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NEUTRONS IN 

PROTON 

THERAPY 

Quantifying the spatial and angular distribution 

of lethal neutrons for treatment planning 

ABSTRACT 

It is known that high energy protons in proton 

therapy generate secondary particles. Of 

which, secondary neutrons are a main concern 

as they deposit out-of-field doses and can 

have long-term health effects on cancer 

patients. In this report, the energy, 3-D spatial 

and angular distribution of the production 

yield of neutrons are scored along the proton 

beam path in different types of tissue medium. 

The degree of biological damage is then 

quantified through factoring in the relative 

biological effectiveness of neutrons. This 

systematic study involved simulating 70, 150 

and 200 MeV proton beam transport in 

various tissue compositions in GEANT4. 

System specifications of the Hitachi proton 

therapy system were used in this study. 

Simulation results showed that the neutrons 

are forward facing and are generally emitted 

at a preferential angle. With considerations on 

the RBE variation with neutron’s energy, the 

spatial and angular distribution of the 

production of lethal neutrons were identified 

along the proton track. Non-trivial relations 

between biological damage in different tissue 

medium were observed. Such comprehensive 

simulation studies have not been reported and 

this input information can be useful for 

treatment planning in reducing out-of-field 

neutron dose in sensitive organs and increase 

the dose deposited into the tumor. 
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1 Introduction  

Radiation is a double-edged sword that can be used for detecting and eliminating cancer. 

However, it must be well managed and carefully planned as it comes with an added risk 

of side effects that can become apparent soon after the exposure or resurface many years 

later in the form of secondary cancer. To reduce the risk of such effects, clinicians must 

identify the best ways to achieve best tumour control, while reducing normal tissue 

complications. This can be achieved through careful treatment planning and research. 

The research in this paper investigates the risk of biological damage from the secondary 

neutrons produced during proton therapy. This would provide information for treatment 

planning to reduce the out-of-field neutron dose and increase the dose deposited into 

the tumour. The research is conducted through simulation of the transport of proton 

beams of various energies through a selection of tissue phantoms in GEANT4 [1]–[4]. 

This thesis introduces a new quantity known as lethality, to quantify the risk associated 

with the secondary neutrons produced. 

1.1 Radiation in Cancer Treatment 

There are several uses of radiation in cancer treatment. Some examples are 

radiotherapy, proton therapy and brachytherapy.  

X-ray radiotherapy is a form of cancer treatment where x-ray photons are targeted 

towards a cancer tumour, to deposit radiation dose and kill the cancer cells. The photons 

interact with matter via electromagnetic interactions, namely, the photoelectric effect, 

Compton scattering and pair production, which results in the photons being scattered or 

absorbed. Consequently, the photons are attenuated along its path length and deposits 

its dose following an attenuation curve represented in Fig. 1 [5]. This means that the 

dose delivered is highest when the beam enters the body and reduces as the x-ray beam 

travels along the body. 
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1.2 Proton Therapy 

Proton therapy uses protons instead of photons, and is another form of cancer treatment 

that has been gaining popularity in recent years. With the completion of the Goh Cheng 

Liang Proton Therapy Centre in 2022 [6], Singaporeans would also have the choice of 

proton therapy as a treatment option.  

One benefit of proton therapy over conventional x-ray radiotherapy is the ability to 

administer a high dose of radiation into region where the cancer tumour resides and a 

smaller dose to the healthy tissues along the proton beam path [7], hence reducing the 

risk of secondary cancer. This property arises from the interaction between protons and 

matter, where the proton deposits its energy in a way that forms a Braggs peak shown 

in Fig. 1 [5]. This means that the dose delivered is lowest when the beam first enters the 

body and remains low, up till the point just before the beam stops where there is a sharp 

increase in the delivered dose. Consequently, there is no dose deposited after the Braggs 

peak.  

The depth in which the Braggs peak occurs is dependent on the initial energy of the 

proton, allowing radiation oncologists to localize the dose deposition by selecting a 

suitable beam energy according to the location of the cancer tumour [7]. 

 

Fig. 1. Comparison of the dose deposition characteristics between proton beam and X-

ray. Image taken from: [5]. 
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1.3 Risk of Secondary Cancer 

The claim that proton therapy reduces the risk of secondary cancer, as compared to x-

ray radiotherapy, has been supported by studies [8]–[10]. These studies showed a 

reduction in secondary cancer occurrences in patients that underwent proton therapy as 

compared to radiotherapy. However, it is important to note that because proton therapy 

is relatively new, more research and a longer follow up is required to come to any 

conclusion on the actual decrease in risk. 

The statistics showing the secondary cancer recurrence rate from the three studies 

mentioned can be found in Table 1.  

Table 1. Statistics of secondary cancer recurrence in patients that underwent either pro-

ton therapy and radiotherapy  

Reference Type of Cancer Proton Photon 

Sethi et. al. (2013) 
DOI:10.1002/cncr.28387 

Retinoblastoma (eye) 1/55 

(1.8%) 

4/31 

(12.9%) 

Chung et. al. (2013) 
DOI:10.1016/j.ijrobp.2013.04.030 

Prostate, central nervous system or 

head region (pediatric) 

29/558 

(5.2%) 

42/558 

(7.5%) 

Eaton et. al. (2015) 
DOI:10.1016/j.ijrobp.2015.09.014 

Medulloblastoma (brain) 0/45 

(0%) 

3/43 

(7.0%) 

In the first paper, Sethi et. al. followed a group of people that had retinoblastoma 

treatment with either protons or photons for a certain number of years [8]. Their results 

showed that 1 out of 55 patients that had proton therapy developed an osteosarcoma of 

the distal femur (bone cancer), while 4 out of 31 patients that had radiotherapy 

developed secondary cancers at the sinus, bone, neck, brain years later.  

Chung et. al. followed a larger group of children and found that 5.2% of the people that 

had proton therapy developed a secondary cancer. This is a drop from the 7.8% of 

people that had radiotherapy [9].  

Eaton et. al. followed a group of patients that underwent treatment for medulloblastoma, 

and no patients that went through proton therapy reported secondary cancer. 3 out of 43 

patients that had radiotherapy, however, developed secondary cancer years later [10].  
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From the above, all three papers show a reduction in the rate of secondary cancer in 

proton therapy treatment as compared to x-ray radiotherapy.  

However, it is important to note that in addition to the reduced risk, all the secondary 

cancer developed at a secondary site away from the primary cancer. A possible suspect 

for the development of secondary cancer is the out-of-field doses from the treatment. 

Although it is also possible that the secondary cancer developed through other 

radiobiological reasons, such as an increase in metastatic potential, we should not 

neglect the out-of-field doses in treatment planning. 

