θ. We find that other than  θ = 0, both the
isotropic model Nisotropic  (black data points) and the Bell-diagonal model Nbell-diagonal  (red data points)
have F > 0.97.

4.4 Device-Independent Case

4.4.1 Optimization Scheme

For the DI case, I run a semi-definite program using the method of Moroder et al

(2013)[12],  with  minor  modifications  to  account  the  experimental  errors.  The

optimization scheme can be summarized as:
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where the matrices χ are obtained via a positive map from an underlying quantum

state of unknown dimension, where the matrix elements include the expectation

values  of  the  observables  Ax and  By,  the  joint  correlations  and  higher  order

moments thereof. The known moments are obtained from the correlation matrix,

which are allowed to vary within the experimental error bounds.  The algorithm

obtains the minimum amount of entanglement certifiable based on the element of

χ_  which  corresponds  to  the  negativity  of  the  underlying  state  (exactly  which

element  it  is  depends  on  construction).  I  wrote  a  script  “DIOptData”  which

performs this SDP (script can be found in Appendix D).

The moment matrix is constructed by first considering the following decomposition

of the underlying state (which may be of any dimension):

for any matrices ρ
+
 and  ρ_. If one imposes the constraint that both ρ

+
 and  ρ_ are

PPT, one can work out that if ρ were NPT, then tr(ρ_) = N[ρ]. Moroder et al. (2013)

then constructs the local-level moment matrix mapping ρ onto a difference between

two moment matrices:

where χ is defined according to (62) – (64) in section 3. In this study I consider QL1

(or local level 1), which gives a 9-by-9 moment matrix of the form:
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(exact form of χ in Appendix B)

The matrix χ+ is parametrized with a similar structure i.e. where similar moments

appear in  χ, they must also be the same in χ+, since the same map is applied to both

of them. The map is a positive map, so 

The moment matrices χ can give a lower bound on the negativity, since negativity

is an entanglement monotone. If the topleft most element of χ is chosen to be the

expectation value of the identity, it simply gives the trace of the underlying state of

χ . For the DI case, therefore, I perform a SDP to certify the minimal entanglement

certifiable with the topleft most element χ_ as the figure of merit: 

since tr(ρ_) = N[ρ].  

Accounting for experimental errors

The known moments (i.e. A0, B0, A1, B1, A0 B0, A0 B1, A1B0 , A1B1) in χ are fixed for

an optimization problem where the statistics p(ab|xy) are error-free,  but I insert

addition parameters, allowing the known moments to vary between their lowest and

highest possible values. i.e.

where the parameters |vi|≤ 1. 

4.4.2 Results

After accounting for the errors, the observed statistics violate the CHSH inequality

for  all  θ  ≥  0.102  (considering  the  feasible  Bloch  angle),  and  thus  certify  the

presence  of  entanglement  for  θ  in  that  range.  The  amount  of  certifiable

entanglement increases as the Bloch angle increases. The power of DI can be seen

by making the following observation: in the full characterization case, the amount

of certifiable  entanglement  depends on the Bloch angle input  into the script– I

simply chose  the closest  angle  to  the reported values  that  were feasible.  If  the

reported knowledge on the measurements are known to be inaccurate, one can still

certify the presence of entanglement using DI schemes if the statistics violate Bell
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inequalities.

The bounds established by the DI optimization scheme, however,  are loose: the
optimal negativity only reaches up to ~0.2 for the whole range of θ, and certifies no
entanglement for low angles. Fortunately, the angles at which the statistics become
achievable  by  separable  states  are  also  the  angles  at  which  the  reported
measurement settings have feasible solutions for the fully characterized case.

Figure 4.4.2.1 Plot of minimum negativity against the (feasible) Bloch angle.

Figure 4.4.2.2 Plot of CHSH correlation against the (feasible) Bloch angle. The plot compares

CHSH for ideal statistics (green curve), the experimental values before considering the error (black

points) and after (red points)

4.4.3 Performance of the Algorithm on the whole range of θ
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The optimization was also performed on ideal statistics, using correlations obtained

by the measurements on a singlet state, which are known to be self-testing.

