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Suggested Solutions

Q1
A

Drawing the Amperian loop in the question with length [,

/é-df:ug/j-da

= 2Bl = ppl
, o that
B= :E%Kg

with the + sign for z < 0 and the - sign for z > 0.
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Drawing a rectangular Amperian loop with its normal parallel to B and one
edge of length [ on the sheet where A is set to 0 and the opposite edge at distnace

z away from the edge, we have
/ B-di= / A-dl
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For the complete ring, B= ,u0]\7[ . For a square loop,
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B = %(sin 0y — sin 0)
per segment where s = a/2, 5 = —6; = w/4. Multiplying by 4 segments, the
field of a square loop is hence
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where I = WK, = W|M x a| = WM, so
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Bsquare =
Ta
. The net field in the gap is thus
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Q2
A

Before the introduction of the displacement current, Ampere’s law was simply
V xB= ,uoj
, implying that V - (V X ﬁ) = oV - J. The gradient of any curl should be zero,
but in general V - J # 0; by the continuity equation
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B ,
= —E(EQV . E)

V.J =

OF
= —V . (GOW).

This motivates the correction to Ampere’s law so that it now reads

. . o -
VX B= MOJ‘FMO(E()&E)
so that V- (V x B) = 0 as it should.
For the coaxial cable,
. I-
B=H
27r
inside the cable and 0 outside. Drawing a rectangular Amperian loop with one
edge of length [ inside the coaxial cable and at a distance r away from the inner
cable, and the opposite edge outside the coaxial cable, we have, by Faraday’s law,
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and the displacement current
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B
(i)
Consider 2 sets of potential:

A = A+a
Vi = V43

such that A and A’ give the same Band E :

B = VxA=VxA
V xa=0.

Writing « as the gradient of a scalar A,

a = VA(VxVA=0)
. 9 -
E = V- oA

/ 0 VY
= VvV -4

hence
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V(B + 2A) =0
o™’

V3 + =0

The term in parantheses is independent of position, but it could depend on
time :

0
=—— 4+ k(t
f=—g k()
We can absorb k() into A\, without affecting the gradient. Hence,
A=A+ VA,
0
Vi=V—-—=A\
ot

We can add VA to ff, provided we simulatenously subtract DO\ from V.

(ii)

- 0 - 1 ¢
E = vwWw-24=—-19;

v ot 4eg r?
B = VxA=0



This is a set of potentials for a stationary point charge g at the origin, more
usually
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(iii)
Gauge transforming by A, we have
0 1 ¢ 1 ¢
V/ — — —)\ g — — — — —
v ot 0 ( 47eg r> dregr

N R 1 gt -1 -1
A = A+Vi=— =7 t—7r =20
+ 4rreqy r? 47T€0q r2 "

as in ‘usual’ potentials of a point charge.



Q3

Pressure on a perfect absorber = |P|c = ¢y E? cos?(kz — wt).

Skin depth

which is independent of w.
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B = -ZxFE
c
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= Dcos(kz — wt)g.
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(ii)
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(iii)
1 o, 1
<u> = §<(€E +—B%) >
1 2 —2k_z k2
= ZEOe (6 + W)
1 o
— _E2 —2k_z 1 1 )2
4 Oe € ( + + (ew) )

The 1 witin the paranthesis comes from the electrical contribution and the other
term, which is larger than 1, comes from the magnetic contribution. Hence, the
magnetic contribution always dominates.



Q4

ov . 10V 4
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(ii)
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(iv)
<P> = /<§>-dc‘i

2,4 : 29
- 2 / 712 sin 0d6dg
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127c

(v)
P=1I°R= quQ sin® wtR
Average power,
<P>= %qngR
Equating this to the power of a dipole,
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