1.4 Secondary Particles: Possible Cause of Secondary Cancer 

Though there is a reduction in the number of secondary cancer occurrence between 

proton therapy and radiotherapy, there are still reported cases of secondary cancer from 

proton therapy. These reported cases of secondary cancer occur at a secondary site from 

the primary cancer, and it is possible that the secondary cancer is caused by the out-of-

field dose from proton therapy. 

The secondary particles generated during the non-elastic nuclear interaction of the 

proton and matter, in proton therapy, can be a possible source of the out-of-field dose 

[11]. When a proton travels through a medium, it can undergo electronic interaction or 

nuclear interaction. Protons are mostly slowed down through electronic coulomb 

interaction and scattered/absorbed through the nuclear interactions, generating 

secondary particles in the process. Secondary protons, deuterons, neutrons and prompt 

gammas are possible secondary particles that can be emitted from the nuclear 

interaction.  

Out of these particles, secondary protons and deuterons are less of a concern as they 

often have a short path length and contribute to the in-field dose. Neutrons and prompt 

gammas, however, have a longer path length and can contribute to the out-of-field dose. 

Moreover, neutrons can be dangerous because of their high Relative Biological 

Effectiveness (RBE) and high Linear Energy Transfer (LET) properties [12]. As such, 

a small absorbed dose may lead to DNA damage [12]. 
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1.5 Neutrons 

Neutrons are uncharged particles that do not undergo coulomb interaction and lose their 

energy mainly through elastic nuclear scattering. The effect a neutron experiences from 

an electronic interaction is negligible due to it being uncharged. This is the reason why 

neutrons have a longer mean free path as compared to charged particles. 

Neutrons can be classified into different categories depending on its energy. This would 

allow us to identify if the neutron will interact with the material, because the interaction 

cross section of neutron is strongly dependent on the energy of the particle [13]. To 

illustrate how the cross section changes with the energy of the particle, the interaction 

cross section of the elastic collision of neutrons, with Hydrogen-1, is presented in Fig. 

2 [14]. 

 

Fig. 2. Graph of the interaction cross section of the elastic collision of neutrons with 

Hydrogen-1 with respect to the energy of the neutron. Data taken from [14]. 

The energy of the neutrons produced in proton therapy can span a wide range of 

energies, from ultrafast neutrons (> 20 MeV) to thermal/cold neutrons (0 eV – 0.025 

eV). However, in our study, intermediate neutrons (300 eV – 1 MeV) are the most 

concerning type of neutrons due to their high Relative Biological Effectiveness (RBE). 
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This means that they can cause a high amount of biological damage to tissues and may 

result in DNA damage. 

1.6 Relative Biological Effectiveness 

Relative Biological Effectiveness (RBE) is defined as the ratio of the doses required by 

two radiations to cause the same level of effect. It is an empirical value that converts 

absorbed dose into a biological equivalent dose.  

The RBE value differs across various ionizing radiation because different ionizing 

radiation interacts with matter differently. Protons, for example, have an RBE value 

close to 1.1 [15].  

At the point of writing, the international regulatory commission, International 

Commission on Radiological Protection (ICRP) has agreed upon a set of RBE values 

for neutrons of different energies [16]. However, the ICRP standard assumes a low 

neutron dose and states that the standard is only applicable for radiation protection 

purposes and is not suitable to be used for the assessment of risk [13]. In this paper, the 

RBE values used are determined based on the quantification of the DNA double strand 

break clusters simulated by Baiocco et. al. using the Particle and Heavy Ion Transport 

code System (PHITS) and monte carlo simulation, PARTRAC [13]. The graph of 

neutron RBE vs energy is presented in Fig.3. 
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Fig. 3. Graph of Neutron RBE as a function of energy obtained using DSB cluster 

induction (black), ICRP (red) and U.S. NRC (blue). Error bars on RBE are from DSB 

cluster induction come from errors on the DSB cluster yields. Image adapted from: [13]. 

The RBE value calculated based on the number of DNA double strand breaks is a better 

representation of the risk of secondary cancer, than the ICRP standard, because double 

strand breaks constitute a large risk towards cancer, although many other factors such 

as the DNA repair mechanisms of the cell do play a role [13]. However, until we fully 

understand the mechanisms behind cancer development, the RBE values based on 

double strand break clusters serve as a good approximation of the relative damage 

caused. 

In addition to having a high RBE, neutrons also have a high LET coefficient [12], 

meaning that they deposit higher concentration of doses along the neutron path as 

compared to electrons or gamma photons, that have a low LET. This is because the 

mass of a neutron is close to the mass of a hydrogen atom, which is abundant in tissues. 

As a result, each elastic collision with a hydrogen atom transfers a large percentage of 

the neutron energy and momentum to the atom.  

We can assess the risk of biological damage and secondary cancer from the secondary 

neutrons produced in proton therapy by considering these factors and the nuclear 

interaction cross section of neutrons.  
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1.7 Current Research 

The risk of secondary cancer from secondary neutrons produced in proton therapy 

treatment have been studied by several research groups in the past [11], [12], [17], [18].  

In one of the studies, researchers investigated the risk of secondary cancer, induced 

from neutrons produced in passive modulation proton therapy machine [17], [18]. These 

neutrons are produced when the proton beam scatters off a scattering foil that is used to 

widen the proton field. 

Results from both papers showed an increased risk from the secondary neutron-induced 

secondary cancer, when a passive proton therapy machine is used instead of an active 

proton therapy machine. This is because a passive proton therapy machine uses 

scattering foils to direct the beam, and the scattering of protons from the foils creates a 

significant number of neutrons. This is compared to an active proton therapy machine, 

which uses magnetic scanners to direct the beam [17], [18]. 

Another study simulated the dose due to secondary neutrons and photons in proton 

therapy treatment of the eye and deep-seated tissues using the FLUktuierende KAskade 

(FLUKA) code [11]. Their results found that the dose contributions due to secondary 

neutrons and photons are 10-4 Gy for the treatment of eye tumour using a passive proton 

beam system, 10-2 Gy for the treatment of deep seated tumour using a passive proton 

beam system and 10-3 Gy when treating deep seated tumour with an active proton beam 

system. 

These studies present several methods of secondary cancer risk estimation models. They 

often compare the risk from proton therapy and the risk associated with x-ray 

radiotherapy methods. However, none of these studies considered the neutrons created 

from different tissues within the human body.  

This is a cause for concern because the interaction of protons with tissues do create 

secondary neutrons. Moreover, at the time of writing, commercial proton therapy 
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treatment planning systems do not have the capabilities to determine neutron doses, and 

hence neutron doses are often neglected.  