The  statistics  violate  CHSH  for  a  large  range  of  θ,  but  are  no  longer  on  the

boundary of Q for θ ϵ (π/3, 2π/3), and stop violating CHSH for cos θ ≤ ½(√3 – 1).

While the statistics self-test outside of these ranges (see Appendix C for a short

proof), the algorithm fails to reflect this fact despite having the correct qualitative

behavior at crucial points. This inconsistency can be chalked up to the possibility

that self-testing can somehow only be recovered at some level of the hierarchy,

which would be an interesting direction for future exploration. 

Figure 4.4.3.1 Plot of minimum negativity against the Bloch angle for ideal statistics. The

qualitative features are correct: maximal entanglement is certified at the CHSH point (θ = π/4) and

the kink occurs when the statistics stop self-testing (θ = π/3), dropping to zero when the statistics

stop violating CHSH. 

4.5 Semi-Device-Independent Case

4.5.1 Optimization Scheme

Now I focus on the main approach of the project outlined in section 4.1: certifying

the  minimum  amount  of  entanglement  compatible  with  a  set  of  observed

correlations within error margins, supplemented with the assumption of the Hilbert

space dimension. The figure of merit chosen is the negativity. 
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The optimization is run over all states and measurements of dimension 2, subject to

the constraint that the expectation values are compatible with the observed statistics

within errors. In order to perform the task I wrote the script “ErrOptCorr”, which

reads in the correlation matrix, error matrix, and desired sample size, and outputs

the state and measurements corresponding to the optimal result. 

4.5.2 Self-Testing Consistency Check

A consistency check of the algorithm was done by running the algorithm on near-

ideal statistics. I selected three points on the boundary of Q (refer to 4.2.3.1), θideal

= π/12, π/6 and π/4, and input error bounds of the size ranging from 10 -5 to 10-7. In

all three cases, the result obtained for the negativity is ½, consistent with the fact

that these statistics self-test. 

4.5.3 Results

With the exception of  θ = 0,  the semi-DI scheme certifies entanglement for all

angles  in  the  dataset.  Because  the  scheme  lets  the  measurements  run  free,

entanglement is assured regardless of the accuracy of the reported measurement

settings,  even  if  we  know  that  “something  went  wrong”  from  the  full-

characterization  algorithm.  Furthermore,  the  scheme  certifies  entanglement  for

statistics that do not violate the CHSH inequality once the errors are accounted for.

At  higher  angles  (θ  >  0.24),  the  certification  power  of  the  semi-DI  scheme

approaches that of the full characterization scheme – that is, the assumption of the

measurements  gives  less  additional  advantage  when  the  statistics  become

increasingly non-local. 
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Figure 4.5.3.1 Plot of minimum negativity against the Bloch angle, comparing the three schemes:

the full characterization scheme (black for isotropic model, red for Bell-diagonal model), the DI

scheme (blue circles) and the semi-DI scheme (blue diamonds). At higher angles, NSDI approaches

NDI.

61



Chapter 5

Summary and Potential Future Work

Using  experimental  correlations,  this  project  has  demonstrated  that  a  semi-DI

implementation conclusively certifies entanglement in cases where the certification

may be compromised by inaccurate characterization of the setup. In comparison to

DI,  the additional  assumption on the dimension gives more certification power,

useful  in  cases  where  the  physical  degree  of  freedom  is  known,  but  the

measurements are not. In the case of this project, I dealt with statistics obtained

from measurements on pairs of photons generated from Type II SPDC. The semi-

DI scheme is also consistent with self-testing, certifying maximal entanglement for

near-ideal correlations on the boundary of Q. 

