
Solutions in Einstein-Maxwell-Dilaton
Gravity

Yeo Zhi Wei, Joel

National University of Singapore

Department of Physics

A thesis submitted for the degree of

B.Sc. (Hons) in Physics

April 2018

2



Acknowledgements

I would, first and foremost, like to thank God for bringing me through
the past year working on this project. He has been a source of wisdom
and perseverance, without which, I would not be where I am today and
would not have accomplished anything I have done.

I would like to thank Dr. Lim Yen Kheng, my supervisor, for closely
guiding me throughout this one year on this project. He has provided
me great insights into this field and taught me much about the concepts
and the mathematical rigor involved in general relativity. He has helped
me overcome numerous obstacles encountered along the way which has
allowed me to obtain the results in this paper. Without his guidance, this
project would have been impossible.

I would also like to extend my appreciation to A/P Edward Teo for the
many insightful conversations after class, clarifying any doubts I might
have had about the subject matter.

Lastly, I would like to thank all the friends I have made along the way
in the past four years as a Physics major. The journey was never easy,
but with each other’s encouragement, we have all managed to make it
through. Mugging till late at night, camping in the labs and libraries
with a mountain-full of assignments, begging for help because we skipped
or slept in lectures – these are moments which I’ll treasure even as we
move on to our next chapter in life.



Abstract

In this project, we investigated solutions in Einstein-Maxwell-Dilaton
(EMD) gravity with Liouville potentials and its subset systems. We first
performed a case study between two solutions found by two different au-
thors for pure Einstein and Einstein-Dilaton gravity and showed that they
were related through Kasner’s second condition. We then proceeded to
derive a class of general solutions for EMD gravity with the addition of Li-
ouville couplings to the Maxwell field and comsological constant by intro-
ducing assumptions for our metric ansatz. We showed that the resulting
field equations are exactly solvable for four specific cases: 1. "q = 0", 2.
"Λ = 0", 3. "α = β = 1, D = 3" and 4. "αβ = 1, D = 3". We found that
Cases 1 and 2 are in agreement with the Cosmic Censorship Hypothesis
whereas Cases 3 and 4 violate it. We then showed that our solution for
Case 1 reproduces the correct curvature behavior when reduced back to
the pure Einstein and Einstein-Dilaton system. We also showed that our
solution for Case 2 may be expressed in a Melvin-like form, and under
a specific coordinate transformation, we demonstrated that this solution
reduces back to Minkowski spacetime in the limit where Maxwell fields are
zero, agreeing with Melvin’s solution. We also plot the effective potentials
for time-like geodesics in Cases 1 and 2, and showed that varying the Li-
ouville coupling constants and an introduced parameter, b, could remove
points of equilibrium, and also change the spacetime from an attractive
system to a repulsive one.
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Conventions

For the benefit of the reader, we will list some mathematical conventions used in this
thesis below:

c = 8πG = 1 We will use the modified Planck units for simplicity.

(−,+,+,+) Our metric signature convention.

T , or T ; Commas and semicolons are solely for labelling purposes
and will not denote partial or covariant derivatives. We
will explicitly write out the derivative operators for clarity.

Rµν , R
ij Greek indices will run across all coordinates while latin

indices will exclude the independent coordinate variable ρ.

f ′(ρ) A prime symbol denotes a partial derivative with respect

to ρ acting on the function, ie.
∂

∂ρ
f(ρ).

F 2 = Fµν...F
µν... The square of any tensor will be defined as such.
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Chapter 1

Introduction

1.1 Motivations for the Search of Solutions in Gen-
eral Relativity

The search for solutions in Einstein’s general relativity is by far no easy task. In gen-
eral, this involves solving 10 different, coupled non-linear partial differential equations
with multiple independent variables from the famous Einstein field equation

Gµν + Λgµν = Tµν . (1.1)

Nevertheless, many exact solutions have been found over the years using a wide
spectrum of methods — examples of less exotic ones include simplifying the problem
with certain assumptions, applying symmetries or choosing a suitable ansatz for the
solution.

The physical interpretation of many solutions are well known, including notable ones
like the Schwarzchild black hole [1], the Kerr-Newman rotating black hole [2], the
Friedmann-Lemairte-Robertson-Walker (FLRW) metric [3], etc. However, there also
exist many other solutions which solve Einstein’s field equations but yet may not have
physical interpretations attached to them.

Nonetheless, this does not imply that all of such unphysical solutions are meaningless.
For example, the Anti-de Sitter/conformal field theory (AdS/CFT) correspondence
is a conjecture which relates gravitational theory — the former — to quantum field
theories — the latter. This was first proposed by Maldacena [4] in 1999 and is also

1



2 | 1.2 Objectives of this Thesis

sometimes known as the Maldacena duality. In a nutshell, a particular theory in
CFT may be described by a corresponding spacetime in AdS space. While both
theories are technically different, the AdS/CFT correspondence conjectures them to
be exactly equivalent. Therefore, even though black hole solutions in AdS spacetimes
are generally physically unrealistic, these solutions can be linked to its corresponding
theory in CFT and are useful in understanding properties of the theory. The full
details of the AdS/CFT correspondence may be found in references [5] and [6].

1.2 Objectives of this Thesis

In this thesis, we will be focusing on Einstein-Maxwell-Dilaton (EMD) gravity with
Liouville potentials its subset systems (ie. turning off the electromagnetic fields or
scalar field). We will introduce the EMD action and our metric ansatz in Chapter 2
and also develop the mathematical tools needed to proceed with the bulk of calcu-
lations used in further chapters. Chapter 3 is a case study investigating the link
between two solutions in pure Einstein gravity and Einstein-Dilaton gravity, both of
which are subsets of EMD gravity.

The next few chapters will be our primary interest in this thesis where we derive an
entire class of solutions using our choice of metric ansatz and a set of assumptions.
Our approach was inspired by Maki’s paper [7] where she uses a similar ansatz to
solve for (2+1)-dimension EMD gravity. Chapter 4 presents an extension to her
methods by introducing arbitrary dimensions and thereby exhausting all possible
solutions attainable by this means. We also take a different approach to interpreting
our coordinate system and investigate the singularities exhibited by our obtained
solutions in Chapter 5. Chapter 6 will dwell deeper into two of our four obtained
solutions. We will show that the limiting cases of our solutions will reproduce well-
known spacetimes like the AdS black hole or the dilaton-Melvin [8][9], and original
Melvin solution [10]. We will also briefly consider the geodesic structures of these
spacetimes and the consequences of the coupling parameters on the shape of the
effective potential.

We will then wrap up this thesis with a final conclusion in Chapter 7.

2



Chapter 2

The Einstein-Maxwell-Dilaton Action

In the EMD theory we are interested in, the action is given by

S =
1

2

∫
dDx
√
−g
(
R− 2Λe2βϕ − (∇ϕ)2 − e−2αϕF 2

)
, (2.1)

where S is the action, D is the dimensionality of the system, R is the Ricci scalar
which represents the Einstein-Hilbert term, Λ is the cosmological constant, ϕ is the
Dilaton or scalar field, F is the Maxwell 2-form (also known as the electromagnetic
(EM) tensor) defined by F = dA – the exterior derivative of the gauge potential A –
and α and β are coupling constants.

The exponential couplings to both the cosmological constant and the electromagnetic
tensor are also known as Liouville couplings (or potentials) and have their basis in
non-critical string theories [11][12]. Setting both couplings to zero would yield back
the normal Lagrangian terms in the action (for eg. we will obtain the typical Maxwell
field equations when varying the EM action, and the Klein-Gordon equation [13][14]
for a massless scalar field for the Dilaton action). In this thesis, we will only be
interested in positive values of α and β.

While the couplings make it harder to find solutions to the field equations, they are
parameters which are tunable and therefore can give rise to new classes of solutions
as compared to the system with α = β = 0.

3



4 | 2.1 The Field Equations

2.1 The Field Equations

In this section, we will derive the field equations by applying calculus of variations to
the action. Varying the action gives us

δS =
1

2

∫
dDx
√
−g

[(
Rµν −

1

2
gµνR + Λe2βϕgµν +

1

2
gµν(∇ϕ)2 −∇µϕ∇νϕ

− 2e−2αϕFνλF
λ
µ +

1

2
e−2αϕF 2gµν

)
δgµν − 2

(
(∇2ϕ) + αe−2αϕF 2 − 2Λβe2βϕ

)
δϕ

− 4

(
∇σe

−2αϕF σλ

)
δAλ

]
. (2.2)

The full mathematical details of the above variation may be found in Appendix A.
The corresponding field equations are simply found by setting the variation to zero.
Therefore, each (. . .) must be zero such that the entire integral is zero. Thus we have
three field equations corresponding to the field variables gµν , ϕ and Aλ respectively:

Rµν −
1

2
gµνR + Λe2βϕgµν +

1

2
gµν(∇ϕ)2 −∇µϕ∇νϕ− 2e−2αϕFνβF

β
µ +

1

2
e−2αϕF 2gµν = 0,

(2.3)

∇2ϕ+ αe−2αϕF 2 − 2Λβe2βϕ = 0, (2.4)

∇σ(e−2αϕF σλ) = 0. (2.5)

We may eliminate the Ricci scalar from Eq. (2.3) by taking the trace of the equation
and rearranging:

R− D

2
R + Λe2βϕD +

D

2
(∇ϕ)2 − (∇ϕ)2 − 2e−2αϕF 2 +

D

2
e−2αϕF 2 = 0

⇒ R =
2D

D − 2
Λe2βϕ + (∇ϕ)2 +

D − 4

D − 2
e−2αϕF 2. (2.6)

Substituting the Ricci scalar back into Eq. (2.3), we get

Rµν =
1

2
gµν

(
2D

D − 2
Λe2βϕ + (∇ϕ)2 +

D − 4

D − 2
e−2αϕF 2

)
− Λe2βϕgµν −

1

2
gµν(∇ϕ)2 +∇µϕ∇νϕ+ 2e−2αϕFνβF

β
µ −

1

2
e−2αϕF 2gµν

=
2Λ

D − 2
e2βϕgµν + 2e−2αϕFνβF

β
µ −

1

D − 2
e−2αϕF 2gµν +∇µϕ∇νϕ. (2.7)

4



Chapter 2 | 5

We will be referring to the following paper by Lim [15] and therefore we shall make
some swaps in dummy indices to match his notation for the field equations. To sum
up, we have the following set of equations for our fields:

Rµν =
2Λ

D − 2
e2βϕgµν + 2e−2αϕFµλF

λ
ν −

1

D − 2
e−2αϕF 2gµν +∇µϕ∇νϕ, (2.8a)

∇2ϕ+ αe−2αϕF 2 − 2Λβe2βϕ = 0, (2.8b)

∇σ(e−2αϕF σλ) = 0. (2.8c)

2.2 Metric Ansatz

In this section, we will introduce our metric ansatz which will be used in most cal-
culations in the following section. For simplicity, we consider a Weyl-like, diagonal
metric carrying a Lorentzian signature with (D − 1) Killing vectors (ie. all metric
coefficients are only a function of one coordinate, ρ):

ds2 = −e2F0(ρ)dt2 + e2H(ρ)dρ2 +
n∑
i=1

e2Fi(ρ)dx2
i . (2.9)

There are three advantages to using an ansatz of the form above:

1. Computation of differential geometry quantities such as the Christoffel sym-
bols, Ricci tensor components etc., are greatly simplified since the derivatives
of exponential functions are straightforward.

2. The metric components are entirely arbitrary which provides us with a more
general spacetime ansatz. Therefore we have a higher chance of obtaining new
solutions different from the many already-known solutions in EMD gravity,
many of which has the general form

ds2 = −f(r)dt2 +
1

f(r)
dr2 + h(r)dΩ2

D−2. (2.10)

3. The Liouville couplings in the action foreshadows the appearance of the Liouville
differential equation which will be introduced in Chapter 4. Having exponen-
tial metric components allows us to obtain the desired form of the differential
equation, simplifying the solving process.

5



6 | 2.2 Metric Ansatz

We will proceed to derive the differential geometry quantities corresponding to our
metric ansatz in the sections following.

2.2.1 Christoffel Symbols

Since we are considering a torsionless manifold, the Christoffel symbols are symmetric
in the bottom two indices and are given by

Γκµν =
1

2
gκλ(∂µgλν + ∂νgλµ − ∂λgµν). (2.11)

The full details of our calculation are available in Appendix B. Here, we will simply
list the non-zero Christoffel symbols:

Γρtt = e2F0−2HF ′0, (2.12a)

Γρii = −e2Fi−2HF ′i , (2.12b)

Γρρρ = H ′, (2.12c)

Γttρ = Γtρt = F ′0, (2.12d)

Γiiρ = Γiρi = F ′i . (2.12e)

2.2.2 Ricci Tensor Components and Ricci Scalar

The Ricci tensor is given by

Rσν = ∂µΓµνσ − ∂νΓµµσ + ΓµµλΓ
λ
νσ − ΓµνλΓ

λ
µσ. (2.13)

For our metric, the Ricci components are then

Rtt = e2F0−2H

(
F ′′0 −H ′F ′0 + F ′0

n∑
i=0

F ′i

)
, (2.14a)

Rii = −e2Fi−2H

(
F ′′i −H ′F ′i + F ′i

n∑
j=0

F ′j

)
, (2.14b)

Rρρ =
n∑
i=0

(H ′F ′i − F ′′i − F ′2i ). (2.14c)

6



Chapter 2 | 7

The details of the above calculations may be found in Appendix C. We can then
obtain the Ricci scalar from

R =gµνRµν

=gttRtt + gρρRρρ +
n∑
i=1

giiRii

=− e−2H

[
F ′′0 −H ′F ′0 + F ′0

n∑
i=0

F ′i

]
+ e−2H

n∑
i=0

(H ′F ′i − F ′′i − F ′2i )

−
n∑
i=1

e−2H

[
F ′′i −H ′F ′i + F ′i

n∑
j=0

F ′j

]

=e−2H

n∑
i=0

(
2H ′F ′i − 2F ′′i − F ′2i − F ′i

n∑
j=0

F ′j

)
. (2.15)

7



Chapter 3

Case Study: Pure Einstein vs
Einstein-Dilaton Gravity

In this chapter, we will be analysing the metric solutions from Ren [16] which de-
scribes pure Einstein gravity with a negative cosmological constant, and from Lim
[15] which describes Einstein-Dilaton gravity. Even though the action in which both
authors were considering are different, their obtained metric solutions bear resem-
blance to each other. Hence, we are interested in finding the link between them and
investigating whether there is any physical significance to it.

3.1 The Field Equations and Metric Solutions

3.1.1 Field Equations

The actions considered by Ren and Lim are given as

SRen =
1

2

∫
dDx
√
−g
(
R +

n(n+ 1)

l2

)
, (3.1)

SLim =
1

2

∫
dDx
√
−g(R− 2Λ− (∇ϕ)2), (3.2)

where n = D−2 (we will be freely interchanging between n and D for computational
convenience) and l is the Anti-de Sitter radius. Ren’s action describes the AdSn+2

black hole while Lim’s action describes the AdSn+2 naked singularity. We are free to

8



Chapter 3 | 9

then define

−2Λ :=
n(n+ 1)

l2
. (3.3)

Thus we can see that the system Lim is considering is simply Ren’s with the inclusion
of a scalar field. Since both actions are a simplification of the general EMD action we
have introduced in Chapter 2, we simply need to turn off the relevant quantities (ie.
electromagnetic fields and coupling constants) from Eq. (2.8) to obtain the associated
field equations for the above systems:

Rµν,Ren = −n+ 1

l2
gµν , (3.4)

Rµν,Lim = −n+ 1

l2
gµν +∇µϕ∇νϕ, (3.5)

∇2ϕ = 0. (3.6)

3.1.2 Metric Solutions

We also present their metric solutions in their original notations. We will be placing
a bar (¯) notation on Lim’s coordinates to remind us that both authors’ coordinate
choices are independent of each other and are not related. Ren’s metric is given as

ds2
Ren =

l2

r2

(
−fptdt2 +

dr2

f
+

n∑
i=1

fpidx2
i

)
, f = 1−

(
r

r0

)n+1

, (3.7)

where the exponents pt and pi are constants which obey Kasner’s conditions of which
we will expound on in the next section, and r0 is some arbitrary reference radius.
Lim’s metric is given as

ds2
Lim = − r̄

2

l2
f
ν(D−2)+1
D−1

L dt̄2 +
l2

r̄2

dr̄2

fL
+

n∑
i=1

r̄2

l2
f

1−ν
D−1

L dx̄2
i , fL = 1− µ

r̄n+1
, (3.8)

where ν is a tunable parameter and µ is some arbitrary reference radius. As stated in
his paper, the above metric is the same as the one found by Saenz and Mertinez [17],
but we will refer to it in this thesis as Lim’s metric for simplicity. Although there
are some obvious similarities between Eq. (3.7) and Eq. (3.8), they are not exactly

9



10 | 3.2 Kasner’s Conditions

in the same form. To cast them into similar expressions, we introduce the following
change of variables and rescaling of coordinates:

r̄ =
1

r
, t̄ = l2t, x̄i = l2xi,

⇒ dr̄2 =
1

r2
dr2, dt̄2 = l4dt2, dx̄2

i = l4dx2
i , (3.9)

µ =
1

rn+1
0

.

