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1 Introduction

The main focus of this project revolves around the idea of Self-Testing, which

is in essence the fact that the observation of some correlations, one can identify

a quantum state and measurements on that state (up to local unitaries and

addition of irrelevent degrees of freedom) which would give those correlations.

An example would be that the observation of CHSH = 2
√

2 (the maximal

violation possible of the CHSH inequality[3, 11] assuming quantum theory) self-

tests[1] the singlet state, with the measurements being the corresponding sigma

matrices.

The nature of Self-testing is such that it only works in the ideal or perfect

scenario, when one observes the perfect correlations (for example CHSH =

2
√

2). To make it applicable to real data, one needs to allow for some deviation

from the perfect case (CHSH = 2
√

2−ε). In such situations, the lower bound of

the fidelity with the ideal state is determined using what is known as robustness

bounds.

However, even with these techniques, one is still not yet ready to handle real

experimental data. The reason is that self-testing operates under the assumption

of what is known as the no-signalling condition, which raw experimental data

does not fulfill (almost all of the time). Therefore, one first needs to perform

a projection of the raw data into the set of correlations that do obey the no-

signalling condition, obtaining a projected probability point which then can

be used to determine the lower bound onfidelity. This process is known as

Regularisation[4].

This report will first present in detail well-established ideas of self-testing

and robustness curves. Then, the idea and method of regularisation will be

discussed. Following this, these tools will be applied to data obtained from

a simulator which simulates data for the CHSH scenario, and also from ex-

perimental data obtained from IBM’s Q experience. Lastly, self-testing in the

double CHSH scenario will be briefly discussed.
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2 Preliminaries

2.1 Basic Notation

Throughout this report, the following scenario will be considered: Two parties

(Alice and Bob) both possess a box into which they input settings, to which

the box responds by giving an output. The inputs (settings) are denoted by x

and y, while the outputs are denoted by a and b for Alice and Bob respectively.

Also, the no-signalling condition is assumed to always hold. This means that

both parties are space-like separated so that no classical communication takes

place between them.

Besides the no-signalling assumption, nothing else is assumed about the boxes;

in particular, no assumptions are made on the inner workings or mechanisms

that may lie within the boxes. Hence, the boxes can in fact be viewed effectively

as two blackboxes which simply receive inputs and give outputs. This setup is

depicted in figure 1 below:

Figure 1: Setup for Alice and Bob

Here, both Alice and Bob collect data by giving their boxes inputs x, y, and

recording the corresponding outputs a, b. They each perform many such runs

and record the data for each run individually as (a, x) for Alice and (b, y) for

Bob. They then come together to combine their data and end up with something

of the form (a, b, x, y) for each run. With this data, they can then estimate the

joint probabilities (correlations), denoted by P (a, b|x, y).
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As a concrete example, if both the outputs and inputs are binary, x, y ∈
{0, 1}, a, b ∈ {−1, 1} as in the CHSH case (which will be further examined), the

correlations P (a, b|x, y) can be written as a vector with 16 entries as follows:



P (+ + |00)

P (+− |00)

P (−+ |00)

P (−− |00)
...

P (−− |11)


2.2 No-Signalling Condition

The no-signalling condition, as mentioned briefly in the previous section, are

the following set of constraints:

P (a|x) =
∑
b

P (a, b|x, y) =
∑
b

P (a, b|x, y′) (1)

P (b|y) =
∑
a

P (a, b|x, y) =
∑
a

P (a, b|x′, y) (2)

This means the following: The marginal probability that Alice obtains out-

come a, given her input setting x, is independent of whatever setting Bob

chooses. This is because Alice and Bob cannot communicate with one another,

and so Bob’s setting should not affect outcome of Alice’s measurement. The

same reasoning naturally also applies to Bob.

A final note here is that this is not the most general scenario one can have. In

general, one may consider situations with more than two parties. Nevertheles,

the joint probabilities are obtained in the same way, demanding the correspond-

ing no-signalling conditions to hold. Also, the number of settings and possible

outcomes may also vary, depending on scenario under consideration. That be-

ing said, this report will focus only on the case of two parties, which can be

adequately described with the notation presented thus far.
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3 Self-Testing

3.1 An Analogy: Fingerprinting

Self-testing is in a way, similar to fingerprinting, in the sense that given a

fingerprint, one can identify the one and only person it belongs to. In self-testing,

this “fingerprint” comes in the form of observed correlations obtained from

experimental data. Given that one observes some correlations, one can identify

uniquely both the state Alice and Bob share, as well as the measurements they

must have made on the state, which gave rise to those correlations.

Moreover, just as how a person has 10 different fingerprints (one for each fin-

ger), each state can also have multiple “fingerprints”. In other words, each state

can have a few signature correlations, all of which self-test the same state and

measurements, but yet are not equivalent to each other. Therefore, observation

of any one of those correlations (criteria) allows one to identify uniquely the

state and the measurements performed on it.

However, due to the quantum nature of self-testing, the reality of the situ-

ation is slightly different from the fingerprint analogy. In fingerprinting, one

is able to identify the one and only person it belongs to, whereas in self-

testing, there are in fact various possible quantum realisations (states and

measurements:|ψ〉 ,Πx
a,Π

y
b ) that can give rise to a set of correlations known

to self-test a specific state |ψ̄〉. The key point here, however, is that all these

possible states and measurements are in fact equivalent to one another, and so

can be mapped by what is known as an isometry[1, 5] to the specific state and

measurements the correlations are known to self-test (|ψ̄〉 , {Π̄x
a, Π̄

y
b}). Note that

the ideal state and measurements that are being tested will be denoted by a bar

above.

3.2 Self Testing: The main idea

In this section, the idea of self-testing will be presented more concretely. Self-

testing in essence refers to the fact that the observation of some correlations

P (a, b|x, y), as established in section 2.1, allows one to identify uniquely a state

|ψ̄〉 and suitable measurements on the state {Π̄x
a, Π̄

y
b} that are compatible with

the observed P (a, b|x, y). This is captured by the following expression:
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P (a, b|x, y) = 〈ψ̄| Π̄x
a ⊗ Π̄y

b |ψ̄〉 (3)

In other words, for some observed correlations P (a, b|x, y) obtained by Alice

and Bob, one can conclusively infer the state |ψ̄〉 that Alice and Bob must have

shared. On top of that, one can determine the measurements {Π̄x
a, Π̄

y
b} Alice

and Bob were making on the state when they chose their settings x and y.

However, as metioned in section 3.1, saying that one can determine the

state uniquely does not mean that there exists only one possible state which

gives us the observed P (a, b|x, y). To rephrase, given some observed correla-

tions P (a, b|x, y) known to self-test a particular state, it does not necessarily

mean that Alice and Bob indeed shared this state. However, the state shared

and measurements performed are equivalent to the state and measurements

(|ψ̄〉 , {Π̄x
a, Π̄

y
b}) the correlations are known to self-test, up to a local isometry.

Briefly, this means that the state (and measurements) in the lab |ψ〉 differs from

the state the correlations are known to self-test |ψ̄〉 up to local unitaries or ad-

dition of irrelevant degrees of freedom. This will be further elaborated on in

section 3.4, where the formal definition of Self-Testing is presented.

Lastly, one should note that not just any observed P (a, b|x, y) obtained from

an experiment allows one to self-test some state. It is possible (in fact more

likely) that looking at just any P (a, b|x, y) does not allow one to identify any

state. It is only some very specific correlations that allow one to self-test certain

states.

3.3 Device-Independence and its implications

Before proceeding further, Device-Independence, an intricacy of the ideas

presented so far will be briefly discussed. The fact that one can draw conclusions

about Alice’s and Bob’s boxes by looking at only the P (a, b|x, y) (and nothing

else) is characteristic of what is known as Device-Independence. More succinctly,

we say that self-testing is device-independent.