The  DI  scheme,  taken  from  Moroder  et  al  (2013),  certifies  non-maximal

entanglement  even  on  ideal  statistics  from  measurement  on  the  singlet,  in

contradiction  with  self-testing.  The  possible  reasons  for  this  include  the

insufficiency of the hierarchy at local-level 1, which is non-trivial given the current

knowledge that the correlations in Q1 (and by extension, any higher level such as

QL1) and Q are already known to coincide. 

It would thus be interesting to explore what level of the hierarchy restores self-

testing when applied on the statistics obtained by measurements on the singlet,

where one would expect to see the negativity = ½ throughout the range of angles.

The moment matrices, while being a handy tool, are limited in their ability to detect

flat  regions on Q. Current  literature has  explored analytical  expressions  for  the

boundary Q, which are more effective at this task, making this a rich field for future

exploration as well.

In the semi-DI case, the hope is to explore the relaxation of other assumptions such

as IID, and implementing algorithms on experimental data which account for no-

detection  outcomes  (i.e.  data  that  is  not  post-selected),  by  treating  the

measurements as a three-outcome POVM. 
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Appendix

A. Boundary of the Generalized Bloch Sphere

The parametrization of qubit states in terms of the Pauli matrices is well known.

This is the result of a study I had done when I briefly considered extending the

Semi-DI optimization scheme to qutrits.

Proposition A.1: A matrix is singular if and only if its Bloch vector is found on the

boundary of the Generalized Bloch Sphere. 

The fact that singular matrices lie on the boundary (and span the boundary) of the

Generalized Bloch Sphere can be observed easily from the following argument: for

any Hermitian matrix of d-dimensions, there exists a decomposition of the form 

where '1' represents the identity matrix. If the density operator ρ is singular, one of

the eigenvalues of n∙G must be –1. Then going any further away from the origin in

the  direction  of  n will  always  make  ρ  indefinite.  Thus  if  the  Bloch  sphere  is

characterized by ρ ≥ 0, the boundary points will consist of singular matrices. 

Therefore, exploiting this observation allows one to define an optimization problem

to obtain 3D slices of the GBS. Choose spherical coordinates as parameters for the

3D space, and run the optimization over the radial coordinate r for a given φ and θ.

Then according to the Proposition A.1, the objective function can be chosen to be

the  square  of  the  minimum  eigenvalue  of  the  matrix.  The  optimization  will

converge  with  high  reliability  to  the  radial  coordinate  corresponding  to  the

boundary  of  the  GBS.  This  is  captured  by  the  script  I  wrote  named

“BlochArrayReal1”, which has been used to plot the seven different geometries of

3D slices of the qutrit GBS.

The following table showcases the 7 geometries of 3D slices of the qutrit GBS

obtained from this optimization method.
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Obese Tetrahedron Sphere

Paraboloid Cone

Ellipsoid RS1

RS2
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B. Moment Matrix χ for local-level 1

For local level 1,  χ can be mnemonically treated as a tensor product of two 3x3

matrices of “local moments”

where the strings containing A and B are concatenated upon multiplication, and can

thereafter be treated as operators that satisfy the appropriate commutation relations.

Once the full 9x9 matrix is constructed, the unknown moments can be set as free

parameters for problem solving.

C. Self-Testing of the statistics measured from the singlet

A set of statistics self-test if they fulfill the following relation:

and provided arccos(Exy)  =  0 for  at  most  one  pair  of  (x,y).  The statistics  (the

explicit expressions for them are found in section 4.3.2) for measurements settings

according to Figure 4.2.1.2 give:

arcsin(Exy) = ½π – (1 + 2δx,0δy,1)θ 

which satisfies the self-testing criteria for (i,j) = (0,1) as long as θ  ϵ  (0, π/3] or

[2π/3, π).
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D. MATLAB codes for the main results

In this section I attach the codes used for the optimization problems and number-crunching. The syntax
used  is  relatively  simple,  and  should  be  understandable  for  those  who  have  any  experience  with
MATLAB. Otherwise, most of the syntax I used can be easily picked up by a simple Google search.