Lim’s metric with the new coordinates is then

ds2
Lim =

l2

r2

(
−f

ν(D−2)+1
D−1 dt2 +

dr2

f
+

n∑
i=1

f
1−ν
D−1dx2

i

)
. (3.10)

Now it is obvious that both metric solutions in Eq. (3.7) and Eq. (3.10) are almost
identical to each other apart from the exponents of the function f . Lim’s exponents
are parameterised by ν whilst Ren’s is still somewhat general.

3.2 Kasner’s Conditions

Ren’s metric in Eq. (3.7) is also known as the Kasner metric. It was developed and
named after the American mathematician Edward Kasner in 1921 [18]. In his paper,
Kasner showed that for the metric to be a vacuum solution for the Einstein field
equation, pt (:= p0) and pi (also known as the Kasner exponents) must satisfy two
conditions

First Condition:
n∑
i=0

pi = 1, (3.11)

Second Condition:
n∑
i=0

p2
i = 1. (3.12)

The first intuitive thing to do is to check whether Lim’s exponents also satisfy Kasner’s
conditions or not:

First Condition:
n∑
i=0

pi =
νn+ 1

n+ 1
+

n∑
i=1

1− ν
n+ 1

=
νn+ 1

n+ 1
+ n

1− ν
n+ 1

10



Chapter 3 | 11

= 1, (3.13)

Second Condition:
n∑
i=0

p2
i =

(
νn+ 1

n+ 1

)2

+
n∑
i=1

(
1− ν
n+ 1

)2

=
ν2n2 + 1 + 2νn

(n+ 1)2
+ n

1− 2ν + ν2

(n+ 1)2

=
(ν2n+ 1)(n+ 1)

(n+ 1)2

= 1− n(ν2 − 1)

n+ 1
. (3.14)

Since n cannot be 0 as the spacetime of interest is at least 3-dimensional, therefore,
it is clear that Kasner’s second condition for Lim’s metric does not hold except for
the case when ν2 = 1. The significance of this special case will be made clear in the
following sections.

3.3 The Scalar Field and the Rrr Term

For Lim’s case, he also has a solution for the scalar field given as

ϕ(r) =
1

2

√
n(1− ν2)

n+ 1
ln f. (3.15)

Since the scalar field is only dependent on the r-coordinate, the field equations from
Eq. (3.4) and Eq. (3.5) for the Rtt and Rii components will be exactly the same
in both Lim’s and Ren’s system since there is no contribution from the scalar field.
However, the Rrr component will be of particular interest as we would like to see the
effect of having an additional scalar field in the field equation.

We have explicitly verified that both authors’ given metric are true solutions to the
field equations and the mathematical details are left to Appendix D. However, we
will show the workings for the Rrr component here in detail to investigate the link
between both authors’ solutions.

11



12 | 3.3 The Scalar Field and the Rrr Term

3.3.1 Field Equation for the Rrr Term

In Chapter 2, we have developed the mathematical tools to calculate the Ricci tensor
components for our metric ansatz. We may apply our results to calculate the Rrr

component for Lim’s metric by expressing the metric in the exponential form and
obtaining the ansatz exponents.

It turns out that we may simplify the calculations by first performing a coordinate
transformation of

ρ = − ln r,

⇒ dρ2 =

(
−1

r
dr

)2

=
1

r2
dr2, (3.16)

⇒ 1

r2
= e2ρ.

Lim’s metric from Eq. (3.10) is then

ds2
Lim = −l2e2ρf

νn+1
n+1 dt2 +

l2

f
dρ2 + l2

n∑
i=1

e2ρf
1−ν
D−1dx2

i . (3.17)

We may now compare coefficients and obtain the ansatz exponents accordingly as
defined in Chapter 2

e2F0 = l2e2ρf
νn+1
n+1 ,

⇒ F0 = ρ+
1

2

νn+ 1

n+ 1
ln f + ln l, (3.18a)

e2H =
l2

f
,

⇒ H = −1

2
ln f + ln l, (3.18b)

e2Fi = l2e2ρf
1−ν
n+1 ,

⇒ Fi = ρ+
1

2

1− ν
n+ 1

ln f + ln l. (3.18c)

Note that the Rrr term will now be referred to Rρρ due to the coordinate change. As
in Eq. (2.14c), the Rρρ term is given by

Rρρ =
n∑
i=0

(H ′F ′i − F ′′i − F ′2i )

12
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Substituting in accordingly and simplifying,

Rρρ =−1

2

νn+ 1

n+ 1

f ′′f − f ′2

f 2
− f ′

2f

(
1 +

1

2

νn+ 1

n+ 1

f ′

f

)
−
(

1 +
1

2

νn+ 1

n+ 1

f ′

f

)2

︸ ︷︷ ︸
i=0 term

+
n∑
i=1

[
− f

′

2f

(
1 +

1

2

1− ν
n+ 1

f ′

f

)
− 1

2

1− ν
n+ 1

f ′′f − f ′2

f 2
−
(

1 +
1

2

1− ν
n+ 1

f ′

f

)2
]

=− (n+ 1)− f ′

f

(
n+ 1

2
+
νn+ 1

n+ 1
+ n

1− ν
n+ 1

)
− f ′′

f

(
n

2

1− ν
n+ 1

+
1

2

νn+ 1

n+ 1

)
+

f ′2

4f 2(n+ 1)

(
n(1− ν)− n1 + ν2 − 2ν

n+ 1
− ν2n2 + 1 + 2νn

n+ 1
+ νn+ 1

)

=− (n+ 1)− f ′

f

(
3 + n

2

)
− f ′′

f

(
1

2

)
+

f ′2

4f 2(n+ 1)

(
n(1− ν2)

)
=− n+ 1

l2
l2

f
+

1

4

n(1− ν2)

n+ 1

f ′2

f 2
. (3.19)

At this juncture, we have the first term in Eq. (3.19) equal to −n+1
l2
gρρ as desired.

Therefore the second term is naturally equivalent to the covariant derivative term in
Eq. (3.5). As a check,

∇ρϕ∇ρϕ = (∂ρϕ)2

=

(
1

2

√
n(1− ν2)

n+ 1

f ′

f

)2

=
1

4

n(1− ν2)

n+ 1

f ′2

f 2
, (3.20)

where the equal sign in the first step comes from the fact that ϕ is a scalar field. Note
that again in the special case of ν2 = 1, the above term goes to zero which implies
that the field equations of Lim becomes identitcal to Ren’s.

3.4 The Link Between Ren’s and Lim’s Solutions

A recurring theme which has been appearing in the above sections is the special case
where ν2 = 1. We have seen that when this occurs, the exponents in Lim’s metric
satisfy Kasner’s second condition. At the same time, this corresponds to the scalar
field defined in Eq. (3.15) going to zero and the field equations of Lim and Ren
becoming identical.

13



14 | 3.4 The Link Between Ren’s and Lim’s Solutions

Therefore, enforcing Kasner’s two conditions to hold for Lim’s metric is akin to the
act of switching off the scalar field and thereby reducing the system to pure Einstein
gravity. The beauty in this discovery lies in the fact Kasner’s conditions are essentially
pure mathematical constructs, but with this case study we can see its manifestation
in a physical quantity like the scalar field.

It is known that the introduction of matter fields can relax Kasner’s second condition
for AdS spacetimes as pointed out by Banerjee et al. [19]. In fact, the paper mentions
that to do this, one would need to introduce a scalar field of the form Φ = λ ln f where
λ is defined by a modified Kasner’s second condition given as

n∑
i=0

p2
i = 1− λ2

2
(3.21)

This is in slight disagreement with what we have found above. Taking λ = 1
2

√
n(1−ν2)
n+1

from Lim’s scalar field solution in equation 3.15, we instead obtain

n∑
i=0

p2
i = 1− 4λ2 (3.22)

The difference could be resolved by allowing a rescaling on λ or Φ but their paper
is not very clear at how they arrived at their results. On the contrary, we remain
confident in our findings as we have demonstrated clearly in this chapter how we
arrived at our conclusion. Note that we do not claim Eq. (3.22) to be generally true.

14



Chapter 4

Deriving a New Class of Solutions

In this chapter, we will show how we derive an entire class of solutions in EMD gravity.
While we have already obtained the field equations for EMD gravity in Eq. (2.8) and
also introduced our metric ansatz in Eq. (2.9) in Chapter 2, we need to make some
assumptions for the scalar and EM fields first.

Following the motivations of our metric, we assume that all fields are also only depen-
dent on the ρ-coordinate. We will further assume the gauge potential has a non-zero
time component and zero spatial components (ie. electrically charged):

ϕ = ϕ(ρ), (4.1)

Aµ = (A0(ρ), 0) . (4.2)

The reason for this is that Maki [7] has already shown that for this particular ansatz
in EMD gravity, no static, rotationally symmetric dyonic solution exists. Therefore,
there can only be either a magnetic or electric solution. Furthermore, reference [20]
also shows that one may obtain the magnetic solution by simply flipping the sign of
the coupling constant α→ −α.

4.1 Modified Field Equations

Using the above-mentioned assumptions, our field equations may now be written as

A′ = qe2αϕeH+F0−
∑n
i=1 Fi , (4.3a)

15



16 | 4.2 Modified Field Equations

ϕ′′ =

(
H ′ −

n∑
i=0

F ′i

)
ϕ′ + 2αq2e2αϕ+2H−2

∑n
i=1 Fi + 2Λβe2βϕ+2H , (4.3b)

F ′′0 = F ′0

(
H ′ −

n∑
i=0

F ′i

)
− 2Λ

D − 2
e2βϕ+2H + 2q2

(
D − 3

D − 2

)
e2αϕ+2H−2

∑n
i=1 Fi , (4.3c)

F ′′i 6=0 = F ′i 6=0

(
H ′ −

n∑
j=0

F ′j

)
− 2Λ

D − 2
e2βϕ+2H − 2q2

D − 2
e2αϕ+2H−2

∑n
i=1 Fi , (4.3d)

n∑
i=0

(H ′F ′i − F ′′i − F ′2i ) =
2Λ

D − 2
e2βϕ+2H − 2q2

(
D − 3

D − 2

)
e2αϕ+2H−2

∑n
i=1 Fi + ϕ′2.

(4.3e)

The newly introduced constant, q, is some electric charge parameter which came from
the direct integration of the EM field equation. The derivation of the above results
are shown in detail in Appendix E. Eq. (4.3a) corresponds to the EM field, Eq.
(4.3b) corresponds to the scalar field and Eq. (4.3c), Eq. (4.3d) and Eq. (4.3e) comes
from the Einstein field equation.

We may proceed with a simplification by first summing all i 6= 0 components from
Eq. (4.3d), noting that n = D − 2:

2Λe2βϕ+2H + 2q2e2αϕ+2H−2
∑n
i=1 Fi =

n∑
i=1

(
H ′F ′i − F ′′i − F ′i

n∑
j=0

F ′j

)
. (4.4)

We then add together Eq. (4.3c) and Eq. (4.4) and get

2Λ

(
D − 1

D − 2

)
e2βϕ+2H + 2q2e2αϕ+2H−2

∑n
i=1 Fi

(
1

D − 2

)
=

n∑
i=0

(
H ′F ′i − F ′′i − F ′i

n∑
j=0

F ′j

)
.

(4.5)

We then subtract Eq. (4.3e) from Eq. (4.5) to obtain

n∑
ij,i6=j

F ′iF
′
j = −2Λe2βϕ+2H − 2q2e2αϕ+2H−2

∑n
i=1 Fi + ϕ′2. (4.6)

This will replace Eq. (4.3e) and will serve as a constraint equation. We will explain
more about this further on in the chapter.
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4.2 Assumptions for Metric Exponents

At this point, it is non-trivial to solve the current set of coupled, second-order differ-
ential equations and therefore we need to introduce certain assumptions to simplify
the problem.

4.2.1 First Assumption

Assumption 1 All Fi 6=0’s are the same, ie. Fi 6=0 = Fj 6=0, ∀ i 6= j.

This assumption removes the ambiguity of arbitrary functions/constants appearing
after integration of the differential equations with Fi’s. Physically, this may be inter-
preted as having an isotropic, flat space in the background of our spacetime.

With this, we may simplify the double summation in Eq. (4.6)

n∑
ij,i6=j

F ′iF
′
j =F ′0 (F ′1 + F ′2 + . . .+ F ′n)︸ ︷︷ ︸

n terms

+ F ′1 (F ′0 + F ′2 + . . .+ F ′n)︸ ︷︷ ︸
n terms

...

+ F ′n (F ′0 + F ′1 + . . .+ F ′n−1)︸ ︷︷ ︸
n terms

=2(D − 2)F ′0F
′
i 6=0 + (D − 2)(D − 3)F ′2i 6=0. (4.7)

Thus, Eq. (4.6) may now be rewritten as

2(D − 2)F ′0F
′
i 6=0 + (D − 2)(D − 3)F ′2i 6=0 = −2Λe2βϕ+2H − 2q2e2αϕ+2F0 + ϕ′2. (4.8)

4.2.2 Second Assumption

Assumption 2 The exponent of the gρρ component is the sum of the gtt and gii

components, ie. H =
∑n

i=0 Fi.

17



18 | 4.3 Final Simplified Field Equations

The motivation behind this is because of the factor (H ′ −
∑n

i=0 F
′
i ) appearing three

times in our coupled differential equations. The assumption will greatly simplify the
equations since it kills off the first order derivative terms in Eq. (4.3b), Eq. (4.3c)
and Eq. (4.3d). This assumption also implies that our metric ansatz becomes

ds2 = −e2F0dt2 + e
∑n
i=0 2Fidρ2 +

n∑
i=1

e2Fidx2
i , (4.9)

⇒ gρρ = −
n∏
i=0

gii. (4.10)

Maki [7], in fact, began her paper with the above metric ansatz without stating any
motivations. Through our workings, it now becomes clear why such a choice of metric
ansatz is desirable. One may also view this as an analagous Kasner condition for our
set of solutions.

4.3 Final Simplified Field Equations

With these assumptions, the field equations are further simplified to become

A′ = qe2αϕ+2F0 , (4.11a)

ϕ′′ = 2αq2e2αϕ+2F0 + 2Λβe2βϕ+2
∑n
i=0 Fi , (4.11b)

F ′′0 = − 2Λ

D − 2
e2βϕ+2

∑n
i=0 Fi + 2q2

(
D − 3

D − 2

)
e2αϕ+2F0 , (4.11c)

F ′′i 6=0 = − 2Λ

D − 2
e2βϕ+2

∑n
i=0 Fi − 2q2

D − 2
e2αϕ+2F0 , (4.11d)

2(D − 2)F ′0F
′
i 6=0 + (D − 2)(D − 3)F ′2i 6=0 = −2Λe2βϕ+2

∑n
i=0 Fi − 2q2e2αϕ+2F0 + ϕ′2.

(4.11e)

The following is an outline of the steps we will take to obtain solutions from these
equations:

1. A closer look at Eq. (4.11b), Eq. (4.11c) and Eq. (4.11d) will reveal that these
three equations are coupled only to each other. Therefore, we will begin by
decoupling these three equations, and solving for F0, Fi 6=0 and ϕ.

2. Recall that for a sourceless system, the physical electric field is simply E =

−∇φ = −A′. Thus, having the solutions for F0 and ϕ, Eq. (4.11a) immediately
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gives us the electric field. Performing a simple integration would then return
the gauge potential A.

3. Eq. (4.11e) will serve as a constraint for any integration constants appearing in
the above solutions.

4.4 Solving the Simplified Field Equations

4.4.1 Decoupling the Coupled Differential Equations

Following our first step, we may decouple the mentioned three equations by introduc-
ing the following change of variables:

φ1 = βϕ+
n∑
i=0

Fi,

φ2 = αϕ+ F0, (4.12)

φ3 = αϕ+
n∑
i=1

Fi.