The origin of the term is easy to understand. Device-independence refers

to the idea that one can be completely ignorant of the contents of Alice’s and

Bob’s boxes, but still be able to obtain information about the state (and mea-

surements) that they must have shared. Therefore conclusions are drawn by
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only looking at the inputs and outputs, independent of whatever may be con-

tained in the boxes, hence the term device-independence. Self-testing and it’s

Device-Independent nature in fact has practical applications in many quantum

information protocols, one of which is state certification which will now be briefly

explained.

Quantum state certification is, as the name suggests, certifying that one is

in possession of some desired quantum state. Self-testing allows one to perform

such a certification since the mere observation of correlations allows one to

make conclusions on the state. One can therefore verify if a state prepared in

the lab is indeed the desired state just by checking if the P (a, b|x, y) obtained

is characteristic of the target state. In fact, as will be explained later, one can

actually quantify, and provide a meaningful measure of how “close” a state is

to the target state by using the tools of self-testing and some other ideas.

One of state certification is in quantum cryptography. In quantum key dis-

tribution, it is necessary that Alice and Bob share an entangled state in order

to ensure they both have access to a secure key. In order to ensure that the

state they share is indeed the desired entangled state, one can feed the boxes

with inputs and obtain the corresponding outputs and compute the correlations

P (a, b|x, y). With that information, one can then determine if the state is in-

deed the target state (or at least sufficiently “close” to the target state), and

therefore certify the entanglement and security of the protocol.

3.4 The formal definition of Self-testing

Formally, Self-testing is presented as the following[1, 5]: For every possible

quantum realisation (|ψ〉 ,Πx
a,Π

y
b}) compatible with the correlations P (a, b|x, y),

there exists a local isometry Φ = ΦA ⊗ ΦB such that:

Φ |ψ〉 = |ψ̄〉A′B′ ⊗ |junk〉AB (4)

Φ(Πx
a ⊗Πy

b |ψ〉) = (Π̄x
a ⊗ Π̄y

b |ψ̄〉)A′B′ ⊗ |junk〉AB (5)

Here, A and B denote the systems of Alice’s and Bob’s boxes, while A’

and B’ are two ancillary qubits. This means that for every possible state |ψ〉
and measurements {Πx

a,Π
y
b} that gives the correlations P (a, b|x, y), one can
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find a local isometry that maps the state |ψ〉 to the unique state |ψ̄〉, as well

as the measurements {Πx
a,Π

y
b} to the appropriate measurements {Π̄x

a, Π̄
y
b} on

the unique state |ψ̄〉. Therefore, all the possible states |ψ〉 that give those

correlations are equivalent to the unique state |ψ̄〉 up to some local isometry

Φ. The details of the implementation of such an isometry will be elaborated on

in section 5.1, where it is applied together with some other tools that will be

discussed later in order to facilitate a smoother flow of ideas.

It should be noted that an isometry is only a virtual protocol, a theoretical

procedure. Thus, it is not actually carried out in the lab when one implements

self-testing. All that is required in the lab is to query the boxes with the inputs

x, y and obtain the outcomes a, b which allow one to estimate the probabilities

P (a, b|x, y), which is sufficient for one to perform self-testing.

3.5 An example: The CHSH criteria for Self-testing

An example of Self-testing will now be presented: the CHSH criterion, where

the value of the CHSH expression, derived by Clauser, Horne, Shimony, and

Holt[2, 11] is used to self-test the singlet state. In this scenario, Alice and Bob

both have two settings to choose from, x, y ∈ {0, 1}. For each setting, the boxes

give one of two outputs, a, b ∈ {−1,+1}. The CHSH is given by the following

expression:

CHSH = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 (6)

Here, 〈AxBy〉 denotes the expectation value of the product of Alice’s outcome

given she chose setting x, and Bob’s outcome given he chose setting y. This

CHSH expression is a well known Bell-Inequality, which must satisfy CHSH ≤ 2

if local hidden variable theories (such as the one proposed by Einstein, Podolsky

and Roden) are true[3]. However, this inequality can be violated by quantum

mechanics. More impressive is the fact that the violation is exactly as predicted

by quantum mechanics. Using quantum mechanical ideas, one can show that

the maximum value [3, 11]that it can take is CHSH = 2
√

2.

Remarkably, it has also been discovered that the CHSH value can be used

in self-testing. In particular, the observation of CHSH = 2
√

2 self-tests the

maximally entangled state of two qubits |Φ+〉 = 1√
2

(
|00〉 + |11〉

)
, which will

be referred to as the singlet state in this report. This means that given some
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observed correlations P (a, b|x, y), we can calculate the value of the CHSH ex-

pression, and if and only if we find that CHSH = 2
√

2, we can conclude that

the state is the singlet state. To draw a link to the analogy presented in section

3.1, one can think of CHSH = 2
√

2 as one of the “fingerprints” of the singlet

state.

3.6 Another criterion for self-testing of the singlet: the

Mayers-Yao Statistics

As mentioned earlier, there are many different criteria (“fingerprints”) that

allow one to self-test the singlet state. Observation of CHSH = 2
√

2 is one

of them, and here, another such criteria will be discussed; The Mayers-Yao

criterion [3].

In this scenario, instead of having 2 settings for each party, there are 2 set-

tings on Alice’s box, and 3 settings on Bob’s box. The outputs remain bi-

nary as in the CHSH case. The settings on the boxes will be denoted by

{XA, ZA;XB , ZB , DB}, where the subscript indicates the box which the mea-

surement is performed on.

If one observes the following correlations:

〈Ψ|ZAZB |Ψ〉 = 〈Ψ|XAXB |Ψ〉 = 1 (7)

〈Ψ|XAZB |Ψ〉 = 〈Ψ|ZAXB |Ψ〉 = 0 (8)

〈Ψ|ZADB |Ψ〉 = 〈Ψ|XADB |Ψ〉 =
1√
2

(9)

One can show[3] that the state |Ψ〉 must be equivalent to the state |Φ+〉, and

that the measurements are effectively the corresponding pauli matrices

(Z → σz, X → σx), where D → 1√
2
(σz + σx).

The Mayers-Yao Criterion here is different from the CHSH one, although

both self-test the same singlet state. Therefore, both of these can be seen as

different “fingerprints” of the singlet state. Additionally, for the case of two

binary measurements in a bi-partite scenario, it has been shown that all the

possible criterion for self-testing can be characterised[8].
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4 Applying Self-Testing

4.1 Non-ideal Correlations

So far, the idea of Self-Testing and it’s possible applications have been dis-

cussed in some detail. However, it should be noted that self-testing in principle

only works in an ideal situation, where the correlations observed are perfect

and exact. For instance, in the CHSH case, one has to observe CHSH = 2
√

2

exactly, in order to conclude that the state is indeed the singlet state.

However, in the lab, one will observe CHSH = 2
√

2 − ε, where ε represents

some error arising from inevitable experimental imperfections and statistical

fluctuations. The question then arises: what then can be inferred about the

state from the data? One therefore requires some method which quantifies the

closeness of the state one has in the lab (from which data is collected) to the

ideal state is needed. It turns out that a tool known as robustness bounds does

exactly that.

4.2 Fidelity and Robustness bounds

Firstly, given some data, one can calculate a quantity known as the fidelity,

which describes the overlap between a state and the state one wishes to self-

test(the ideal state). The expression of the fidelity is as follows[5]:

F = Tr(ρidealρA′B′) (10)

Here, ρideal is the density matrix of the state we wish to self-test (for the

singlet state, ρideal = |Φ+〉 〈Φ+|) and ρA′B′ is the density matrix of the ancillas

A′ and B′, after the isometry (as mentioned in Section 3.4) has been applied.