D.1. Pabxy22 – The code that produces the correlation and error matrices

function x = Pabxy22
 
x = zeros(16,2);
 
str = readarray;
 
numbers = numformat(str);
init =1;
for m = 1:4   
    if m<4
        a = findindex(numbers,Inf,init);
    else
        a = length(numbers);
    end
    b = a - init+1;
    Y = zeros(b,1);
    for i =init:a
        j = i-init+1;
        Y(j) = numbers(i);
    end
    Ntot = length(Y);
    for j = 1:4
        if j<4
        k = sum(Y==j-1);
        x(4*(m-1)+j,1) = k/Ntot;
        else if j == 4
                x(4*(m-1)+j,1) = 1 - x(4*(m-1)+1,1) - x(4*(m-1)+2,1) - x(4*(m-
1)+3,1);
            end
        end
        x(4*(m-1)+j,2) = sqrt(k/Ntot^2 + k^2/Ntot^3);
    end
init = a+1;
end
 
end

and its child functions:

findindex – segregates the quats based on measurement setting

function x = findindex(r,a,init)
x = 0;
i = init; 
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while i <= length(r)
    if r(i) == a
        x = i;
        i = length(r);
    end
    i = i + 1;
end
if x == 0
    x = 'no such element exists';
end
end

readarray – reads the quats from the input file 'numbers.txt'

function x = readarray
 
Y = fopen('numbers.txt');
formatspec = '%c';
x = fscanf(Y,formatspec);
 
end

D.2. MinfidT3 – the script that optimizes negativity with respect to the Bell-diagonal noise model

function [x,p,fid] = minfidT3(P,t,MAXREP)
 
%F = @(v) sqrt(v(1));
N = @(v) 1/4*(abs(1-2*v(1))+abs(1-2*v(2))+abs(1-2*v(3))-(1-2*v(1))-(1-2*v(2))-(1-
2*v(3))+abs(2*(v(1)+v(2)+v(3))-1) – (2*(v(1)+v(2)+v(3))-1));

options = optimoptions('fmincon','Display','iter');
options.MaxFunEvals = 30000;
options.MaxIter = 30000;
trialf = zeros(1,MAXREP);
trialx = zeros(3,MAXREP);
k = 1;
i = 1;
while k <= MAXREP
 
[y,V,exitflag] = fmincon(N,rand(3,1),[1 1 1],1,[],[],[0 0 0],[1 1 
1],@(v0)fidcon3(v0,P,t),options);
 
if exitflag > 0
    trialf(k) = V;
    trialx(:,k) = y;
    k = k+1;
end
 
if V == 0 && exitflag > 0
    k = MAXREP + 1;
end
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    i = i+1;
end
jmin = 1;
for j = 2:MAXREP
    if trialf(j) < trialf(jmin)
        jmin = j;
    end
end
 
x = trialf(jmin);
p = trialx(:,jmin);
fid = sqrt(trialx(1,jmin));

and its constraint function:

fidcon3

function [c,ceq] = fidcon3(v,P,t)
 
P0000 = 1/4 + (1-2*(v(1)+v(2)))/4*cos(t);
P0100 = 1/4 - (1-2*(v(1)+v(2)))/4*cos(t);
P1000 = 1/4 - (1-2*(v(1)+v(2)))/4*cos(t);
P1100 = 1/4 + (1-2*(v(1)+v(2)))/4*cos(t);
 
P0001 = 1/4 + (1-2*(v(1)+v(2)))/4*cos(3*t);
P0101 = 1/4 - (1-2*(v(1)+v(2)))/4*cos(3*t);
P1001 = 1/4 - (1-2*(v(1)+v(2)))/4*cos(3*t);
P1101 = 1/4 + (1-2*(v(1)+v(2)))/4*cos(3*t);
 