Substituting in Eq. (4.11b), Eq. (4.11c) and Eq. (4.11d) to the above, we obtain a
new set of coupled equations:

φ′′1 =βϕ′′ + F ′′0 + (D − 2)F ′′i 6=0

=2αβq2e2φ2 + 2Λβ2e2φ1 − 2Λ

D − 2
e2φ1 + 2q2

(
D − 3

D − 2

)
e2φ2 − 2Λe2φ1 − 2q2e2φ2

=2Λ

(
β2 − D − 1

D − 2

)
e2φ1 − 2q2

(
1

D − 2
− αβ

)
e2φ2 , (4.13a)

φ′′2 =αϕ′′ + F ′′0

=2α2q2e2φ2 + 2Λαβe2φ1 − 2Λ

D − 2
e2φ1 + 2q2

(
D − 3

D − 2

)
e2φ2

=2Λ

(
αβ − 1

D − 2

)
e2φ1 + 2q2

(
D − 3

D − 2
+ α2

)
e2φ2 , (4.13b)

φ′′3 =αϕ′′ + (D − 2)F ′′i 6=0

=2α2q2e2φ2 + 2Λαβe2φ1 − 2Λe2φ1 − 2q2e2φ2

=2Λ (αβ − 1) e2φ1 − 2q2
(
1− α2

)
e2φ2 . (4.13c)
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While these are still coupled, we free to set particular values for q, Λ, α and β such
that we decouple the above set of equations and obtain differential equations of the
form

φ′′(ρ) = ke2φ(ρ), (4.14)

where k is either a positive or negative constant. This differential equation is also
known as the Liouville differential equation and has several forms for its solution. For
this thesis, we will use the following solution:

Positive k: φ+(ρ) = − ln

(√
k

b
sinh(bρ)

)
, (4.15a)

Negative k: φ−(ρ) = − ln

(√
−k
b

cosh(bρ)

)
, (4.15b)

where b is some arbitrary integration constant. The above result is derived in Ap-
pendix F. In total, there are only four cases where Eq. (4.13) may be decoupled:

1. q = 0

2. Λ = 0

3. α = β = 1, D = 3

4. αβ = 1, D = 3

Note that in Maki’s paper [7], she has pointed out these exact four cases in (2+1)-
dimensions as well and made a note in her concluding paragraph that she is interested
in finding more solutions in higher dimensions. She has however not made any pub-
lications since with regards to that statement, and therefore we show here first that
even after expanding to arbitrary dimensions, one may not find any other cases for
which the coupled differential equations are solvable using this particular method.

Maki also chose to focus only on Cases 3 and 4, but we will show in Chapter 6 that
Cases 1 and 2 do yield interesting results in higher dimensions. We will leave further
discussion in the following chapters and begin solving each case now.
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4.4.2 Our Solutions

We will explicitly work out Case 1: (q = 0) to show our process of obtaining the final
solutions, and then simply list out the solutions for the other cases for brevity sake.
The full details for the other cases may be found in Appendix G.

Case 1: q = 0

In this case, we are turning off the EM field, and therefore this system describes one
with a masslass scalar field and a cosmological constant with the Liouville coupling.
Eq. (4.13) is then simplified to

φ′′1 =2Λ

(
β2 − D − 1

D − 2

)
e2φ1 , (4.16a)

φ′′2 =2Λ

(
αβ − 1

D − 2

)
e2φ1 =

(
αβ − 1

D−2

)(
β2 − D−1

D−2

) φ′′1, (4.16b)

φ′′3 =2Λ (αβ − 1) e2φ1 =
(αβ − 1)(
β2 − D−1

D−2

)φ′′1. (4.16c)

Because the values of β, D and Λ are not specified, Eq. (4.16a) may have two different
solutions according to Eq. (4.15a) depending on the overall sign of the prefactor. We
shall assume first that 2Λ

(
β2 − D−1

D−2

)
< 0. Therefore, the solutions are

φ1 = − ln

(
1

b

√
2Λ

(
D − 1

D − 2
− β2

)
cosh(bρ)

)
, (4.17a)

φ2 =

(
αβ − 1

D−2

)(
β2 − D−1

D−2

) φ1 + c2ρ+ c3, (4.17b)

φ3 =
(αβ − 1)(
β2 − D−1

D−2

)φ1 + d2ρ+ d3, (4.17c)

where c2, c3, d2 and d3 are arbitrary integration constants. Rearranging the change
of variables in Eq. (4.12), the original variables may be obtained from

ϕ =
φ2 + φ3 − φ1

2α− β
, (4.18a)

Fi 6=0 =
φ3 − αϕ
D − 2

, (4.18b)

F0 = φ2 − αϕ. (4.18c)
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The final solutions after simplification are then:

ϕ =
β(

β2 − D−1
D−2

)φ1 +
c2 + d2

2α− β
ρ+

c3 + d3

2α− β
, (4.19a)

Fi 6=0 = − 1

D − 2

1(
β2 − D−1

D−2

)φ1 +
1

D − 2

α(d2 − c2)− βd2

2α− β
ρ+

1

D − 2

α(d3 − c3)− βd3

2α− β
,

(4.19b)

F0 = − 1

D − 2

1(
β2 − D−1

D−2

)φ1 +
α(c2 − d2)− βc2

2α− β
ρ+

α(c3 − d3)− βc3

2α− β
. (4.19c)

Substituting these into Eq. (4.11e),we get the constraint equation for the arbitrary
constants:

c2
2

[
α2−

(
α2 + 1

)
D+2αβ(D−2)+2

]
+2c2d2

[
−α2+β(α−2β)+D

(
α2 − αβ + β2 − 1

)
+2
]

+ d2
2

[
α2 + 2αβ −

(
α2 + 1

)
D + β2(D − 3) + 2

]
=
b2(D − 2)(D − 2)(β − 2α)2

β2(D − 2)−D + 1
(4.20)

We can set c3 and d3 to 0, which can also be interpreted as a rescaling of the coor-
dinates. Dropping the subscripts on c2 → c and d2 → d, the final metric solution is
reconstructed to be

ds2 =− e2(α(c−d)−βc2α−β )ρG(ρ)

1
D−2

1

(β2−D−1
D−2)dt2 + e2(c−d)ρG(ρ)

D−1
D−2

1

(β2−D−1
D−2)dρ2

+
n∑
i=1

e−
2

D−2(α(d−c)−βd2α−β )ρG(ρ)

1
D−2

1

(β2−D−1
D−2)dx2

i , (4.21)

with

G(ρ) =

{
2Λ
b2

(
D−1
D−2
− β2

)
cosh2(bρ), for 2Λ

(
β2 − D−1

D−2

)
< 0,

2Λ
b2

(
β2 − D−1

D−2

)
sinh2(bρ), for 2Λ

(
β2 − D−1

D−2

)
> 0.

(4.22)

The corresponding scalar field is then

ϕ = − β

2
(
β2 − D−1

D−2

) lnG(ρ) +
c+ d

2α− β
ρ. (4.23)

And of course, with the charge parameter q = 0, there is no electric field. Hence, we
have fully solved Case 1.
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Case 2: Λ = 0

Here we have a system with a massless scalar field and an EM field coupled to a
Liouville potential. The solutions are:

Metric: ds2 = −e−
2α(d−c)
2α−β ρH(ρ)

D−3

(D−3+(D−2)α2)dt2 + e−2dρH(ρ)
− 1

(D−3+(D−2)α2)dρ2

+
n∑
i=1

e−
2

D−2(α(d+c)−βd2α−β )ρH(ρ)
− 1

(D−3+(D−2)α2)dx2
i , (4.24)

Constraint:
b2(D − 2)(D − 2)(β − 2α)2

α2(D − 2) +D − 3
= c2

(
α2(3D − 7)−D + 2

)
+ 2cd

(
−3α2 + 5αβ + α2D − 2αβD +D − 2

)
+ d2

(
α2 + 2αβ −

(
α2 + 1

)
D + β2(D − 3) + 2

)
, (4.25)

Scalar Field: ϕ = − α

2
(
D−3
D−2

+ α2
) lnH(ρ) +

(d− c)ρ
2α− β

, (4.26)

Electric Field: E = − b2(D − 2)csch2 (bρ)

2q (D − 3 + α2(D − 2))
, (4.27)

where H(ρ) = 2q2

b2

(
D−3
D−2

+ α2
)

sinh2(bρ).

Case 3: α = β = 1, D = 3

In this case, we are in (2+1)-dimensions with a massless scalar field, EM field and
cosmological constant with specific values for the coupling constants. This case cor-
responds to the (2+1)-dimension low-energy action obtained from string theory [20].
The solutions accordingly are:

Metric: ds2 = −e−2b3ρ
1

M(ρ)
dt2 + e−2b3ρ

(
2q2 sinh2(b2ρ)

b2
2M(ρ)

)
dρ2

+

(
2q2 sinh2(b2ρ)

b2
2M(ρ)

)
dx2, (4.28)

Constraint: b2
1 − b2

2 − b2
3 = 0, (4.29)
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Scalar Field: ϕ = b3ρ+ ln

(
b2

√
M(ρ)√

2q sinh(b2ρ)

)
, (4.30)

Electric Field: E = −b
2
2csch

2 (b2ρ)

2q
, (4.31)

with

M(ρ) =

{
2Λ
b21

cosh2(b1ρ), for Λ > 0,
2Λ
b21

sinh2(b1ρ), for Λ < 0.
(4.32)

Case 4: αβ = 1, D = 3

Again, we are in (2+1)-dimensions with a massless scalar field, EM field and cosmo-
logical constant but now the coupling constants are allowed to take on any positive
values which satisfies αβ = 1. The solutions are:

Metric: ds2 = −e−
2α2(cρ)

2α2−1 J(ρ)
−α2

2α2−1dt2 (4.33)

+ e
2(cρ)

2α2−1

(
2q2α2

b2
2

sinh2(b2ρ)

) 1
α2

J(ρ)
− 2α2

2α2−1dρ2

+ e
2(α2−1)(cρ)

2α2−1

(
2q2α2

b2
2

sinh2(b2ρ)

) 1
α2

J(ρ)
− α2

2α2−1dx2, (4.34)

Constraint: α4b2
1 +

(
1− 2α2

)
b2

2 − α4c2 = 0, (4.35)

Scalar Field: ϕ =
α

2(2α2 − 1)
ln J(ρ)− 1

α
ln

(
qα
√

2

b2

sinh(b2ρ)

)
+

αcρ

2α2 − 1
,

(4.36)

Electric Field: E = −b
2
2csch

2 (b2ρ)

2α2q
, (4.37)

Where

J(ρ) =


2Λ(2α2−1)

α2b21
cosh2(b1ρ), for 2Λ(2α2 − 1) > 0,

2Λ(1−2α2)
α2b21

sinh2(b1ρ), for 2Λ(2α2 − 1) < 0.
(4.38)

Note that Case 3 is a subset of Case 4, and we recover all the fields identically when
setting α = 1 above.
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One might also consider setting α = 0, β → ∞ to recover Case 2 with α = 0 as
well. Unfortunately we have α factors in the denominator in the above solution and
therefore this cannot easily reduce back to Case 2.
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Chapter 5

Singularities

Up to this point, we have basically only solved a long mathematical problem and have
yet to extract any real meaning or interpretation from the solutions we have found. In
this chapter, we will take a look at the singularities presented in the solutions for each
case and check to see whether these are merely coordinate artefacts or true singulari-
ties. We shall mentioned briefly that the Cosmic Censorship Hypothesis conjectured
by Roger Penrose [21][22] postulates that the existence of a naked singularity (one
that is not hidden within event horizons) is physically unrealistic. Therefore while
there are many known solutions which violate this hypothesis, such as the AdS naked
singularity or the disappearing event horizons in the Kerr metric [23] and the Reissner-
Nordström metric [24], they are often derived from overly-simplified assumptions or
unphysical systems which cannot exist in our universe. We will see in this chapter
that some of our solutions will violate the Cosmic Censorship Hypothesis, and some
of them will not. Those that do not may then be called black hole solutions.

5.1 Making Sense of the ρ-Coordinate

Given that we began with a general metric ansatz dependent only on one coordinate
with no assumptions to the topology or geometry of our spacetime, all of our coordi-
nates have no intrinsic meaning attached to them. This means that we have no idea
of where the “origin” lies in our spacetime, and which direction of the ρ-coordinate
points to being near or far from the origin.

Therefore we need to, first, have a reference spacetime to “align” ourselves to known
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coordinate systems so that we may then begin to understand the geometry of all our
solutions. One way to do this is to compare our solutions for physical quantities like
the electric or scalar fields with others’ (provided that the systems in consideration
are the same) to obtain a coordinate transformation. Fortunately, Lim’s solution back
in Chapter 3 is derived from a similar system as Case 1: q = 0, with the exception of
the Liouville potential coupled to the cosmological constant.

It is then a simple matter of setting β = 0 to recover the exact same system. Equating
our obtained scalar field in Eq. (4.23) with Lim’s in Eq. (3.15), we get:

Our scalar field

∣∣∣∣∣
β=0

= Lim’s scalar field

c+ d

α︸ ︷︷ ︸
C

ρ =
1

2

√
n(1− v2)

n+ 1︸ ︷︷ ︸
B

ln

(
1−

(r0

r

)n+1
)

ρ =
B

C
ln

(
1−

(r0

r

)n+1
)
. (5.1)

In Lim’s coordinate, r = 0 is the origin and r → ∞ is far away from the origin.
With this mapping, we have ρ = 0 7→ r = ∞ and ρ = −∞ 7→ r = r0 (the "= ∞"
is simply an informal equation). As one might notice, our ρ-coordinate is unable to
probe the region 0 < r < r0 which is where Lim’s coordinate also sort of breaks
down due to his expression for the scalar field. Nonetheless, it is still valid to point
out singularities within the region inside the event horizon, r0, if they appear in the
metric or curvature scalars. This is very much akin to the swapping of the time and
radial coordinates in the Schwarzchild solution

ds2
Schwarzchild = −

(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (5.2)

when entering the region r < 2m as seen above. The coordinate system also breaks
down but we may still deduce points of divergence.

Therefore it makes sense to search for singularities in our solution in the r-coordinates
instead. As all our solutions contain hyperbolic functions, we simply need to express
the hyperbolic functions in the r-coordinates. We first set b = C

B
which is the prefactor

in all our solutions, then Eq. (5.1) may be rearranged to obtain

ebρ =
rn+1 − rn+1

0

rn+1
, (5.3)
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e−bρ =
rn+1

rn+1 − rn+1
0

. (5.4)

The hyperbolic functions may then be expressed as

sinh(bρ) =
1

2

(
rn+1

0

(
rn+1

0 − 2rn+1
)

rn+1(rn+1 − rn+1
0 )

)
, (5.5a)

csch(bρ) = 2

(
rn+1(rn+1 − rn+1

0 )

rn+1
0

(
rn+1

0 − 2rn+1
)) , (5.5b)

cosh(bρ) =
1

2

(
rn+1

0

(
rn+1

0 − 2rn+1
)

+ 2r2n+2

rn+1(rn+1 − rn+1
0 )

)
, (5.5c)

sech(bρ) = 2

(
rn+1

(
rn+1 − rn+1

0

)
rn+1

0

(
rn+1

0 − 2rn+1
)

+ 2r2n+2

)
, (5.5d)

tanh(bρ) =
rn+1

0

(
rn+1

0 − 2rn+1
)

rn+1
0

(
rn+1

0 − 2rn+1
)

+ 2r2n+2
, (5.5e)

coth(bρ) =
rn+1

0

(
rn+1

0 − 2rn+1
)

+ 2r2n+2

rn+1
0

(
rn+1

0 − 2rn+1
) . (5.5f)

Thus we can see that

sinh and cosh diverges at r = 0 and r = r0,

csch and coth diverges at r = 2−
1

n+1 r0(< r0),

sech and tanh do not diverge.

Note that this is merely a qualitative approach and is vastly different from how Maki
analyzed her solutions. Since her solutions are all in (2+1)-dimensions, she simply
assumed rotational symmetry by associating gxxdx

2 7→ r2dφ2, where r and φ are
the normal radial and azimunthal coordinates. However, because we are now dealing
with arbitrary dimensions, we do not have the luxury of this mapping. The additional
dimensions, as mentioned before, serve as a isotropic, flat background and we may
not simply associate this with D-dimensional spherical symmetry. With this, we will
proceed to investigate the coordinate and curvature singularities in all our solutions
in the following section.
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5.2 Coordinate and Curvature Singularities

Coordinate singularities refer to diverging terms in the metric components, whereas
curvature singularities may be deduced from a diverging Ricci or Kretschmann scalar
[25].