The expression of ρA′B′ contains information from data one obtains in the lab,

together with a bunch of variables, which will then be varied by means of a

computer program to minimise the objective function, F . The result of this

minimisation returns the lowest possible fidelity with the state, given some data

from which one estimates the probabilities P (a, b|x, y). This will be explicitly

demonstrated in section 5.

The intuition here is that given some CHSH value, CHSH = 2
√

2 − ε, it is

possible that there exist many states |ψ〉 which gives that particular value, each
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of which have a different fidelity with the target state |Φ+〉. Since no assump-

tions are made on the contents of the boxes, and only the statistics obtained are

considered, the lowest fidelity is taken. By doing so, one obtains a lower bound

on the fidelity which is the “worst-case scenario”. Therefore, it could be that

the state has a higher fidelity than this minimum fidelity Fmin, but one can be

sure that the fidelity is at least Fmin. In essence, given observed correlations

from experimental data, this approach allows one to find the minimum fidelity

with the ideal state Fmin, and be sure that the actual fidelity, F , is such that

F ≥ Fmin.

With this in mind, one can plot a graph of fidelity against ε, which shows how

the minimum fidelity changes as the deviation from the target state becomes

larger. Such a graph is known as a robustness curve and it is shown below:

Figure 2: Robustness Curve for CHSH criterion

As seen here, when ε is 0, one has the perfect data, giving a fidelity of 1,

which is self-testing in the ideal case where the ideal correlations are obtained.

As ε increases, the fidelity falls, which is expected as the deviation away from

the ideal state increases. This therefore enables one to quantify exactly how

“close” a state is to the ideal state. Note that a trivial bound of the fidelity is
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F = 0.5, as that corresponds to the maximally mixed state. As such, F = 0.5 is

the worst fidelity one can obtain, and gives no information on the state. Note

that while the graph in figure 2 drops below F = 0.5, all points with F < 0.5

can be treated as having a fidelity of F = 0.5, corresponding to the maximally

mixed state.

Given that there are different criteria to self-test a state, as mentioned in

sections 3.5 and 3.6, one obtains different lower bounds on the fidelity by using

the different criteria. Of course, if the objective here is to self-test the singlet,

one ought to pick the criterion that gives the highest lowest bound on the fidelity.

Also, it is important to keep in mind that it is possible for different P (a, b|x, y)

to give the same CHSH value (where ε 6= 0), and each of those P (a, b|x, y) might

each give a different fidelity with the singlet. Therefore, in figure 2, the fidelity

here is the minimum possible one out of all the P (a, b|x, y) that gives the same

CHSH value. In an experiment however, one has access not only to the CHSH

value, but also the full statistics P (a, b|x, y). Using these statistics to directly

compute the fidelity can actually give one a better lower bound (as demonstrated

later in section 6.6.)

4.3 Regularisation

So far, self-testing and its practical application using robustness curves has

been discussed in some detail. At this point, it may be tempting to think one

is ready to implement this on actual data from the lab, since it seems that one

already has all the necessary tools.

However, that is not the case. The procedure that has been outlined so far is

based on the assumption that the correlations P (a, b|x, y) obtained are in the

quantum set of correlations, Q, which must satisfy the no-signalling condition

as mentioned in section 2.2. There is, however, absolutely no guarantee that

this holds for data that is obtained from the lab . In fact, most of the time, the

no-signalling conditions do not hold for raw experimental data.

Therefore, before the raw data is analysed, one must first make sure that it

is indeed no-signalling. To do this, one has to project the point into a superset

relaxation of the quantum set of probabilities, Ql. One way of performing this
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projection[4] is to find the point that lies in Ql which minimises the two-norm

from the raw experimental data point:

~PNQA2
(~Pexp) = argmin~P∈Ql

‖~Pexp − ~P‖2 (11)

Here, one attempts to find the point within Ql that minimises the “distance”

from the experimental point ~Pexp. This projected point, being in the set of

Ql, will necessarily satisfy the No-Signalling conditions. Note that the reason

a superset relaxation of the quantum set is used is that the quantum set is

not fully characterised[6]. Here, the subscript NQA2 stands for the “Nearest

Quantum Approximation” and 2 stands for the 2-norm. Once this projection is

complete, one obtains a regularised point, which only then can be legitimately

used in for further analysis to obtain the fidelity. This process can be visualised

as illustrated in the following diagram:

Figure 3: Projection of raw probability point ~Pexp(a, b|x, y) into the set Ql
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5 Self-Testing in detail: CHSH

In this section, the details regarding the procedures of how one can implement

self-testing will be discussed. Ultimately, the aim here is to provide a valid lower

bound for the fidelity of a state, given some experimental data from the lab.

Ideas that were discussed earlier will now be presented more concretely, and the

details will be thoroughly explained.

5.1 The Isometry

The ideal case will first be considered. Given a state shared by Alice and

Bob, |ψ̄〉, one needs an isometry that maps this state into the ancilla systems

A’ and B’. Mathematically, this is captured by the following:

Φ |ψ̄〉AB = |ψ̄〉A′B′ ⊗ |junk〉AB (12)

An explicit example of such an isometry is the following[3]:

Figure 4: Isometry that maps the singlet state into the ancilla qubits

This is the equivalent of what is known as a SWAP isometry[5]. The top and

bottom lines represent the ancilla qubits, systems denoted by A′ and B′. H is

the hadamard gate which acts as follows: H |0〉 = |0〉+|1〉√
2

, H |1〉 = |0〉−|1〉√
2

. The

σi’s here are the usual sigma matrices, with the superscripts denoting which

qubit they act on.

This isometry here actually acts as a swap (hence the name) between the an-

cilla qubits and the state shared by Alice and Bob: |ψ̄〉AB |00〉A′B′ → |00〉AB |ψ̄〉A′B′ .

This mapping will now be demonstrated using the following state (for conve-

nience): |ψ̄〉 = |Φ+〉 = 1√
2

(
|00〉+ |11〉

)
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First, the Hadamard gates act on the ancilla systems which gives the following:

1√
2

(
|00〉+ |11〉

)
AB
|00〉A′B′ →

1√
2

(
|00〉+ |11〉

)
AB

( |0〉+ |1〉√
2

)
A′

( |0〉+ |1〉√
2

)
B′

=
1

2
√

2

(
|00〉AB

)(
|00〉+ |01〉+ |10〉+ |11〉

)
A′B′

+
(
|11〉AB

)(
|00〉+ |01〉+ |10〉+ |11〉

)
A′B′

(13)

From here on, the subscripts indicating the system(A and B) and the ancillas

(A′ and B′) will be dropped. It shall be understood that the first two digits in

any ket corresponds to A and B, while the last two correspond to A′ and B′

respectively.

