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Abstract

In this review, we consider the supersymmetry formalism for zero and one
(0 + 1) dimension quantum field theory. Motivated strongly by the unifica-
tion of the fundamental forces, supersymmetry is a formalism that describes a
symmetry in the exchange of bosons with fermions and vice-versa. In particle
physics, it provides an extension to the Poincaréﬂ group of transformations to
what is called the super-Poincaré algebraﬂ. We will study the several charac-
teristic features of supersymmetry that allow for obtaining analytic solutions
for certain class of calculations which would have been otherwise difficult to
solve in standard theories. Our discussion begins in Chapter [I| by providing
an overview to the study of supersymmetry, followed by a discussion on the
necessary mathematical requisites to understand the formalism. Specifically,
we will be discussing some of the results of Morseﬂ Theory to provide the
necessary background for our later discussion. In Chapter [[I] we will begin
discussion proper on supersymmetry by studying the formalism defined on a
zero-dimensional base manifold. As the various mathematical results unique
to supersymmetry may be rigorously defined in zero-dimensions, similar cal-
culations in higher dimensions can be explored and justified by extension. Fol-
lowing which, in Chapter [[II} we first show that a one-dimensional quantum
field theory is equivalent to studying quantum mechanics. Which would allow
us to relate familiar concepts from quantum mechanics to the quantum field
theory. We will then study supersymmetric ground states in one-dimensions
quantum field theory. The study of supersymmetric ground states helps us un-
derstand the conditions under which supersymmetry is broken at the infrared
limit given that supersymmetry does not already manifest in nature. It is
found that the number of supersymmetric ground states obtained via pertur-
bative methods are bounded from above. We then associate the ground states
with the topological features of our manifold and identify a correspondence
with Morse Theory. The superpotentials in the supersymmetric theory are
found to be equivalent to Morse functions. This correspondence is actively

discussed in literature [IH3].

! Jules Henri Poincaré (1854 - 1912)

2We say that the super-Poincaré group contains the Poincaré group of spacetime symmetries as a
subgroup.

3Harold Calvin Marston Morse (1892 - 1977)
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Chapter 1

Introduction

In this chapter, we will be providing some context to the study of supersymmetry and
define what are sigma models in quantum field theories. Then, in order to ensure that
the review is self-contained, we will develop the necessary mathematical tools required
to understand supersymmetric quantum field theories: differential geometry, topological
invariants and lastly Morse Theory. Morse Theory is the study of the topology of a
manifold by observing the properties of functions defined on this abstract space. The
analysis of the critical points of what are known as Morse functions can relate to us the
topology of that space. Morse Theory has the advantage that critical points analysis of
polynomial functions can be easily worked out and it is in agreement with other methods
of analysis. We would then end off our discussion of this chapter by highlighting some
of the key features in quantum field theories which will be the essential formalism in this
review.

The study of supersymmetry in zero and one-dimensional quantum field theory pro-
vides for a rigorously formulated theory in which the mathematical results are extended

into higher dimensions. We will begin our discussion by defining supersymmetry.

1.1 Supersymmetry

Currently, the most successful theory we have in the field of physics is the Standard
Model. The Standard Model is a quantum field theory that describes all currently known
fundamental constituents of matter and forces as fields. Under this formalism, nature is
described in terms of fields and the particles that we observe are in fact field excitations.
Furthermore, the Standard Model describes interactions between fields as gauge interac-
tions, i.e. the force carriers (photons, W* and Z) are represented as gauge bosonsﬂ while
matter is made up of fermions (quarks and leptons). To further elaborate, fermions are
particles with half-integer spins and hence obey the Fermi-Dirac statistics, while bosons

are particles with integer spins obeying the Bose-Einstein statistics. It’s not apparent

LGauge bosons mediate interactions between elementary matter particles described by gauge theories.
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from our current understand why such a distinction between matter and force carriers
exists, but it is possible that understanding supersymmetry may help provide insights on
this matter.

Supersymmetry is a symmetry between forces (bosons) and matter (fermions) in which
the theory is invariant when we interchange bosons and fermions. The study of supersym-
metry historically began as a method to expand the Poincaré group of symmetries in an
attempt to combine spacetime and internal symmetries in quantum field theories. This
was motivated by the Coleman-Mandula theorem [6]: the Coleman-Mandula theorem is
a no-go theorem in theoretical physics that suggests that it is impossible to expand the
symmetry groups in quantum field theories, satisfying a set of assumptions, using scalar
generators. Supersymmetry circumvents this problem by introducing additional sym-
metry generators that are spinors. As the generators of supersymmetry are fermionic,
they carry half-integer angular momentum which are associated to spacetime symmetries
[7, 8]. Tt is distinct from the spacetime symmetry that describes particle under the in-
homogeneous Lorentz group (or Poincaré group) of symmetries which are bosonic while
encompassing it as a subgroup.