In Eq. (2.15), we have found the Ricci scalar to be

R = e−2H

n∑
i=0

(
2H ′F ′i − 2F ′′i − F ′2i − F ′i

n∑
j=0

F ′j

)
.

Including the new assumptions made in the previous chapter, we first rewrite the
formula to be

R =e−2H

n∑
i=0

(
2F ′i

n∑
k=0

F ′k − 2F ′′i − F ′2i − F ′i
n∑
j=0

F ′j

)

=e−2H

n∑
i=0

(
F ′iF

′
0 + (D − 2)F ′iF

′
i 6=0 − 2F ′′i − F ′2i

)
=e−2H

[
(D − 2)F ′0F

′
i 6=0 − 2F ′′0︸ ︷︷ ︸

i=0 term

+(D − 2)F ′i 6=0F
′
0 + (D − 2)2F ′2i 6=0 − 2(D − 2)F ′′i 6=0

− (D − 2)F ′2i 6=0

]
=e−2H

[
2(D − 2)F ′0F

′
i 6=0 − 2F ′′0 + (D2 − 5D + 6)F ′2i 6=0 − 2(D − 2)F ′′i 6=0

]
. (5.6)

We will use Mathematica to compute the Ricci scalars and only show the final results
in the sections below.

5.2.1 Case 1a: q = 0, 2Λ
(
β2 − D−1

D−2
)
< 0

The final metric was found to be

ds2 =− e2(α(c−d)−βc2α−β )ρG(ρ)

1
D−2

1

(β2−D−1
D−2)dt2 + e2(c−d)ρG(ρ)

D−1
D−2

1

(β2−D−1
D−2)dρ2

+
n∑
i=1

e−
2

D−2(α(d−c)−βd2α−β )ρG(ρ)

1
D−2

1

(β2−D−1
D−2)dx2

i ,
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with G(ρ) = 2Λ
b2

(
D−1
D−2
− β2

)
cosh2(bρ). The Ricci scalar is computed to be

R =2
1−D

β2(D−2)−D+1 e2ρ(d−c)
(
sech2 (bρ)

b2(D − 2)

Λ (β2(−(D − 2)) +D − 1)

) D−1

β2(D−2)−D+1

×

[
2b(D − 2)(c− d) tanh (bρ)

β2(D − 2)−D + 1
+
b2(D − 1)

(
(D − 2β2(D − 2)) sech2 (bρ) +D − 2

)
(β2(D − 2)−D + 1)2

+
(αc+ d(β − α))(α(3D − 7)(c− d) + β(d(D − 3)− 2c(D − 2)))

(D − 2)(β − 2α)2

]
. (5.7)

In this case, the cosh function in the metric indicates coordinate singularities at r = 0

and r = r0 while the Ricci scalar indicates a curvature singularity only at r = 0 from
the eρ prefactor. The sech and tanh functions do not contribute diverging terms.
Therefore we have a true singularity at r = 0 and an event horizon at r = r0, hence
this is a black hole solution.

5.2.2 Case 1b: q = 0, 2Λ
(
β2 − D−1

D−2
)
> 0

Here, we have instead G(ρ) = 2Λ
b2

(
β2 − D−1

D−2

)
sinh2(bρ). The Ricci scalar is computed

to be

R = 2
1−D

β2(D−2)−D+1 e2ρ(d−c)
(
csch2 (bρ)

b2(D − 2)

Λ (β2(D − 2)−D + 1)

) D−1

β2(D−2)−D+1

×

[
(αc+ d(β − α))(α(3D − 7)(c− d) + β(d(D − 3)− 2c(D − 2)))

(D − 2)(β − 2α)2

+
b2(D − 1)csch2 (bρ) ((D − 2) cosh (2bρ) + 4β2(D − 2)− 3D + 2)

2 (β2(D − 2)−D + 1)2

+
2b(D − 2)(c− d) coth (bρ)

β2(D − 2)−D + 1

]
. (5.8)

The sinh function in the metric indicates coordinate singularities at r = 0 and r = r0

while the Ricci scalar indicates two curvature singularity at r = 0 from the eρ and
r = 2−

1
n+1 r0 from the csch and coth functions. The cosh function will be cancelled

off if we open up the brackets

csch2(bρ) cosh(2bρ) = csch(bρ)2
(
2 cosh2(bρ)− 1

)
= coth2(bρ)− csch2(bρ)
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= 1, (5.9)

and hence does not contribute any diverging term. Therefore, we have two singulari-
ties covered by the event horizon and thus, we again have a black hole solution.

5.2.3 Case 2: Λ = 0

For Λ = 0, the final metric solution is

ds2 =− e−
2α(d−c)
2α−β ρH(ρ)

D−3

(D−3+(D−2)α2)dt2 + e−2dρH(ρ)
− 1

(D−3+(D−2)α2)dρ2

+
n∑
i=1

e−
2

D−2(α(d+c)−βd2α−β )ρH(ρ)
− 1

(D−3+(D−2)α2)dx2
i ,

with H(ρ) = 2q2

b2

(
D−3
D−2

+ α2
)

sinh2(bρ). The Ricci scalar is computed to be

R = e
4αρ(d−c)

2α−β

(
csch2 (bρ)

b2

2q2
(
α2 + D−3

D−2

))
(

1
α2(D−2)+D−3

)

×

[
2αb(D − 2)(c− d) coth (bρ)

(2α− β) (α2(D − 2) +D − 3)
+
α2(3D − 7)(c− d)2

(D − 2)(β − 2α)2

− b2csch2 (bρ) ((D − 3)(D − 2) cosh (2bρ) +D2 − 4α2(D − 2)− 9D + 18)

2 (α2(D − 2) +D − 3)2

]
.

(5.10)

The sinh function in the metric indicates coordinate singularities at r = 0 and r = r0

while the Ricci scalar indicates two curvature singularity at r = 0 from the eρ and
r = 2−

1
n+1 r0 from the csch and coth functions. Again, the cosh function does not

contribute to any diverging term after multiplying out the csch2 factor. Accordingly,
we have two singularities covered by the event horizon which is also a black hole
solution.

5.2.4 Case 3: α = β = 1, D = 3

The metric solution is

ds2 =− e−2b3ρ

(
b2

1

2Λ
sech2(b1ρ)

)
dt2 + e−2b3ρ

(
q2b4

1

2b2
2Λ2

sinh2(b2ρ)

cosh4(b1ρ)

)
dρ2
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+

(
q2b2

1

b2
2Λ

sinh2(b2ρ)

cosh2(b1ρ)

)
dx2,

and the Ricci scalar is computed to be

R =
2b2

2

b4
1q

2
Λ2e2(b3ρ+b4) cosh2 (b1ρ) csch2 (b2ρ)

×

(
b2

1 (cosh (2b1ρ) + 3) + b1 sinh (2b1ρ) (b3 − b2 coth (b2ρ))

+ 2b2 cosh2 (b1ρ)
(
b2csch2 (b2ρ)− b3 coth (b2ρ)

))
. (5.11)

In this case, the description of the spacetime is rather messy because we have the
different b1, b2 and b3 in the hyperbolic arguments. This produces a multitude of
singularities which becomes meaningless. Instead, we can examine a special case of
this spacetime where b3 = 0. The constraint equation from Eq. (4.29) which was

b2
1 − b2

2 − b2
3 = 0,

then reduces to b1 = b2 ≡ b and the metric simplifies greatly to

ds2
simplified =− b2

2Λ
sech2(bρ)dt2 +

q2b2

2Λ2
sech2(bρ) tanh2(bρ)dρ2

+
q2

Λ
tanh2(bρ)dx2. (5.12)

Correspondingly, the Ricci scalar becomes

R =
4Λ2

q2

(
coth4(bρ) + coth2(bρ)

)
. (5.13)

Thus, we gather that there are no coordinate singularities in the metric and there
exists one naked singularity at r = 2−

1
n+1 r0 for this special choice of parameters.

5.2.5 Case 4a: αβ = 1, D = 3, 2α2 > 1

The metric solution is

ds2 =− e−
2α2(c2ρ)

2α2−1 J(ρ)
−α2

2α2−1dt2 + e
2(c2ρ)

2α2−1

(
2q2α2

b2
2

sinh2(b2ρ)

) 1
α2

J(ρ)
− 2α2

2α2−1dρ2
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+ e
2(α2−1)(c2ρ)

2α2−1

(
2q2α2

b2
2

sinh2(b2ρ)

) 1
α2

J(ρ)
− α2

2α2−1dx2, (5.14)

where J(ρ) =
2Λ(2α2−1)

α2b21
cosh2(b1ρ). The Ricci scalar is computed to be

R =
2

2α2

2α2−1
− 1
α2

(α− 2α3)2 e
2c2ρ

2α2−1

(
αq sinh (b2ρ)

b2

)− 2
α2

((
2− 1

α2

)
Λ cosh2 (b1ρ)

b2
1

) 2α2

2α2−1

×

[
2α2b1 tanh (b1ρ)

((
1− 2α2

)
b2 coth (b2ρ) + α2c2

)
+ 2

(
2α2 − 1

)
b2

((
2α2 − 1

)
b2csch2 (b2ρ)− α2c2 coth (b2ρ)

)
+ α4b2

1sech
2 (b1ρ)

(
7α2 + α2 cosh (2b1ρ)− 4

)
− 2

(
α2 − 1

)
α4c2

2

]
. (5.15)

Again, it would be sensible to simplify this using the constraint in Eq. (4.35) which
was

α4b2
1 +

(
1− 2α2

)
b2

2 − α4c2 = 0.

The choice of c = 0 and b1 = b2 ≡ b leaves the constraint equation to become

α2

2α2 − 1
=

1

α2

⇒ α2 = 1. (5.16)

Surprisingly, it turns out that this convenient choice of parameters also results in the
special case where α = 1 which should return us back to Case 3. The metric becomes

ds2
simplified =−

(
b2

2Λ
sech2(bρ)

)
dt2 +

(
q2b2

2Λ2
sech2(bρ) tanh2(bρ)

)
dρ2

+

(
q2

Λ
tanh2(bρ)

)
dx2, (5.17)

which is precisely that in Eq. (5.11), and the Ricci scalar simplifies to

R =2

(
q sinh (bρ)

b

)−2(
Λ cosh2 (bρ)

b2

)2
[
− 2b2 tanh (bρ) coth (bρ) + 2b2csch2 (bρ)

+ b2sech2 (bρ) (7 + cosh (2bρ)− 4)

]
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=2
csch2 (bρ)

q2
Λ2 cosh4 (bρ)

[
− 2 + 2csch2 (bρ) + sech2 (bρ)

(
3 + 2 cosh2(bρ)− 1

) ]

=
4Λ2

q2
coth2 (bρ) cosh2 (bρ)

[
csch2 (bρ) + sech2 (bρ)

]

=
4Λ2

q2

(
coth4(bρ) + coth2(bρ)

)
, (5.18)

and true enough, we obtain exactly Eq. (5.13) which shows that our solutions are
coherent and concise.

5.2.6 Case 4b: αβ = 1, D = 3, 2α2 < 1

Here, we have instead J(ρ) =
2Λ(1−2α2)

α2b21
sinh2(b1ρ). The Ricci scalar is computed to

be

R =
2

2α2

2α2−1
− 1
α2

(α− 2α3)2 e
2c2ρ

2α2−1

(
αq sinh (b2ρ)

b2

)− 2
α2

((
1
α2 − 2

)
Λ sinh2 (b1ρ)

b2
1

) 2α2

2α2−1

×

[
α4
(
2b1c2 coth (b1ρ) + b2

1csch
2 (b1ρ)

(
−7α2 + α2 cosh (2b1ρ) + 4

)
− 2

(
α2 − 1

)
c2

2

)
− 2

(
2α2 − 1

)
α2b2 coth (b2ρ) (b1 coth (b1ρ) + c2) + 2

(
1− 2α2

)2
b2

2csch
2 (b2ρ)

]
.

(5.19)

Unfortunately, since this case shares the exact same constraint equation as Case 4a,
we cannot make the same convenient choices for the parameters because α = 1 is not
valid for 2α2 < 1 to be true. We may first keep b1 = b2 = b, and try instead to set
c2 = 2b2 which simplifies the constraint equation to

α2

(1− 2α2)
=

1

α2

⇒ α2 = −1±
√

2. (5.20)

But this is also not a valid solution because α, by definition, must be real. Therefore
we do not have any clear choice for the parameters which could greatly simplify our
solutions as in the previous cases. Thus, we shall just leave this case as it is and
conclude this section on singularities.
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Chapter 6

Limiting Behavior and Geodesics of
q = 0 and Λ = 0 Solutions

We have previously shown that the solutions in Cases 1 and 2 are black hole solutions.
This makes them physically interesting and we therefore shift our focus to these
solutions and investigate their limiting behavior and geodesics

6.1 Limiting Cases

6.1.1 Case 1: q = 0, β = 0 to AdS Spacetime

Previously, we have found that a singularity at r = 0 is hidden within the event
horizon at r = r0 for 2Λ

(
β2 − D−1

D−2

)
< 0. However, we deduced this qualitatively

without being meticulous with the mess of prefactors in Eq. (5.7). It is possible
that certain values of the parameters could produce cancellations and change the
hyperbolic functions in the Ricci scalar according to the hyperbolic function identities.
Here, we will consider the special case where β = 0, which is the same as removing
the Liouville coupling from the cosmological constant. The system then becomes
identitical to Lim’s again and we can now check the behavior of the singularities in
this special case. Taking a look at the scalar field from Eq. (4.23),

ϕ = − β

2
(
β2 − D−1

D−2

) lnG±(ρ) +
c+ d

2α− β
ρ,

⇒ ϕβ=0 =
c+ d

2α
ρ, (6.1)
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we may further split this into two cases:

1. Setting c = d will help us eliminate one arbitrary constant and could perhaps
recover Lim’s AdS naked planar singularity. This choice is also motivated to
help cancel some (c− d) factors seen in the Ricci scalar in Eq. (5.7).

2. Setting c = −d will turn off the scalar field and we should recover back a metric
which reflects a similar AdS spacetime as Ren’s.

6.1.1.1 For c = −d, Zero Scalar Field

The metric from Eq. (4.21) simplifies to

ds2 =− e2cρ

(
2Λ

b2

(
D − 1

D − 2

)
cosh2(bρ)

)− 1
D−1

dt2 + e4cρ

(
2Λ

b2

(
D − 1

D − 2

)
cosh2(bρ)

)−1

dρ2

+
n∑
i=1

e
2cρ
D−2

(
2Λ

b2

(
D − 1

D − 2

)
cosh2(bρ)

)− 1
D−1

dx2
i . (6.2)

The constraint from Eq. (4.20) also simplifies to

c2 =
b2(D − 2)2

(D − 1)2
. (6.3)

Plugging the parameters into the Ricci scalar gives us

R =
Λ

b2(D − 2)2

[
b2(D − 2)

(
(D − 2) cosh (2bρ) + 3D − 2

)
− 2c2(D − 1)2 cosh2 (bρ)

]
= Λ

[
(D − 2)

(
2 cosh2 (b1ρ)− 1

)
+ 3D − 2

D − 2
− 2 cosh2 (b1ρ)

]
=

2DΛ

D − 2
, (6.4)

where we have used the constraint equation in the first to second step. Indeed, we see
that removing the Liouville coupling and turning off the scalar field for our solution
recovers the exact Ricci scalar for flat AdS spacetime. This shows that our solution
for Case 1 is a valid spacetime since it reproduces the expected result in this particular
limit.
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6.1.1.2 For c = d, Non-Zero Scalar Field

Here, the metric simplifies to

ds2 =−
(

2Λ

b2

(
D − 1

D − 2

)
cosh2(bρ)

)− 1
D−1

dt2 +

(
2Λ

b2

(
D − 1

D − 2

)
cosh2(bρ)

)−1

dρ2

+
n∑
i=1

(
2Λ

b2

(
D − 1

D − 2

)
cosh2(bρ)

)− 1
D−1

dx2
i , (6.5)

and the constraint is instead

c2
2 =

α2b2(D − 2)

D − 1
. (6.6)

However, since the parameters α and c have become cancelled off in the metric, the
constraint equation basically implies that b can take on any real value (not imaginary
because c2 and α2 are necessarily positive). The Ricci scalar from Eq. (5.7) becomes

R =2

(
sech2 (bρ)

b2(D − 2)

Λ (D − 1)

)−1
(
b2(D − 1)

(
Dsech2 (bρ) +D − 2

)
(D − 1)2

)
=

2ΛD

(D − 2)︸ ︷︷ ︸
AdS part

+ 2Λ
(
cosh2 (bρ)

)︸ ︷︷ ︸
presence of scalar field

. (6.7)

The additional term created by the non-zero scalar field is similar to the situation
occuring back in Chapter 3, where we calculated the Rρρ Ricci tensor component
for Lim’s metric in Eq. (3.19) and found it to be the AdS part with a scalar field
contribution. Again, using the coordinate mapping, the cosh function tells us that
we have curvature singularities at r = 0 and r = r0. This is the same result obtained
by Lim, where the presence of a scalar field causes the original event horizon of the
AdS black hole at r = r0 to turn into a singularity.