The ancillas now act as what is known as a control qubit. In this case,

the operation σz is performed on the Alice’s/Bob’s qubit only if the control

qubit(ancilla) is in the state |1〉. If the control qubit is in the state |0〉, no

operation is performed (or equivalently the identity operation). With this one

obtains the following, bearing in mind that σz |0〉 = |0〉, σz |1〉 = − |1〉:

1

2
√

2

(
|0000〉+ |0001〉+ |0010〉+ |0011〉

+ |1100〉 − |1101〉 − |1110〉+ |1111〉
) (14)

After applying the next two hadamard gates to the ancillas in an identical

fashion as before and doing some simplification, the following is obtained:

1√
2

(
|0000〉+ |1111〉

)
(15)

Finally, upon applying the last two σx matrices, one obtains :

1√
2

(
|0000〉+ |0011〉

)
=

1√
2
|00〉AB

(
|00〉+ |11〉

)
A′B′

= |00〉AB |ψ̄〉A′B′

(16)

Therefore, with this isometry, the singlet state that Alice and Bob share is

swapped into the ancilla systems. This isometry here is in general valid for any

starting state, in the sense that it swaps whatever state one begins with into

the ancilla systems.
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5.2 Ideal State, Measurements, and other details

The CHSH criterion will be used to self-test the singlet. The ideal state shall

be written as the following[5]:

|ψ̄〉 = cos
π

8
|Φ−〉+ sin

π

8
|Ψ+〉 (17)

Here, |Φ−〉 = 1√
2
(|00〉 − |11〉) and |Ψ+〉 = 1√

2
(|01〉 + |10〉). Note that as

this is a superposition of two maximally entangled states, it is therefore, still

equivalent(up to local unitaries) to the singlet state. The measurements that we

want to self-test are then Ā0 = σz, Ā1 = σx, B̄0 = σz, B̄1 = σx. With this state

and the corresponding pauli matrices as the measurements, one can calculate

the value of the CHSH expression and obtain CHSH = 2
√

2, the maximal

violation. This will now be demonstrated:

〈
Ā0B̄0

〉
= 〈ψ̄| Ā0B̄0 |ψ̄〉

=c2 〈Φ−|σz ⊗ σz |Φ−〉+ cs 〈Ψ+|σz ⊗ σz |Φ−〉

+cs 〈Φ−|σz ⊗ σz |Ψ+〉+ s2 〈Ψ+|σz ⊗ σz |Ψ+〉

Here, c = cos π8 and s = sin π
8 . Since |Φ−〉 = 1√

2
(|00〉 − |11〉) and |Ψ+〉 =

1√
2
(|01〉+ |10〉),

σz ⊗ σz |Φ−〉 = |Φ−〉

σz ⊗ σz |Ψ+〉 =− |Ψ+〉

Using the property that the bell states are orthogonal (〈Φ−|Ψ+〉 = 0), one

obtains:

〈
Ā0B̄0

〉
= cos2

π

8
+ sin2 π

8

= cos(
π

4
)

=
1√
2

Repeating the same calculation for the other combinations of settings one

obtains the following:
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〈
ĀxB̄y

〉
=

1√
2

(−1)xy =⇒ CHSH = 2
√

2 (18)

Also, since experimental data comes in the form P (a, b|x, y), knowing the

conversion from P (a, b|x, y) to the quantities 〈Ax〉 , 〈By〉 and 〈AxBy〉 is conve-

nient:

〈Ax〉 =(+1)P (a = +1|x) + (−1)P (a = −1|x)

=P (+ + |x, y) + P (+− |x, y)− P (−+ |x, y)− P (−− |x, y)

〈By〉 =(+1)P (b = +1|y) + (−1)P (b = −1|y)

=P (+ + |x, y) + P (−+ |x, y)− P (+− |x, y)− P (−− |x, y)

〈AxBy〉 =P (a = b)− P (a 6= b)

=P (+ + |x, y) + P (−− |x, y)− P (+− |x, y)− P (−+ |x, y)

(19)

P (a, b|x, y) can also be expressed in terms of 〈Ax〉 , 〈By〉 and 〈AxBy〉:

Ax =Πx
+1 −Πx

−1

By =Πy
+1 −Πy

−1

Πx
a represents the projector given the outcome a and input setting x. Since the

projectors sum to identity, Πx
+1 + Πx

−1 = 1, one can express them in terms of

the operators Ax and By as follows:

Πx
a =

1 + aAx
2

Πy
b =

1 + bBy
2

Finally, one obtains the following expression for P (a, b|x, y):

16



P (a, b|x, y) = 〈ψ|Πx
a ⊗Πy

b |ψ〉

= 〈ψ| 1 + aAx
2

⊗ 1 + bBy
2

|ψ〉

=
1

4
(1 + a 〈Ax〉+ b 〈By〉+ ab 〈AxBy〉)

(20)

5.3 The Fidelity

The derivation of an expression for the fidelity with the singlet state will now

be demonstrated. First, the exact same isometry as in section 5.1 is applied,

but now without making any assumption on the state that Alice and Bob share,

and also none on the measurement settings. The reasoning is here is that if one

is promised that Alice and Bob share a singlet state and that the measurements

are indeed the pauli matrices as claimed, we should be able to run the exact

same setup and end up with the singlet being swapped into the ancillas.

Removing the assumptions on the state and measurements, one then has

the state |ψ〉AB shared by Alice and Bob (instead of |ψ̄〉), and measurements

that will now be denoted by Ax, By (instead of σi’s). Therefore, the state and

measurements in the previous isometry are replaced with the new state and

measurements which gives the following:

Figure 5: Isometry with sigma matrices replaced with actual measurements

The state obtained in the two ancillas A′ and B′ then needs to be computed,

which will be denoted by the density matrix ρA′B′ . However, to do that, the

final state ρABA′B′ after the isometry has been applied will first need to be

calculated: ρABA′B′ = [Φ |ψ〉 |00〉][Φ |ψ〉 |00〉]†. Proceeding analogously to the

17



calculation in section 5.1 and noting that Ax and By commute, one obtains the

following:

Φ |ψ〉 |00〉 =
1

4
(1 +A0)(1 +B0) |ψ〉 |00〉+

A1B1(1−A0)(1−B0) |ψ〉 |11〉+

B1(1 +A0)(1−B0) |ψ〉 |01〉+

A1(1−A0)(1 +B0) |ψ〉 |10〉

(21)

[Φ |ψ〉 |00〉]† =
1

4
〈ψ| 〈00| (1 +B0)(1 +A0)+

〈ψ| 〈11| (1−B0)(1−A0)B1A1+

〈ψ| 〈01| (1−B0)(1 +A0)B1+

〈ψ| 〈10| (1 +B0)(1−A0)A1

(22)

Multiplying (21) and (22), the state ρABA′B′ is obtained. This can be rep-

resented as a matrix containing 16 terms, where the first term is the following:

(ρABA′B′)11 =
1

16
(1 +A0)(1 +B0) |ψ〉 〈ψ| |00〉 〈00| (1 +B0)(1 +A0) (23)

The other 15 terms then follow analogously. Next, only the state of the

ancilla systems is desired, the partial trace is taken: ρA′B′ = TrAB(ρABA′B′).

For the first term, noting that A2
x = B2

y = 1 one obtains:

(ρA′B′)11 =TrAB((ρABA′B′)11)

=
1

16
〈ψ| (1 +B0)(1 +A0)(1 +A0)(1 +B0) |ψ〉 |00〉 〈00|

=
1

16
〈ψ| (1 +A0)2(1 +B0)2 |ψ〉 |00〉 〈00|

=
1

4
〈ψ| (1 +A0 +B0 +A0B0) |ψ〉 |00〉 〈00|

(24)

Proceeding in the same way, one then obtains all the other terms (ρA′B′)ij .