P0010 = 1/4 + (v(3)-v(1))/4*cos(t) + (1-v(3)-v(1)-2*v(2))/4*cos(3*t);
P0110 = 1/4 - (v(3)-v(1))/4*cos(t) - (1-v(3)-v(1)-2*v(2))/4*cos(3*t);
P1010 = 1/4 - (v(3)-v(1))/4*cos(t) - (1-v(3)-v(1)-2*v(2))/4*cos(3*t);
P1110 = 1/4 + (v(3)-v(1))/4*cos(t) + (1-v(3)-v(1)-2*v(2))/4*cos(3*t);
 
P0011 = 1/4 + (v(3)-v(1))/4*cos(t) + (1-v(3)-v(1)-2*v(2))/4*cos(5*t);
P0111 = 1/4 - (v(3)-v(1))/4*cos(t) - (1-v(3)-v(1)-2*v(2))/4*cos(5*t);
P1011 = 1/4 - (v(3)-v(1))/4*cos(t) - (1-v(3)-v(1)-2*v(2))/4*cos(5*t);
P1111 = 1/4 + (v(3)-v(1))/4*cos(t) + (1-v(3)-v(1)-2*v(2))/4*cos(5*t);
 
T = [P0000; P0100; P1000; P1100; P0001;P0101;P1001;P1101;P0010;P0110;P1010;P1110;...
    P0011;P0111;P1011;P1111];
 
ceq = [];
 
c = max(abs(T-P(:,1))) – max(P(:,2));

D.3. DIOptData – the script that performs the SDP for the DI certification scheme

function [result ,y, z] = DIOptData(P)
 
J = sqrt(-1);
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%A0 = 1/2; 
%B0 = 1/2;
%A1 = 1/2;
%B1 = 1/2;
%A0B0 = 1/4*(1+cos(t));
%A0B1 = 1/4*(1+cos(3*t));
%A1B0 = 1/4*(1+cos(t));
%A1B1 = 1/4*(1+cos(t));
v = sdpvar(1,24);
 
A0 = 1/2*((P(1,1)+P(2,1)) + (P(5,1)+P(6,1))) + 
v(17)/sqrt(4)*sqrt(P(1,2)^2+P(2,2)^2+P(5,2)^2+P(6,2)^2);
B0 = 1/2*((P(1,1)+P(3,1)) + (P(9,1)+P(11,1))) + 
v(18)/sqrt(4)*sqrt(P(1,2)^2+P(3,2)^2+P(9,2)^2+P(11,2)^2);
A1 = 1/2*( (P(9,1)+P(10,1)) + (P(13,1)+P(14,1)) )+ 
v(19)/sqrt(4)*sqrt(P(9,2)^2+P(10,2)^2+P(13,2)^2+P(14,2)^2);
B1 = 1/2*( (P(13,1)+P(15,1)) + (P(5,1)+P(7,1)))+ 
v(20)/sqrt(4)*sqrt(P(13,2)^2+P(15,2)^2+P(5,2)^2+P(7,2)^2);
 
A0B0 = (P(1,1)) + v(21)*P(1,2);
A0B1 = (P(5,1)) + v(22)*P(5,2);
A1B0 = (P(9,1))+ v(23)*P(9,2);
A1B1 = (P(13,1)) + v(24)*P(13,2);
 
 u = sdpvar(1,25);
 Chi_Plus = [u(25) u(1) u(2) u(3) u(4) u(5) u(6) u(7) u(8);...
            0     u(1) u(9)+J*u(10) u(4) u(4) u(11)+J*u(12) u(7) u(7) u(13)+J*u(14);...
            0     0    u(2) u(5) u(11)-J*u(12) u(5) u(8) u(13)-J*u(14) u(8);...
            0     0    0 u(3) u(4)  u(5) u(15)+J*u(16) u(17)+J*u(18) 
u(19)+J*u(20);...
            0  0 0 0 u(4) u(11)+J*u(12) u(17)+J*u(18) u(17)+J*u(18) 
u(21)+J*u(22);...
            0     0    0    0    0  u(5) u(19)+J*u(20) u(23)+J*u(24) 
u(19)+J*u(20);...
            0     0    0    0    0    0    u(6) u(7) u(8);...
            0     0    0    0    0    0    0    u(7) u(13)+J*u(14);...
            0     0    0    0    0    0    0    0    u(8)];
 