1.8 My work 

Hence, we conducted a comprehensive study of neutron production in various tissue 

medium to provide information of the angular distribution, spatial distribution and 

energy distribution of these secondary neutrons created in the tissues. The study was 

conducted using a Monte Carlo simulation in GEANT4. This information would allow 

treatment planners consider the risks associated with secondary neutrons in proton 

therapy. This information would also allow treatment planners to understand if the 

neutrons produced from proton therapy is sufficiently high for Boron-11 to act as an 

effective radiosensitiser to increase the dose deposited in the tumour region through 

capturing of the neutrons. 

In addition, this thesis compares the lethality factor among various tissue medium to 

quantify the possible risk of DNA damage caused by the production of neutrons. We 

will also provide a short section on the transport of the neutrons and compare the 

differences between the Bertini physics model and the binary cascade physics model 

that can be used for the simulation.   



 

10 

 

2 Materials and Methods 

To perform the study, a Monte Carlo simulation, derived from GEANT4, was used to 

simulate the yield of neutrons produced during proton therapy on various tissue models 

available from the GEANT4 materials database. This simulation was originally 

developed for the commissioning of the upcoming proton therapy centre in Singapore. 

Proton pencil beams of energies 70 MeV, 150 MeV and 200 MeV were used in this 

study to monitor the secondary neutron production in various blocks of 30 x 30 x 30 cm 

tissue phantoms. A total of 10 million protons were simulated in each run. The energy, 

momentum and position of the secondary neutrons were scored and analysed. Transport 

of the neutrons were killed right after production, to reduce the computing power and 

size of the data; the information of the neutron transport is not required because of the 

sole interest in the initial state parameters of the neutrons. 

2.1 Simulation Geometry 

The proton therapy system in the simulation was configured based on the specifications 

of the Hitachi Proton Therapy system, that will be built in the Goh Cheng Liang Proton 

Therapy Centre. The nozzle and detector geometry are constructed in GEANT4 using 

the G4VUserDetectorConstruction class. Components such as range shifter, main and 

sub dose monitor, beam position monitor and the Kapton window, that are used in 

scanning proton therapy, are added into the nozzle geometry. These components affect 

the beam profile through the introduction of longitudinal and lateral straggling. A 

schematic diagram of the proton therapy nozzle and detector geometry is presented in 

Fig. 4. In our geometry, a magnetic scanner was used instead of a scattering foil to direct 

the proton beam. This mimics the Hitachi system, which is an active proton therapy 

system instead of a passive one. 
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Fig. 4. Schematic diagram of the nozzle and detector geometry used for simulation. The 

beam starts at the Beam Profile Monitor (BPM) and transverse through the Kapton 

window, sub and main dose monitor, beam position monitor and finally range shifter 

before hitting the tissue phantom.  

The beam path starts at the Beam Profile Monitor (BPM), as determined by the phase 

space parameters provided by Hitachi. The beam then passes through a 30 x 30 x 30 cm 

tissue phantom centred at the isocentre. The position, momentum and energy of the 

secondary neutrons generated through the interaction of the proton with the tissue 

phantom are then recorded for analysis. 

2.2 Physics Model 

In the simulation, the QGSP_BIC_EMY physics model was used. The 

G4HadronPhysicsQGSP_BIC physics model [19] in GEANT4 was used to obtain the 

data of the neutron’s position and momentum.  

The  Quark-Gluon String Pre-compound (QGSP) physics model was chosen because 

it is highly recommended for medical application [19]. The QGSP model can simulate 

nuclear excitation through high energy interactions and subsequently the nuclear de-

excitation, using the pre-compound model and generate secondary particles, making it 

suitable for the study.  

The Binary Cascade (BIC) component [20] in the model replaces the original Low 

Energy Parameterised (LEP) model in QGSP with a binary cascade, and is used because 
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it is better at describing the production of secondary particles produced in the 

interactions of protons with the nuclei.  

The electromagnetic model used was the EMY option, which refers to the 

emstandard_opt3 in the electromagnetic model and was chosen to achieve a higher 

accuracy because it can give the most precise description of low energy effects. 

2.3 Tissue Phantoms 

A total of 24 blocks of tissue phantoms were used for this study, and the neutron yield 

from each phantom were compared against each other. The tissue phantom materials 

were constructed based on National Institute of Standards and Technology (NIST) 

tissue standards that are present in the GEANT4 materials database [4]. Each phantom 

is made up of a 30 x 30 x 30 cm block of tissue, ranging from bone to adipose tissues. 

The full list of the tissue models used can be found in Table 2 and 3. 

2.4 Angular Distribution 

The angular distribution was determined based on the information of the momentum 

vector of the neutrons. The angle of the direction of the neutron was calculated from the 

direction of pencil beam using the Eq. (1) and Eq. (2),  

θ =  cos−1
𝑃𝑥

√𝑃𝑥
2 + 𝑃𝑦

2 + 𝑃𝑧
2

(1) 

ϕ =  tan−1
𝑃𝑦

𝑃𝑧

(2) 

where Px, Py, Pz are the momentum of the neutron in the x, y and z direction respectively. 

In our calculations, the x direction refers to the direction in which the beam travels.  

A visual representation the angles can be found in the appendix. 
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2.5 Lethality Factor 

In this study, a lethality factor was defined as the track-summed RBE of the neutrons in 

each voxel of 1.5 x 1.5 x 1.5 mm3. The lethality factor is a measure of the maximum 

risk of localized DNA damage from neutrons at the moment of production, and it 

follows Eq. (3), 

𝐿(𝑖) =  ∑ 𝑅𝐸  × 𝑁𝐸,𝑖

𝐸

(3) 

where RE is the Relative Biological Effectiveness value of the neutron based on its 

energy, NE,i is number of neutrons of energy E in the i-th voxel and L(i) is the sum across 

all neutron energies in the i-th voxel to obtain the lethality factor. 

The RBE values of the neutrons used in this paper considers double strand break clusters 

caused by the neutrons and is dependent on the energy of the neutrons [13]. The total 

lethality is then calculated by summing up the lethality values of all the voxels in one 

run.   

2.6 Data Analysis 

After running the GEANT4 simulation, the data generated by the system was recorded 

in two separate output files. One of the files contain the spatial distribution of the dose 

detected by the detector geometry in the phantom, and is named “Dose.out”, while 

another file contains the position, momentum and energy of the secondary neutron at 

the moment it is created by the system.  

A total of 72 runs, consisting of 3 beam energies (70 MeV, 150 MeV, 200 MeV) 

incident on 24 different tissue phantoms, were conducted, simulating the neutron 

production in each run. The results from each run were collated, analysed using 

MATLAB R2016a and Wolfram Mathematica 10, and are presented in the next chapter.  
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3 Results and Discussion 

This chapter presents the results and discussion on the properties of the secondary 

neutrons, and the risks associated with it.  