Next, the fidelity will be calculated. The expression for the fidelity is F =

Tr(ρidealρA′B′). It is therefore necessary to first work out the ideal state ρideal =
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|ψ̄〉 〈ψ̄|, where |ψ̄〉 = cos π8 |Φ
−〉+ sin π

8 |Ψ
+〉 as mentioned in equation (17):

|ψ̄〉 = cos
π

8
|Φ−〉+ sin

π

8
|Ψ+〉

=
1√
2

[c |00〉+ s |01〉+ s |10〉 − c |11〉]

The density matrix is then

ρideal =
1

2
[c2 |00〉 〈00|+ cs |00〉 〈01|+ cs |00〉 〈10| − c2 |00〉 〈11|

+cs |01〉 〈00|+ s2 |01〉 〈01|+ s2 |01〉 〈10| − cs |01〉 〈11|

+cs |10〉 〈00|+ s2 |10〉 〈01|+ s2 |10〉 〈10| − cs |10〉 〈11|

−c2 |11〉 〈00| − cs |11〉 〈01| − cs |11〉 〈10|+ c2 |11〉 〈11|]

Here, c and s stand for cos π8 and sin π
8 respectively. Note that ρideal can also be

cast into a 16 by 16 matrix with elements (ρideal)ij , with the first element being

(ρideal)11 = 1
2 cos2 π8 . To find the fidelity, the state ρideal is then multiplied to

ρA′B′ since F = Tr(ρidealρA′B′). Also, as the trace is taken, one only needs the

diagonal terms. Therefore,

F =

4∑
i=1

(ρidealρA′B′)ii

=

4∑
i=1

(
4∑
j=1

(ρideal)ij(ρA′B′)ji

) (25)

Inserting all the terms and taking the sum as in equation (25), one finally obtains

the following expression for the fidelity:

F =
1

4
+

1

4
√

2
〈A0B0 +A0B1 +A1B0 −A1B1〉

− 1

16
〈A0A1B0B1 −A0A1B1B0 −A1A0B0B1 +A1A0B1B0〉

+
1

16
√

2
〈3A1B1 − 2A0B1 − 2A1B0 +A0A1A0B1 − 2A0A1A0B0

+A1B0B1B0 − 2A0B0B1B0 −A0A1A0B0B1B0〉

(26)
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5.4 The Moment Matrix and Semi-Definite Programs (SDP)

Looking the expression of the fidelity, terms like 〈A0A1B0B1〉 appear, which

represent the expectation values of the outcomes of two successive measurements

(A0 and A1) on Alice’s side and the same for Bob (B0 and B1) for a single run

of the experiment. However, in one run, only one measurement is made per

side, one for Alice and one for Bob. Therefore, one can only obtain values of the

marginals, 〈Ax〉& 〈By〉, and the values of what are known as the correlators,

〈AxBy〉, but not values of terms like 〈A0A1B0B1〉, 〈A0A1A0B1〉 and the like.

As such, out of all the terms in the objective function, only ther terms

〈Ax〉 , 〈By〉 and 〈AxBy〉 can be obtained from experimental data and substituted

into the expression for the fidelity. However, the values of the other terms like

〈A0A1B0B1〉 are not available from experimental data. These will be treated

as variables, which a computer program, known as a Semi-definite program or

SDP, will vary until a solution for the minimum fidelity is found.

To perform a minimisation in this way, one needs to specify some form of

constraint. Specifically, it would be ideal for the probability point to be no-

signalling and to lie in the quantum set, Q. However, it turns out that there is

no efficient way to to minimise over the quantum set Q directly. However, it is

known that one can perform the minimisation over a superset relaxation of the

actual quantum set, Ql, instead. Such superset relaxations of the quantum set is

such that they converge to the actual quantum set as the level l is increased[6]:

liml→∞Ql = Q. This is illustrated in figure 6 on the next page.
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Figure 6: Illustration of the convergence of Ql to Q as l→∞

To carry out the minimisation computationally, one first chooses some finite

level l over which one performs the minimisation. Then, to impose that a

probability point is within this superset relaxation Ql of the quantum set Q, is

equivalent to imposing that the moment matrix

Γ =



1 A0 B0 . . . A0A1 B0B1 . . .

A0 1 A0A1 . . . A0B1 A1 . . .

B0 A0A1 1 . . . A1B1 A1A0A1 . . .
...

...
...

...
...

... . . .

A1A0 A1 A1A0B0 . . . 1 A1A0B0B1 . . .
...

...
...

...
...

...
. . .


is positive-semidefinite (eigenvalues≥ 0)[6, 3].

Here, the brackets denoting expectation values have been left out, but it

should be understood that the elements of the matrix are all expectation values

of the respective observables. Looking at the first row of the matrix, the expec-

tation values of observables (moments) A0, A0B0, A0A1 etc. are being listed

from left to right. In the first column of the matrix, the exact same order of

the hermitian conjugate of the observables in the first row is listed downwards.

The matrix is then formed from taking an element from the first column and

multiplying it with one element from the first row.
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This matrix can be as large as one needs it to be, and its size depends on the

level l, in Ql, over which the minimisation is performed. l here represents the

maximum number of observables multiplied to one another in any one of the

elements of the first row/column. More succinctly, Q1 contains the moments

A0, A1, B0, B1. Q2 then contains all the moments in Q1 together with moments

like A0A1, B1B0 and A0B0 that consists of two observables multiplied to one

another, covering all possible combinations.

While there is no upper limit to the size of the matrix, there is a minimum size

that one must use depending on the expression of the objective function(which is

the fidelity in our case). The matrix must be large enough such that it contains

all the variables in the objective function. Here, for instance, there is a term

in the objective function that reads 〈A0A1A0B0B1B0〉, which neccesitates the

inclusion of some moments in Q3 in order to ensure that this term appears in

the matrix Γ.

It is however, not necessary to include all the moments in Q3; one can just

keep adding moments and stop somewhere between Q2 and Q3, when all the

necessary terms are in the matrix. The analysis presented in the following

section (6), uses a matrix of size 21 by 21, the minimum size required to include

all the necessary moments. That being said, as illustrated in figure 6, the larger

the matrix, the smaller the set Ql is. Therefore, if one goes to a higher level in

the hierarchy (higher l), the minimisation is performed over a smaller set, and

the result can only either be the same as before, or (hopefully) increase . This

is useful if one desires to obtain better lower bounds on the fidelity.

The next step then, as mentioned earlier, is to minimise the objective function

F subject to the constraint that the matrix Γ is positive semi-definite:

Fidelity = min F s.t Γ ≥ 0 (27)

This returns the minimum fidelity with the singlet state, given some observed

values of 〈Ax〉 , 〈By〉 and 〈AxBy〉 which were inserted into the matrix Γ. These

values can be obtained from the experimental data P (a, b|x, y) as demonstrated

in section 5.2.
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At this point, it is useful for one to check if the SDP works properly before pro-

ceeding further. To do so, one could substitute the values 〈AxBy〉 = (−1)xy 1√
2

which correspond to CHSH = 2
√

2 into the matrix and run the program. This

was carried out and the fidelity obtained was indeed 1, serving as a check that

the objective function F was correct, and that the SDP was working correctly.

5.5 Regularisation: another SDP

In section 4.3, the idea of Regularisation was discussed, and the details of the

procedure will be discussed here. Regularisation is used to project the experi-

mental probability point into a set of correlations Ql that obeys no-signalling.

This is done by finding the point ~PNQA2
that minimises the two norm distance

from the experimental probability point ~Pexp(a, b|x, y):

~PNQA2
(~Pexp) = argmin~P∈Ql

‖~Pexp − ~P‖2 (28)

The requirement that ~P ∈ Ql is fulfilled by imposing that the appropriate

moment matrix (as described in section 5.4) is positive semi-definite.

To perform this minimisation of the two-norm, another SDP is used. It turns

out that one can reformulate equation (28) into following problem which can be

solved using an SDP[4]:

argmin~P∈Ql
s

s.t

(
s1 ~P − ~Pexp

~PT − ~PTexp s

)
≥ 0

(29)

Here, the 1 represents the 16x16 identity matrix, and ~P − ~Pexp is a 16x1 column

vector so that the matrix is a 17x17 square matrix. Note here that it is also

necessary to run another SDP using the moment matrix described in section 5.4

to enforce the constraint that ~P ∈ Ql.

