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Suggested Solutions

Q1

a

~B = ~Bstraight + ~Bbent

Both ~Bstraight and ~Bbent point upward and are perpendicular to the plane of the
loop.

Bstraight =
µ0I

4πR
(2 sin θ)

=
µ0I

2πR
sin θ.

For ~Bbent, consider an current element dl.

dBbent =
µ0Idl

4πR2
=

µ0I

4πR
dα

where α is the angle subtended by dl.

Bbent =
µ0I

4πR

∫ 2π−2θ

0

dα =
µ0I

2πR
(π − θ)

The total field is

B = Bstraight + Bbent

=
µ0I

2πR
(π − θ + sin θ)

b

~B = ∇× ~A

⇒
∫

~B · d~a =

∫
∇× ~A · d~a =

∫
~A · d~l

Set ~A to be 0 in the middle of the wire. Then, drawing a rectiangular Amperian
loop with its normal in the ŝ direction with one edge of length l in the middle of
the wire and the other edge at r < R away as shown, we have
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lA =

∫
~B · da

=

∫ r

0

µ0Ir

2πR2
l dr

=
µ0Il

4πR2
r2

so for r < R, ~A = µ0I
4πR2 r

2 ẑ.

For ~A outside the wire, consider a rectangular Amperian loop with one end
at r = R and the opposite edge at r > R. Then,

l(A− µ0I

4πR2
R2) =

∫ r

R

µ0I

2πr
l dr

⇒ ~A =
µ0I

2π
(ln(

r

R
) +

1

2
)ẑ.
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Q2

Consider the following geometry :

a

Continuity of the component of ~E perpendicular to the boundary requires
that

EI + ER = ET

The continuity of the componenet of ~H parallel to the boundary requires that

1

µ1

(BI −BR) =
1

µ2

BT

⇒ 1

µ1v1

(EI − ER) =
1

µ1v2

ET .

Assuming µ1 = µ2 = µ0, the above simplifies to

n1(EI − ER) = n2ET .

Solving for EI and ER gives

ER =
n1 − n2

n1 + n2

,

EI =
2n1

n1 + n2

.
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Thus,

R =

(
ER

EI

)2

=

(
n1 + n2

n1 + n2

)2

,

T =
ε2v2

ε1v1

(
ET

EI

)2

=
n2

n1

(
2n1

n1 + n2

)2

=
4n1n2

(n1 + n2)2
.

b

Let the electric and magnetic fields be

E = E0e
−k−z cos(k+z − ωt + δe)x̂

B =
|k|
ω

E0e
−k−z cos(k+z − ωt + δb)ŷ

The time averaged energy density is then

u =
1

2
< (εE2 +

1

µ
B2) >

=
1

4
E2

0e
−2k−z(ε +

1

µ

(
|k|
ω

)2

)

as the time average of the cos2 terms is 1
2
.

Consider monochrmoatic wave incident on a thick slab of thickness ∆z and
cross sectional area A.

Average flow into slab is < S > A, i.e.

1

2

k+

µω
E2

0e
−2k−zA

at point z. The average flow out at z′ = z +∆z is evaluated by the same formula
at z′.
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The power disspated is the difference between ”in” and ”out”

< P > =
1

2

k+

µω
E2

0A[− d

dz
e−2k−z∆z]

=
k+k−
µω

E2
0e
−2k−z(A∆z)

=
1

2
σE2

0e
−2k−zA∆z.
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Q3

a

i

Consider 2 sets of potential:

~A′ = ~A + ~α

V ′ = V + β

such that ~A and ~A′ give the same ~B and ~E :

~B = ∇× ~A = ∇× ~A′

∇× ~α = 0.

Writing α as the gradient of a scalar λ,

α = ∇λ (∇×∇λ = 0)

~E = −∇V − ∂

∂t
~A

= −∇V ′ − ∂

∂t
~A′

hence

∇β +
∂

∂t
~α = 0

∇(β +
∂

∂t
λ) = 0

The term in parantheses is independent of position, but it could depend on
time :

β = − ∂

∂t
+ k(t)

We can absorb k(t) into λ, without affecting the gradient. Hence,

~A′ = ~A +∇λ,

V ′ = V − ∂

∂t
λ.

