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Suggested Solutions

Q1

A

Drawing the Amperian loop in the question with length l,∫
~B · d~l = µ0

∫
~j · da

⇒ 2Bl = µ0I

⇒ B = µ0K/2

, so that
~B = ±µ0

2
Kŷ

with the + sign for z < 0 and the - sign for z > 0.

~B = ∇× ~A ⇒
∫

~B · d~a =

∫
~A · d~l

Drawing a rectangular Amperian loop with its normal parallel to ~B and one
edge of length l on the sheet where ~A is set to 0 and the opposite edge at distnace
z away from the edge, we have ∫

~B · d~a =

∫
~A · d~l

⇒ zlB = lA

⇒ ~A =
µ0

2z
Kx̂.

B

For the complete ring, ~B = µ0
~M . For a square loop,

~B =
µ0I

4πs
(sin θ2 − sin θ‘)

per segment where s = a/2, θ2 = −θ1 = π/4. Multiplying by 4 segments, the
field of a square loop is hence

Bsquare =

√
2µ0I

πa/2
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where I = WKb = W | ~M × n̂| = WM , so

Bsquare =
2
√

2µ0MW

πa

. The net field in the gap is thus

~B = µ0
~M

(
1− 2

√
2W

πa

)
.
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Q2

A

Before the introduction of the displacement current, Ampere’s law was simply

∇× ~B = µ0
~J

, implying that ∇ · (∇× ~B) = µ0∇ · ~J . The gradient of any curl should be zero,

but in general ∇ · ~J 6= 0; by the continuity equation

∇ · ~J = −∂ρ

∂t

= − ∂

∂t
(ε0∇ · ~E)

= −∇ · (ε0
∂ ~E

∂t
).

This motivates the correction to Ampere’s law so that it now reads

∇× ~B = µ0
~J + µ0(ε0

∂

∂t
~E)

so that ∇ · (∇× ~B) = 0 as it should.
For the coaxial cable,

~B =
µ0I

2πr
φ̂.

inside the cable and 0 outside. Drawing a rectangular Amperian loop with one
edge of length l inside the coaxial cable and at a distance r away from the inner
cable, and the opposite edge outside the coaxial cable, we have, by Faraday’s law,∮

~E · d~l = El = −dΦ

dt

, so that

E = −1

l

d

dt

∫
~B · d~a

= − d

dt

∫ a

r

µ0I

2πr′
dr′

Hence
~E(r) =

µ0I0ω

2π
sin ωt ln

a

r
ẑ,

and the displacement current

~Jd = µ0ε0
∂

∂t
~E

=
ε0µ0I0ω

2

2π
cos ωt ln

R

r
ẑ

=
µ0ε0

2π
ω2I ln

a

r
.
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B

(i)

Consider 2 sets of potential:

~A′ = ~A + ~α

V ′ = V + β

such that ~A and ~A′ give the same ~B and ~E :

~B = ∇× ~A = ∇× ~A′

∇× ~α = 0.

Writing α as the gradient of a scalar λ,

α = ∇λ (∇×∇λ = 0)

~E = −∇V − ∂

∂t
~A

= −∇V ′ − ∂

∂t
~A′

hence

∇β +
∂

∂t
~α = 0

∇(β +
∂

∂t
λ) = 0

The term in parantheses is independent of position, but it could depend on
time :

β = − ∂

∂t
+ k(t)

We can absorb k(t) into λ, without affecting the gradient. Hence,

~A′ = ~A +∇λ,

V ′ = V − ∂

∂t
λ.

We can add ∇λ to ~A, provided we simulatenously subtract ~∂∂tλ from V .

(ii)

~E = −∇V − ∂

∂t
~A =

1

4πε0

q

r2
r̂

~B = ∇× ~A = 0
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This is a set of potentials for a stationary point charge q at the origin, more
usually

V =
1

4πε0

q

r
~A = 0.