Although this section is discusssed after section 5.3, in practice the regular-

isation is done first, right after experimental data is obtained. The reason it

is presented is that regularisation requires one to already be familiar with the

content presented in section 5.4.
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6 Application to data from a CHSH simulator

In this section, the data obtained from a CHSH simulator will be analysed using

the techniques discussed so far. Regularisation will first be performed on the

raw data obtained from the simulator before the lower bound on the fidelity is

found. This will be done for different number of runs of the experiment and the

results will be analysed.

6.1 The CHSH Simulator (perfect correlations)

The details of the simulator that generates the data for the CHSH scenario

will be explained in this section. The simulator is programmed such that Alice

and Bob choose their settings x, y completely randomly. In terms of the code

for the simulator, we first generate two random numbers, one each for Alice and

for Bob. If Alice’s number is greater than 0.5, then the setting on Alice’s side

is set to x = 1, and otherwise it is set to x = 0. The same is done for Bob,

effectively simulating the random choosing of settings.

Next, the simulator needs to be programmed to generate the correct outputs

based on the settings. To do this, the probabilities P (a, b|x, y) for the ideal case

must first be known. In a bipartite scenario with binary settings, from section

5.2 equation (20) one has the following expression:

P (a, b|x, y) =
1

4
(1 + a 〈Ax〉+ b 〈By〉+ ab 〈AxBy〉)

To obtain data that maximally violates the CHSH inequality, the values

〈Ax〉 = 〈By〉 = 0, 〈AxBy〉 = 1√
2
(−1)xy will be used as they lead to the maximal

violation of CHSH = 2
√

2. As such, one obtains:

P (a, b|x, y) =
1

4
(1 +

1√
2
ab(−1)xy) (30)

First, consider the case where the settings are (x, y) = (0, 0), (0, 1) or (1, 0):

P (a, b|x, y) =
1

4
(1 +

1√
2
ab) (31)
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or, upon substituting the values of a and b,

P (++) = P (−−) =
1

4
(1 +

1√
2

)

P (+−) = P (−+) =
1

4
(1− 1√

2
)

Now, given the inputs (x, y) = (0, 0), (0, 1) or (1, 0), the simulator must be

programmed to give the correct outputs a, b. Looking at the probabilities above,

one can split them into two cases: a = b and a 6= b:

P (a = b) = P (++) + P (−−) =
1

2
(1 +

1√
2

)

P (a 6= b) = P (+−) + P (−+) =
1

2
(1− 1√

2
)

We can first instruct it to determine which case the outputs will fall under(a =

b or a 6= b). To that end, a random number r1 is generated. If r1 is greater

than P (a = b), then the outputs a and b will be different: a = −1, b = 1 or

a = 1, b = −1. Otherwise, the outputs will be the same.

Lastly, to determine what the outputs are exactly, another random number

r2 is generated. In the case that a 6= b is chosen using r1, since P (+−) =

P (−+) = 1
4 (1 − 1√

2
), the cases a = 1, b = −1 and a = −1, b = 1 are equally

likely. Therefore, one imposes that if r2 is greater than 0.5, then the simulator

gives the outputs a = 1, b = −1. Otherwise, it gives a = −1, b = 1.

For the case where the settings (x, y) = (1, 1), from (30), we have:

P (a, b|x, y) =
1

4
(1− 1√

2
ab) (32)

Similarly, one ends up with:

P (a = b) = P (++) + P (−−) =
1

2
(1− 1√

2
)

P (a 6= b) = P (+−) + P (−+) =
1

2
(1 +

1√
2

)
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As before, a random number r1 is generated to decide which case of the outputs

(a = b or a 6= b) it falls under . Accordingly, if r1 > P (a = b), we have the

case a 6= b. Since P (+−) = P (−+), a second random number r2 is generated

to decide which one of the two cases (a = +1, b = −1 or a = −1, b = +1) the

output falls under as before.

6.2 Variation of Fidelity with Number of runs

In this section, the results of the application of the ideas presented in sections

5.1-5.5 to the data obtained from the perfect CHSH simulator described in

section 6 will be presented. The data was first obtained from the simulator, and

the probabilities were estimated: P (a, b|x, y) = n(a,b|x,y)
N . Here, n(a, b|x, y) is

the number of runs in which the outcomes a, b were obtained when the settings

were x, y and N is the total number of runs performed. Regularisation was then

performed on the estimated P (a, b|x, y) before the SDP was run to obtain a

lower bound on the fidelity. The number of runs N was varied, and the effect

that had on the fidelity was investigated. The results are shown in the following

graph:

Figure 7: Graph of Minimum Fidelity against the Logarithm of the Number of
Runs(N)
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This is a plot of the fidelity with the singlet state against the logarithm of the

number of runs of the experiment. Therefore, 3 on the x-axis represents 1000

runs and 4 represents 10,000 and so on. As mentioned earlier, the size of the

matrix used in the SDP is 21 by 21, the minimum required size.

From the graph, we see that as the number of runs is increased, the average

minimum fidelity improves and tends to 1 as more runs are taken. The standard

deviation of the fidelity appears to become smaller as the number of runs is

increased. This is expected since increasing the number of runs gives more

data, which evens out statistical fluctuations and results in a smaller spread

of data, and gives a more accurate measure of the actual fidelity. Therefore,

ideally one should take as many runs as possible to obtain the best possible

data. Practically however, one cannot keep going on forever, and needs to

stop somewhere when actually performing the experiment. From figure 7, for

N = 1000, the fidelity is less than 0.95, which suggests that the minimum one

should aim for is perhaps N ≥ 10, 000, bearing in mind that this is a perfect

simulator and one should be getting a fidelity close to 1.

6.3 Suspected errors caused by rounding

When plotting the graph in figure 6, an issue arose. In some runs of the SDP,

the program failed to perform the optimisation given the constraints imposed.

In principle, this should not have been the case, since the regularisation process

would have taken care of projecting the point into Ql over which the SDP

performs the minimisation of the objective function.

One explanation for this error would be the rounding off that is done to the

experimental data point after the regularisation is performed. Since a perfect

CHSH simulator was used, it is possible that the probability point obtained was

very close to the boundary of Ql, where the point corresponding to CHSH =

2
√

2 lies. Hence, after some rounding off, the regularised point might have ended

up lying on the outside of Ql. Since the SDP demands that the probability point

must lie in Ql to begin with, it would explain why the program failed to perform

the minimisation. This idea is illustrated in the diagram on the next page.
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Figure 8: Errors from Rounding-off

In figure 8, the arrow represents the projection of ~Pexp into the the set

Ql, and the red point represents the probability point which gives the maximal

violation of CHSH = 2
√

2. The small dotted circle here represents the rounding

off of the final values after the projection, which according to the diagram, causes

the projected point to lie outside Ql about about half the time, leading to errors

later when the SDP is run.

A consequence of this, then, would be that with increasing noise in the data,

the failure rate from running the SDP should fall. The reasoning is as follows:

First, note that the center of the set Ql is a probability point, ~Ppure noise, that

represents 100% noisy data. Then, with less perfect data, the experimental

probability point should move closer to the center of the set Ql, which reduces

(or even completely eliminates) instances where the rounding off causes the point

to end up on the outside of Ql. This is illustrated in the following diagram:

Figure 9: Lower error rate using noisy data
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Here, the new probability point with some added noise ~ε is brought closer to-

wards the center of Ql which causes most of the dotted circle (which represents

the rounding) to lie within Ql. In fact with enough noise, the experimental

probability point would lie far enough towards the center of Ql, and any round-

ing off would not cause the point to end up on the outside of Ql. Therefore, we

expect fewer, or even no instances of failed optimisations with increasing noise.
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6.4 Adding noise to the simulator

To confirm if the previous conjecture was valid, noise was added to the simu-

lator and data was collected to examine how the failure rate of the SDP changed

with increasing noise. The addition of noise to the simulator will now be ex-

plained in detail.