6.1.1.3 A Final Note

We have made several attempts to perform coordinate transformations on our q = 0

metric solution to see if it maps precisely back to the coordinates used by Lim and
Ren. The association of the scalar fields performed in the previous chapter fails to
reproduce Lim’s metric from ours. One possible reason might be due to the incomplete
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mapping of domains between the r-coordinate and ρ-coordinate, since we are unable
to probe the region 0 < r < r0 as mentioned before. Therefore we cannot say for
sure as to whether we might have found the same solution in a different coordinate
system, or a whole new solution altogether.

Nevertheless, we may state with confidence that we have successfully introduced a
further generalization of Lim’s solution in Einstein-Dilaton gravity by introducing the
β coupling parameter and showed that it still reproduces the right singularities in the
case where β = 0.

6.1.2 Case 2: Λ = 0 to the Melvin Solution

There are a wide variety of charged solutions in EMD gravity – some of the simpler
ones include the Bañados, Teitelboim and Zanelli (BTZ) black hole [26] and the
aforementioned Reissner-Nordström metric. Unfortunately, the BTZ black hole is a
solution for the case of a negative cosmological constant which does not apply for Case
2. On the other hand, the Reissner-Nordström metric possesses spherical symmetry
which is absent in our solution. Taking a look at our previously found metric from
Eq. (4.24),

ds2 =− e−
2α(d−c)
2α−β ρH(ρ)

D−3

(D−3+(D−2)α2)dt2 + e−2dρH(ρ)
− 1

(D−3+(D−2)α2)dρ2

+
n∑
i=1

e−
2

D−2(α(d+c)−βd2α−β )ρH(ρ)
− 1

(D−3+(D−2)α2)dx2
i ,

H(ρ) =
2q2

b2

(
D − 3

D − 2
+ α2

)
sinh2(bρ),

we notice that the exponent of the H(ρ) function in the gρρ and gii terms are iden-
tical. The Melvin solution [10] coincidentally exhibits a very similar appearance. In
addition, it solves the exact same EMD action in which we are considering for Case
2 – where Λ = 0. In 4-dimensions and using cylindrical coordinates, the electrically-
charged Melvin solution (in our symbol convention) is given by [8]

ds2
Melvin = L(r)

2
1+2α2 (dr2 + dz2 − dt2) + L(r)

− 2
1+2α2 r2dφ2, (6.8)

where

e−2α(ϕ−ϕ0) = L(r)
4α2

1+2α2 , A = eαϕ0
Qr2

2L(r)
,
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L(r) = 1 +

(
1 + 2α2

4

)
Q2r2. (6.9)

All the symbols represent the same quantities as ours, and Q is Melvin’s charge
parameter. We first begin by setting D = 4 and also choose c = d to simplify some
factors. Our solutions become

Metric: ds2 = −H(ρ)
2

1+2α2 dt2 + e−cρH(ρ)
− 2

1+2α2 (e−cρdρ2 + dx2
1 + dx2

2),

(6.10a)

Scalar field: ϕ = − α

(1 + 2α2)
lnH(ρ), (6.10b)

Gauge potential: A = − b coth (bρ)

q (1 + 2α2)
, (6.10c)

Constraint: c =
2b√

1 + 2α2
, (6.10d)

where H(ρ) = q2

b2
(1 + 2α2) sinh2(bρ). We first note that the scalar fields have very

similar forms which can be seen if we cast ours into Melvin’s form in Eq. (6.9):

e−2αϕ =

(
sinh (bρ)

√
q2 (2α2 + 1)

b2

) 4α2

2α2+1

, (6.11)

⇒ L(r) = sinh (bρ)

√
q2 (2α2 + 1)

b2
, (6.12)

where ϕ0 = 0. Although this gives us a relationship between the r and ρ-coordinates,
it is not a one-to-one mapping because the r-coordinate becomes undefined when
ρ → 0. As such, we were unable to transform our solution into the exact form in
Eq. (6.8) using the above coordinate transformation. Nonetheless, we still see many
similarities between our solution and Melvin’s and thus, we will show that we can
still recover a similar form using a different approach.

We begin by introducing the following coordinate transformations

t→ ix1, x1 → it, r̄ =
2

c
e−

1
2
cρ,

dt2 → −dx2
1, dx2

1 → −dt2, dr̄2 = e−cρdρ2. (6.13)
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The first two transformations swaps one of the spatial coordinates with the temporal
one to match Melvin’s solution. The third transformation allows us to factor out the
e−cp in front of dρ2 in Eq. (6.10a). We may also rewrite the H-function as

H(r) =
2q

c

1

2
(ebρ − e−bρ)

=
q

c

(cr
2

)√1+2α2

((
2

cr

)2
√

1+2α2

− 1

)
, (6.14)

where we have used the constraint in Eq. (6.10d) to substitute the constant b. Putting
everything together, the new metric becomes

ds2 =
c2r2

4

[
2q

c2r

(cr
2

)√1+2α2

((
2

cr

)2
√

1+2α2

− 1

)]2

dx2
1

+

[
2q

c2r

(cr
2

)√1+2α2

((
2

cr

)2
√

1+2α2

− 1

)]−2

(dr2 − dt2 + dx2
2). (6.15)

Rescaling x1 → 2
c
x1, we can write the metric into a Melvin-like form

ds2 =r2K(r)−2dx2
1 +K(r)2(dr2 − dt2 + dx2

2), (6.16)

where

K(r) =
c

q

(
2

cr

)√1+2α2−1
((

2

cr

)2
√

1+2α2

− 1

)−1

. (6.17)

Although our metric has now been put into a Melvin-like form, it does not produce
similar limiting results as Melvin’s solution. For example, turning off the electric field
in Melvin’s solution is done by setting Q = 0 ⇒ L(r) = 1 and the resulting metric
simply becomes Minkowski spacetime in cylindrical coordinates.

Looking at our gauge potential solution in Eq. (6.10c), we have the relationship
A ∝ 1

q
. It is more intuitive to have a charge parameter which turns off the electric

field when it is set to zero. We may do this by simply redefining 1
q
≡ Q, then we have

K(r) = cQ

(
2

cr

)√1+2α2−1
((

2

cr

)2
√

1+2α2

− 1

)−1

. (6.18)
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We see that setting Q = 0 gives us K(r) = 0 and thus produces diverging terms in
the metric as opposed to Melvin’s solution. This is again, likely due to unfortunate
coordinate choices. Nonetheless, we will show that in a specific limiting case, our
solution may also reduce back to Minkowski spacetime.

Notice that if we choose α = 0, the prefactor in Eq. (6.18) vanishes and we have

K(r) = cQ

(
c2r2

4− c2r2

)
. (6.19)

Again, introducing the following coordinate transformations to absorb the charge
parameter into the coordinates,

r → r

cQ
, t→ t

cQ
, x1 → c2Q2x1, x2 →

x2

cQ
, (6.20)

our metric becomes

ds2 =r2K̄(r)−2dx2
1 + K̄(r)2(dr2 − dt2 + dx2

2), (6.21)

with

K̄(r) =
1

4Q2

r2
− 1

. (6.22)

Thus, in the limit where Q→ 0,

lim
Q→0

K̄2 = 1. (6.23)

Therefore, we have successfully found a limiting case for Λ = 0 whereby our solution
reduces back to Minkowski spacetime as expected in the absence of an electric field.
While this should technically also be true for any value of α, we are actually free
to choose any α since turning off the EM fields corresponds to F 2 = 0 in the EMD
action in Eq. (2.1) and therefore regardless of the coupling constant, the EM term
still vanishes.

6.2 Geodesics

In this section, we will be investigating the geodesic structures of both solutions. A
geodesic may be described by a trajectory xµ(τ), where τ is some parameter along
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the curve. The invariant Lagrangian for geodesic motion is given by [27]

L =
1

2
gµν

dxµ

dτ

dxν

dτ
=
ε

2
, (6.24)

where

ε =


−1, For time-like geodesics

0, For null/photon geodesics
+1, For space-like geodesics

(6.25)

The above may also be familiarly known as the normalization of 4-velocity in (3+1)-
dimensions. Applying the Euler-Lagrange equation on Eq. (6.24) gives rise to the
geodesic equation which is known in the following two equivalent forms

d2xα

dτ 2
+ Γαµν

dxµ

dτ

dxν

dτ
= 0 or

d

dτ

(
gαµ

dxµ

dτ

)
− 1

2
(∂αgµν)

dxµ

dτ

dxν

dτ
= 0. (6.26)

The (D−1) Killing vectors in our metric ansatz gives rise to (D−1) conserved quan-
tities, which can easily be seen by deriving the geodesic equations for the coordinates
t and xi:

gtt
dt

dτ
= E

⇒ dt

dτ
= −Ee−2F0 , (6.27)

gii
dxi

dτ
= Pi

⇒ dxi

dτ
= Pie

−2Fi , (6.28)

where E and the Pi’s are quantities which are conserved along all geodesic trajectories
in our spacetime, arising from the direct integration of Eq. (6.26). These may be
interpreted as the energy and xi-direction momenta of the test particle respectively.
The geodesic equation for the ρ-coordinate is naturally more complicated and is dif-
ficult to interpret. We thus obtain an equivalent equation by plugging in Eq. (6.27)
and Eq. (6.28) directly into the Lagrangian in Eq. (6.24) which gives rise to the first
order equation

−E2e−2F0 + e2H

(
dρ

dτ

)2

+
n∑
i=1

(
P 2
i e
−2Fi

)
= ε

⇒
(
dρ

dτ

)2

= e−2H−2F0
(
E2 − V 2

eff

)
, (6.29)
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where we have defined the effective potential to be

V 2
eff = εe2F0 +

n∑
i=1

(
P 2
i e

2F0−2Fi
)

(6.30)

For simplicity, we shall consider Cases 1 and 2 in 4-dimensions in the following sec-
tion. We will also only consider time-like geodesics (ε = −1), because the first term
often becomes a multiple of an exponential function and a hyperbolic function and
thus tuning the parameters allows one to dominate the other, resulting in interesting
features in the graphs. The null geodesic (ε = 0) effective potentials are not as rich
in features without the first term.

6.2.1 Effective Potentials of Case 1: q = 0

We have previously discussed two special situations in this case at the beginning of
this chapter – setting the arbitrary constants to c = d (non-zero scalar field) and
c = −d (zero scalar field). The constraint equations from Eq. (4.20) for both these
choices reduce to

c = d : c2 =
4b2(β − 2α)2

(2β2 − 3) (8 + 5β2)
, (6.31)

c = −d : c2 =
4b2

3(2β2 − 3)
. (6.32)

We see that we have the requirement 2β2 > 3 to ensure a positive value for c2. This
is equivalent to β2 > D−1

D−2
for D = 4. Therefore, choosing a positive cosmological

constant would result in the sinh function in our metric whereas a negative cosmolog-
ical constant would produce a cosh function instead, as discussed in Chapter 4. The
effective potentials are then obtained by substituting our solutions into Eq. (6.30)
and are found to be

V 2
eff, q=0

∣∣∣∣
c=d

= e
− 4bβρ√

(2β2−3)(8+5β2)G(ρ)
1

2β2−3 +
2∑
i=1

(
P 2
i e
− 6bβρ√

(2β2−3)(8+5β2)

)
, (6.33)

V 2
eff, q=0

∣∣∣∣
c=−d

= e
4bρ√

3(2β2−3)G(ρ)
1

2β2−3 +
n∑
i=1

(
P 2
i e
− 6bρ√

3(2β2−3)

)
, (6.34)

where

G(ρ) =

{
Λ
b2

(2β2 − 3) sinh2(bρ), for Λ > 0,

− Λ
b2

(2β2 − 3) cosh2(bρ), for Λ < 0.
(6.35)
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6.2.2 Effective Potential of Case 2: Λ = 0

In the same way, we also first look at the constraint from Eq. (4.25) for Case 2 where
we also simplify with c = d and c = −d (here there is no physical difference between
the choices, it is purely a mathematical simplification):

c = d : c2 =
4b2

(2α2 + 1)
, (6.36)

c = −d : c2 =
4b2(β − 2α)2

(2α2 + 1) (8αβ + β2 − 8)
. (6.37)

We expect that if Λ = 0, then the Liouville coupling constant β should either drop
off or cancel out in the metric solution. As such, we see from the above that c = −d
is not a valid choice since we still have a dependence on β. Therefore we shall only
consider the c = d case. For Λ = 0, the H(ρ) function has a prefactor of q2 which
cannot take on negative values. Hence we only need to consider one possible effective
potential

V 2
eff,Λ=0 = H(ρ)

1
1+2α2 +

2∑
i=1

(
P 2
i e

c2ρH(ρ)
2

(1+2α2)

)
, (6.38)

where

H(ρ) =
q2

b2

(
1 + 2α2

)
sinh2(bρ). (6.39)

6.2.3 Plots of the Effective Potentials

Here, we present the graphical plots of the effective potentials for both solutions. For
each plot, only one constant will be varied to show how it affects the general shape of
the effective potential. The constants we are interested in varying will be the Liouville
coupling constants α and β, and b. All other constants are merely scaling factors and
do not change the shape of the graph. As mentioned before, α and β will only take
on positive values, whereas b is free to take on any real value (or even imaginary,
which we will only discuss about in Chapter 7 ). There are many possible numerical
combinations given the number of free parameters, but we shall only present a handful
which we have found to display interesting features.
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Firstly, note that we have scaled some of the graphs differently along the ρ-axis
to zoom into the main features of the graph. We remind the reader that in our
coordinate, ρ → −∞ approaches the origin and ρ = 0 is far away from the origin.
We are generally interested in features such as potential wells, potential barriers
and maximas/minimas in potential plots. Potential wells depict bounded states,
potential barriers present regions which are not accessible by the test particles, and
maximas/minimas represent unstable/stable equilibrium orbits respectively.

We first take a look at Figure 6.1 and Figure 6.2 which have opposite signs for the
cosmological constant with the existence of a scalar field. We have found that for a
very specific range of 1.57 ≤ β ≤ 1.59, the potential graph transits from a repulsive
source (pushing away from the origin) to an attractive source (pulling in towards the
origin) as β increases. This is due to the competition between the exponential function
which is decaying with a negative argument, and the sinh and cosh functions which
diverge for large ρ. As a consequence, the existence of a stable orbit also vanishes in
both graphs. For Figure 6.1 with the negative Λ, there is an infinite potential barrier
at ρ=0 whereas Figure 6.2 with the positive Λ possesses another point of unstable
equilibrium near ρ = 0.

Figure 6.3 and Figure 6.4 shows how the sign of b affects the shape of the effective
potential as it approaches the origin. Positive values depict a repulsive system, whilst
negative values changes the system to become an attractive one.

In the absence of a scalar field, the curves in Figure 6.5, Figure 6.6, Figure 6.7 and
Figure 6.8 all approach infinity as ρ → −∞. For a negative Λ, this is in agreement
with the well-known AdS case [28]. In Figure 6.5 and Figure 6.6, we also see that
there exists a point of stable equilibrium which disappears as β increases from the
minimum value of β2 > 3.

The last three plots in Figure 6.9, Figure 6.10 and Figure 6.11 are for Case 2 with
Λ = 0. We see that when b takes on a positive value in Figure 6.10, decreasing α
leads to the disappearance of the unstable equilibrium and also changes the system
from an attractive one to a repulsive one.
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Figure 6.1: Case 1: q = 0, non-zero scalar field; P1 = P2 = 1, b = −1, Λ = −5.

Figure 6.2: Case 1: q = 0, non-zero scalar field; P1 = P2 = 1, b = −1, Λ = +5.

Figure 6.3: Case 1: q = 0, non-zero scalar field; P1 = P2 = 1, β = 2, Λ = −5.
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Figure 6.4: Case 1: q = 0, non-zero scalar field; P1 = P2 = 1, β = 2, Λ = +5.