Supersymmetry from the mathematical perspective, is a formalism that introduces
non-commuting fermionic odd variables on the functional space. The additional sym-
metries of the odd variables introduced are hence naturally fermionic by construction.
This is striking as in contrast to standard quantum field theories where there exists only
commuting bosonic symmetries. The fermionic odd variables and ordinary bosonic vari-
ables can be formulated over an enlarged abstract space known as the superspace, i.e.
they are functions defined on the superspace. The superspace is an extended coordinate
space with the standard bosonic spacetime coordinates z#, and fermionic coordinates 6, 6.
Hence, the fields can be expressed as functions that takes in arguments on the extended
coordinate space, e.g. the scalar field ¢ := ¢(z*,0,0). While it’s possible to formulate
supersymmetric models starting from the superspace interpretation, that will not be the
approach taken here. Instead, we will start from a given set of bosonic and fermionc fields
and define the appropriate Lagrangian, then analyse its properties.

One common property of supersymmetric models is that they predict the existence
of superpartners: in particle physics, a supersymmetric standard model predicts that the
existing particles described by the Standard Model are coupled in boson-fermion pairs.
In doing so, the number of particles in the Standard Model is doubled. This is vaguely
reminiscent of the time when Dirac hypothesised the existence of anti-particles from the
Dirac equation. The discovery of anti-particles then solidified the Dirac equation as a rel-
ativistic equation of motion that describes fermions. Similarly, an experimental discovery
of the superpartners of the existing particles would also provide basis for supersymmetry.

However, the absence of these hypothesised boson-fermion pairs in nature leads to

two possible conclusions: 1. while supersymmetry may be an elegant theory, it simply
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does not manifest in nature; or 2. supersymmetry is spontaneously broken in nature
at low energies. The second conclusion motivates the search for the superpartners at
the Large Hadron Collider (LHC) at high energies under the Minimal Supersymmetric
Standard Model (MSSM).E] We will however not be addressing the MSSM in this review.
Concerning us, what the second conclusion further implies is that the ground states are
not invariant under supersymmetric variations and are hence not supersymmetric ground
states. Given that energy and mass are equivalent descriptions, this means that the
superpartners do not have the same mass. In order to understand this in greater detail,
we will be looking at the supersymmetric ground states in the (0 + 1)-dimensional theory
in Chapter [[TIl Nonetheless, the study of supersymmetry has far reaching applications
in condensed matter physics and statistical physics [9-13]. In this review, we will relate
the supersymmetry formalism to the study of Morse Theory, a theory in topological
manifolds, following [I]. It is shown that Morse functions are realised as superpotentials
in the supersymmetric theory.

In order to study the zero and one-dimensional supersymmetric quantum field theory,
we need first define the objects of the theory starting from the differential geometry
perspective. We first define the base manifold M with d-dimensions to be the space that
parametrises a field — pertaining to this review, our discussion is limited to d = 0,1. The
d = 1 case is more specifically a (0 + 1) theory for which the field is parametrised by ¢

which we interpret to be time.

1.2 Sigma Models

Historically, the term sigma models (or o models) was first introduced in the phenomeno-
logical model for f-decay by Gell-Mann and Lévy [14] in which the supposed ¢ meson
particle (a scalar particle) was first introduced by Julian Schwinger [15].

On the manifold M, we may further define the space of maps
x:M— N, (1.2.1)

where 7 is a scalar field| that maps the base manifold M onto the target space N. In the
context of string theory, the strings are defined on the base manifold (the 1+1 dimensional
Riemann surface or worldsheet) and are mapped onto the Riemannian manifold (N, g),
where ¢ is the Riemannian metric on N. The integration over the space of scalar maps
constitutes what is known as o-models.

In order to carry out such an integration, we will first need to define a measure on

the space of maps. The measure is typically weighted by e™°, where S is a functional on

2Note that the LHC is currently running at 13 TeV energies at centre of momentum frame, however
there no positive signs in the search for superpartners with masses predicted by the MSSM currently.
3For zero and one-dimensions, our discussion is trivially restricted to scalar fields.
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the space of fields, known as the action. If M is a Minkowski space, the measure is the
modified weight of ¢,

It can be shown that we may associate M with an Euclidean space via a Wick rotation
in which we take ¢ — i7. Hence, taking the 2 dimensional case as an example, the metric is
mapped from —dt? +dz? to dr?+dxz?. The theory hence describes a Riemannian manifold

instead of a pseudo-Riemannian theory that we might be familiar with in Relativity.

1.3 Mathematical Preliminaries

We briefly summarise the key ideas in differential geometry and the study of topology
that will be required for the discussion in this review. The discussion here follows closely
to [4].