 
 
 Chi_Plus = (Chi_Plus + Chi_Plus') - diag(diag(Chi_Plus));
        
Chi = [1 A0 A1 B0 A0B0 A1B0 B1 A0B1 A1B1;...
       0 A0 v(1)+J*v(2) A0B0 A0B0 v(3)+J*v(4) A0B1 A0B1 v(5)+J*v(6);...
       0 0 A1 A1B0 v(3)-J*v(4) A1B0 A1B1 v(5)-J*v(6) A1B1;...
       0 0 0 B0 A0B0  A1B0 v(7)+J*v(8) v(9)+J*v(10) v(11)+J*v(12);...
       0 0 0 0 A0B0 v(3)+J*v(4) v(9)+J*v(10) v(9)+J*v(10) v(13)+J*v(14);...
       0 0 0 0 0 A1B0 v(11)+J*v(12) v(15)+J*v(16) v(11)+J*v(12);...
       0 0 0 0 0 0 B1 A0B1 A1B1;...
       0 0 0 0 0 0 0 A0B1 v(5)+J*v(6);...
       0 0 0 0 0 0 0 0 A1B1];
 
Chi = (Chi + Chi')- diag(diag(Chi));
 
F = [Chi>=0, Tx(Chi_Plus,2,[3 3])>=0, Tx(Chi_Plus - Chi,2,[3 3])>=0, abs(v(17))<= 
1,abs(v(18))<= 1,abs(v(19))<= 1,...
    abs(v(20))<= 1,abs(v(21))<= 1,abs(v(22))<= 1,abs(v(23))<= 1,abs(v(24))<= 1];
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N = Chi_Plus(1,1) - Chi(1,1);
 
obj = N;
optimize(F,obj);
result = value(Chi_Plus(1,1)-Chi(1,1));
y = value(Chi_Plus);
z = value(v);

D.4. ErrOptCorr – the script the performs the semi-DI certification scheme

function [rho, p, px0, px1, py0, py1, NEG, TOTREP] = ErrOptCorr(P,MAXREP)
 % J = sqrt(-1);
 S0 = [1 0;0 1];
 Sx = [0 1;1 0];
 % Sy = [0 -J;J 0];
 Sz = [1 0;0 -1];
 
N = @(s) negativity(assign(s(1:9),4,1) + Imassign(s(10:15),4),[2 2]);
r = @(s) assign(s(1:9),4,1) + Imassign(s(10:15),4);
 
PIx_0 = @(s) 1/2*(S0 + s(16)*Sz);
PIy_0 = @(s) 1/2*(S0 + s(17)*Sz);
 
PIx_1 = @(s) 1/2*(S0 + s(18)*Sx + s(19)*Sz);
PIy_1 = @(s) 1/2*(S0 + s(20)*Sx + s(21)*Sz);
 
 
options = optimoptions('fmincon','Display','iter');
options.MaxFunEvals = 30000;
options.MaxIter = 30000;
trialf = zeros(1,MAXREP);
trialx = zeros(21,MAXREP);
k = 1;
i = 1;
while k <= MAXREP
 
[x,neg,exitflag] = fmincon(N,2*rand(21,1)-1,[],[],[],[],[],
[],@(p0)Errcon(p0,P),options);
 
if exitflag > 0
    trialf(k) = neg;
    trialx(:,k) = x;
    k = k+1;
end
 
if neg == 0 && exitflag > 0
    k = MAXREP + 1;
end
 
    i = i+1;
end
jmin = 1;
for j = 2:MAXREP
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    if trialf(j) < trialf(jmin)
        jmin = j;
    end
end
 
p = trialx(:,jmin);
rho = r(p);
px0 = PIx_0(p);
px1 = PIx_1(p);
py0 = PIy_0(p);
py1 = PIy_1(p);
NEG = trialf(jmin);
TOTREP = i;
 
end

and its constraint function

Errcon

function [c, ceq] = Errcon(p,P)
 