(iii)

Gauge transforming by λ, we have

V ′ = V − ∂

∂t
λ = 0−

(
− 1

4πε0

q

r

)
=

1

4πε0

q

r

~A′ = ~A +∇λ = − 1

4πε0

qt

r2
r̂ +

−1

4πε0

qt
−1

r2
r̂ = 0

as in ‘usual’ potentials of a point charge.
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Q3

A

~B =
1

c
ẑ × ~E

=
E0

c
cos(kz − ωt)ŷ.

u =
1

2
< (ε0E

2 +
1

µ0

B2) >

=
1

2
(ε0 +

1

µoc2
)E2

0 cos2(kz − ωt)

= ε0E
2
0 cos2(kz − ωt),

while

S =
1

µ0

~E × ~B

=
1

µ0c
E2

0 cos2(kz − ωt)ẑ

= cε0E
2
0 cos2(kz − ωt)ẑ

= cuẑ

P =
S

c2
=

1

c
ε0E

2
0 cos2(kz − ωt)ẑ

Pressure on a perfect absorber = |P|c = ε0E
2
0 cos2(kz − ωt).

B

(i)

Skin depth =
1

k−

=
1

ω

√
2

εµ
(

√
1 +

( σ

εω

)2

− 1)−
1
2

≈ 1

ω

√
2

εµ
(1 +

1

2

( σ

εω

)2

− 1)−
1
2

=
2

σ

√
ε

µ

which is independent of ω.
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(ii)

Skin depth =
1

k−

=
1

ω

√
2

εµ
(

√
1 +

( σ

εω

)2

− 1)−
1
2

≈ 1

ω

√
2

εµ

√
εω

σ

=

√
2

ωσµ

=
1

k

=
λ

2π
.

(iii)

< u > =
1

2
< (εE2 +

1

µ
B2) >

=
1

4
E2

0e
−2k−z(ε +

k2

µω2
)

=
1

4
E2

0e
−2k−zε

(
1 +

√
1 + (

σ

εω
)2

)
The 1 witin the paranthesis comes from the electrical contribution and the other
term, which is larger than 1, comes from the magnetic contribution. Hence, the
magnetic contribution always dominates.
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Q4

(i)

∇V =
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂

= − p0ω

4πε0c

{
cos θ[− 1

r2
sin ω(t− r/c)− ω

rc
cos ω(t− r/c)]− sin θ

r2
sin ω(t− r/c)θ̂

}
≈ p0ω

2

4πε0c2

(
cos θ

r

)
cos ω(t− r/c)r̂,

∂

∂t
~A = −µ0p0ω

2

4πr
cos[ω(t− r/c)](cos θr̂ − sin θθ̂),

so

~E = −∇V − ∂ ~A

∂t

= −µ0p0ω
2

4π

(
sin θ

r

)
cos ω(t− r/c)θ̂.

Meanwhile,

~B = ∇× ~A

=
1

r

[
∂

∂r
(rAθ)−

∂Ar

∂θ

]
φ̂

=
−µ0q0ω

4πr

{
ω

c
sin θ cos ω(t− r/c) +

sin θ

r
sin ω(t− r/c)]

}
φ̂

≈ −µ0p0ω
2

4πc

(
sin θ

r

)
cos[ω(t− r

c
]φ̂.

(ii)

< ~S > =
1

µ0

(< ~E × ~B >)

=
µ0

c

{
p0ω

2

4π

(
sin θ

r

)
< cos ω(t− r/c) >

}2

r̂

=

(
µ0p

4
0ω

4

32π2c

)
sin2 θ

r2
r̂.
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(iv)

< P > =

∫
< ~S > ·d~a

=
µ0p

2
0ω

4

32π2c

∫
sin2 θ

r2
r2 sin θdθdφ

=
µ0p

2
0ω

4

12πc

(v)

P = I2R = q2
0ω

2 sin2 ωtR

Average power,

< P >=
1

2
q2
0ω

2R

Equating this to the power of a dipole,

< P >=
µ0q

2
0ω

4d2

12πc

,

R =
µ0d

2

6πc
ω2 =

µ0d
2

6πc

4π2c

λ2
=

2

3
πµ0c

(
d

λ

)2
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