The most general structure studied in physics are topological spaces. Informally, topol-
ogy is the study of classifying spaces, while manifolds form a subset of topological spaces.
Topological spaces are classified by identifying the classes and number topological invari-
ants. We will assume a knowledge of what is a topology or at least a sense of what it is
and move onto defining what is the study of differential geometry.

Differential geometry is the study of differentiable manifolds. Formally, a manifold
M is a set of points in which for each point p € M, p has an open neighbourhood U.
The neighbourhood U; is an open set equipped with a continuous one-to-one map f;
onto an open set of R™ (a bijective mapping), for some number n. n is typically the
dimension of the manifold, dim M = n. Or simply said, it is locally flat (Euclidean) in
the neighbourhood of p € M. This definition extends to include not just trivially R™ but
also smooth curves, circles, spheres (S™,n > 1) and tori (T",n > 2), etc.

The neighbourhood U being homeomorphic to R™ defines what is meant by a chart.
Two topological spaces are homeomorphic to each other if we can deform one continuously
to the other.

Typically, more than one chart is required to cover a manifold; a manifold is hence a
collection of two or more charts. This is the atlas, denoted by (U;, f;). Hence we may also
say that a manifold is a topogical space which is locally homeomorphic to R™.

By differentiable, we mean that the set of transition functions f;o fj_l, between overlap-
ping charts U;, U;, U; N U; # (0 is a C™ (continuously differentiable) module. In practical
terms, this condition is relaxed as we only require it to be finitely differentiable as required:

a O* module where k is a finite integer.

1.3.1 Differential Forms

Given a manifold M, let us denote the tangent vector space at p € M to be T,M. There

then exists the dual vector space, the cotangent space denoted by 77 M. The elements in
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the cotangent space are the one-forms: the basis one-forms being linear maps from 7, M
to R.
w:T,M — R. (1.3.1)

We may further generalise this to allow for higher ordered functions by introducing
the totally anti-symmetric r-forms. A differential form of order r or an r-form is a totally
anti-symmetric (0,7) tensor. The anti-symmetric property is facilitated by the wedge
product A. In the simplest case, let us consider the two-form given by the wedge product

of two one-forms:

dz' A dx? = —dx™ A dx®,

| | . | (1.3.2)
= (d:v“ ® dr? — dx" ® d:v“) ,
where dz* ® dx'? is the tensor product of dz™ and dz®.
This result may similarly be generalised to r-forms from r one-forms:
dz™ Adz AL AN da't =D sgn(P)da'th @ datt ® ... @ dztte), (1.3.3)
P
P ranges over all permutations {1,...,n} and sgn(P) is the signature of the permutation,
san(P) +1, %f even permutaﬁion, (1.3.4)
—1, if odd permutation.

The totally anti-symmetric property also ensures that should any two indices be the

same, the wedge product is trivially zero.

1.3.1.1 The Exterior Product

Let us denote the vector space of r-forms at p € M by Q) (M), the set of r-forms in
Eq. (1.3.3) forms a basis for 7 (M) and an element @ € €27(M) can be expressed as

1 , . )
o= o Wiyig. i, dT Ndx N ... Adx', (1.3.5)
r

where wj,;, 4. is also totally anti-symmetric. Zero-forms are trivially the real numbers,
Qg(M) = R, while Q})(M) = T;(M).

The wedge product between an arbitrary r-form & and ¢-form 3 is
aNB=(=1)"FAa. (1.3.6)

Thus the wedge product is defined to be the totally anti-symmetric multiplication op-
eration for elements in Q7 (M) = Q7 (M) x QI(M) — Q+9(M) which is a graded structure.
We may then define an algebra (the exterior algebra) on M:

« — 00 1 2 n
QM) =Q,(M) @ Q,(M) ® (M) ® ..o 0 (M), (1.3.7)
where Q7 (M) is also known as the top-form, with n = dim M.

bt
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1.3.1.2 The Exterior Derivative

Let us further define the operator d that maps a r-form to (r + 1)-form,
r d r+1
Q (M) = (M), (1.3.8)

Its action on an r-form is given formally by

1 (0 , : ,
do = — | =—wiip.q, | dx¥ Ndx™ Ndx™ A ... ANdx'. (1.3.9)
rl \ OxY
It is a linear operation that follows Leibniz’sﬁ rule, in which given an r-form & and
g-form J3,
d(anB)=danp+(-1)"ands. (1.3.10)
Also, due to the symmetry in partial derivatives d? = 0:
d’o = 1 aizw i | da” A da A dat A dat A LA dat
ol \ Qar oA T ’
1 62 by v i1 i iy
= mwiliZMir dz® Ndx” Ndx™ Ndx® N .. N dx'r, (1.3.11)

1 02

=-3 (W&E’\wimm”) dz” Ada Adx™ Adx? AN dxtt = 0.