We can add ∇λ to ~A, provided we simulatenously subtract ~∂∂tλ from V .
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ii

~E = −∇V − ∂

∂t
~A =

1

4πε0

q

r2
r̂

~B = ∇× ~A = 0

This is a set of potentials for a stationary point charge q at the origin, more
usually

V =
1

4πε0

q

r
~A = 0.

Gauge transforming by λ, we have

V ′ = V − ∂

∂t
λ = 0−

(
− 1

4πε0

q

r

)
=

1

4πε0

q

r

~A′ = ~A +∇λ = − 1

4πε0

qt

r2
r̂ +

−1

4πε0

qt
−1

r2
r̂ = 0

as in ’usual’ potentials of a point charge.

b

~A(r, t) =
µ0

4π

∫ ∞

−∞

q0δ(t− s/c)

s
dz

but s =
√

r2 + z2, so the integrand is even in z :

~A(r, t) =
µ0q0

4π
2

∫ ∞

0

δ(t− s/c)

s
dz

Now z =
√

s2 − r2, implying that

dz =
1

2

2s ds√
s2 − r2

=
s ds√
s2 − r2

where z = 0 ⇒ s = r,z = ∞⇒ r = ∞. Hence

~A =
µ0q0

2π

∫ ∞

r

δ(t− s/c)

s

s ds√
s2 − r2

.

Now δ(t− s/c) = cδ(s− ct), therefore

~A =
µ0q0

2π
ẑc

∫ ∞

r

δ(s− ct)√
s2 − r2

ds
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or
~A =

µ0q0

2π

1√
(ct)2 − r2

ẑ

(or zero, if ct < r).

E = −∂ ~A

∂t
= −µ0q0

2π

(
−1

2

)
2c2t

[(ct)2 − r2]
3
2

ẑ =
µ0q0c

3t

2π[(ct)2 − r2]
3
2

ẑ

(or zero, if t < r/c).

~B = ∇× ~A = −∂ ~Az

∂t
φ̂

= −µ0q0c

2π

(
−1

2

)
−2r

[(ct)2 − r2]
3
2

φ̂

= − µ0q0cr

2π[(ct)2 − r2]
3
2

φ̂.

(or zero, if t < r/c).
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Q4

(i)

∇V =
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂

= − p0ω

4πε0c

{
cos θ[− 1

r2
sin ω(t− r/c)− ω

rc
cos ω(t− r/c)]− sin θ

r2
sin ω(t− r/c)θ̂

}
≈ p0ω

2

4πε0c2

(
cos θ

r

)
cos ω(t− r/c)r̂,

∂

∂t
~A = −µ0p0ω

2

4πr
cos[ω(t− r/c)](cos θr̂ − sin θθ̂),

so

~E = −∇V − ∂ ~A

∂t

= −µ0p0ω
2

4π

(
sin θ

r

)
cos ω(t− r/c)θ̂.

Meanwhile,

~B = ∇× ~A

=
1

r

[
∂

∂r
(rAθ)−

∂Ar

∂θ

]
φ̂

=
−µ0q0ω

4πr

{
ω

c
sin θ cos ω(t− r/c) +

sin θ

r
sin ω(t− r/c)]

}
φ̂

≈ −µ0p0ω
2

4πc

(
sin θ

r

)
cos[ω(t− r

c
]φ̂.

(ii)

< ~S > =
1

µ0

(< ~E × ~B >)

=
µ0

c

{
p0ω

2

4π

(
sin θ

r

)
< cos ω(t− r/c) >

}2

r̂

=

(
µ0p

4
0ω

4

32π2c

)
sin2 θ

r2
r̂.
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(iv)

< P > =

∫
< ~S > ·d~a

=
µ0p

2
0ω

4

32π2c

∫
sin2 θ

r2
r2 sin θdθdφ

=
µ0p

2
0ω

4

12πc

(v)

P = I2R = q2
0ω

2 sin2 ωtR

Average power,

< P >=
1

2
q2
0ω

2R

Equating this to the power of a dipole,

< P >=
µ0q

2
0ω

4d2

12πc

,

R =
µ0d

2

6πc
ω2 =

µ0d
2

6πc

4π2c

λ2
=

2

3
πµ0c

(
d

λ

)2
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