3.1 Proton Beam Dose Distribution 

In the first section, we will analyse and discuss the distribution of the dose deposited by 

the proton beam, that is recorded in the “Dose.out” file.  

From the introduction, we know that a proton beam deposits dose as it travels through 

the phantom with a lowest dose delivered at the start of the beam path, and deposits 

most of the dose at the Braggs peak. Here, we show an example of the dose deposited 

and measured from the simulation.  

The absorbed dose in gray was calculated and recorded within the GEANT4 simulation. 

Fig. 5 presents a 1.5 mm 2-D slice of a 3-D matrix of the dose deposited after passing 

10 million protons of energy 150 MeV through a water phantom. The 3D volume matrix 

of the phantom was separated into 200 equal 2-D sheets of 1.5 mm thickness, and the 

slice presented in Fig. 5 was taken from the middle (15 cm mark) of the 30 cm water 

phantom block. 

Based on Fig. 5, it can be observed that the dose distribution matches the Bragg peak 

expected of a proton beam, and the beam profile follows a gaussian distribution, where 

most of the protons are delivered from the centre of the beam. The Bragg peak occurs 

at 156 mm into the water phantom, and deposits a maximum dose concentration of 17.4 

mGy in a 1.5 mm x 1.5 mm x 1.5 mm voxel and a total absorbed dose of 67.5276 Gy in 

the whole 3D phantom. Though the total absorbed dose is high, it is close to the total 

cumulative dose a patient often receives for a typical epithelial cancer treatment. In 

practice, the dose would be fractioned into smaller doses and delivered over a period of 
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time1. However, to simplify the calculation, we used 10 million proton counts in the 

simulation to reflect the total neutrons that will be produced over the whole course of 

treatment.  

 

Fig. 5. Dose distribution from a 150 MeV proton beam containing 10 million protons 

passing through a water phantom taken at slice Z = 150 ± 0.75 mm. Brag peak is 

observed at 156 mm. Colour represents dose (gray) deposited in each 1.5 mm x 1.5 mm 

x 1.5 mm voxel. The total absorbed dose in the phantom is 67.5276 Gy. 

In addition to the observations above, a fall off dose can be observed in Fig. 5 at the 

distal end of the Bragg peak. We can also see that the width of the beam profile is 

relatively thin along the beam path and widens when the beam is close to the region of 

the Bragg peak.  

The widened dose profile at the region of the Bragg peak can be attributed to the higher 

elastic scattering interaction cross section of the low energy protons in that region, 

                                              

1 It is important to note that in real situations, the DNA repair mechanism in a cell is an important factor to consider when 

determining the risk of secondary cancer. 
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essentially due to an increase in multiple Coulomb scattering cross-section. Having a 

higher interaction cross section would mean that the protons undergoes more elastic 

nuclear scattering events, hence changing the direction of the protons and depositing 

dose in a wider area [7]. This contrasts with the start of the proton beam path, where the 

protons have a higher energy, and have a lower elastic scattering cross section. 

Moreover, most of the interaction at the start of the proton beam path involves electron 

scattering, which does not change the direction of the protons, or non-elastic nuclear 

scattering where the proton is absorbed into the nucleus [7]. 

3.2 Spatial Distribution of Neutrons 

After looking at the dose distribution, we looked at the spatial distribution of the 

secondary neutrons. As mentioned in chapter 2, the 3D spatial coordinates of the 

secondary neutrons were recorded at the moment of production, and the track 

transporting the neutron was terminated right after a neutron is produced. This is done 

to reduce computing power and memory space of the data recorded. 

Results presented in this section were obtained from passing a 150 MeV proton beam 

through a water phantom. From section 3.1, we know that the Bragg peak of the 150 

MeV proton beam is located at the 156 mm mark into the water phantom.  

From Fig. 6, we can observe that the number of secondary neutrons produced is high at 

the start of the proton beam path and the number tapers down as the proton beam loses 

energy and travels deeper into the phantom. There are very little secondary neutrons 

produced at the Bragg peak region of the proton beam.  

This is logical as the production of secondary neutrons is a nuclear interaction that 

requires a threshold energy to bypass the potential from the positively charged atomic 

nucleus. At the start of the proton beam path, the protons generally have sufficient 

energy to overcome the potential barrier of the positively charged nucleus. However, as 

the proton travels deeper into the phantom and loses kinetic energy, the protons would 

have insufficient energy to break through the potential barrier of the nucleus.  
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Fig. 6. Image of the spatial distribution of the neutrons produced in a water phantom, 

with proton beam containing 10 million protons with energy 150 MeV taken at slice Z 

= 150 ± 0.75 mm. The colour represents the total counts of neutrons in a 1.5 mm x 1.5 

mm x 1.5 mm voxel. 

When we compare the Bragg peak region in Fig. 5 and Fig. 6, we can see that although 

a high amount of is dose deposited in the Bragg peak region, only a few neutrons are 

produced at that region. This supports the claim that the dominant interaction of the 

protons at the Bragg peak region is elastic nuclear scattering instead of non-elastic 

nuclear scattering of the protons. 

3.3 Spatial Distribution of the Neutron Energies 

Next, we proceeded to look at the distribution of the energy of the neutrons as proton 

beam travels through the water phantom. This will allow us to analyse the energies of 

the neutrons produced in different spatial regions of the phantom as the proton beam 

travels through it. Results presented in Fig. 7 were obtained by finding the average 

energies of the neutrons that were produced in each voxel, while the sum of the energies 

of all the neutrons produced in each voxel are presented in Fig. 8. 
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The values for Fig. 7 were calculated by dividing the total energy of the neutrons from 

each voxel by the total neutron counts in each voxel, 

𝐸𝑖 = ∑
𝐸𝑛,𝑖

𝑁𝑖
𝑛

(4) 

where Ei is the average energy in the i-th voxel, Ni is the neutron count in the i-th voxel 

and the sum of En,i is the total energy of the neutron produced in the i-th voxel. 

 

Fig. 7. Average energies of the neutrons in each 1.5 mm x 1.5 mm x 1.5 mm voxel taken 

at slice Z = 150 ± 0.75 mm for proton beam containing 10 million protons of energy 

150 MeV through a water phantom. The colour represents the average energy of the 

neutrons in each voxel. 

From Fig. 7, we can observe that there is no y-axis dependence on the average energy 

of the neutrons. i.e. The neutrons have a similar average energy across the y-axis.  