The exterior derivative hence induces a sequence of maps

{0} 5 QM) & QU (M) .. I Qr(M) L (M) L2 or() 2 (oY,
(1.3.12)
where i is the inclusion map 0 < Q°(M | and dim M = n.
The subscript in im(d,_;) and ker(d,) helps denote the instance in the sequence at
which the operation is carried out. This sequence generated by the exterior derivative is

also called the de Rham complex.

1.3.1.3 de Rham Cohomology

Given the sequence of maps defined in Eq. (1.3.12)), for 2"(M) ry QM)

im(d,) € Q" (M) = {d2| € (M)},

(1.3.13)
ker(d,) C Q" (M) := {@ € Q"(M)|dw = 0} .

Since d* = 0, im(d,_1) C ker(d,). An r-form, & € Q"(M) is closed if @ € ker(d,), i.e.
dw = 0; an r-form is exact if © € im(d,_;), i.e. @ = da, a € Q" H(M).

The knowledge of this then allows us to define the quotient space

ker(d,)
H} = —"" 1.3.14
de Rham im(dr,l) ’ ( )
4Gottfried Wilhelm (von) Leibniz (1 July 1646 - 14 November 1716)
®The inclusion map simply means that 0 is an element in Q°(M) although not obtained from d.

6
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or the rth de Rham cohomology group of M. This identifies closed forms that are not
exact.

The study of the de Rham cohomology group in topology essentially helps to determine
the nature of a boundary expressed as a differential form; the boundary of a boundary
being the null setﬂ In supersymmetric theories, the space of differential forms are shown
to be the natural representation of the fermionic fields, or Grassmannian numbers, when
quantised. We will see this in Section [3.3.2]

1.3.1.4 Duality Transformations (Hodge Star)

In order to define the inner product of r-forms on M, we introduce the Hodge star
operation. The dimension of the space of r-forms €7 (M), due to the anti-symmetric

nature of r-forms is given by

dim (2(M)) = (Z) - (nfr> - (n_”;)w (1.3.15)

where dim M = n. This suggests that there is a duality between 7 (M) and Q77" (M). Let

us denote the duality transformation operation, or linear map from r-forms to n —r-forms
by

* 1 QM) — Q7" (M). (1.3.16)

Such a transformation is naturally an isomorphism, given that M is equipped with a

metric ¢ (a Riemannian manifold for example). Consider dz* A dz® A ... A dz' as the

basis vector of {27 (M), then the x operation is defined as

|91
(n—r)

* (dx“ Adz AN dx“) = e dz? A dax? 2 AL Ada. (1.3.17)

jr+1---jn

1.3.1.5 The Adjoint of the Exterior Derivative

Lastly, using the Hodge star operation, we may formally define the adjoint operation
to the exterior derivative, d. The adjoint of the exterior derivative maps r-forms to
r — 1-forms:

(M) L ar (M), (1.3.18)

and it’s defined as follows (for a Riemannian manifold)
df = (=)™ e dx (1.3.19)

A r-form @ € ker(d"), i.e. d'@ = 0 is said to be co-closed. Similarly, (dT>2 = 0.

6An example can be made by considering the boundary of a solid sphere. The boundary of a solid
sphere is the two-dimensions surface and boundary of the two-dimensions surface is the null set.
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Figure 1.2: A polyhedron, with faces, edges and points indicated: we may consider the
respective two-dimensional, one-dimensional and zero-dimensional objects as boundaries
on the polyhedron. Shown here is an octahedron.

(_1)mn+m+1 d

anr(M) > Qn*T+1<M)
* *
Y
Q (M > Q1 (M
(M) y (M)

Figure 1.1: Relations between the exterior derivatives and Hodge star in the exterior
algebra.([4])

1.3.2 Euler Characteristic, Betti Numbers and the Euler-Poincare
Theorem

In this section, we define and develop some relations between the Betti numbers of a
topological space and its Euler characteristic. This will be necessary when we investigate
Morse Theory, particularly for the Morse inequalities which will be shown in Section[1.3.4]

Consider a three-dimensional object: the polyhedron is a geometrical object sur-
rounded by faces (or planes) which may be generalised to consider lines (edges), points
(vertices) as boundaries. It is well known that the Euler characteristic of a general poly-

hedron |K| is a topological invariant given by

X(K) = (number of vertices in K) — (number of edges in K) 4+ (number of faces in K).
(1.3.20)
The Euler characteristic can be generalised to include smooth manifolds by associating the

space to a homeomorphic polyhedron (‘polyhedronisation’ of space). More importantly,
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the result in Eq. (1.3.20) may be generalised to consider a n-dimensional polyhedron K:

XK) =S (1)1, (1.3.21)

where I, is the number of r-simplixes in K. While the number of r-simplexs in K is equal
to the number of r-forms on the n-dimensional manifold M, and hence,

n n

XE) =3 (1) dim Q@ (M) = 3 (=1) b, (K). (1.3.22)

r=0 r=0
The second equality is given by the Euler-Poincaré Theorem, where b,.(K) is the rth Betti

number and is defined by
b (K)=dimH, (K;R). (1.3.23)

The Betti numbers are topological invariants, meaning they are considered under
homeomorphisms; formally, the definition means that the rth Betti number is the rank of
the rth homology group H,.(K; R). Informally, the Betti number is the maximum number
of cuts that can be made without dividing a surface into two separate pieces. Perhaps, it
would be easier to appreciate the Betti numbers via an example: consider the torus 72

with Betti numbers given by
bo(K) =1, bi(K) =2, by(K) = 1. (1.3.24)
The rules for determining the Betti numbers of a topology may be summarised as follows:
e g is the number of connected components,
e 0 is the number of one-dimensional or ‘circular’ holes (S*),
e by is the number of two-dimensional ‘voids’ or ‘cavities’ (S?).

Observe in Fig. [1.3|(a simply connected manifold) that there are two distinct one-dimensional
holes, S, that can be drawn on the the torus (b; = 2) and a central void of the torus
(by = 1). Having b; = 2, is linked to the fact that a torus is homeomorphic to the
Cartesian product of two circles: S' x S1.

Continuing with our discussion, by extension from the isomorphism between the ho-
mology and cohomology groupsﬂ,

n n

XK) =S (=1)" 0 (K) = 3 (=1)" dim H" (M), (1.3.25)

r=0 r=0
where dim H" (M) denotes the rth cohomology group of the manifold M, which would be
the de Rham comology.
The details are terse here and only introduced for quick reference in the later proofs

of Morse Theory in supersymmetric quantum mechanics. For more details, refer to [4]

"The interested reader may find the proof in [4].
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Figure 1.3: The calculation of the Betti numbers of the Torus T2 is facilitated by observing
the number of cuts made by S for the corresponding rth Betti number.

1.3.3 Laplace-Beltrami Operator, Harmonic Forms and Hodge
Theorem

Using our definitions of the exterior and adjoint exterior derivatives in Sections [1.3.1.3
and [1.3.1.5, we define the generalisation of the Laplacian on differential forms: the

Laplace-Beltrami operator.

Definition. The Laplace-Beltrami operator defined as the map from r to r-forms
A:Q" (M) — Q" (M), (1.3.26)

it hence defines an automorphism between the space of differential forms. Formally,

it is defined in terms of the exterior and adjoint exterior derivatives as
A ={d,d"} = {dd" +d'd}. (1.3.27)
A harmonic r-form is defined to satisfy the relation
Ao =0, (1.3.28)

this suggests that harmonic forms are both closed, d& = 0 and co-closed, d'@ = 0 on M.
Hodge’s theorem states that the rth de Rham cohomology group H"(M, g) is isomorphic
to the set of harmonic r-forms H" (M, g) for a given compact, orientable Riemannian

manifold:
H'(M,g) =2 H (M,g). (1.3.29)
In particular, this suggests that we can re-express the Euler characteristic (topological
structure) of a manifold to the harmonic forms (geometric structures) on the manifold:

M) =3 (=1)" 5 (K) = 3 (=1)" dim H" (M, g). (1.3.30)

r=0 r=0

10
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1.3.4 Morse Theory

Morse Theory will play an important part in our analysis in Section in which what are
known as superpotentials in a supersymmetric model would take on the interpretation of
a Morse function on the target space. For now we will briefly describe Morse Theory and
refer the interested reader to [5] for a more detailed study on Morse Theory. Critically,
what Morse Theory is to the study of the topology of a manifold M is the ability to
classify the topology by examining the functions defined on M.

The Morse function f: M — R is a differentiable real-valued function on a smooth,
compact manifold M which has no degenerate critical points. What is meant by non-

degenerate is that the Hessian of the Morse function f is non-singular.

9%h 9%h 9%h
0x? 4 895]28:52 T 0x,0x,
0%h 0-h 0%h
H(h) = | 02202 0x%y  0Oxy0z, |,
: : : (1.3.31)

0%h 9%h @

0r,0x; Or,0ry ~  Ox?

9%h

)y = =0
J 81’281‘]

One of the conclusions of Morse Theory is that most functions are Morse functions
[0, [16]. By examining the number and type of critical points of the Morse function h on
M, we would be able to classify the topology of the manifold. This provides an alternative
pathway to understanding complicated manifolds. What Morse Theory then illustrates is
the parallel understanding of the topology similar to the understanding of the homology
and cohomology groups on M, as well as the Betti numbers.