Figure 6.5: Case 1: q = 0, zero scalar field; P1 = P2 = 1, b = −1, Λ = −5.

Figure 6.6: Case 1: q = 0, zero scalar field; P1 = P2 = 1, b = −1, Λ = +5.
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Figure 6.7: Case 1: q = 0, zero scalar field; P1 = P2 = 1, β = 2, Λ = −5.

Figure 6.8: Case 1: q = 0, zero scalar field; P1 = P2 = 1, β = 2, Λ = +5.

Figure 6.9: Case 2: Λ = 0; P1 = P2 = 1, b = −1, q = 1.
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Figure 6.10: Case 2: Λ = 0; P1 = P2 = 1, b = 1, q = 1.

Figure 6.11: Case 2: Λ = 0; P1 = P2 = 1, α = 1, q = 1.
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Conclusion

7.1 Summary

The main focus of this project is to investigate solutions in EMD gravity and to
also search for new solutions in EMD gravity. As mentioned in the introduction, we
have explained how the AdS/CFT correspondence has sparked much research in the
search for solutions in general relativity and therefore motivated us to undertake this
project.

We began by showing in Chapter 3 how Lim’s solution for Einstein-Dilaton gravity
was linked to Ren’s solution in pure Einstein gravity by turning off the scalar field.
Mathematically, we showed how this was closely tied to Kasner’s conditions which
accompanied Ren’s metric.

Following which, we derived an entire class of solutions in EMD gravity under a
specific set of assumptions introduced in Chapter 4 which was inspired by Maki and
explained the motivation behind each assumption. We have extended her methods to
arbitrary dimensions and showed that there were only four possible ways to decouple
the field equations such that we could solve them using the Liouville differential
equation. Within each solution case, some were further split into two special cases,
depending on the overall signs of the prefactors.

Chapter 5 provides insight on how we could interpret our coordinate choice by making
a comparison between our scalar field solution for Case 1 to Lim’s scalar field in
Einstein-Dilaton gravity. We obtained a relationship between our coordinates and his,
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which allowed for a qualitative deduction for the singularities present in our solutions.
We then showed that Cases 1 and 2 were in agreement with the Cosmic Censorship
Hypothesis and are therefore black hole solutions. We also briefly examined Cases 3
and 4 for simple choices of the arbitrary constants and showed that their curvatures
were non-trivial.

In Chapter 6, we explained that we were unable to find an appropriate coordinate
transformation which could map our solution back to Lim’s due to the incomplete
mapping between our ρ-coordinate and Lim’s r-coordinate. Nevertheless, we had
obtained a solution for a more general case involving a Liouville coupling to the
cosmological constant which reproduced the correct curvature when reducing it back
to simpler systems. We also successfully showed that our solution for Case 2 resembled
the Melvin solution and were able to express it in an identical form. Again, an
incomplete mapping of coordinates caused us to be unsuccessful in obtaining an exact
coordinate transformation. However, by rescaling our coordinates, we were able to
show that our solution reduces back to Minkowski spacetime in the limit Q → 0,
which was in agreement with the Melvin solution.

We also investigated the geodesic structure of both cases and presented the plots of the
effective potentials. We discovered various interesting features such as the particular
range of 1.57 ≤ β ≤ 1.59 for Case 1 in the presence of a scalar field which produced
a transition from a repulsive system to an attractive one. A similar situation occurs
when changing the sign of b in the same case. We also see this happening in Case
2 with a positive b, where decreasing the value of α changes the vanishing effective
potential at ρ→ −∞ to a diverging one.

7.2 Future Work

7.2.1 Trigonometric Functions

In our derivation of our solutions in Chapter 4, we used the hyperbolic functions as the
solutions to the Liouville equation. The arbitrary constant b arising from integration
is not required to be real. As such, suppose we chose b = ib̄ such that b2 = −b̄2,
recalling the relationship between the hyperbolic and trigonometric functions:

sinh(ix) = i sin(x),
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cosh(ix) = cos(x),

the Liouville differential equation solutions could then be rewritten as

Positive k: φ+(ρ) = − ln

(√
k

b̄
cos(b̄ρ)

)
, (7.1)

Negative k: φ−(ρ) = − ln

(
i

√
−k
b̄

sin(b̄ρ)

)
. (7.2)

Now obviously Eq. (7.2) is completely unphysical with an imaginary argument. How-
ever, Eq. (7.1) is a perfectly legitimate solution which could exhibit totally different
features from the associated sinh solution for positive k.

7.2.2 Coordinate Choice

As evident in many of our chapters, our choice of coordinates happens to be very
difficult to map back to known coordinate systems despite of the similar forms of
our solutions when comparing to other authors. This appears to boil back to our
metric ansatz being expressed in exponential functions. While this drastically sim-
plified earlier calculations, it turned out to make it difficult for us to find coordinate
transformations to map our solutions to others even though they often seem highly
likely to be the same. This appears to come from the inversions of the exponential
functions producing logarithmic functions which do not behave very well when the
arguments become negative.

A different choice of metric ansatz, perhaps a power series or Fourier series, could pos-
sibly lead to newer insights into EMD gravity. In addition, we could also change the
coupling functions to match with the metric ansatz since that was how we managed
to solve our differential equations.
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Variation of EMD Action

We begin with the action

S =
1

2

∫
dDx
√
−g
(
R− 2Λe2βϕ − (∇ϕ)2 − e−2αϕF 2

)
. (A.1)

Varying the action gives us

δS =
1

2

∫
dDxδ

(√
−g
) (
R− 2Λe2βϕ − (∇ϕ)2 − e−2αϕF 2

)
+

1

2

∫
dDx
√
−g
(
δR− δ

(
2Λe2βϕ

)
− δ(gµν∇µϕ∇νϕ)− δ(e−2αϕF 2)

)
. (A.2)

A.1 Varying Each Term

A.1.1 Metric Determinant

We first begin with Jacobi’s formula [29] for differentiating a determinant

δ(g) = ggµνδgµν . (A.3)

Then we have

δ
(√
−g
)

= −1

2

1√
−g

δ(g)

= −1

2

√
−ggµνδgµν

= −1

2

√
−ggµνδgµν . (A.4)

53



54 | A.1 Varying Each Term

A.1.2 Ricci Scalar

The variation is

δ(R) = δ(gµνRµν)

= Rµνδg
µν + gµνδRµν

= Rµνδg
µν + gµν

(
∇ρ

(
δΓρνµ

)
−∇ν

(
δΓσσµ

))
= Rµνδg

µν +∇ρ(g
µνδΓρνµ − gµρδΓσσµ)︸ ︷︷ ︸
total derivative

, (A.5)

where we used the Palatini identity [30] in the third step. For the last step, we used
the metric compatibility of the covariant derivative, ∇ρg

µν = 0, and also swapped
dummy indices ν → ρ for the last term so that we may factor out covariant derivative.

A.1.3 Coupled Cosmological Constant

The variation of the coupled cosmological constant is simply

δ
(
2Λe2βϕ

)
= 4Λβe2βϕδϕ. (A.6)

A.1.4 Scalar Field

The variation is

δ(gµν∇µϕ∇νϕ) = (∇µϕ∇νϕ)δgµν + gµν∇µδϕ∇νϕ+ gµν∇νδϕ∇µϕ

= (∇µϕ∇νϕ)δgµν + 2∇µδϕ∇µϕ

= (∇µϕ∇νϕ)δgµν + 2∇µ(δϕ∇µϕ)︸ ︷︷ ︸
total derivative

−2(∇µ∇µϕ)δϕ, (A.7)

where we used integration by parts in the last step.

A.1.5 Coupled EM Tensor

We first apply the product rule to get

δ(e−2αϕF 2) = −2αe−2αϕF 2δϕ+ e−2αϕδF 2. (A.8)
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To proceed, we recall that

F 2 = F µνFµν

= gµσgνβFσβFµν . (A.9)

We also have the definition for the EM tensor

Fµν = ∇µAν −∇νAµ

= ∂µAν −����ΓσµνAσ − ∂νAµ + ����ΓσνµAσ

= ∂µAν − ∂νAµ, (A.10)

where the Christoffel symbols cancel due to symmetries in the lower indices. The
final form of the EM tensor is the most commonly used, but we bear in mind that we
have to keep the covariant derivative notation in the following steps. Therefore we
have

δF 2 = gνβFσβFµνδg
µσ + gµσFσβFµνδg

νβ + gµσgνβFµνδFσβ + gµσgνβFσβδFµν

= 2gνβFσβFµνδg
µσ + 2gµσgνβFµνδFσβ

= 2FσβF
β
µ δg

µσ + 2F σβδFσβ. (A.11)

The second term in Eq. (A.11) may be rewritten as

2F σβδFσβ = 2F σβδ(∇σAβ −∇βAσ)

= 2F σβ(∇σδAβ −∇βδAσ) (A.12)ySince Fσβ is anti-symmetric, −∇βδAσ = ∇σδAβ

= 4F σβ∇σδAβ. (A.13)

Putting everything back into Eq. (A.8), we get

δ(e−2αϕF 2) =− 2αe−2αϕF 2δϕ+ e−2αϕ

(
2FσβF

β
µ δg

µσ + 4F σβ∇σδAβ

)
=− 2αe−2αϕF 2δϕ+ 2e−2αϕFνβF

β
µ δg

µν − 4(∇σe
−2αϕF σβ)δAβ

+ 4∇σ(e−2αϕF σβδAβ)︸ ︷︷ ︸
Full derivative

. (A.14)
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A.2 Final Variation of the EMD Action

The total derivative terms in a few of the expressions above are boundary terms when
integrated. The variation of each field variable is only done within a neighbourhood
of the boundary and therefore the boundary terms do not contribute to the variation
of the action. Hence, we may drop all total derivative terms. We obtain the desired
variation after substituting everything back into Eq. (A.2):

δS =
1

2

∫
dDx
√
−g

[(
Rµν −

1

2
gµνR + Λe2βϕgµν +

1

2
gµν(∇ϕ)2 −∇µϕ∇νϕ

− 2e−2αϕFνλF
λ
µ +

1

2
e−2αϕF 2gµν

)
δgµν − 2

(
(∇2ϕ) + αe−2αϕF 2 − 2Λβe2βϕ

)
δϕ

− 4

(
∇σe

−2αϕF σλ

)
δAλ

]
. (A.15)
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Calculation of Christoffel Symbols

Our metric ansatz is given as

ds2 = −e2F0(ρ)dt2 + e2H(ρ)dρ2 +
n∑
i=1

e2Fi(ρ)dx2
i . (B.1)

The Christoffel symbols may be calculated from

Γκµν =
1

2
gκλ(∂µgλν + ∂νgλµ − ∂λgµν). (B.2)

In the absence of torsion, the Christoffel symbols are symmetric, ie.

Γκij = Γκji. (B.3)

Even though we are dealing with n+ 2 dimensions, all the gii components are essen-
tially of the same form. Therefore, rather than explicitly calculating the Christoffel
symbols with all n-terms, we shall simply reduce the dimensions to four and call
gii = e2Fi and gjj = e2Fj with i 6= j. Thus we are only required to find the following
components: 

Γκtt Γκti Γκtj Γκtρ
Γκii Γκij Γκiρ

Γκjj Γκjρ
Γκρρ

 . (B.4)

Since the metric is diagonal and only dependent on the ρ-coordinate, we immediately
have

Γκti = Γκtj = Γκij = 0. (B.5)
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Explicitly calculating all other Christoffel symbols, we get:

Γκtt =
1

2
gκλ(∂tgλt + ∂tgλt − ∂λgtt)

=
1

2
gκρ
[
−∂ρ(−e2F0)

]
= gκρe2F0F ′0, (B.6)

Γκii =
1

2
gκλ(∂igλi + ∂igλi − ∂λgii)

=
1

2
gκρ
[
−∂ρ

(
e2Fi
)]

= −gκρe2FiF ′i , (B.7)

Γκjj =
1

2
gκλ(∂jgλj + ∂jgλj − ∂λgjj)

=
1

2
gκρ
[
−∂ρ

(
e2Fj

)]
= −gκρe2FjF ′j , (B.8)

Γκρρ =
1

2
gκλ(∂ρgλρ + ∂ρgλρ − ∂λgρρ)

=
1

2
gκρ
[
∂ρ
(
e2H
)]

= gκρe2HH ′, (B.9)

Γκtρ =
1

2
gκλ(∂tgλρ + ∂ρgλt − ∂λgtρ)

=
1

2
gκt
[
∂ρ
(
−e2F0

)]
= −gκte2F0F ′0, (B.10)

Γκiρ =
1

2
gκλ(∂igλρ + ∂ρgλi − ∂λgiρ)

=
1

2
gκi
[
∂ρ
(
e2Fi
)]

= gκie2FiF ′i , (B.11)

Γκjρ =
1

2
gκλ(∂jgλρ + ∂ρgλj − ∂λgjρ)

=
1

2
gκj
[
∂ρ
(
e2Fj

)]
= gκje2FjF ′j . (B.12)

From Eq. (B.7), Eq. (B.8), Eq. (B.11) and Eq. (B.12), it is clear that the Christoffel
symbols involving the xi and xj coordinates are the same. Therefore, generalizing
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back to D-dimensions, the non-zero Christoffel symbols are

Γρtt = e2F0−2HF ′0, (B.13a)

Γρii = −e2Fi−2HF ′i , (B.13b)

Γρρρ = H ′, (B.13c)

Γttρ = Γtρt = F ′0, (B.13d)

Γiiρ = Γiρi = F ′i , (B.13e)

where i = 1, 2, . . . , n.
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Calculating Ricci Tensor Components

The Ricci tensor is given by

Rσν = ∂µΓµνσ − ∂νΓµµσ + ΓµµλΓ
λ
νσ − ΓµνλΓ

λ
µσ. (C.1)

We are only interested in the diagonal components since our metric ansatz is diago-
nal. Before proceeding, we may again simplify the problem by considering the four
dimensional case again. Thus, we get the following components:

Rtt = ∂µΓµtt −���∂tΓ
µ
µt + ΓµµλΓ

λ
tt − ΓµtλΓ

λ
µt

= ∂ρΓ
ρ
tt + ΓiiρΓ

ρ
tt + ΓjjρΓ

ρ
tt + ΓρρρΓ

ρ
tt +

��
��ΓttρΓ
ρ
tt − ΓρttΓ

t
ρt −��

��ΓttρΓ
ρ
tt

= [e2F0−2H(2F ′0 − 2H ′)F ′0 + e2F0−2HF ′′0 ] + [e2F0−2HF ′0(F ′i + F ′j +H ′ − F ′0)]

= e2F0−2H [2F ′20 − 2H ′F ′0 + F ′′0 + F ′iF
′
0 + F ′jF

′
0 +H ′F ′0 − F ′20 ]

= e2F0−2H [F ′20 −H ′F ′0 + F ′′0 + F ′0F
′
i + F ′0F

′
j ], (C.2)

Rii = ∂µΓµii −���∂iΓ
µ
µi + ΓµµλΓ

λ
ii − ΓµiλΓ

λ
µi

= ∂ρΓ
ρ
ii + ��

��ΓiiρΓ
ρ
ii + ΓjjρΓ

ρ
ii + ΓρρρΓ

ρ
ii + ΓttρΓ

ρ
ii −��

��ΓρiiΓ
i
ρi − ΓiiρΓ

ρ
ii

= [−e2Fi−2HF ′i (2F
′
i − 2H ′)− e2Fi−2HF ′′i ] + [−e2Fi−2HF ′i (F

′
j +H ′ + F ′0 − F ′i )]

= −e2Fi−2H [F ′2i −H ′F ′i + F ′′i + F ′iF
′
j + F ′iF

′
0], (C.3)

Rjj = ∂µΓµjj −�
��∂jΓ
µ
µj + ΓµµλΓ

λ
jj − ΓµjλΓ

λ
µj

= ∂ρΓ
ρ
jj + ΓiiρΓ

ρ
jj +

�
���ΓjjρΓ

ρ
jj + ΓρρρΓ

ρ
jj + ΓttρΓ

ρ
jj −�

���ΓρjjΓ
j
ρj − ΓjjρΓ

ρ
jj

= [−e2Fj−2HF ′j(2F
′
j − 2H ′)− e2G−2HG′′] + [−e2Fj−2HF ′j(F

′
i +H ′ + F ′0 − F ′j)]

= −e2Fj−2H [F ′2j −H ′F ′j + F ′′j + F ′jF
′
i + F ′jF

′
0], (C.4)
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Rρρ = ∂µΓµρρ − ∂ρΓµµρ + ΓµµλΓ
λ
ρρ − ΓµρλΓ

λ
µρ

=
���∂ρΓ

ρ
ρρ − ∂ρΓttρ − ∂ρΓiiρ − ∂ρΓ

j
jρ −���∂ρΓ

ρ
ρρ + ΓiiρΓ

ρ
ρρ + ΓjjρΓ

ρ
ρρ + ����ΓρρρΓ

ρ
ρρ + ΓttρΓ

ρ
ρρ

− ΓiρiΓ
i
iρ − ΓjρjΓ

j
jρ −����ΓρρρΓ

ρ
ρρ − ΓtρtΓ

t
tρ

= −F ′′0 − F ′′i − F ′′j +H ′(F ′i + F ′j + F ′0)− F ′2i − F ′2j − F ′20 . (C.5)

By observation, there is a clear pattern in which the i and j-components of the metric
contribute to the Ricci tensor components. Therefore, we can easily generalize this
to D-dimensions and obtain

Rtt = e2F0−2H

(
F ′′0 −H ′F ′0 + F ′0

n∑
i=0

F ′i

)
, (C.6a)

Rii = −e2Fi−2H

(
F ′′i −H ′F ′i + F ′i

n∑
j=0

F ′j

)
, (C.6b)

Rρρ =
n∑
i=0

(H ′F ′i − F ′′i − F ′2i ). (C.6c)
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Verification of Ren’s and Lim’s
Metric Solutions

D.1 Ren’s Solution

Ren’s metric is given as

ds2
Ren =

l2

r2

(
−fptdt2 +

dr2

f
+

n∑
i=1

fpidx2
i

)
, f = 1−

(
r

r0

)n+1

, (D.1)

where the Kasner exponents (pt := p0) satisfy
n∑
i=0

pi = 1, (D.2)

n∑
i=0

p2
i = 1. (D.3)

We first perform the following coordinate transformation for ease of calculations:

ρ = − ln r,

⇒ dρ2 =

(
−1

r
dr

)2

=
1

r2
dr2, (D.4)

⇒ 1

r2
= e2ρ.