We can also see that the average energy of the neutrons produced at the start of the 

proton beam path is higher than that of those closer to the Bragg peak. The average 

energy of the neutrons at the start of the proton beam is about 40 MeV and decreases 

slowly as the proton beam travels deeper, up till the depth close to the Bragg peak, 
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where the average energy of the neutrons is close to 0 MeV. This is because the protons 

have a higher energy at the start of the proton beam path as compared to the end, hence 

it is likely that more secondary neutrons of a high energy are produced at the start of 

the beam than at the end of the beam path.  

However, it is important to note that the average energy here only gives us a sense of 

the relative energies of the neutron along the beam path, and not the actual 

representation of the distribution of the neutron energies. This is because the distribution 

is skewed, and the average of the distribution is not a good representation for a skewed 

distribution. More information can be found in section 3.4. 

Fig. 8 was then plotted for the reader to have an overall picture of the total distribution 

of the neutron energy within the water phantom.  

In Fig. 8, we see a trend where the total energy of the neutron is high at the start and 

lower in the region closer to the Bragg peak. This is due to the high neutron count and 

higher average energy of the neutrons at the start, compared to the end of the beam path. 

 

Fig. 8. Spatial distribution of the energies of the neutrons produced in a water phantom, 

with proton beam containing 10 million protons with energy 150 MeV taken at slice Z 

= 150 ± 0.75 mm. The colour represents the sum of energy of the neutrons in a 1.5 mm 

x 1.5 mm x 1.5 mm voxel. 
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From the plots in this section, we can see that there is a higher concentration of neutrons 

produced at the start of the proton beam path. This is concerning because the healthy 

cells located in the region will be affected by these neutrons. 

In the next section, we will look at the distribution of the neutrons in terms of energy. 

This will allow us to understand more about the type of neutrons that are produced. 

3.4 Energy Distribution of Neutrons 

In the previous section, we have seen the average energy of the neutrons and the location 

it is produced. Previously, the average energy of the neutrons can give us a sense of the 

where high energy neutrons are distributed. However, because we are dealing with a 

skewed distribution, knowing only the average energy of the neutron will not give us 

the full picture of the type of neutron we are dealing with. This section fulfils that by 

showing the number of neutrons produced at each energy range. The data is presented 

in Fig. 9. 

 

Fig. 9. Log-scaled histogram of the energy of neutrons produced from an incident 

proton beam containing 10 million protons each of energy 70 MeV, 150 MeV and 200 

MeV in a water phantom with a bin width of 1 MeV. 
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Fig. 9 shows that when protons of energies 70 MeV, 150 MeV and 200 MeV interact 

with water, most of the secondary neutrons produced are neutrons of energies less than 

10 MeV. From Fig. 9, the mode of the energy distribution of the neutrons are (0.6 ± 

0.05) MeV, (0.8 ± 0.05) MeV and (0.6 ± 0.05) MeV respectively. For the analysis, the 

mode of the energy distribution was recorded, because the energy of the neutrons is too 

skewed to the lower energy spectrum, and therefore the mean of the distribution will 

not provide any useful information. 

Referring back to Fig. 3, we can see that neutrons with energies from 0.1 MeV to 10 

MeV have a high RBE and LET value [13]. This means that majority of the secondary 

neutrons produced in our simulation are lethal neutrons, and thus the effect of secondary 

neutron dose on biological materials should not be neglected. This serves as an 

additional motivation to understand more about the production of secondary neutrons 

in proton therapy. 

Next, we explore the angular distribution of the neutrons. This will allow us to have a 

better understanding of where the neutrons are heading towards, and direct the proton 

beam such that we can avoid bathing sensitive tissues with dangerous neutrons during 

a treatment. 

3.5 Angular Distribution of Neutrons 

The angular distribution of the neutrons was calculated based on the momentum vector 

of the neutrons recorded in the GEANT4 simulation. In this section, we will be looking 

at the distribution of the two angles described in Section 2.4. Fig. 10 shows the 

distribution of θ calculated using Eq. (1) while Fig. 11 shows the distribution of ϕ 

calculated using Eq. (2). The angle θ is calculated from the propagation vector of the 

proton beam. i.e. an angle of 0  ̊would mean that the secondary neutron is moving in the 

same direction as the proton beam. A visual representation the angles can be found in 

the appendix. 
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Fig. 10. Log-scaled histogram of the angular distribution of neutrons in the θ direction, 

produced from an incident proton beam containing 10 million protons each of energy 

70 MeV (grey), 150 MeV (yellow) and 200 MeV (pink) in a water phantom with a bin 

width of 1 deg. 

In Fig. 10, majority of the neutrons produced are forward facing (< 90 ̊ ), with the mode 

angle θ of (44.0 ± 0.05)  ̊for a 70 MeV proton beam, (34.8 ± 0.05) ̊ for a 150 MeV proton 

beam and (32.6 ± 0.05) ̊ for a 200 MeV proton beam. We see that the neutrons have a 

preferential angle, and a lower energy proton beam will produce neutrons that are more 

isotropic (histogram resembles a uniform distribution).  

The preferential angle in which the neutrons are emitted, is determined by the physics 

model used. Currently, the binary cascade model used in the simulation agrees with 

experimental studies on heavy elements (Al, Fe, Pb), however no experimental studies 

have been done to investigate the angular distribution of the neutrons in soft tissues 

during proton therapy treatment. Measurements of the angular spread should be 

considered for the results to be conclusive.  
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Fig. 11. Histogram of the angular distribution of neutrons in ϕ direction, produced from 

an incident proton beam containing 10 million protons each of energy 70 MeV (grey), 

150 MeV (yellow) and 200 MeV (pink) in a water phantom with a bin width of 1 deg. 

From Fig. 11, we can see that the neutrons are distributed in an isotropic manner in the 

ϕ direction for all three proton beam energies. Combining the results from Fig. 10 and 

Fig. 11, we can imagine the neutrons propagating in the forward direction at an angle 

in the shape of a ring.  

After looking at the results from passing the proton beam through water and 

understanding how the results from each part is analysed, the next section will present 

a summary of the results obtained by passing the proton beam through the varying tissue 

medium.  

3.6 Varying Tissue Medium 

In this section, we will present a summary of the results shown in Section 3.2-3.5, in a 

table form, but changing the water phantom to various tissue phantoms. The total 

neutron counts, mode of the angle θ and the mode of the energy for the 70 MeV, 150 

MeV and 200 MeV proton beam through 24 different tissue phantoms will be shown 

here. Table 2 contains information on the total neutron counts, while Table 3 presents 

the mode of the angle and the energy. 
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Table 2. The total neutron counts produced from 10 million protons of energy 70 MeV, 

150 MeV and 200 MeV in the 24 different tissue phantoms used in the study.  

 

From Table 2, we can see that on average, the neutron production rate is 0.0249 

neutrons/proton for 70 MeV proton beam, 0.1123 neutrons/proton for 150 MeV proton 

beam and 0.1918 neutrons/proton for 200 MeV proton beam. The tissue phantom that 

produces the most number of secondary neutrons is the C552 Tissue phantom, while 

the tissue phantom that produced the least number of secondary neutrons is Adipose 

Tissue, excluding Air, Methane and Propane.  