In [TI6], Nicolaescu describes the Morse Theory aptly as a ‘slicing’ technique. Starting
from introducing an appropriate standard (function) as basis to decide where and how
to ‘slice’ a manifold, quantifiable information can be extracted from the features that
we observe as we rebuild the manifold by stacking the pieces back together. In order
to illustrate his idea, let us look consider a torus 72 tangent to plane V at point p, as
shown in Fig. below. Let us define the height function that gives the height above
plane V' to be f: M — R. The height function is identified here as the Morse function.
Furthermore, let M® be the set of all points z € M such that f(z) < a. We may then
make the following statements from observing the individual pieces and rebuilding the

manifold from ground up:
(1) If a < 0, then M* = {0},
(2) If f(p) <a < f(q), M is a disk, homeomorphic to a point (0-cell),

(3) If f(q) <a < f(r), M® is homeomorphic to a cyclinder,

11
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Figure 1.4: Let y € {p,q,r, s} be critical points on torus M = T2 . And M is tangent to
plane V' at point p. f: M — R where f(y) corresponds the height above plane V. ([5])

(4) If f(r) <a < f(s), M* is homeomorphic to a compact manifold of genus one having

a circle as boundary.
(5) If f(a) < a, then M® is the full torus 72

On hindsight, we will considering the homotopy type as we reconstruct the torus and
the observe the changes as the height function passes through the various checkpoints
f(p), f(q), f(r), f(s) (critical points.

A homotopy type is a relaxed conditional equivalence relation. While a homeomor-
phism is restricted to a mapping f between topological spaces (X; and X3) in which the
inverse f~! exists, we relax the condition on the existence of the inverse mapping when
defining the homotopy type between two topological spaces. The two topological spaces
are hence ‘of the same homotopy type’ [4].

(1) — (2) is the operation of attaching a 0-cell onto the null set:

where “~” means that the two spaces are homotopy equivalent.

(2) — (3) is the operation of attaching a 1-cell:

12
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Hence, M® is homotopy equivalent to a cylinder S' x R. (3) — (4) is again the

operation of attaching a 1-cell:

(4) — (5) is then the operation of attaching a 2-cell (disk) which then makes M® a
full torus.

The discussion establishes a relationship between the “attaching a n-cell” and the na-
ture of the critical points. For the case of a torus, the critical points may be classified into
three classes f(p) corresponds to a basin (or a minimal point, from elementary calculus),
f(g) and f(r) the passes (or saddle point) and lastly, f(s) the peak (or maxima). We
may then associate to each class an index 0, 1 and 2 respectively for the basin, pass and
peak: this index is the Morse index. Notice that the change between M® by “attaching
a n-cell” corresponds quite nicely with the Morse index. Hence, by observing the cellular
decomposition of the manifold M, it appears that we may infer the Morse index of its
non-degenerate critical points. Vice-versa, the critical points of a function f on M allows
us to infer the topology of the manifold.

Intuitively, the Morse index corresponds to the number of directions in which the
function f decreases. The Morse index of a non-degenerate critical point correspond
to the dimension of the largest subspace tangent to M at critical point y for which
the Hessian is negative definite. In simpler terms, the Morse index corresponds to the
number of negative eigenvalues at a critical point. Given a non-degenerate critical point y
of f: M — R, the Morse lemma further suggests that there exists a chart (1, zo,...,x,)
in a neighbourhood U centred at y, where no other non-degenerate critical points exist.

The Morse function may then be expanded quadratically about y as follows
fa)=fly)—ai—.. . —al+al +.. .2l (1.3.32)

where p is the Morse index of y — this is the Morse Lemma. It can be easily seen that the
critical points are indeed isolated from Eq. ((1.3.32) by setting the first derivative to zero:

we find that the critical point only exists at the origin hence completing the proof.

13
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1.3.4.1 The Morse Inequalities

Lastly, in this review, we will explore the proof of what are known as the weak and strong

Morse inequalities as given in [I]. The (abstract) strong Morse inequality is given by

STOMAT =Y bttt =(141)>_Q,t, (1.3.33)

where @, > 0.

The (topological) Morse inequalities compares the number of critical points, M, in a
Morse function f with Morse index r and the b, is the rth Betti number defined previously
in Section [[.3.2

We can rewrite the equality above using the identity

(T4+6)7'=> (-1, (1.3.34)
n>0
and hence we can deduce that
S(=1)"Myor = > (=1)bpy = Qn > 0, (1.3.35)
r>0 r>0

which is equivalent to the abstract form of the strong Morse inequalities.