Thus the metric after transformation is

ds2
Ren = −l2e2ρfptdt2 +

l2

f
dρ2 + l2

n∑
i=1

e2ρfpidx2
i . (D.5)
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Comparing the metric components to our metric ansatz, we see that

e2F0 = l2e2ρfpt

⇒ F0 = ρ+
pt
2

ln f + ln l, (D.6a)

e2H =
l2

f

⇒ H = −1

2
ln f + ln l, (D.6b)

e2Fi = l2e2ρfpi

⇒ Fi = ρ+
pi
2

ln f + ln l. (D.6c)

Before proceeding, we remind the reader that all derivatives are with respect to the
ρ-coordinate. Thus, we also have to express the function f in the new coordinates
which gives us

f(ρ) = 1−
(
e−ρ

e−ρ0

)n+1

= 1− e(ρ0−ρ)(n+1), (D.7)

f ′(ρ) =
df

dρ

= (n+ 1)e(ρ0−ρ)(n+1), (D.8)

f ′′(ρ) =
d2f

dρ2

= −(n+ 1)2e(ρ0−ρ)(n+1). (D.9)

Plugging everything into the Ricci tensor component formulas from Eq. (2.14), we
obtain:

Rtt = e2ρfpt+1

[
f ′

2f

(
1 +

pt
2

f ′

f

)
+
pt
2

f ′′f − f ′2

f 2
+

(
1 +

pt
2

f ′

f

) n∑
i=0

(
1 +

pi
2

f ′

f

)]

= e2ρfpt+1

[
f ′

2f
− pt

4

f ′2

f 2
+
pt
2

f ′′

f
+

(
1 +

pt
2

f ′

f

)(
n+ 1 +

1

2

f ′

f

)]
= e2ρfpt+1

[
n+ 1 +

f ′

f
+
pt
2

f ′′

f
+
pt
2

f ′

f
(n+ 1)

]
= e2ρfpt

[
(n+ 1)

(
f +

pt
2
f ′
)

+ f ′ +
pt
2
f ′′
]
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yUsing Mathematica to simplify

= −n+ 1

l2
[
−l2e2ρfpt

]
, (D.10)

Rii = −e2ρfpi+1

[
f ′

2f

(
1 +

pi
2

f ′

f

)
+
pi
2

f ′′f − f ′2

f 2
+

(
1 +

pi
2

f ′

f

) n∑
j=0

(
1 +

pj
2

f ′

f

)]

= −e2ρfpi+1

[
f ′

2f
− pi

4

f ′2

f 2
+
pi
2

f ′′

f
+

(
1 +

pi
2

f ′

f

)(
(n+ 1) +

1

2

f ′

f

)]
= −e2ρfpi

[
f ′

2
− pi

4

f ′2

f
+
pi
2
f ′′ +

(
f +

pi
2
f ′
)(

(n+ 1) +
1

2

f ′

f

)]
= −e2ρfpi

[
f ′ +

pi
2
f ′′ +

(
f +

pi
2
f ′
)

(n+ 1)
]

yUsing Mathematica to simplify

= −n+ 1

l2
[
l2e2ρfpi

]
, (D.11)

Rρρ =
n∑
i=0

[
− f

′

2f

(
1 +

pi
2

f ′

f

)
− pi

2

f ′′f − f ′2

f 2
−
(

1 +
pi
2

f ′

f

)2
]

=
n∑
i=0

[
− f

′

2f
− pi

4

f ′2

f 2
− pi

2

f ′′f − f ′2

f 2
− 1− pi

f ′

f
− p2

i

4

f ′2

f 2

]
= −(n+ 1)

[
f ′

2f
+ 1

]
− 1

4

f ′2

f 2
− 1

2

f ′′f − f ′2

f 2
− f ′

f
− 1

4

f ′2

f 2

= −(n+ 1)

[
f ′

2f
+ 1

]
− 1

2

f ′′

f
− f ′

fyUsing Mathematica to simplify

= −n+ 1

l2
l2

f
. (D.12)

In the above calculations, the Kasner conditions are used in the intermediate steps
to simplify the equations. Therefore, we have showed that Ren’s metric is truely a
solution to the field equation in Eq. (3.4)

Rµν,Ren = −n+ 1

l2
gµν .
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D.2 Lim’s Solution

Lim’s metric with the new coordinates is

ds2
Lim =

l2

r2

(
−f

ν(D−2)+1
D−1 dt2 +

dr2

f
+

n∑
i=1

f
1−ν
D−1dx2

i

)
. (D.13)

Using a similar coordinate transformation as before, this metric may be rewritten as

ds2
Lim = −l2e2ρf

νn+1
n+1 dt2 +

l2

f
dρ2 + l2

n∑
i=1

e2ρf
1−ν
D−1dx2

i , (D.14)

where we have let D = n+ 2. Comparing with our metric again, we obtain

e2F0 = l2e2ρf
νn+1
n+1

⇒ F0 = ρ+
1

2

νn+ 1

n+ 1
ln f + ln l, (D.15a)

e2H =
l2

f

⇒ H = −1

2
ln f + ln l, (D.15b)

e2Fi = l2e2ρf
1−ν
n+1

⇒ Fi = ρ+
1

2

1− ν
n+ 1

ln f + ln l. (D.15c)

Note that for Lim’s metric, all pi 6=0 exponents are the same, while the pt exponent is
different. We therefore separate the time part from the summation terms for clarity.
We shall not assume that any of Kasner’s conditions are satisfied here as well. The
Ricci tensor components are

Rtt =e2ρf
νn+1
n+1

+1

[(
1 +

1

2

νn+ 1

n+ 1

f ′

f

)2

+
f ′

2f

(
1 +

1

2

νn+ 1

n+ 1

f ′

f

)

+
1

2

νn+ 1

n+ 1

f ′′f − f ′2

f 2
+

(
1 +

1

2

νn+ 1

n+ 1

f ′

f

) n∑
i=1

(
1 +

1

2

1− ν
n+ 1

f ′

f

)]

=e2ρf
νn+1
n+1

+1

[(
1 +

1

2

νn+ 1

n+ 1

f ′

f

)2

+
f ′

2f

(
1 +

1

2

νn+ 1

n+ 1

f ′

f

)
+

1

2

νn+ 1

n+ 1

f ′′f − f ′2

f 2

+ n

(
1 +

1

2

νn+ 1

n+ 1

f ′

f

)(
1 +

1

2

1− ν
n+ 1

f ′

f

)]
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=e2ρf
νn+1
n+1

[
f +

νn+ 1

n+ 1
f ′ +

1

4

(
νn+ 1

n+ 1

)2
f ′2

f
+
f ′

2
− 1

4

νn+ 1

n+ 1

f ′2

f
+

1

2

νn+ 1

n+ 1
f ′′

+ nf

(
1 +

1

2

νn+ 1

n+ 1

f ′

f
+

1

2

1− ν
n+ 1

f ′

f
+

1

4

(1− ν)(νn+ 1)

(n+ 1)2

f ′2

f 2

)]

=e2ρf
νn+1
n+1

[
f(n+ 1) + f ′′

(
1

2

νn+ 1

n+ 1

)
+ f ′

(
νn+ 1

n+ 1
+

1

2
+

1

2

n(νn+ 1)

n+ 1
+

1

2

n(1− ν)

n+ 1

)

+
f ′2

4f

(
n

(1− ν)(νn+ 1)

(n+ 1)2
+

(
νn+ 1

n+ 1

)2

− νn+ 1

n+ 1

)]

=e2ρf
νn+1
n+1

[
f(n+ 1) + f ′′

(
1

2

νn+ 1

n+ 1

)
+

f ′

2(n+ 1)
(2νn+ 2 + n+ 1 + νn2 + n+ n− nν)

+
f ′2

4f(n+ 1)2

(
νn2 + n− νn− ν2n2 + ν2n2 + 2νn+ 1− νn2 − νn− n− 1

)︸ ︷︷ ︸
=0

]

=e2ρf
νn+1
n+1

[
f(n+ 1) + f ′′

(
1

2

νn+ 1

n+ 1

)
+

f ′

2(n+ 1)

(
νn2 + νn+ 3n+ 3

) ]
yUsing Mathematica to simplify

=
n+ 1

l2

(
l2e2ρf

νn+1
n+1

)
=− n+ 1

l2
gtt, (D.16)

Rρρ =
n∑
i=1

[
− f

′

2f

(
1 +

1

2

1− ν
n+ 1

f ′

f

)
− 1

2

1− ν
n+ 1

f ′′f − f ′2

f 2
−
(

1 +
1

2

1− ν
n+ 1

f ′

f

)2
]

− 1

2

νn+ 1

n+ 1

f ′′f − f ′2

f 2
− f ′

2f

(
1 +

1

2

νn+ 1

n+ 1

f ′

f

)
−
(

1 +
1

2

νn+ 1

n+ 1

f ′

f

)2

=− nf ′

2f
+
n

4

1− ν
n+ 1

f ′2

f 2
− n

2

1− ν
n+ 1

f ′′

f
− n− n

4

(
1− ν
n+ 1

)2
f ′2

f 2
− n1− ν

n+ 1

f ′

f

− 1

2

νn+ 1

n+ 1

f ′′

f
− f ′

2f
+

1

4

νn+ 1

n+ 1

f ′2

f 2
− 1− 1

4

(
νn+ 1

n+ 1

)2
f ′2

f 2
− νn+ 1

n+ 1

f ′

f

=− (n+ 1)− f ′

f

(
n+ 1

2
+
νn+ 1

n+ 1
+ n

1− ν
n+ 1

)
− f ′′

f

(
n

2

1− ν
n+ 1

+
1

2

νn+ 1

n+ 1

)
+

f ′2

4f 2(n+ 1)

(
n(1− ν)− n1 + ν2 − 2ν

n+ 1
− ν2n2 + 1 + 2νn

n+ 1
+ νn+ 1

)
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=− (n+ 1)− f ′

f

(
3 + n

2

)
− f ′′

f

(
1

2

)
+

f ′2

4f 2(n+ 1)

(
n(1− ν2)

)
︸ ︷︷ ︸

=∇ρϕ∇ρϕyUsing Mathematica to simplify

=− n+ 1

l2
l2

f
+∇ρϕ∇ρϕ

=− n+ 1

l2
gρρ +∇ρϕ∇ρϕ, (D.17)

Rii =− e2ρf
1−ν
n+1

+1

[(
1 +

1

2

νn+ 1

n+ 1

f ′

f

)(
1 +

1

2

1− ν
n+ 1

f ′

f

)
+
fL′

2f

(
1 +

1

2

1− ν
n+ 1

f ′

f

)

+
1

2

1− ν
n+ 1

f ′′f − f ′2

f 2
+

(
1 +

1

2

1− ν
n+ 1

f ′

f

) n∑
j=1

(
1 +

1

2

1− ν
n+ 1

f ′

f

)]

=− e2ρf
1−ν
n+1

[
f

(
1 +

1

2

νn+ 2− ν
n+ 1

f ′

f
+

1

4

(1− ν)(νn+ 1)

(n+ 1)2

f ′2

f 2

)
+
f ′

2
− 1

4

1− ν
n+ 1

f ′2

f
+

1

2

1− ν
n+ 1

f ′′

+ nf

(
1 +

1

4

(
1− ν
n+ 1

)2
f ′2

f 2
+

1− ν
n+ 1

f ′

f

)]

=− e2ρf
1−ν
n+1

[
f ′
(

1

2

νn+ 2− ν
n+ 1

+
1

2
+
n(1− ν)

n+ 1

)
+

1

2

1− ν
n+ 1

f ′′ + f(n+ 1)

+
f ′2

4f

(
n(1 + ν2 − 2ν)

(n+ 1)2
− 1− ν
n+ 1

+
(1− ν)(νn+ 1)

(n+ 1)2

)
︸ ︷︷ ︸

=0

]
(D.18)

=− e2ρf
1−ν
n+1

[
f ′

2
(3− ν) +

1

2

1− ν
n+ 1

f ′′ + f(n+ 1)

]
yUsing Mathematica to simplify

=− n+ 1

l2
(
l2e2ρf

)
. (D.19)

As seen above, Lim’s metric is indeed a solution to the field equation in Eq. (3.5)

Rµν,Lim = −n+ 1

l2
gµν +∇µϕ∇νϕ.
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Appendix E

Rewriting the Field Equations

Given the assumptions for the EM and scalar fields:

ϕ = ϕ(ρ), (E.1a)

Aµ = (A0(ρ), 0) , (E.1b)

the only non-zero components of the Maxwell tensor are (dropping the subscript "0"
notation)

Fρt = −Ftρ = A′, (E.2)

⇒ F 2 = FµνF
µν

= gµµgννFµνFµν

= gttgρρFtρFtρ + gρρgttFρtFρt

= −2e−2F0−2HA′2. (E.3)

We also compute the following quantities

FiβF
β
i = 0, FtβF

β
t = gρρFtρFtρ FρβF

β
ρ = gttFρtFρt

= e−2HA′2, = −e−2F0A′2. (E.4)
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E.1 EM Field Equation

We begin with the modified Maxwell field equation in Eq. (2.8c) and recall the
identity for the divergence of an antisymmetric tensor of rank (2, 0) [31] given by

∇kA
ik =

1√
|g|
∂k

(
Aik
√
|g|
)
. (E.5)

Since the tensor product of a scalar and a rank (2, 0) tensor is still a rank (2, 0) tensor,
Eq. (2.8c) simply becomes

1√
|g|
∂ρ

(
e−2αϕF tρ

√
|g|
)

= 0

⇒ e−2αϕF tρ
√
|g| = q︸︷︷︸

constant

. (E.6)

Rearranging gives us

gρρgttA′ = −qe2αϕe−H−
∑n
i=0 Fi

A′ = qe2αϕeH+F0−
∑n
i=1 Fi , (E.7)

Where q physically represents some electric charge parameter.