From (30), we see that the perfect CHSH simulator will give the correlations

PCHSH(a, b|x, y) = 1
4 (1 + 1√

2
ab(−1)xy). However, this expression will change

if noise is accounted for. To obtain this new expression, consider the following

state:

ρ = |Φ+〉 〈Φ+| (1− ε) +
1

4
ε (33)

This state here is known as a Werner State[3]. In this case it is essentially a

mixture of the perfect singlet state (|Φ+〉 〈Φ+|) and white noise (14 ), where ε is

a small parameter which can be used to control the amount of noise. Now, the

new correlations P (a, b|x, y) that are obtained with the addition of noise are as

follows:

P (a, b|x, y) =Tr(ρΠx
a ⊗Πy

b )

=Tr[(1− ε) |Φ+〉 〈Φ+|Πx
a ⊗Πy

b +
1

4
εΠx

a ⊗Πy
b ]

=(1− ε)Tr(|Φ+〉 〈Φ+|Πx
a ⊗Πy

b ) + εTr(
1

4
Πx
a ⊗Πy

b )

=(1− ε)PCHSH + εPnoise

=
1

4
(1 +

1√
2
ab(−1)xy)(1− ε) +

1

4
ε

=
1

4
+

(1− ε)
4

(−1)xy
ab√

2

(34)

Replacing the P (a, b|x, y) expression in the simulator with this new expres-

sion, the amount of noise was varied and the changes in the number of failed

optimisations from the SDP was examined. The SDP was run using 30 sets of

data for each N (number of runs). The results are shown in figure 10 on the

following page.
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Figure 10: Variation of the Number of Failures with increasing noise ε for dif-
ferent number of runs

The general trend here is that the failure rate falls with increasing ε, in ac-

cordance with our suspicions. More interestingly, the failure rate drops to 0

very quickly the as more runs of the experiment is performed. For 100,000, 1

million, and 10 million runs, the number of failures drop to 0 immediately after

a little noise is added. The trend for 10,000 runs is more gradual, while the

trend for 1000 runs is erratic but nevertheless shows a decreasing trend. This is

expected as a smaller number of runs generally give data with a larger spread,

and therefore has a higher chance of falling outside of Ql after regularisation.

Also, if one does not take enough runs, it is even possible that with more noise,

the failure rate increases as seen for ε = 0.03 in the case of 1000 runs. This is

due to the spread of data for the case of 1000 runs being too large as represented

by the standard deviation in figure 7.

6.5 Variation of minimum fidelity with noise

As noise increases, one expects the fidelity of the state with the singlet to

fall. To check if that was true, the fidelity was plotted against the noise ε, and

the results are shown in the following graph. Each line in the following graph

represents a different number of runs performed by Alice and Bob.
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Figure 11: Variation of minimum fidelity with increasing noise ε for different
number of runs

The graph depicted here is in fact the equivalent of the robustness curves

described in sections 4.1 and 4.2. However, in this case, the noise is introduced

in the simulator as described in section 6.4, instead of being added directly added

to the perfect correlations as depicted in figure 2. This therefore more closely

mimics the sort of data that would be obtained from an actual experiment.

The general trend shown in figure 11 is that the fidelity falls with increasing

noise as one expects. More interestingly, however, is the shapes of the graphs

obtained. The higher the number of runs, the more regular-looking the graphs

become.

The data for 1000 runs gave the most erratic-looking graph, and upon com-

paring the data points for ε = 0.01 and ε = 0.02, we even see that the average

fidelity increases, contrary to the expectation that it should fall. This is due

in large part to the statistical fluctuations evident from the considerably large

standard deviation seen in figure 7 for 1000 runs. Therefore, this spread of data

becomes dominant enough to give imprecise results if one does not perform

enough runs of the experiment.
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Upon looking at the data for 10,000 runs, we see that it is still irregular

in shape. However, at least a decreasing trend for the fidelity is observed,

better than the results obtained from a 1000 runs. Increasing the number of

runs, one observes that the graphs become increasingly regular, as the statistical

fluctuations even themselves out with more runs, giving more precise data. This

therefore, yet again, suggests that to obtain precise results, one ought to perform

more than 1000 runs, and perhaps even more than 10,000.

Also, with a greater number of runs, one expects to get better lower bounds

on the fidelity. This is indeed true for the case where there was no noise in the

system (refer to figure 7). However, looking at figure 11, this is no longer true

once noise was introduced. For ε = 0.02, the average fidelities obtained from

the data corresponding to 100,000, 1 million, and 10 million runs are roughly

the same as the points are seen to be rather close to one another. Also, for

ε = 0.03, the average fidelity obtained from the data of 10,000 runs turned

out to be higher than that of what was obtained with 100,000, 1 million and

10million runs.

To further examine this effect, the average fidelity, together with the standard

deviation, was plotted against the logarithm of the number of runs (log10N)

for a fixed amount of noise ε. The following graph is one such plot with noise

ε = 0.01

Figure 12: Variation of average fidelity with number of runs for ε = 0.01
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Here, we see that the fidelity increases with the number of runs, which is

expected from the similar analysis done with the perfect case where there was no

noise (figure 7), the difference here being that the fidelity no longer approaches 1

due to the addition of noise. Also, as observed earlier, the spread of the data for

a small number of runs is considerably large, resulting in a comparatively large

standard deviation which is especially prominent for the case where N = 1000.

The standard deviation becomes smaller with more runs as seen earlier, but

the overlap between the standard deviations of different runs now becomes much

more apparent when noise is added. Furthermore, the increase in the average

fidelity with the number of runs is now less evident than before, and this is

especially true for N ≥ 10, 000 as seen in the graph.

To further investigate this observation, another graph, now with more noise

(ε = 0.03), was plotted.

Figure 13: Variation of average fidelity with the number of runs (N) for ε = 0.03

In this figure, we see that for N ≥ 10, 000 the average fidelity is now more

or less the same. Therefore, increasing the number of runs here only serves to

reduce the standard deviation, and has little effect on increasing the average

fidelity when sufficient noise is present in the system.
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6.6 Experimental Data from IBM

With the help of Professor Scarani’s PhD student Goh Koon Tong, exper-

imental data from running the CHSH experiment on the qubits from IBM Q

Experience[12] was obtained. It returned a value of CHSH = 2.2756, and upon

running the SDP as described in section 5.4 using a matrix of the same size as

before, the fidelity obtained was F = 0.5152. This is only slightly better than

the trivial bound of F = 0.5, and is due in large part to the noise present. This

is depicted in the following graph:

Figure 14: Fidelity obtained from IBM data

An interesting point to note here is that when using the CHSH value to self-

test, one obtains the minimum possible fidelity given some CHSH = 2
√

2 −
ε. However, in experiments, the full statistics P (a, b|x, y) are available, and

therefore can be used directly to find the lower bound on the fidelity. In this

case, if only the CHSH value was considered, the resulting fidelity would be

F = 0.5, a trivial bound. However, since the full statistics were available, the

lower bound obtained was slightly higher, at F = 0.5152.
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7 Future Work

The tools used in discussion so far are general approaches that can be applied

to other self-testing scenarios if one wishes to perform analysis using real ex-

perimental data. In this section, the particular scenario of two singlets will be

discussed. It is known as the double-CHSH scenario as it uses very similar ideas

as in the one singlet case that has been discussed so far.

7.1 The Setup and Notation

In this double-CHSH scenario, we have two parties Alice and Bob, and two

boxes as before(refer to figure 2.1). However, instead of having binary settings

and binary outputs as before, each party now has access to four possible mea-

surement settings, x, y ∈ {0, 1, 2, 3} and each setting now gives four possible

outcomes a, b ∈ 0, 1, 2, 3. Therefore, the correlations P (a, b|x, y) obtained has

44 = 256 entries, up from just 16 in the one singlet case.