We can also see from Eq. (1.3.33)) that it implies the weak Morse inequalities:
M, > b,. (1.3.36)

According to Witten in [I], Eq. is equivalent to the assertion that the critical
points corresponds to the cohomology of the manifold®] This may be illustrated by con-
sidering the following: for every r, r =1,2,...,n, let V,. be the vector space of dimension
M,. V. is hence the vector space of critical points with Morse index r. Given this
conditions, what Eq. then suggests is that there exists a coboundary operator
0 : V., — V.41, that is nilpotent. The Betti numbers associated with the cohomology of
0 then equal those of the manifold M. Hence, if we are able to find such a coboundary
opeator, then the Morse inequalities must necessarily be satisfied. In Section we will
see that this coboundary operator exists as the exterior derivative of our quantised theory
of the supersymmetric non-linear sigma model in one dimension. The interested reader

may refer to [I] for Witten’s proof of the Morse inequalities.

1.4 The Quantum Field Theory Formalism

The motivation to study quantum field theory arises when we consider systems at high
energies as in particle physics. While relativistic quantum mechanics is a theory to de-

scribe the dynamics of a single particle, at high enough energies, particles creation and

8The proof of this assertion can be found in [16].

14
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annihilation can occur and particle number is thus not conserved. Hence, to describe a
relativistic system of many particles we need to develop a field theory. A quantum field
theory is essentially the quantisation of a classical field theory and there is no one correct
quantisation scheme in quantum field theory. Amongst the various possible quantisation
schemes, we will restrict our discussion to the canonical quantisation and the path integral
formalism.

In the typical structure of a quantum field theory, the problem is essentially solved
if we are able to obtain the energy spectrum of the Hamiltonian defined for the theory.
Evaluating the energy spectrum is however difficult in gauge theories where gauge fixing
is a non-trivial problemf] Furthermore, unphysical results such as the existence of infra-
red (IR) and ultra-violet (UV) divergences are also a problem for various quantum field

theories. Here, we briefly outline the general formalism of quantum field theories.

1.4.1 Elements of Quantum Field Theory

Let us briefly discuss what are some of the essential elements in the study of a quantum
field theory. Similar to the classical field theory, the quantum field theory describes a
system with an infinite number of degrees of freedom. In field theory, we assign at least
one degree of freedom to each point in space at some time ¢; this would be equivalent to
taking a screenshot or a photo of the night sky. Now if we were to consider the dynamics
of the system, we would need to compile multiple photos together at different instances.
To further complicate matters, the information of the system can come in various forms
(different colours); this would then make the degrees of freedom of our system become
extremely large (or infinite). In this picture, our universe is four dimensions and the
observation of the ‘data’ is similarly four-dimensional (three to triangulate the position of
a star/source, another for time). In this case, we say that the base manifold (the universe

that describes our system) is four-dimensional.

Fields and Target Spaces

Next, we need to describe the kind of data that is being collected — these data are repre-
sented as fields. Fields can come in different forms; for the simplest case we can choose
the fields to be scalar functions ¢ : M — R or C. More generally, this can be extended
to consider a more complicated target space and hence gives something like ¢ : M — N,
where N is the target space where we actually interpret the data (the photos). Scalar
fields would correspond to the intensity of light emitted per unit square area in space, or
the temperature distribution in a room and the target space would be our camera sensor

or photos themselves.

9 An example can be made of Quantum Electrodynamics in which there is a freedom to choose between,
for example, the Lorentz gauge or the Coloumb gauge.

15
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The Action

In order to make comparisons between the different temperature distributions in a room
over the course of some time, we assign a value to each configuration in spacetime. The
action is the functional that takes in the scalar fields which are functions themselves to give
us a corresponding value. It can be expressed mathematically as S : C — R where C is the
space of configuration. In field theories, the action usually takes the form of S = [ d*zL
where £ is known as the Lagrangan or Lagrangian density. It is the expression from which

the dynamics of the system is represented.

1.4.2 Lorentz Invariant Lagrangian

The starting point of realistic quantum field theories is outlining a Lorentz invariant La-
grangian, or a Lagrangian density to be specific. Just as in Relativity, a Lorentz invariant
Lagrangian impose that our results are not dependent on the frame of reference. Typi-
cally, as in the case of the Klein-Gordon equation, the form of the Lagrangian is further

constrained to give physical equations of motion which obey the mass-shell condition[]
— E? 4+ p*c® = —m?2ch. (1.4.1)

The Lagrangian is a function that takes in the fields and their derivatives as arguments.
Interaction terms can be introduced when investigating interaction theories with coupling
constants, A\, to represent the strength of the interaction. Hence depending on the theory
to be examined, the Lagrangian is then specified.

As an example, we state the Lagrangian of the scalar ¢* theory that describes the

Higgs mechanism:
1 1 A
£<¢7 aﬂ¢7 /\) = 5 ugbaltgb - §m2¢2 - EQSZL, (142)
where the last term represents self-interactions. In a free field theory, the last term is

dropped.