The results seem to suggest that there is minimal linear co-relation between the total 

neutron fluence and the density of the material. This is expected because neutrons are 

produced through non-elastic nuclear interaction, which has a higher dependency on the 

70 MeV 150 MeV 200 MeV

G4 A150 Tissue 239156 1158298 1990031

G4 Adipose Tissue 237407 1135662 1955935

G4 Air 242538 283779 294273

G4 B100 Bone 254812 1303740 2266731

G4 Blood ICRP 246252 1212345 2100267

G4 Bone Compact ICRU 253271 1293019 2256824

G4 Bone Cortical 262504 1387520 2440265

G4 Brain 245102 1197371 2070665

G4 C552 Tissue 282037 1569234 2713302

G4 Eye Lens ICRP 246540 1217910 2103334

G4 Lung ICRP 245298 1208021 2093665

G4 MS20 Tissue 246638 1221250 2107505

G4 Muscle Skeletal ICRP 245660 1210345 2094931

G4 Muscle Striated ICRU 246011 1211127 2095187

G4 Muscle Without Sucrose 246502 1211692 2092077

G4 Muscle With Sucrose 245365 1216236 2101870

G4 Skin ICRP 245405 1208162 2088722

G4 Testes ICRP 245657 1207585 2084714

G4 Tissue Methane 241173 283016 293898

G4 Tissue Propane 241884 285617 296279

G4 Tissue Soft ICRP 243547 1193732 2059839

G4 Tissue Soft ICRU 245995 1212557 2097319

G4 Urea 271717 1339795 2265090

G4 Water 244133 1176985 2078753

Tissue Name
Total Counts
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atomic number of the atom rather than the density of the material. A graph of the total 

fluence vs density of material is presented in Fig. 12. 

 

Fig. 12. Graph correlating the density to the total secondary neutron counts produced 

from proton beam energy 70 MeV (Blue), 150 MeV (Orange) and 200 MeV (Green). 

A reasonable explanation for the minimal linear co-relation can be due to the different 

penetration depth of the protons in the different materials. Since the penetration depth 

of the proton beam is dependent on the slowing of a proton, and the slowing of a proton 

is an electronic interaction, it is reasonable to say that the density affects the penetration 

depth, and hence the neutron count.   

A difference in secondary neutron count can also be observed when comparing the total 

counts between the proton beams of different energies. A higher energy proton beam 

produces a larger number of neutrons, and it is most probably a result of a longer beam 

path for a higher energy proton beam. 

Table 3 shows the preferential angle and the mode energy in which the secondary 

neutrons are emitted. In Table 3, the variations in preferential angle is a result of the 

different atomic composition of the tissue cells. With this information, treatment 

planners can better understand the areas with a higher risk of neutron doses. 
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Table 3. The mode of the angular distribution of the neutrons (uncertainty of ± 0.05 ̊ ) 

and mode of the energy of the neutrons (uncertainty of ±0.05 MeV) produced from 70 

MeV, 150 MeV and 200 MeV proton beam in the 24 materials used in the study. (*) 

represents materials where results are not statistically significant due to the low number 

of counts. 

Mode 

Angle 

(±0.05deg)

Mode 

Energy 

(±0.05MeV)

Mode 

Angle 

(±0.05deg)

Mode 

Energy 

(±0.05MeV)

Mode 

Angle 

(±0.05deg)

Mode 

Energy 

(±0.05MeV)

G4 A150 Tissue 48.3 0.7 31.1 0.7 30.3 0.9

G4 Adipose Tissue 44.3 0.6 32.0 0.9 34.0 0.7

G4 Air * 26.7 1.1 55.6 0.6 32.5 1.7

G4 B100 Bone 35.7 0.5 33.4 0.8 33.4 0.7

G4 Blood ICRP 56.4 0.4 35.6 0.6 34.9 0.8

G4 Bone Compact ICRU 43.9 0.6 29.1 0.6 31.9 0.7

G4 Bone Cortical 50.0 0.7 33.0 0.6 32.8 0.7

G4 Brain 44.7 0.6 32.0 0.6 30.0 0.8

G4 C552 Tissue 45.9 0.7 30.7 0.7 35.0 0.7

G4 Eye Lens ICRP 57.6 0.7 26.9 0.9 33.3 0.8

G4 Lung ICRP 47.8 0.5 37.1 0.8 27.6 0.8

G4 MS20 Tissue 38.4 0.7 29.0 0.7 34.1 0.8

G4 Muscle Skeletal ICRP 57.2 0.6 32.0 0.7 31.0 0.8

G4 Muscle Striated ICRU 53.9 0.9 34.5 0.6 28.9 0.6

G4 Muscle Without Sucrose 38.4 0.4 32.2 0.7 34.2 0.8

G4 Muscle With Sucrose 46.4 0.8 33.0 0.8 30.6 0.7

G4 Skin ICRP 34.7 0.7 34.1 0.9 34.4 0.7

G4 Testes ICRP 38.6 0.7 35.9 0.8 31.6 0.9

G4 Tissue Methane * 104.0 0.8 38.7 0.3 28.5 3.1

G4 Tissue Propane * 33.9 0.4 18.0 0.9 17.6 2.0

G4 Tissue Soft ICRP 40.8 0.7 35.4 0.8 37.1 0.7

G4 Tissue Soft ICRU 57.9 0.6 31.9 0.8 29.2 0.7

G4 Urea 45.6 0.6 34.1 0.8 33.0 0.8

G4 Water 44.0 0.6 34.8 0.8 32.6 0.6

Tissue Name

150 MeV 200 MeV70 MeV

 

In table 3, it is also notable that most of the neutrons produced are intermediate neutrons, 

with energies of about 0.7 MeV to 0.9 MeV. The mean free path of such neutrons is 

about 6.3 cm in water. This is calculated from the total scattering interaction cross 

section of neutrons with Hydrogen-1 (4.79 ± 0.11 barns for 0.798 ± 0.008 MeV 

neutrons) [21]. 
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Having a mean free path of 6.3 cm may seem long, however the average male human 

has a waist circumference of 39.7 inches [22], and most of the secondary neutrons 

produced are forward facing. This means if the proton beam was treating a deep-seated 

tumour within the body, the neutrons generated would have interacted with most of the 

body and deposited out-of-field doses into the body. 