Ideally, one desires to self test two singlets shared by Alice and Bob. This

means that in the ideal case, Alice and Bob both have two qubits each. Each

of the qubits Alice has is entangled with the corresponding qubit that Bob

has. In other words, the combined state of the entire system takes the form

|ψ̄〉AB = |Φ+〉AIBI
⊗ |Φ+〉AIIBII

.

Since both parties now have two qubits each, for the sake of clarity, one ought

to specify each qubit with the use of some additional notation[7]. Consider the

following setup below:

Figure 15: Notation for the two singlet scenario
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Alice’s first qubit is denoted by AI and her second qubit is denoted by AII ,

and the same applies for Bob. The qubits AI and BI are entangled and are in

the singlet state |Φ+〉AIBI
, and the same is true for the system denoted by AII

and BII . The settings in this scenario are broken up into two components (xI

and xII), where xi ∈ {0, 1} and x = 2xI + xII . Note that while the notation

here is slightly different from was what used before in section 3.5, it is only a

matter of how one labels the outcomes.

This construction is motivated by the one singlet case, where x ∈ {0, 1} is

taken as an input for Alice’s box (which only had 1 qubit), and a ∈ {0, 1} is

obtained as an output. Here, the scenario is exactly the same, just that there

are two qubits instead of one. Therefore, the qubit AI takes the input xI and

gives the output aI , both of which are binary, and the same applies to qubit

AII . To relate this to the actual setting that Alice inputs, one then has the

relation x = 2xI + xII . The combination of possible inputs are shown in the

table below:

xI xII x

0 0 0

0 1 1

1 0 2

1 1 3

From the table, Alice inputting x = 1, actually corresponds to her inputting

xI = 0 into the first qubit AI and xII into the second qubit AII . In a similar

fashion, if Alice obtains a = 0 for his particular run, then it corresponds to

qubit AI giving the output aI = 0 and qubit AII giving the output aII = 0.

This description is identical on Bob’s end. Note that the main difference here

is that for each input setting x, Alice can obtain one of 4 possible outcomes,

a ∈ {0, 1, 2, 3}, instead of the binary outcomes in the one singlet case.

7.2 The Moment Matrix and the Observed Correlations

As in section 5.4, the construction of the moment matrix and the imposition

that it is positive semi-definite is necessary to carry out the optimisation using an

SDP. In this scenario however, for each of Alice’s settings, there are 4 outcomes.

Therefore, the use of observables like Ax, By will no longer be possible since

they only give binary outcomes. Therefore, the moment matrix needs to be
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constructed using projectors Πa|x and Πb|y instead. Also, the isometry used

here is

As before, the matrix is constructed based on the level l that is required. Q1

contains the moments of just single projectors {Πa|x,Πb|y}, while Q2 contains

the moments in Q1 together with the combinations of the product of two pro-

jectors {Πa|xΠa′|x′ ,Πa|xΠb|y...} and so on. With that, the observed correlations

P (a, b|x, y) =
〈
Πa|x ⊗Πb|y

〉
are inserted into the matrix, and the optimisation

to find the minimum fidelity is then performed. The objective function here can

be obtained using a similar swap isometry[5, 7] as used in section 5.1, but now

accounting for the extra qubits and ancillas required.
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8 Conclusion and Summary

In this section, a brief summary of Self-Testing, Robustness curves, Regulari-

sation and other relevant ideas covered in this report will be presented. Also,

the results of the application of these techniques on simulated and experimental

data will also be summarized.

8.1 The Main Ideas

Self-Testing in essence refers to the fact that one can identify a unique state

and compatible measurements made on that state just simply by the observation

of the correlations P (a, b|x, y). This is a device independent approach as no

assumptions are made on the inner workings of the boxes Alice and Bob possess,

and conclusions are drawn purely from the correlations. The statistic CHSH =

2
√

2 for instance, allows one to conclude Alice and Bob must share singlet state

with the corresponding sigma matrices being the measurements performed.

However, such an identification only works in the perfect case, where the

correlations observed are exactly the perfect ones known to self-test the state.

Therefore, to make this practical, one needs to be able to draw conclusions about

the state, given that non-ideal correlations (due to experimental imperfections

and statistical errors) are observed. This is where robustness curves come in.

These curves provide one with the minimum fidelity (or overlap) a state (which

the observed correlations are obtained from) shares with the ideal state (which

the ideal correlations are supposed to self test).

Even with these tools, it turns out that one is still not yet ready to perform

any analysis on raw experimental data. The reason is that self-testing and

robustness bounds assume that the no-signalling condition always holds, which

is most of the time, not true for raw data. Therefore, one must first regularise

the data so that the no-signalling conditions are fulfilled before performing the

minimisation of the fidelity using an SDP.

In this report, a regularisation procedure was applied to data obtained from

a simulator, and the change in the resulting fidelity due to different number of

runs of the experiment was investigated. Also, to obtain data that mimics what

one might obtain from the lab, noise was added to the simulator. The changes

in the resulting fidelities (after regularising the data) due to both the increase
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in noise as well as the increase in the number of runs of the experiment was

examined.

8.2 The Results Obtained

8.2.1 Variation of the minimum fidelity with number of runs of the

experiment

Using a perfect CHSH simulator designed to give data that would give CHSH =

2
√

2, the variation of the minimum fidelity with the number of runs of the exper-

iment was investigated (See figure 7). In accordance with initial expectations,

the minimum fidelity increased as more runs were taken. Also, the standard

deviation decreased as the number of runs was increased. This is due to the

fact that the statistical fluctuations even out, leading to a smaller spread in

data.

8.2.2 Optimisation failures and variation with noise

Upon attempting to run the SDP on regularised data, it was observed that

some of the optimisations failed. The suspected reason was that the rounding-

off that occurred during the regularisation might have caused the point to fall

outside of the set of correlations that obey the no-signalling condition. To

check if this was the case, noise was added to the simulator, with the intuition

being that more noise would pull the point further into the set and give less

optimisation errors. The change in the number of failed optimisations with

increasing noise was examined, and this was done for different number of runs

(See figure 10).

The results confirm the initial suspicions, since with increasing noise, the

failure rate falls. Additionally, for a larger number of runs, the failure rate falls

to zero very quickly. This is also expected since a smaller spread of data is

obtained and only a little noise is needed to completely pull it into Ql.

8.2.3 Variation of minimum fidelity with noise

As in typical robustness curves, the change in minimum fidelity (after reg-

ularisation) with increasing noise was examined for different number of runs

of the experiment (See figure 11). The general trend observed is that the fi-

delity falls with increasing noise, as expected. However, with a relatively small
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number of runs (∼ 103) the variation of the fidelity is erratic and even gives

counter-intuitive results. From the graphs obtained, it suggests that one ought

to a take a much larger number of runs, at least (∼ 104) or higher in order to

achieve more precise results.

Also, to more closely examine the effect noise had on the average fidelity

and the standard deviation, two graphs corresponding to two different values of

noise, ε = 0.01 and ε = 0.03 were plotted. It was observed that with increasing

noise, increasing the number of runs only served to reduce the standard devia-

tion, and not the average fidelity. Therefore, the advantage of taking more runs

diminishes as more noise is added to the system.

8.3 Data from IBM

With the data obtained from running the CHSH experiment on IBM’s Q ex-

perience, a CHSH value of CHSH = 2.2756 and a lower bound fidelity of

F = 0.5152 was obtained, which is unfortunately only slightly higher than the

trivial bound of F = 0.5. This was largely due to the inherent noise present in

the IBM system.
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