1.4.3 Principle of Stationary Action

Following the Lagrangian, we can obtain the equations of motion for the theory. This
is most easily obtained for the non-interacting, free field theory situation. This is com-
monly accomplished by applying the variational principle for the action, the principle of

stationary action or Hamilton’s Principle. This may be expressed as

55 =6 (/ da E) 0, (1.4.3)

from which we may obtain the Euler-Lagrange equations of the following form:

oL oL
a0 O (a @@) - —

10We have chosen the convention for the Minkowski metric to take the form of (-1,1,1,1)
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Considering the free field theory for Eq. (1.4.2)) in which A = 0, this gives
9,0"¢ +m*p = 0. (1.4.5)

A = 0 when corresponds to a free theory without self-interactions. This is recognised as
the Klein-Gordon equation that describes the Higgs boson, the only scalar particle in the
Standard Model.

1.4.4 Symmetries

We may also further identify the various generators of symmetry in the theory in the
Lagrangian formalism. This may be accomplished by taking the variation of the ac-
tion/Lagrangian, or looking for internal symmetries. An example of an internal symmetry
would be to look for U(1) gauge invariance of the kind that generalises the Lagrangian of
a single scalar field formulated in We may do so by extending Eq. for two

scalar fields ¢, and ¢, expressed in complex variables,
L := 9,00"p — m?|¢|* — |6, (1.4.6)

where we've introduced ¢ = ¢; + iy and ¢ its complex conjugate.
To show that the Lagrangian is invariant under U(1) gauge symmetry, consider the

following transformations:

¢ — e, (1.4.7)
o — e o (1.4.8)

One can show that the Lagrangian is indeed invariant for the given set of transformations
(up to a total derivative term).

On the other hand, a Lorentz-invariant Lagrangian would be made up of Lorentz
scalars: 0,00"¢, |¢|?. In fact, it’s easier to check for Lorentz-invariance in the Lagrangian
than to do so in the Hamiltonian formalism. This is because the Hamiltonian is typically
not explicitly Lorentz invariant by construction. Take for example the Schrodinger’s
equation that is shown to have a first order derivative in time but second order in space.
We say that the theory does not treat time and space on a equal footing and hence is not
manifestly Lorentz invariant. We would however assume that a theory (or Hamiltonian)
constructed from a Lorentz invariant Lagrangian remains so after manipulation given that
the physical description of the system does not change. We can then also be certain that

the theory remains Lorentz invariant when we have quantised the classical theory.

17
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1.4.5 Hamiltonian

The Hamiltonian may be defined as follows for the bosonic variables and will take on
a slightly different definition for the fermionic variables. We first define the conjugate
momenta for the free field theory with equations of motion given by Eq. (1.4.5)),

oL

I, = T (1.4.9)

which may be generalised for arbitrary number of fields in a given theory. Using this
definition, via the Legendre transformation, we obtain the Hamiltonian (density) function

in terms of the conjugate momenta and position (bosonic) variables:
H(ITy, ¢) = My — L. (1.4.10)
For the free field theory we would arrive at

1 1 , 1
H(Iy, ¢) = §Hi + 53@8% + §m2¢2. (1.4.11)

We delay the definition for Hamiltonian for fermionic variables till Section [2.1]

1.4.6 The Partition Function

In d-dimensions then, the theory may be defined by a partition functional or path integral

with Minkowski signature by
Z(J) = / D &i5®.7) (1.4.12)

where D¢ is an ill-defined integration measure in regular measure theory, with ¢ as the
placeholder for all scalar fields and J being the placeholder for all currents.

We further notice that the weighted exponential is an oscillatory term and hence the
convergence of the integral is questionable. The different paths/mappings are weighted
equally but with varying phase, determined by the Hamilton’s principle function, S. By
imposing Hamilton’s Principle, we will only consider weights for which the variation in
the action 0.5 = 0 (stationary paths/states), while paths that are highly oscillatory about
the stationary paths will interfere destructively and not contribute to the path integral.

The path integral formalism, while having its own set of problems, is an alternative
quantisation scheme to the canonical quantisation that has been shown to be equivalent

[17, 18]. Some of the advantages of the path integral formalism are listed here:

(1) the quantum theory is Lorentz invariance by construction, enforced by an appropri-

ate Lagrangian,
(2) avoids defining commutation relations of quantum operators,

(3) (as we will see) pertubation methods are easier to implement in the path integration

approach without ordering issues.
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Nevertheless, while the calculations may be generally more tedious, the path integral
approach can be shown to be equivalent to the canonical quantisationE. We can also
appreciate the path integral better from the perspective of differential geometry which is
the angle this paper will take on.

In particle physics, calculations for scattering cross section and decay may be obtained
by considering perturbation theory to the path integral and obtaining perturbative results
to an appropriate order. The evaluation of such calculations are often tedious and are
limited mostly to tree level calculations, facilitated by Feynman diagrams. Feynman
diagrams are g