E.2 Scalar Field Equation

We now move on to the scalar field equation. The first term in Eq. (2.8b) may be
rewritten as

∇2ϕ = ∇µ∇µϕ

= gµν∇ν(∂µϕ)

= gµν
[
∂ν∂µϕ− Γγνµ∂γϕ

]
= gρρ

[
∂ρ∂ρϕ− Γγρρ∂γϕ

]
+ gtt [−Γγtt∂γϕ] +

n∑
i=1

gii [−Γγii∂γϕ]

= e−2H (ϕ′′ −H ′ϕ′)− e−2F0
(
−e2F0−2HF ′0ϕ

′)+
n∑
i=1

e−2Fi
(
e2Fi−2HF ′iϕ

′)
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= e−2H

[
ϕ′′ +

(
n∑
i=0

F ′i −H ′
)
ϕ′

]
. (E.8)

Therefore, substituting back into the scalar field equation, Eq. (2.8b), and rearranging
gives

ϕ′′ +

(
n∑
i=0

F ′i −H ′
)
ϕ′ = 2αe−2αϕ−2F0A′2 + 2Λβe2βϕ+2H

= 2αe−2αϕ−2F0(q2e4αϕe2H+2F0−2
∑n
i=1 Fi) + 2Λβe2βϕ+2H

= 2αq2e2αϕ+2H−2
∑n
i=1 Fi + 2Λβe2βϕ+2H . (E.9)

E.3 Einstein Field Equations

For the Einstein field equation in Eq. (2.8a), we simply substitute the obtained Ricci
tensor components for our metric in Eq. (2.14) and rearrange accordingly.

For Rtt, we get

e2F0−2H

[
F ′′0 −H ′F ′0 + F ′0

n∑
i=0

F ′i

]
= − 2Λ

D − 2
e2βϕ+2F0 + 2e−2αϕe−2HA′2

[
D − 3

D − 2

]

⇒ F ′′0 = F ′0

(
H ′ −

n∑
i=0

F ′i

)
− 2Λ

D − 2
e2βϕ+2H + 2q2e2αϕ+2H−2

∑n
i=1 Fi

[
D − 3

D − 2

]
.

(E.10)

For Rρρ, we get

n∑
i=0

(H ′F ′i − F ′′i − F ′2i ) =
2Λ

D − 2
e2βϕ+2H − 2e−2αϕe−2F0A′2

[
D − 3

D − 2

]
+∇ρϕ∇ρϕ

⇒
n∑
i=0

(H ′F ′i − F ′′i − F ′2i ) =
2Λ

D − 2
e2βϕ+2H − 2q2e2αϕ+2H−2

∑n
i=1 Fi

[
D − 3

D − 2

]
+ ϕ′2.

(E.11)

For Rii, where i 6= 0, we get

−e2Fi−2H

[
F ′′i −H ′F ′i + F ′i

n∑
j=0

F ′j

]
=

2Λ

D − 2
e2βϕ+2Fi +

2

D − 2
e−2αϕe2Fi−2F0−2HA′2
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⇒ F ′′i 6=0 = F ′i 6=0

(
H ′ −

n∑
j=0

F ′j

)
− 2Λ

D − 2
e2βϕ+2H − 2q2

D − 2
e2αϕ+2H−2

∑n
i=1 Fi . (E.12)

It may seem that one more equation may be obtained by equating the Ricci scalar in
Eq. (2.15) and the trace of the field equation in Eq. (2.6):

e−2H

n∑
i=0

(
2H ′F ′i − 2F ′′i − F ′2i − F ′i

n∑
j=0

F ′j

)
=

2D

D − 2
Λe2βϕ + e−2Hϕ′2 − 2

D − 4

D − 2
e−2αϕe−2F0−2HA′2

⇒
n∑
i=0

(
2H ′F ′i − 2F ′′i − F ′2i − F ′i

n∑
j=0

F ′j

)
=

2D

D − 2
Λe2βϕ+2H + ϕ′2 − 2q2D − 4

D − 2
e2αϕ+2H−2

∑n
i=1 Fi .

(E.13)

However, if we take Eq. (E.11) from the Rρρ component and subtract it from Eq.
(E.13) above, this reduces to

n∑
i=0

(
H ′F ′i − F ′′i − F ′i

n∑
j=0

F ′j

)
=

2Λ(D − 1)

D − 2
e2βϕ+2H +

2q2

D − 2
e2αϕ+2H−2

∑n
i=1 Fi .

(E.14)

But this does not give us any new information because a closer look shows that

Eq. (E.14) = Eq. (E.10) +
n∑
i=1

Eq. (E.12). (E.15)

In summary, we have the following (4 + n) equations which fully describes Einstein-
Maxwell-Dilaton gravity under our ansatz (n for the F ′′i 6=0: components)

A′ = qe2αϕeH+F0−
∑n
i=1 Fi ,

ϕ′′ =

(
H ′ −

n∑
i=0

F ′i

)
ϕ′ + 2αq2e2αϕ+2H−2

∑n
i=1 Fi + 2Λβe2βϕ+2H ,

F ′′0 = F ′0

(
H ′ −

n∑
i=0

F ′i

)
− 2Λ

D − 2
e2βϕ+2H + 2q2

(
D − 3

D − 2

)
e2αϕ+2H−2

∑n
i=1 Fi ,

F ′′i 6=0 = F ′i 6=0

(
H ′ −

n∑
j=0

F ′j

)
− 2Λ

D − 2
e2βϕ+2H − 2q2

D − 2
e2αϕ+2H−2

∑n
i=1 Fi ,
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n∑
i=0

(H ′F ′i − F ′′i − F ′2i ) =
2Λ

D − 2
e2βϕ+2H − 2q2

(
D − 3

D − 2

)
e2αϕ+2H−2

∑n
i=1 Fi + ϕ′2.

The first two equations correspond to the EM and scalar field respectively, and the
other equations come from the Einstein field equation.
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Appendix F

Solution to the Liouville Differential
Equation

The Liouville differential equation

φ′′(ρ) = ke2φ(ρ), (F.1)

where k is a constant, has the general solution

φ(ρ) = −b(ρ+ ρ0)− ln

(
k

4b2c
− ce−2b(ρ+ρ0)

)
, (F.2)

where b and c are the integration constants and ρ0 is the “zero” of the ρ-variable.

F.1 For Positive k

In this case, we may simplify by shifting the zero of ρ in the following manner:

k

4b2c
=

c

e2bρ0

⇒ c

ebρ0
=

√
k

2b
. (F.3)

Therefore we have

ln

(
k

4b2c
− ce−2b(ρ+ρ0)

)
= ln

(
ce−2bρ0 − ce−2b(ρ+ρ0)

)
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74 | F.2 For Negative k

= ln
[
ce−b(ρ+ρ0)

(
e−b(ρ0−ρ) − e−b(ρ0+ρ)

)]
= −b(ρ+ ρ0) + ln

[√
k

2b

(
ebρ − e−bρ

)]

= −b(ρ+ ρ0) + ln

(√
k

b
sinh(bρ)

)
. (F.4)

Substituting back into Eq. (F.2), the first term cancels and we get

φ+ = − ln

(√
k

b
sinh(bρ)

)
. (F.5)

F.2 For Negative k

For the negative case, we may simplify by shifting the zero of ρ in the following
manner instead:

−k
4b2c

=
c

e2bρ0

⇒ c

ebρ0
=

√
−k
2b

. (F.6)

Therefore we have

ln

(
− −k

4b2c
− ce−2b(ρ+ρ0)

)
= ln

(
−ce−2bρ0 − ce−2b(ρ+ρ0)

)
= ln

[
−ce−b(ρ+ρ0)

(
e−b(ρ0−ρ) + e−b(ρ0+ρ)

)]
= −b(ρ+ ρ0) + ln

[
−
√
−k
2b

(
ebρ + e−bρ

)]
= −b(ρ+ ρ0) + ln

(√
−k
b

cosh(bρ)

)
, (F.7)

where we have chosen to take the negative value of the squareroot to cancel out the
minus sign. Substituting back into Eq. (F.2), the first term cancels again and we get

φ− = − ln

(√
−k
b

cosh(bρ)

)
. (F.8)
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Solutions for Cases 2, 3 and 4

G.1 Case 2: Λ = 0

Setting Λ = 0, Eq. (4.13) is simplified to

φ′′1 =− 2q2

(
1

D − 2
− αβ

)
e2φ2 , (G.1a)

φ′′2 =2q2

(
D − 3

D − 2
+ α2

)
e2φ2 , (G.1b)

φ′′3 =− 2q2
(
1− α2

)
e2φ2 . (G.1c)

According to Eq. (4.15a), the solutions are

φ1 =

(
αβ − 1

D−2

)(
D−3
D−2

+ α2
) φ2 + c2ρ+ c3, (G.2a)

φ2 = − ln

(√
2q2

b2

(
D − 3

D − 2
+ α2

)
sinh(bρ)

)
, (G.2b)

φ3 =
(α2 − 1)(
D−3
D−2

+ α2
)φ2 + d2ρ+ d3, (G.2c)

where c2, c3, d2 and d3 are arbitrary integration constants. Rearranging the change
of variables in Eq. (4.12), we reobtain

ϕ =
1

2α− β

[
φ2 +

(α2 − 1)(
D−3
D−2

+ α2
)φ2 −

(
αβ − 1

D−2

)(
D−3
D−2

+ α2
) φ2 + (d2 − c2)ρ+ d3 − c3

]
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=
α(

D−3
D−2

+ α2
)φ2 +

(d2 − c2)ρ+ d3 − c3

2α− β
, (G.3a)

Fi 6=0 =
1

D − 2

[
(α2 − 1)(
D−3
D−2

+ α2
)φ2 −

α2(
D−3
D−2

+ α2
)φ2 + d2ρ+ d3 −

α

2α− β

(
(d2 − c2)ρ+ d3 − c3

)]

=
1

D − 2

[
− 1(

D−3
D−2

+ α2
)φ2 + d2ρ+ d3 −

α

2α− β

(
(d2 − c2)ρ+ d3 − c3

)]
,

(G.3b)

F0 = φ2 −
α2(

D−3
D−2

+ α2
)φ2 −

α

2α− β

(
(d2 − c2)ρ+ d3 − c3

)
=
D − 3

D − 2

1(
D−3
D−2

+ α2
)φ2 −

α

2α− β

(
(d2 − c2)ρ+ d3 − c3

)
. (G.3c)

Substituting into Eq. (4.11e),we get the constraint equation for the arbitrary con-
stants:

c2
(
α2(3D − 7)−D + 2

)
+ 2cd

(
−3α2 + 5αβ + α2D − 2αβD +D − 2

)
+

d2
(
α2 + 2αβ −

(
α2 + 1

)
D + β2(D − 3) + 2

)
=
b2(D − 2)(D − 2)(β − 2α)2

α2(D − 2) +D − 3
. (G.4)

We can set c3 and d3 to 0, which can also be interpreted as a rescaling of the coor-
dinates. Dropping the subscripts on c2 → c and d2 → d, the final metric solution is
then

ds2 =− e−
2α(d−c)
2α−β ρG(ρ)

D−3

(D−3+(D−2)α2)dt2

+ e−2dρG(ρ)
− 1

(D−3+(D−2)α2)dρ2

+
n∑
i=1

e−
2

D−2(α(d+c)−βd2α−β )ρG(ρ)
− 1

(D−3+(D−2)α2)dx2
i , (G.5)

with G(ρ) = 2q2

b2

(
D−3
D−2

+ α2
)

sinh2(bρ). The corresponding scalar field is

ϕ = − α(
D−3
D−2

+ α2
) ln

(
1

b

√
2q2

(
D − 3

D − 2
+ α2

)
sinh(bρ)

)
+

(d− c)ρ
2α− β

, (G.6)

and the electric field is

E = − b2(D − 2)csch2 (bρ)

2q (D − 3 + α2(D − 2))
. (G.7)
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G.2 Case 3: α = β = 1, D = 3

In this case, Eq. (4.13) is simplified to

φ′′1 =− 2Λe2φ1 , (G.8a)

φ′′2 =2q2e2φ2 , (G.8b)

φ′′3 =0. (G.8c)

For a positive Λ, according to Eq. (4.15a), the solutions are

φ1 = − ln

(
−
√

2Λ

b1

cosh(b1ρ)

)
, (G.9a)

φ2 = − ln

(
q
√

2

b2

sinh(b2ρ)

)
, (G.9b)

φ3 = b3ρ+ b4, (G.9c)

where b3 and b4 are arbitrary integration constants. Rearranging the change of vari-
ables in Eq. (4.12), we reobtain

ϕ = b3ρ+ b4 + ln

(
−b2

√
Λ

qb1

cosh(b1ρ)

sinh(b2ρ)

)
, (G.10a)

Fi = ln

(
− qb1

b2

√
Λ

sinh(b2ρ)

cosh(b1ρ)

)
, (G.10b)

F0 = −b3ρ− b4 − ln

(
−
√

2Λ

b1

cosh(b1ρ)

)
. (G.10c)

Substituting into Eq. (4.11e), we get the constraint equation for the arbitrary con-
stants:

b2
1 − b2

2 − b2
3 = 0. (G.11)

We can set b4 to 0, which can also be interpreted as a rescaling of the coordinates.
The final metric solution is then

ds2 = −e−2b3ρ
1

M(ρ)
dt2 + e−2b3ρ

(
2q2 sinh2(b2ρ)

b2
2M(ρ)

)
dρ2 +

(
2q2 sinh2(b2ρ)

b2
2M(ρ)

)
dx2

i ,

(G.12)
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with

M(ρ) =

{
2Λ
b21

cosh2(b1ρ), for Λ > 0,
2Λ
b21

sinh2(b1ρ), for Λ < 0.
(G.13)

The corresponding scalar field is

ϕ = b3ρ+ ln

(
b2

√
M(ρ)√

2q sinh(b2ρ)

)
, (G.14)

and the electric field is

E = −b
2
2csch

2 (b2ρ)

2q
. (G.15)

G.3 Case 4: αβ = 1, D = 3

In this case, Eq. (4.13) is simplified to

φ′′1 =2Λ

(
1

α2
− 2

)
e2φ1 , (G.16a)

φ′′2 =2q2α2e2φ2 , (G.16b)

φ′′3 =− 2q2
(
1− α2

)
e2φ2 . (G.16c)

For 2Λ(2α2 − 1) > 0, according to Eq. (4.15a), the solutions are

φ1 = − ln

−
√

2Λ
(
2− 1

α2

)
b1

cosh(b1ρ)

 , (G.17a)

φ2 = − ln

(
qα
√

2

b2

sinh(b2ρ)

)
, (G.17b)

φ3 =
(1− α2)

α2
ln

(
qα
√

2

b2

sinh(b2ρ)

)
+ c2ρ+ c3, (G.17c)

where c2 and c3 are arbitrary integration constants. Rearranging the change of vari-
ables in Eq. (4.12), we reobtain

ϕ = ln


(
−
√

2Λ(2− 1
α2

)
b1

cosh(b1ρ)

) α
2α2−1

(
qα
√

2
b2

sinh(b2ρ)
) 1
α

+
α(c2ρ+ c3)

2α2 − 1
, (G.18a)
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Fi = ln


(
−
√

2Λ(2− 1
α2

)
b1

cosh(b1ρ)

)− α2

2α2−1

(
qα
√

2
b2

sinh(b2ρ)
)− 1

α2

+
(α2 − 1)(c2ρ+ c3)

2α2 − 1
, (G.18b)

F0 = ln


−

√
2Λ
(
2− 1

α2

)
b1

cosh(b1ρ)


−α2

2α2−1

− α2(c2ρ+ c3)

2α2 − 1
. (G.18c)

Substituting into Eq. (4.11e), we get the constraint equation for the arbitrary con-
stants:

α4b2
1 +

(
1− 2α2

)
b2

2 − α4c2 = 0. (G.19)

We can set c3 to 0, which can also be interpreted as a rescaling of the coordinates.
Dropping the subscript on c2 → c, the final metric solution is then

ds2 =− e−
2α2(cρ)

2α2−1 J(ρ)
−α2

2α2−1dt2 + e
2(cρ)

2α2−1

(
2q2α2

b2
2

sinh2(b2ρ)

) 1
α2

J(ρ)
− 2α2

2α2−1dρ2

+ e
2(α2−1)(cρ)

2α2−1

(
2q2α2

b2
2

sinh2(b2ρ)

) 1
α2

J(ρ)
− α2

2α2−1dx2, (G.20)

where

J(ρ) =


2Λ(2α2−1)

α2b21
cosh2(b1ρ), for 2Λ(2α2 − 1) > 0,

2Λ(1−2α2)
α2b21

sinh2(b1ρ), for 2Λ(2α2 − 1) < 0.
(G.21)

The corresponding scalar field is

ϕ =
α

2(2α2 − 1)
ln J(ρ)− 1

α
ln

(
qα
√

2

b2

sinh(b2ρ)

)
+

αcρ

2α2 − 1
, (G.22)

and the electric field is

E = −b
2
2csch

2 (b2ρ)

2α2q
. (G.23)
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