% J = sqrt(-1);
S0 = [1 0;0 1];
Sx = [0 1;1 0];
% Sy = [0 -J;J 0];
Sz = [1 0;0 -1];
 
rho = assign(p(1:9),4,1) + Imassign(p(10:15),4);
 
PIx_0 = 1/2*(S0 + p(16)*Sz);
PIy_0 = 1/2*(S0 + p(17)*Sz);
 
PIx_1 = 1/2*(S0 + p(18)*Sx + p(19)*Sz);
PIy_1 = 1/2*(S0 + p(20)*Sx + p(21)*Sz);
 
T = zeros(16,1);
 
for i = 0:1
    for j = 0:1
        
        if i == 0 && j == 0
        
        T((2*i+j)*4+1) = sum(diag(rho*kron(PIx_0,PIy_0)));
        T((2*i+j)*4+2) = sum(diag(rho*kron(PIx_0,eye(2)-PIy_0)));
        T((2*i+j)*4+3) = sum(diag(rho*kron(eye(2)-PIx_0,PIy_0)));
        T((2*i+j)*4+4) = sum(diag(rho*kron(eye(2)-PIx_0,eye(2)-PIy_0)));
        
        end
        
        if i == 0 && j == 1
        
        T((2*i+j)*4+1) = sum(diag(rho*kron(PIx_0,PIy_1)));
        T((2*i+j)*4+2) = sum(diag(rho*kron(PIx_0,eye(2)-PIy_1)));
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        T((2*i+j)*4+3) = sum(diag(rho*kron(eye(2)-PIx_0,PIy_1)));
        T((2*i+j)*4+4) = sum(diag(rho*kron(eye(2)-PIx_0,eye(2)-PIy_1))); 
        
        end
        
        if i == 1 && j == 0
            
        T((2*i+j)*4+1) = sum(diag(rho*kron(PIx_1,PIy_0)));
        T((2*i+j)*4+2) = sum(diag(rho*kron(PIx_1,eye(2)-PIy_0)));
        T((2*i+j)*4+3) = sum(diag(rho*kron(eye(2)-PIx_1,PIy_0)));
        T((2*i+j)*4+4) = sum(diag(rho*kron(eye(2)-PIx_1,eye(2)-PIy_0))); 
        
        end
        
        if i == 1 && j == 1
        
        T((2*i+j)*4+1) = sum(diag(rho*kron(PIx_1,PIy_1)));
        T((2*i+j)*4+2) = sum(diag(rho*kron(PIx_1,eye(2)-PIy_1)));
        T((2*i+j)*4+3) = sum(diag(rho*kron(eye(2)-PIx_1,PIy_1)));
        T((2*i+j)*4+4) = sum(diag(rho*kron(eye(2)-PIx_1,eye(2)-PIy_1)));
        end
    end
end
MXE = max(abs(T - P(:,1)) - max(P(:,2)));
c = [MXE -min(eig(rho)) p(16)^2-1 p(17)^2-1 p(18)^2+p(19)^2-1 p(20)^2+p(21)^2-1];
ceq = [];
 
end

The child functions  assign  and Imassign simply construct  Hermitian  matrices  from an array of  real
numbers.  Assign  generates  a  symmetric  real  matrix,  while  Imassign  generates  an  antisymmetric
imaginary-valued matrix.