From the above sections, we have shown and emphasized on the importance of 

considering neutron doses when creating a treatment plan for a patient. In the next 

section, we will quantify the relative risk of biological damage among different tissues, 

using the lethality factor defined in Section 2.5. We will then be comparing the lethality 

factors across different tissue mediums to identify the tissues that produces the most 

lethal neutrons.  

3.7 Lethality 

Two methods were used to compare the lethality of the neutrons produced in the 

different tissue phantoms. In the first method, we plot the spatial distribution of the 

lethality factors based on the calculations stated in Section 2.5. We then record the 

lethality factor of the voxel with the highest lethality factor and compare the value 

recorded when using different tissue phantoms. Results from this method is presented 

in Fig. 13. For the second method, the sum of the lethality factor of all the voxels in the 

phantom was recorded and used as a comparison for different tissue phantoms. This is 

presented in Fig. 14. 

The first plot in Fig. 13 shows the concentration of the lethality of the neutrons across 

the different tissues. This removes the bias caused by the different penetration depth of 

the proton beam through different tissue mediums. The next graph in Fig. 14 gives an 

overview of the overall lethality of the neutrons produced in different tissues. 
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Fig. 13. Bar chart showing the highest lethality factor of neutrons produced from 70 

MeV (blue), 150 MeV (brown) and 200 MeV (orange) proton beam. The 24 materials 

used in this study are shown in the chart. 

Fig. 13 shows a non-trivial relation of the possible localized lethality of the neutrons 

between the different tissue models, and it serves as a motivation to investigate the 

maximum risk of damage from transport of the neutrons.  

The lethality factor shown in Fig. 13 is a measure of the localized risk at the point of 

production. In Fig. 13, you can also observe that tissues such as B100 bone equivalent 

tissue, bone compact, bone cortical and C552 air equivalent tissues. A common factor 

between the bone tissues are the high calcium content in the tissues [4]. This might be 

a result of the high Ca(p,n)Sc cross-section of Calcium-44 [23]. Although C552 tissue 

is an air equivalent plastic that has no calcium content, it is suspected that the high 

neutron count can be attributed to the high Fluorine composition [4]. 

This suggest that one should avoid directing the proton beam through tissues with high 

Calcium and Fluorine content, such as bone tissues. 
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Next, the total lethality factor is presented to give the reader a sense of the total relative 

risk of DNA damage from the production of secondary neutrons in different tissue 

medium.  

 

Fig. 14. Bar chart showing the highest lethality factor of neutrons produced from 70 

MeV (blue), 150 MeV (brown) and 200 MeV (orange) proton beam. The 24 materials 

used in this study are shown in the chart. 

In Fig. 14, we can see a trend where the Bone tissues and C552 tissue has a high lethality 

factor as compared to the other tissues that have similar lethality factors. The slight 

difference in trend seen in Fig. 13 and Fig. 14 might be because Fig. 14 shows the total 

lethality, and does not correct for the difference in penetration depth. 

From the information in chapter 3, we can better understand the properties of the 

secondary neutrons produced in proton therapy. In the next few chapters, we compare 

different physics models that can be used in the simulation. We will also introduce a 

short chapter on the transport of the neutrons within the phantom. This will allow us to 

have a clearer picture of what happens to the neutrons after production, and possible 

continuation of the project. 
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4 Comparison between Physics Models 

Considering that we have identified the tissues that generates the highest number of 

lethal neutrons, we now investigate the validity of the physics model used in the 

simulation. This will be done through a comparison between two possible physics 

models in GEANT4, the Bertini model (BERT) [20] and the Binary Cascade model 

(BIC) [20]. In addition, the comparison also includes the difference between a model 

with the addition of the neutron high precision (HP) model [20] and without it. This 

serves as a test to see how the addition of the HP model will affect the results recorded. 

In this chapter we have only included results obtained from passing a 150 MeV proton 

beam through a water phantom. The total neutron count, mode and mean of the angle 

and energy of the secondary neutrons, generated from running different physics models, 

are presented in Table 4. 

Table 4. Table comparing the total count, mean and mode of the angle and energy of 

the secondary neutrons produced from simulation running on different physics models 

(BERT, BERT + HP, BIC, BIC + HP). 

From Table 4, we can see that there is only a slight difference between using the physics 

model with and without the addition of the HP model. When comparing the physics 

model with and without the HP model, the total neutron counts only varied by a 

percentage difference of 0.00008%, while the angular and energy distribution of the 

neutrons were not affected. It is expected to observe no difference with the addition of 

Physics 

Model 

Total 

Neutron 

Count 

Mean 

Angle ( ̊ ) 

Mode 

Angle ( ̊ ) 

Mean Energy 

(MeV) 

Mode Energy 

(MeV) 

BERT 977726 69.7 41.1 16.17 0.80 

BERT + HP 977725 69.7 41.1 16.17 0.80 

BIC 1199177 57.5 34.4 23.09 0.70 

BIC + HP 1199175 57.5 34.4 23.09 0.70 
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the HP model because the HP model is meant for the transport of the neutrons. Since 

the neutrons were not transported in experiment, no difference should be observed. The 

slight variation in neutron count between the model with and without the addition of the 

HP model can be attributed to the randomness of a Monte-Carlo simulation.  

However, when comparing between the BERT model and the BIC model, a percentage 

difference of 10.2% for the total neutron count, 9.59% and 8.74% for the mean and 

mode angle respectively, 17.6% and 6.67% for the mean and mode energy respectively 

can be observed.  

The angular distribution of the neutrons and the energy distribution of the neutrons is 

presented in Fig. 15 and Fig. 16 respectively, to have a clearer illustration of the 

difference between the two physics models. 

 

Fig. 15. Histogram of the angular distribution of neutrons in the θ direction, produced 

from an incident proton beam containing 10 million protons each of energy 150 MeV 

in a water phantom with a bin width of 1 deg. The two histograms represent the two 

physics model, BERT (blue) and BIC (orange) used for comparison. 
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Fig. 16. Histogram of the energy distribution of neutrons produced from an incident 

proton beam containing 10 million protons each of energy 150 MeV in a water phantom 

with a bin width of 1 MeV. The two histograms represent the different physics model, 

BERT (blue) and BIC (orange) used for comparison. 

In Fig. 15, you can see that the BERT model generates neutrons in a more isotropic 

manner as compared to the BIC model. This is evident from the broader width of the 

histogram. In Fig. 16, you can see that the energy distribution of the neutrons from the 

BERT model is more skewed towards the lower energy range as compared to that from 

the BIC model. These differences can be attributed to the different algorithms used in 

each physics model. 