And finally, 

BlochArrayReal1

function x = BlochArrayReal1(s,k2,k3,MAXREP,geo)
J = sqrt(-1);
x = zeros(s^2,3);
T = zeros(MAXREP,3);
if strcmp(geo,'tetra') == 1
    N = @(p)(min(eig((1/3*[1 p(1)*sin(p(2))*cos(p(3)) 
p(1)*sin(p(2))*sin(p(3));p(1)*sin(p(2))*cos(p(3)) 1 p(1)*cos(p(2)); 
p(1)*sin(p(2))*sin(p(3)) p(1)*cos(p(2)) 1]))))^2;
else if strcmp(geo,'sphere') == 1
        N = @(p)(min(eig((1/3*[1 -J*p(1)*sin(p(2))*cos(p(3)) 
-J*p(1)*sin(p(2))*sin(p(3)); J*p(1)*sin(p(2))*cos(p(3)) 1 -J*p(1)*cos(p(2)); 
J*p(1)*sin(p(2))*sin(p(3)) J*p(1)*cos(p(2)) 1]))))^2;
    else if strcmp(geo,'para') == 1
            N = @(p)(min(eig((1/3*[1+p(1)*cos(p(2)) 0 0; 0 1-p(1)*cos(p(2)) 
p(1)*sin(p(2))*exp(-J*p(3)); 0 p(1)*sin(p(2))*exp(J*p(3)) 1]))))^2;
        else if strcmp(geo,'cone') == 1
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                N = @(p)(min(eig((1/3*[1+1/sqrt(3)*p(1)*cos(p(2)) 
p(1)*sin(p(2))*exp(-J*p(3)) 0; p(1)*sin(p(2))*exp(J*p(3)) 1+1/sqrt(3)*p(1)*cos(p(2))
0; 0 0 1-2/sqrt(3)*p(1)*cos(p(2))]))))^2;
            else if strcmp(geo,'ellip') == 1
                    N = @(p)(min(eig((1/3*[1+1/sqrt(3)*p(1)*cos(p(2)) 0 0; 0 
1+1/sqrt(3)*p(1)*cos(p(2)) p(1)*sin(p(2))*exp(-J*p(3)); 0 p(1)*sin(p(2))*exp(J*p(3))
1-2/sqrt(3)*p(1)*cos(p(2))]))))^2;
                else if strcmp(geo,'rs1') == 1
                        N = @(p)(min(eig((1/3*[1+p(1)*cos(p(2)) 
p(1)*sin(p(2))*cos(p(3)) p(1)*sin(p(2))*sin(p(3));p(1)*sin(p(2))*cos(p(3)) 1-
p(1)*cos(p(2)) 0;p(1)*sin(p(2))*sin(p(3)) 0 1]))))^2;
                    else if strcmp(geo,'rs2') == 1
                            N = @(p)(min(eig((1/3*[1+1/sqrt(3)*p(1)*cos(p(2)) 
p(1)*sin(p(2))*cos(p(3)) p(1)*sin(p(2))*sin(p(3));p(1)*sin(p(2))*cos(p(3)) 
1+1/sqrt(3)*p(1)*cos(p(2)) 0;p(1)*sin(p(2))*sin(p(3)) 0 1-
2/sqrt(3)*p(1)*cos(p(2)) ]))))^2;
                        end
                     end
                end
            end
        end
    end
end
options = optimset('Display','off');
for i = 1:s
    for j = 1:s
        x((i-1)*s+j,2) = i*(k2)/s;
        x((i-1)*s+j,3) = -k3 + j*2*k3/s;
    end
end
for j = 1:s^2
    a = x(j,2);
    b = x(j,3);
    for m=1:MAXREP
        T(m,:) = fmincon(N,[rand(1) a b],[],[],[],[],[],
[],@(p)nonlcon3(p,a,b),options);
    end
    x(j,1) = mode(T(:,1));
end
end

and its constraint function

nonlcon3

function [ c,ceq ] = nonlcon3(a,k2,k3 )
%UNTITLED2 Summary of this function goes here
%   Detailed explanation goes here
c = -a(1) ;
ceq = [a(2) - k2 a(3)-k3];
 
 
end
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