The BERT model simulates inelastic scattering through an intra-nuclear cascade 

developed by Bertini [20]. This intra-nuclear cascade solves the Boltzmann equation on 

the average to obtain details of the physical collision process. The target nucleus used 

in this model is a smooth nuclear medium where particle-hole states are added after 

each interaction. The states of each interaction are determined according to the cross-

section data in GEANT4. At the end of the cascade, the excited nucleus, which consists 

of the sum of states from the interactions, decays through pre-equilibrium, evaporation 

methods, fission or nucleus explosion into the final products [24]. 
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The BIC model also simulates inelastic scattering through an intra-nuclear cascade 

model like the BERT model [20]. However, in this model, the target nucleus in the BIC 

model is made up of a 3-D collection of nucleons, instead of a smooth nuclear medium. 

The interaction between the nucleus and the incident particle is modelled through a 

series of two-particle collisions of the nucleons in the 3-D model. The rate of interaction 

is determined by the interaction cross section of the particles in the GEANT4 database. 

Secondary particles are created during the decay of the excited nucleus, handled by the 

G4Precompound Model [25]. 

A more isotropic angular distribution is observed in the BERT model probably because 

the BERT model uses evaporative and pre-equilibrium models to simulate the de-

excitation of the nucleus, and both models emit particles in an isotropic manner [20]. 

This is compared to the BIC model, that solves for the Boltzmann-Uehling-Uhlenbeck 

equation to obtain the energy, momentum and angles of the particles in the scattering 

process. 

A possible explanation of why the BERT model generates lower energy neutrons as 

compared to the BIC model, is the cut off energy for the intra-nuclear cascade to stop 

is lower for the BERT model (2MeV) as compared to the BIC model (15 MeV). 

Both models are good for the energy range used in proton therapy. However, the BIC 

model was chosen for this study because the 3-D collection of the nucleons used in the 

BIC model is a better representation of a real atom. In addition, the BERT model has 

only been experimentally tested with bullet kinetic energies between 100 MeV to 5 GeV 

[20]. This contrasts with the BIC model, that has been tested for kinetic energies from 

10 MeV to 1200 MeV [20], and matches the energy range used in proton therapy. 

After comparing the physics models, in the next chapter, we will look at the transport 

of the neutrons as a short introduction on what happens to the neutrons after being 

produced. 
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5 Neutron Transport 

In the previous chapters, we have explored the production of neutrons in proton therapy. 

However, to reduce computational power and data space, we have neglected the 

transport of the neutrons within the phantom. In this chapter, we will present a short 

introduction on the transport of the neutrons within the phantom. This will provide the 

reader with a more complete picture of the neutrons produced, and a possible 

consideration for the continuation of the project. 

For this chapter, we reduced the number of protons per run from 10 million protons, 

used in the previous sections, to 100 thousand protons. This reduced the size of the data, 

from 20 Gigabytes/run to about 200 Megabytes/run, and made the analysis more 

manageable. This chapter only presents the 150 MeV proton beam incident onto a water 

phantom, because it serves a short introduction for future works. 

The transport of the secondary neutron were simulated using the neutron high precision 

model in GEANT4 (HP model) [20], that considers neutron in-elastic scattering of the 

neutrons within the water phantom. This is presented in Fig. 17. A scenario where there 

is no interaction between the neutrons and the phantom was also simulated, by linearly 

transporting the neutrons based on its momentum. This is presented in Fig. 18. 

Based on the transport of the neutrons using the HP model (Fig. 17), we can see that the 

secondary neutron tracks have interacted with the phantom and have possibly deposited 

out-of-field doses. This evident from the short and fragmented lines observed, and 

contrasts with the figure simulating no interaction (Fig. 18), where the neutron tracks 

are long and continuous.  

This provides further evidence that the neutrons produced from proton therapy do not 

just pass through the water phantom without depositing dose, and treatment planners 

should consider secondary neutron doses. 
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Fig. 17. Image depicting the track of the secondary neutrons as it travels through the 

water phantom simulated using the neutron high precision model in GEANT4. A proton 

beam containing 100 thousand protons of energy 150 MeV was used to generate the 

secondary neutrons. The colour bar indicates the number of times the secondary neutron 

passes through the voxel of size 1.5 mm x 1.5 mm x 1.5 mm. 

 

Fig. 18. Image depicting the track of the secondary neutrons as it travels through the 

water phantom simulated using MATLAB to transport the neutron in a straight line 

based on its momentum. A proton beam containing 100 thousand protons of energy 150 

MeV was used to generate the secondary neutrons. The colour bar indicates the number 

of times the secondary neutron passes through the voxel of size 1.5 mm x 1.5 mm x 1.5 

mm.  
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6 Conclusion 

In our study, we investigated the spatial, angular and energy distribution of the 

secondary neutrons produced in proton therapy. The neutrons produced in proton 

therapy are mostly created at the start of the beam path and are propagated at a 

preferential direction depending on the atomic composition. Results show that most of 

the neutrons produced in the 24 tissue phantoms are intermediate neutrons (< 1 MeV). 

This is a cause for concern because the neutrons in this energy range have a high RBE 

value and a small mean free path relative to the size of an average human, that can result 

in high localized biological damage. The relative lethality factors described in this paper 

informs treatment planners to avoid directing the proton beam towards tissues such as 

bone tissues, to reduce the risk of DNA damage due to secondary neutrons. In addition, 

the comparison of the results between different physics models available within 

GEANT4 showed how the physics models affect the results. Through exploring the 

transport of the neutrons, we reasoned that neutron doses in proton therapy should not 

be neglected, and future works can be conducted on this topic.  
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7 Future Works 

This is a promising field of study and it has a tremendous impact on how proton therapy 

treatment planners view the secondary neutrons. There are several follow-up studies 

that can be conducted to improve our understanding of the secondary neutrons produced 

in proton therapy.  

First, actual measurements of the angular distributions of neutrons can be done to verify 

that neutrons are produced at a preferential angle. Next, optimisation of the data 

recording process of the neutron transport can be done, such that we can obtain a more 

accurate understanding of the risks involved with these secondary neutrons. The 

successful transport of the neutrons will show the spatial distribution of the secondary 

neutron dose throughout the body, and allow us to determine if the neutron count 

produced from proton therapy is sufficiently high for Boron-11 to act as an effective 

radiosensitiser and increase the dose deposited in the tumour region. Finally, changing 

the block phantom into an actual human phantom compromising of data input from a 

CT scan can have actual clinical impact.   
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8 Appendix 

 

Appendix 1. Visualisation of the angles calculated in this thesis 


